Review of "General Formulation For the Distribution Problem: Prognostic Assumed PDF Approach Based on The Maximum–Entropy Principle and The Liouville Equation" by Yano et al.

After careful assessment, I have decided to recommend this manuscript for publication after a minor revision.

Some of the points I previously raised have been addressed in the revised manuscript. A guide for applying the theory to more general forms of systems is now included in Sec. 5.3. The meaning of the output-constrained maximum-entropy principle is further elaborated. Additional details for clarification are provided throughout. All of which contributed to improving the manuscript's quality.

What is still missing is a more thorough evaluation of the error in the derived model, as such information is crucial to understand the methodology's reliability. I agree, however, with the authors that deriving and evaluating the error systematically would be complex. To give readers a rough idea of when and how the derived model performs accurately, a more in-depth discussion of the error using simple examples would be valuable. For this purpose, I request the authors to expand the discussion related to Fig.2 (see also Comment (6) below). Additionally, I would suggest exploring other simple but qualitatively different cases, such as those involving fixed points (steady solutions):

- $d\phi/dt = -\phi$. Here, $\phi = 0$ is a globally stable fixed point.
- $d\phi/dt=\phi(\phi-1)$. Here, $\phi=0$ is a stable fixed point, and $\phi=1$ is an unstable fixed point.
- $d\phi/dt=\phi(\phi-1)(2-\phi)$. Here, $\phi=0,2$ are stable fixed points, and $\phi=1$ is an unstable fixed point.

Some more comments are provided below.

Major Comments

- 1) [request] P.4 II.118–119 "... F designates all ..." It is not at all obvious to the readers that F can be space dependent. Please clarify this point here. I would explain F is a functional of $\phi(x,y,z)$.
- 2) [comment] P.6 II.139–140 "..., there is no closed analytical formula for reconstructing the original distribution from a given series of moments: ..." For the authors' information, I found an interesting paper that is closely relevant to this problem.

Chao Dang and Jun Xu, "Novel algorithm for reconstruction of a distribution by fitting its first-four statistical moments", Applied Mathematical Modelling, Volume 71, 2019, Pages 505-524, https://doi.org/10.1016/j.apm.2019.02.040.

3) [question] P.23 Eq.(5.10b)

I think we can solve the derived model in a slightly different way. Let us consider $\{\langle \sigma_l \rangle\}$, not $\{\lambda_l\}$, are the prognostic variables.

- 1. From $\{\langle \sigma_l \rangle(t)\}$, we can estimate the PDF $p(\phi,t)$ by using the maximum entropy principle.
- 2. Using the estimated $p(\phi, t)$, we can calculate the $\{\langle F_{\sigma_l} \rangle(t)\}$.
- 3. Using Eq.(5.10b), we can numerically calculate $\{\langle \sigma_l \rangle (t+\Delta t)\}$.

By repeating this procedure, we can numerically calculate the time evolution of weights $\{\langle \sigma_l \rangle(t)\}$. Isn't this easier than solving Eq. (5.8a)?

4) [comment] Sec.5.3 "Generalization to the PDE system (2.1)"

I appreciate that the authors added this section; we can now see that the generalization of the proposed theory is indeed straightforward. From the derivation provided in this section, I also feel that we may not need to bring the Liouville equation.

- 5) [comment] P.28, II.787–790 "... the solution breaks down beyond this point ..." I think this behavior is reasonable. Please note that the solution of $d\phi/dt = \phi^n, \phi(0) \neq 0$ blows up in finite time if n > 1.
- 6) [question, request] Fig.2

Is Fig.2b correct? If I understand Eq. (5.17e) correctly, $\lambda_1(t)$ does not depend on n when m=1.

For each m=0,1,2,3, please plot the true $\lambda_1(t)=1/\langle\phi\rangle(t)$ and discuss which choice of n is the most accurate.

Minor Comments

7) [request] P.5 II.139–140 "Furthermore, in the present study, the source term, ${\cal F}$, is assumed to be deterministic."

This is not correct. Brownian motion is considered in Sec. 4.4. Please rephrase.

Typo

- 8) P.8 l.219 "... be be ..."
- 9) P.11 I.314 "... to constraint ..." -> "... to constrain ..."
- 10) P.21 I.582 "... with by ..."
- 11) P.22 I.622 "... $\partial^2\phi/\partial\phi^2$ " -> "... $\partial^2p/\partial\phi^2$ "
- 12) P.26 I.730 "... questioned form"

References

Chao Dang and Jun Xu, "Novel algorithm for reconstruction of a distribution by fitting its first-four statistical moments", Applied Mathematical Modelling, Volume 71, 2019, Pages 505-524, https://doi.org/10.1016/j.apm.2019.02.040.