

1 Climate Affects Global Basin-Related Metallogeny

- 2
- 3 Chuang Zhang ^a*
- 4 ^a Beijing Research Institute of Uranium Geology, China National Nuclear Corporation, Beijing 100029, China
- 5 * Corresponding author: <u>zhangc198506@126.com</u>
- 6
- 7 Abstract
- 8

9 The basin-related hydrothermal mineral deposits are the products of metal deposition in a relatively 10 small area from metal-rich saline brines that source from basins. Recent studies have confirmed that 11 the metal-rich ore-forming fluids were formed in semi-arid to arid environments, and are the 12 products of a complex system involving precipitation, weathering, groundwater, precipitation-13 dissolution reactions, and evaporation. The evaporation is the main reason for the buildup of metals 14 in saline brines. The formation of metal-rich saline brines is commonly accompanied by the 15 formation of evaporites.

16

17 The statistical results of basin-related mineral deposits worldwide show that there are two 18 metallogenic periods after the great oxidation event: 2.1-1.4Ga (Period I) and 0.8Ga to present 19 (Period II), with few scattered between these two periods (metallogenic quiescence period). In addition, Metallogenic Period II has five metallogenic peaks: ~380-340Ma (II-1), ~300-240Ma (II-20 2), ~160-100Ma (II-3), 60-40Ma (II-4), and one specific stratiform Cu metallogenic concentration 21 22 period of ~580-500Ma (II-5). These two metallogenic periods and five peaks are coupled with the 23 widespread development of saline deposits in time. The basin-related ore deposits are mainly symmetrically occurring in 10°-60° in paleo-latitudes, which is consistent with the occurring 24 25 latitudes of evaporites.

26

27 The metallogenic quiescence period corresponded to the scarcity of saline deposits and was 28 probably caused by the combination of a lack of hydrological closed basins and arid to semi-arid 29 environments during 1.4-0.8 Ga. This quiescence period was coupled with the booming of

stromatolites and the extremely thin continents, both of which suggest an Earth with flat continents
that were covered by a hot and wet climate, and the widely developed shallow marine environments
of the major continents at middle and low altitudes during 1.4-0.8 Ga.

33

- 34 Keywords:
- 35
- 36 Climate, Basin-related mineral deposits, Mesoproterozoic, Saline giants, Stromatolite
- 37

38 1. Introduction

39

For more than thirty years, geologists have strived to unlock the secrets of secular distribution of 40 41 many types of ore deposits in Earth's history (e.g., Meyer, 1981, 1988; Sawkins, 1984; Groves et al., 2005a, b; Holland, 2005; Leach et al., 2010; Cuney, 2010), such as sediment-hosted Pb-Zn deposits 42 43 (e.g., Sangster, 1990; Goodfellow and Lydon, 2007), and sediment-hosted stratiform Cu deposits (e.g., Kirkham, 1989; Kirkham et al., 1994; Hitzman et al., 2010). There are three principal factors 44 45 that have influenced the global pattern of metallogenesis: long-term global tectonic trends (e.g., Barley and Groves, 1992; Goldfarb et al., 2010), the evolution of the hydrosphere-atmosphere, 46 47 which is inextricably related to the tectonic recycling (e.g., Slack and Cannon, 2009; Bekker et al., 48 2010), and the secular decrease in global heat production (e.g., Holland, 1984; Sawkins, 1990; Barley and Groves, 1992; Farquhar et al., 2014). The plate tectonic evolution has been increasingly 49 50 emphasized as a factor that led to the formation of many famous mineral provinces (e.g., Rona, 1980; Mitchell and Garson, 1981; Sawkins, 1984; Groves et al., 2005a; Robb, 2005, 2020). Nevertheless, 51 52 due to the lack of a reasonable understanding of the formation processes of ore-forming fluids for 53 basin-related ore deposits, there are ambiguities in the correlation between global metallogeny and 54 the complex Earth history of supercontinent assembly and breakup during the Phanerozoic (e.g., 55 Leach et al., 2005, 2010; Hitzman et al., 2010). 56

- 57 The availability of information on important mineral deposits worldwide is steadily increasing,
- 58 significant advances have been achieved in understanding long-term secular changes in the Earth

59	System, and data gaps for defining broad temporal distributions of ore types are becoming smaller.
60	However, there continues to be one significant gap in our understanding of the secular distribution
61	of many types of ore deposits in time and space (e.g., Robb, 2005; Goldfarb et al., 2010). If we shift
62	our perspective from ore-deposit centric to one centered on ore-forming fluids (e.g., Richard et al.,
63	2013, 2014; Zhang et al., 2022, 2023a, 2023b), the global distribution pattern of basin-related
64	mineral deposits (e.g., SEDEX and MVT Pb-Zn deposits, sediment-hosted stratiform Cu deposits,
65	Unconformity related U deposits) in time and space would be understood more easily. Recently,
66	some researchers have begun to study the metal-rich fluids in developing basins, so as to reveal the
67	formation processes of paleo-ore-forming fluids for the basin-related ore deposits (e.g., Li and
68	Barnes, 2019; Zhang et al., 2022, 2023a, b). The goal of this paper is to provide a new perspective
69	into the climate controls on the formation of metal-rich fluids, and therefore controls the formation
70	of basin-related ore deposits.

71

72 The present is the key to the past. Metalliferous saline brines in basins are the ore-forming fluids for 73 basin-related ore deposits, such as unconformity-related U deposits, MVT Pb-Zn deposits, and redbed Cu deposits (e.g., Leach et al., 1997, 2005; Zhang et al., 2022). This paper covers six main 74 75 subjects: (1) the description of major types of basin-related ore deposits, in particular SEDEX and 76 MVT Pb-Zn deposits, sediment-hosted stratiform Cu deposits, and basin-related hydrothermal type 77 U deposits; (2) the formation processes of metal-rich saline brines in hydrologically closed basins 78 that are responsible for basin-related ore deposits; (3) the global distribution of basin-related ore 79 deposits in time and space; (4) the factors that influence the formation of metal-rich saline brines; 80 (5) how climate influences the formation and distribution of basin-related ore deposits globally; and 81 (6) how major geological events influence the global climate and the formation and distribution of 82 basin-related ore deposits.

83

84 2. Description of Basin-Related Ore Deposits

85

86 Basin-related ore deposits are a diverse group of ores that are genetically related to basinal brines,

87 and have no direct genetic association with igneous activity. These include Unconformity-type U

88	deposits, SEDEX and MVT Pb-Zn deposits, and Redbed Cu deposits (e.g., Hitzman et al., 2010;
89	Leach et al., 2010), as well as vein type polymetallic deposits outside of basins but genetically
90	related to basinal brines (Kyser, 2014; Zhang et al., 2023a, 2023b). These deposits are typically
91	stratiform or strata-bound, although some discordant ores occur (e.g., Bradley and Leach, 2003;
92	Zhang et al., 2019, 2022). Vein ore is often important in many deposits, and the ores consist of
93	various metals such as Pb, Zn, Cu, As, Ag, Fe, and U (e.g., Selley et al., 2005; Kerrich et al., 2005,
94	2008; Farquhar et al., 2010). Comprehensive review articles are available for sediment-hosted Pb-
95	Zn deposits (Leach et al., 2005), basin-related hydrothermal type U deposits (Cuney, 2010; Kyser,
96	2014), and sediment-hosted stratiform Cu deposits (Hitzman et al., 2010). Therefore, the author will
97	not present a detailed description of the geological characteristics of basin-related ore deposits, but
98	rather a brief summary and overview.

99

100 The presence of laminated metallic minerals that parallel bedding is commonly accepted as 101 permissive evidence for exhalative ore (e.g., Goodfellow et al., 1993; Goodfellow and Lydon, 2007). However, this kind of explanation is unsatisfactory (detailed discussion in Leach et al., 2010). In 102 103 addition to the laminated Pb-Zn deposits, there are many laminated deposits that did not form as 104 exhalites, such as the strata-bound scheelite mineralization near Halls Creek in Western Australia 105 (Todd Ririe, 1989), stratiform W-Sb-Au mineralization in South China (Gu et al., 2012), stratiform 106 Mn-Fe deposits in North Europe (Bostrom et al., 1979), the Nuheting U deposit in China (Bonnetti 107 et al., 2015), and partially the Bayan Obo REE deposit (e.g., Liu et al., 2004; Yang et al., 2017; 108 Zhang et al., 2017). Previous researchers proposed that these deposits with ore textures that mimic 109 synsedimentary textures were formed by replacement processes (e.g., Kelley et al., 2004a, b; Leach 110 et al., 2005). This explanation is also unsatisfactory, as the highly selective mineral replacement 111 after the deposition of host rocks without specific alteration is difficult to convince geologists.

112

The basins that host or are genetically related to ore deposits mainly occur in passive margins, continental rifts, and sag basins (e.g., Leach et al., 2010; Hitzman et al., 2010; Cuney, 2010). The tectonic setting of the basins determines the ore-hosting rock type, ore controls, as well as the survivability of the deposit during tectonic recycling (e.g., Goldfarb et al., 2010). The author did not

117	provide detailed descriptions of these tectonic settings; however, the similarity between them is the
118	ubiquity of convergent sedimentary basins. In this paper, the author exemplified the SEDEX and
119	$MVT\ Pb-Zn\ deposits, sediment-hosted\ Cu\ deposits, and\ basin-related\ hydrothermal\ type\ U\ deposits,$
120	to find out their distribution characteristics in time and space, which could be used to test their major
121	influencing factors.
122	
123	2.1 SEDEX and MVT Pb-Zn deposits
124	
125	The most common basin-related Pb-Zn deposits are SEDEX and MVT Pb-Zn deposits, hosted by a
126	variety of carbonate and siliciclastic rocks (Leach et al., 2005). The major ore minerals are sulfides
127	such as sphalerite, galena, and pyrite, while the nonsulfide minerals are mainly dolomite, calcite,
128	barite, siderite, and chert (e.g., Cooke et al., 2000; Yardley, 2005). These deposits have formed in a
129	variety of geologic and tectonic environments over the last two billion years, as documented by the
130	compilation result of Leach et al. (2005), based on the World Minerals Geoscience Database Project
131	(Sinclair et al., 1999).

132

133 2.2 Sediment-hosted Cu deposits

134

135 Sediment-hosted stratiform copper deposits comprise disseminated to veinlet copper and copper-136 iron sulfides in siliciclastic or dolomitic sedimentary rocks. Sulfides conform closely, but usually not exactly, with the stratification of host rocks (Brown, 1989, 1992, 1993, 1997). These deposits 137 138 account for approximately 23% of the world's production and known reserves, and are also 139 important sources of silver and cobalt (Hitzman et al., 2005). Some deposits contain other metals 140 including lead, zinc, and uranium, and a few contain gold and platinum group elements. The basins that host the stratiform copper deposits can be marine or continental, and usually contain evaporites 141 142 overlying redbeds or in isolated non-red units within the continental redbed sequences themselves 143 (e.g., Cox et al., 2003; Hitzman et al., 2010). The compilation of sediment-hosted stratiform copper deposits was cited from the statistical work of Kirkham (1989) and Kirkham et al. (1994). 144

145

5

146 2.3 Hydrothermal type U deposits

147

The basin-related hydrothermal type U deposits include the sub-types of vein-type U deposits hosted 148 149 by various lithologies, unconformity-related U deposits hosted by metamorphic rocks, collapse-150 breccia type deposits, and hydrothermal type U deposits hosted by Na- and/or K metasomatism 151 alteration (Cuney, 2011, 2013, 2014, 2016; Cuney et al., 2012; Zhang et al., 2022). The hydrothermal 152 U districts that the author has compiled include Proterozoic U deposits in the Nordic region, metasomatism type U deposits in Ukraine (Kirovogard-Smolino region, Krivoy Rog region) and the 153 154 Russian Federation (Lake Ladoga and Onega districts, European Part), Proterozoic unconformityrelated and vein type U deposits in Canada, Australia, India, Brazil, China, and Africa, such as the 155 famous U deposits in Athabasca and Thelon basins, Cuddapah and Bhima U region, Singhbhum Cu-156 157 U belt, Pink Creek Inlier U region, Franceville U region in Gabon, and so on (Dahlkamp, 2009, 158 2010, 2016). In addition, the Phanerozoic vein-type U deposits account for a large portion, such as 159 the Erzgebirge district in Germany, the La Crouzille district in France, the Holdita and Crucea 160 districts in Romania, South China U Province, Streltsovsk district in the Russian Federation, the 161 Spokane mountain area in the US, the Poços de Caldas Region in Brazil, and so on (Dahlkamp, 162 2009, 2010, 2016). The detailed statistics of U districts are in Appendix A.

163

164 3. Formation Processes of Ore-Forming Fluids of Basin-related Ore

- 165 Deposits
- 166

Ore-forming fluids responsible for the formation of basin-related ore deposits are commonly metal-167 168 rich, hot, and of medium to high salinities (Kesler, 2005). The homogenization temperatures of fluid inclusions of ore-stage minerals from these deposits typically range from 50°C to 250°C, as high as 169 170 300°C; however, most temperatures are between 100 and 200°C, such as those of MVT Pb-Zn 171 deposits, unconformity-related U deposits, vein type Pb-Zn and U deposits, and so on (e.g., Kesler and Reich, 2006; Stoffell et al., 2008; Richard et al., 2012; Zhang et al., 2017, 2019). Salinities 172 173 commonly range from 10% to over 30% wt NaCl equiv (Basuki and Spooner, 2004; Leach et al., 174 2005). The geochemical composition of the paleo-ore-forming fluids is remarkably similar to the

- 175 compositions of present-day basin brines (Carpenter et al., 1974; Kesler et al., 1996; Viets et al.,
- 176 1996), although there is a relatively large temperature difference between the developing basin
- 177 brines and paleo-ore-forming fluids.
- 178

Fig. 1 Sketch map showing the formation processes of metal fertile saline brines in continental closed
basin (A, modified from Zhang et al., 2022) and coastal basin (B, modified from Large et al., 2002)

- 182 and Zhang et al., 2022).
- 183

179

184 It is generally assumed, from mineralogical and geochemical considerations, that the paleo-ore-185 forming fluids were principally hot metalliferous basinal brines (Badham, 1981; Lydon, 1983;

- Cooke et al., 2000). However, this does not mean that the initial ore-forming fluid reached high levels of trace metal compositions at high temperature conditions. There are three possibilities for the formation procedures of hot metalliferous basinal brines: I. the initial fluid was metal-rich and then heated to a high temperature; II. the initial fluid was heated to a high temperature first, and then obtained a large amount of trace metals from regional lithologies; III. the initial fluid obtained the trace metals and was heated simultaneously.
- 192

The author first discusses the possibility of surficial saline brines acting as ore-forming fluids. Many 193 194 researchers have confirmed that the surficial saline brines in closed basins are metal-rich, such as the ephemeral Lake Merouane Chott in North Africa (U > 20 ppm, Cr > 100ppm, Cu > 200ppm, 195 Co > 10 ppm, Pb > 2ppm, V > 2000ppm, and Zn > 200ppm; e.g., Hacini and Oelkers, 2010), various 196 197 soda saline lakes in Mongolia (U > 20 ppm, Mo > 5 ppm; e.g., Volkova, 1998; Linhoff et al., 2011; Shvartsev et al., 2014; Zhang et al., 2022), and saline lakes on the Tibet Plateau (W > 5ppm, Mo > 198 199 5 ppm, REE > 10 ppm; Zheng et al., 1989). These metalliferous saline brines are the products of a 200 complex system involving precipitation, weathering, precipitation-dissolution reactions, 201 groundwater circulation and water-rock interactions, evaporations, and probably biological activity 202 (Carroll and Bohacs, 1999). Such metal-rich saline brines usually exist in the form of saline lakes, 203 and mainly develop in arid to semi-arid environments. The main influence on the formation of these 204 brines is hydrological closure; that is, evaporation is the primary or only way for water to leave the 205 converging area (Deocampo and Jones, 2014). The balance between water inflow and evaporation 206 over time is the major factor causing ions to accumulate (Jones and Bodine, 1987) by exceeding the 207 saturated solubility of various minerals, usually beginning with the alkaline-earth carbonates, then 208 progressing to gypsum, and then to halite (Warren, 2014). In this enriching process, trace metals 209 build up to an unusually high level (detailed examples in Zhang et al., 2022, 2023a, b). The mineralogical composition and order of salts precipitation in a surficial saline brine are controlled 210 by the ionic make-up of the mother brine, which is commonly the surficial and underground runoff 211 (Hardie and Eugster, 1970; Hardie et al., 1978). 212 213

214 The surficial saline brines have high salinities with total dissolved solids of more than 35 g/L but

- 215 commonly less than 400 g/L (Deocampo and Jones, 2014; Zhang et al., 2022). The high salinities 216 mean higher density compared to fresh groundwater, which drives the surficial saline brines to circulate into the deep area and thus changes the salinities and trace metals concentrations of 217 218 groundwater (Fig. 1A). During the circulation, these brines would be heated and pressurized, and 219 obtain and deposit some specific metal ions, and alter the basement through water-rock chemical 220 interactions (Hecht and Cuney, 2000; Mercadier et al., 2010, 2012, 2013; Kyser, 2014). Over time, 221 the groundwater near saline lakes would eventually be transformed into metalliferous, pressurized, 222 and hot salinized fluids.
- 223

The nearby sedimentary strata may become metalliferous fluid-hosting aquifers, such as the 224 225 Mississippi Salt Dome (Kharaka and Thordsen, 1992; Kesler et al., 1996). These brines could be 226 expelled from the aquifers during physical and/or chemical compaction and/or diagenesis, and 227 migrate into structural conduits such as faults, creating opportunities for vein-type mineralization 228 (Frape et al., 2014; Heinrich and Candela, 2014). If the basins are coastal, the formation of metal-229 fertile brines sourced from seawater requires (1) a steady influx of seawater, (2) multiple intervals 230 of isolation from the ocean, (3) a saline-lake elevation lower than sea level, in addition to an arid, 231 evaporative environment (Fig.1B; e.g., Messinian salinity crisis in the Mediterranean region, 232 Krijgsman et al., 1999; Gillet et al., 2007).

233

234 In contrast, more researchers prefer Possibilities II and III, which suggest that the initial fluid 235 obtained trace metals at high temperature conditions, such as the "Reflux brine model for Pb-Zn 236 deposits in Passive Continental Margin" (Leach et al., 2005) and "Seawater extracting metals from 237 redbeds model for sediment-hosted stratiform copper deposits" (e.g., Hitzman et al., 2005; Robb, 238 2005). The trace metals were extracted from the surrounding rocks, such as redbeds, marine sedimentary rocks, and wall rocks of regional faults (e.g., Hitzman et al., 2005; Kyser, 2014). Some 239 240 of these models require the existence of evaporites. Direct dissolution of evaporites in the flow path of meteoric/marine waters has been the preferred source for dissolved salts (Goodfellow et al., 1993; 241 242 Lydon, 1995; Emsbo, 2009), and then extract the trace metals from regional lithologies during 243 groundwater circulation to become the metal-rich fluid (e.g., Hitzman et al., 2005; Kyser, 2014). It

244	is difficult to verify the authenticity of these models (Possibilities No. II and III) because the
245	extraction of trace metals occurs several kilometers underground and is unobservable directly.
246	However, the authenticity of these models can be indirectly verified by statistics of paleo-latitude
247	of the basin-related ore deposits during their mineralization. For Possibility I, the initial ore-forming
248	fluid formed in arid to semi-arid environments, which is dominantly controlled by the latitude.
249	However, for Possibilities II and III, the formation of initial ore-forming fluid was independent of
250	latitude, although some of these models need the existence of evaporites. The detailed latitude
251	statistics of basin-related ore deposits are below.

252

4. Global Distribution of Metal-rich Saline Lakes and Its Major Controlling

254 Factors

255

256 The current distribution of metal-rich saline lakes and their controlling factors could reveal the 257 factors that control the global distribution pattern of basin-related metallogenesis. Climate plays a 258 critical role in the formation of saline lakes; the amount of inflow to a hydrologically closed basin, 259 mainly precipitation, must be closely balanced by evaporative loss, meaning that saline lakes are 260 mainly found in semi-arid to arid environments (Deocampo and Jones, 2014). In the Quaternary, the 261 saline lakes are mainly zonally distributed, as revealed by the global distribution pattern of 262 Quaternary evaporites (Kottek et al., 2006; Warren, 2014). In terms of latitude, the saline lakes are dominantly located in the range of 5° to 50° in the Northern and Southern Hemispheres (Cooke and 263 Warren, 1973; Smoot and Lowenstein, 1991). This zonal distribution pattern of saline lakes is the 264 265 comprehensive result of many factors, including the zonal distribution of solar radiation over the 266 surface of the Earth, the distribution of land masses and their elevations, and ocean and atmospheric circulation and interaction, among other causes (Mackenzie, 2003). These factors combine to 267 268 control the global patterns of winds, the balance between precipitation and evaporation, and humidity, cloudiness, air pressure, and temperature (Kump et al., 2010). However, the primary factor 269 is the zonal difference of solar radiation over the Earth. The high flux of solar radiation at the equator 270 271 results in air rising in the equatorial zone and moving toward the poles, and cooler air from the poles 272 moving toward the equator. The warm, moist, rising air forms large cumulus up into the high

273 troposphere, and is the source of precipitation in the equatorial zone. On the way to the poles, the 274 dry air cools and begins to sink, forming the subtropical high pressure zone, which is commonly dry and rainless. This is the reason that saline lakes are commonly found in the low-mid latitudes (Fig.2). 275 276 Then, the cooler air descends and moves toward the equator, creating the trade winds of both 277 hemispheres, also known as the "Hadley cell" (Fig. 2). Due to the rotation of the Earth (termed the 278 "Coriolis Effect"), the wind systems in the subtropical high pressure zone are prevailing westerlies. 279 In contrast, very cold and dry air that forms in the poles moves toward the equator. On the way, the 280 cold air uplifts the warm air in the lower latitudes. As warm air rises, it carries water vapor upward 281 into the atmosphere, creating precipitation (Schneider and Londer, 1989). With consideration of 282 temperature and associated evaporation, the arid to semi-arid zones are mainly located in the low 283 and middle latitudes (Fig. 2). In addition, the distance to the ocean is another important factor; 284 rainfall is much less in the interior of the continent than in coastal areas, which is caused by being far away from the water vapor source. The saline lakes are also located on the leeward slope of 285 286 mountains, and may also unexpectedly appear on the west coast of the continent, where there is a 287 middle latitude low pressure system towards the equator (Warren, 2014).

Fig.2 Distribution of modern climatic belts showing the Earth's atmosphere circulation cells across
90°N to 90°S. Belts of cool dry descending air around 15–45°N and S of the equator create the main
arid zones of the world (e.g., Trewartha and Horn, 1980; Schneider and Londer, 1989; Darnell et al.,
1992).

294	Fig.3 Occurrence (in terms of relative abundances) of basin related hydrothermal type U deposits
295	(U resource for A, and Number of deposit for B), MVT (Pb+Zn resource, C, Leach et al., 2005) and
296	SEDEX (Pb+Zn resource, D, Leach et al., 2005) Pb-Zn deposits, sediment-hosted stratiform Cu
297	deposits (Number of deposits for E, and Cu reserve for F, Kirkham, 1989; Kirkham et al., 1994;
298	Hitzman et al., 2010), saline giants (G, Bekker et al., 2006; Evans, 2006; Bekker and Holland, 2012;
299	Ba bel and Schreiber, 2014), Stromatolite relative diversity (H, Awramik and Sprinkle, 1999) and
300	abundance (I, Walter and Heys, 1985; Sheldon, 2013), and reconstructed thickness of active
301	continental crust since 2.3Ga (J, Tang et al., 2021a, b). The basin-related mineral resources are
302	mainly distributed in two stages which are 2.2-1.4 Ga, and 0.8-0.6 Ga, with one basin-related
303	metallogenic gap period of 1.4-0.8 Ga. While the metallogenic gap period has witnessed the great
304	prosperity of stromatolite in abundance and diversity. The global distribution pattern of basin-related
305	ore deposits are showing similar shape with the saline giants, and reconstructed thickness of active
306	continental crust since 2.3Ga.

307

308 The saline lakes that existed during geological history have disappeared, leaving evidence of their 309 existence, such as evaporite salts and associated redbeds (Warren, 2010). Evaporites are believed to 310 be important in the genesis of metal-fertile basin brines, as they are a key feature of basins hosting 311 supergiant deposits. However, the exact genetic relationship between evaporites and ore deposits is 312 controversial (e.g., Robb, 2005; Groves et al., 2010; Leach et al., 2010; Zhang et al., 2022). Ancient evaporites are varying combinations of gypsum or anhydrite, alkaline earth carbonates, and halite, 313 314 with or without potash-bearing minerals such as sylvite, carnallite, and epsomite (e.g., Pope and 315 Grotzinger, 2003; Bekker et al., 2006; Schro"der et al., 2008). With the improvement of the 316 availability of information in recent years, the global statistics of evaporites are becoming increasingly convincing. The author has compiled evaporite sediments of the world based on 317 previous studies of Pope and Grotzinger (2003), Bekker et al. (2006), Schro"der et al. (2008), Warren 318 319 (2010, 2014), and others (Fig.3, 4, and 5).

320

322	Fig.4 Temporal distribution (in terms of relative abundances) of basin related hydrothermal type U
323	deposits (A, Dahlkamp, 2009, 2010, 2016; Zhang et al., 2022), MVT and SEDEX Pb-Zn deposits
324	(B, Leach et al., 2005, 2010), sediment-hosted stratiform Cu deposits (C, Kirkham, 1989; Hitzmar
325	et al., 2005), saline deposits (D and E, Hay et al., 2006; Warren, 2010), global paleo-average
326	temperature (Prokoph et al., 2008; Donnadieu et al., 2008; Ernst, 2014; Spray, 2020; Scotese et al.
327	2021), and large igneous provinces (Ernst and Buchan, 2001; Prokoph et al., 2013) since ~600Ma.
328	

329 The compilation of evaporite sediments has shown that there are mainly two development stages 330 (Fig.3). The first stage was about 2.3-1.4Ga and was represented by pseudomorphs after gypsum, 331 anhydrite, and halite (Zharkov, 2005). The second stage is Phanerozoic and is represented by wellpreserved gypsum, anhydrite, and halite. During most of the Phanerozoic, the Earth was in a 332 333 greenhouse state, except for part of the Permo-Carboniferous. In the greenhouse times, there were 334 no continental or polar ice sheets, and the planet's meridional temperature gradient was much less 335 steep than it is at present (Warren, 2006, 2010). In this context, the Hadley-related circulation belts would be pushed away from the equator, global water recycling would be sped up, and many 336 337 continental deserts would enter relatively humid environments than the Earth in the glacial age (Yan 338 et al., 1998; Baker et al., 2001; Hesse et al., 2004). Therefore, saline lakes would be much more 339 numerous and distributed more widely in the greenhouse stage than the Earth in the glacial stage. 340 On the whole, the saline lakes during Phanerozoic were produced in the low to middle latitudes, as 341 shown by the existence of evaporites (Fig.5). With estimates of the volume of salt being recycled 342 back into the oceans added to the volumes of actual salt in various megahalite beds of the world, the original halite volume during the Phanerozoic can be reconstructed (Fig.4; Hay et al., 2006; Warren 343 344 et al., 2010). This reconstructed original halite mass distribution can reveal the volumes of saline 345 lakes during Phanerozoic generally. There are mainly seven periods of widely development of saline lakes on the Earth during Phanerozoic, which are 580-510Ma, 390-340Ma, 300-240Ma, 210-190Ma, 346 347 160-80Ma, 60-40Ma, and ~20Ma, respectively, corresponding to the greenhouse stages (Fig.4).

348

15

;	350	$Fig. 5 \ Paleo-latitude \ distribution \ (in \ terms \ of \ relative \ abundances) \ of \ basin \ related \ hydrothermal \ type$
	351	U deposits (A, Dahlkamp, 2009, 2010, 2016; Zhang et al., 2022), sediment-hosted stratiform Cu
;	352	deposits (B, Kirkham, 1989; Hitzman et al., 2005), MVT and SEDEX Pb-Zn deposits (C, Leach et
	353	al., 2005, 2010), IOCG deposits (D, Barton, 2014), Phanerozoic saline deposits (E, Hay et al., 2006;
	354	Warren, 2010), and Quaternary deserts (F, Prokoph et al., 2008; Donnadieu et al., 2008; Ernst, 2014;
;	355	Spray, 2020; Scotese et al., 2021) since ~600Ma.
;	356	
	357	5. Uneven Distribution of Basin-Related Ore Deposits in Time and Space
,	358	
;	359	The previous compilations of basin-related ore deposit types as a function of geological time by
	360	Meyer (1981, 1988), Veizer et al. (1989), Barley and Groves (1992), and Leach et al. (2005) have
	361	revealed that these deposits developed during particular periods of Earth's evolution, and the global
	362	pattern of basin-related mineral deposits is extremely uneven in time and space (Garnett and Bassett,
,	363	2005; Large et al., 2005; Cuney, 2010). With the improvement and increase of information on basin-
	364	related ore deposits, it is necessary to conduct a more comprehensive statistical analysis. Here, the
	365	author has compiled statistics for the world's major hydrothermal-type U ore deposits related to
	366	basins (Appendix A), the previous compilation of SEDEX and MVT Pb-Zn deposits during the
	367	Proterozoic and Phanerozoic (Leach et al., 2005; Zhang et al., 2022), sediment-hosted Cu deposits
,	368	(Hitzman et al., 2005), and the world's major saline deposits (Appendix B) since the global oxidation
,	369	event (GOE). The temporal and spatial distribution of these basin-related ore deposits is highlighted
	370	(Fig. 3, 4, and 5).
	371	
	372	5.1 Metallogenic Peak of 1.8-1.5 Ga
	373	
	374	The compilation results of basin-related ore deposits show that these types of ore deposits increased
	375	gradually in quantity and resource to a peak of about 1.8-1.5 Ga, with the onset of the Great
	376	Oxidation Event (Fig. 2). During this peak, a large number of basin-related ore deposits developed
	377	worldwide, such as the world-class unconformity-related U deposits in Canada (e.g., Athabasca

378 basin, 1.8-1.7 Ga), Australia (e.g., Pink Creek Inlier U region, 1.8-1.7 Ga), and India (e.g.,

379	Singhbhum Cu-U belt, Cuddapah and Bhima U region, ${\sim}1760$ Ma), world-class metasomatism type
380	U deposits in Europe (e.g., Kirovogard-Smolino U region, Krivoy Rog U region, 1.8-1.7 Ga, 1750-
381	1770 Ma; Lake Ladoga and Onega U districts, 1.8-1.7 Ga), China (e.g., metasomatism type U
382	deposits North China Craton, 1740-1800 Ma), Australia (Mount Isa region, 1750-1730 Ma), and the
383	famous vein type U deposits around the world (e.g., Beaverlodge area in Canada, Sierra
384	Ancha/Apache Proterozoic Basin in Arizona, Central Ceará U Region in Brazil, Longshoushan U
385	region in Northwest China; e.g., Dahlkamp, 2009, 2010, 2016). For the sediment-hosted Pb-Zn
386	deposits, the SEDEX Pb-Zn deposits show a similar variation trend and reach a peak at 1.7-1.6 Ga,
387	such as the world-class Pb-Zn deposits of eastern Australia (Mount Isa, Broken Hill, and McArthur
388	River, Bodon, 1998; Chapman, 2004; Large et al., 2005), South Africa (Aggeneys and Gamsberg
389	Pb-Zn districts, Rozendaal, 1980; Rozendaal and Stumpfl, 1984; Stalder and Rozendaal, 2004),
390	India (Zawar Pb-Zn district, Bhattacharya and Bull, 2010), and China (Yanliao Pb-Zn region, Zhong
391	et al., 2012; Duan et al., 2017). In contrast, during this period, the famous sediment-hosted stratiform
392	Cu deposits were much less than the basin-related Pb-Zn and U deposits. The statistics of sediment-
393	hosted stratiform Cu deposits are mainly based on the ages of ore-hosting rocks, and the distribution
394	pattern of the sediment-hosted stratiform Cu deposits during 2.2-1.4 Ga is different from that of the
395	basin-related Pb-Zn and U deposits. Post the Great Oxidation Event, the first famous supergiant
396	stratiform Cu deposits were contained in the Paleoproterozoic Kodaro-Udokan basin of Siberia. The
397	age of the ore-hosting sequence is poorly constrained, ranging from 2200 to 1800 Ma (Abramov,
398	2008), and the mineralization age is unknown (Volodin et al., 1994). The second famous ore-hosting
399	sequence of stratiform Cu deposits is the Revett Formation, which hosts deposits such as Spar Lake
400	in the NW United States. The Revett Formation is about 1460 Ma, constrained by the underlying
401	1468 Ma lower Belt sequence (Anderson and Davis, 1995) and the overlying 1454 Ma carbonate
402	sequence (Evans et al., 2000).

403

404 5.2 Metallogenic Quiescence during 1.4-0.8 Ga

405

406 Irregular decline of basin-related ore deposits occurred during 1.5-1.4 Ga, and then the Earth entered

407 a basin-related metallogenic quiescence period until about 0.8 Ga. This metallogenic quiescence

408	was also stressed by Bekker et al. (2010) to reflect a gap of Superior-type iron deposits and
409	manganese ore deposits (Maynard, 2010). During this quiescence period, the global basin-related
410	metallogeny was maintained at a low level, and a much smaller number of basin-related ore deposits
411	were formed in this period in contrast to the period 1.8-1.5 Ga. For the hydrothermal type U deposits,
412	most of the reported U mineralization ages during this period were from the Paleoproterozoic
413	unconformity-related U deposits, and were interpreted to be the reformation age of the existing
414	deposits or the new mineralization events that superimposed on the old deposits, such as the vein
415	type U deposits in the Great Bear Batholith in Canada (e.g., ~1076Ma, Chi et al., 2018; Dahlkamp,
416	2016), unconformity-related U deposits in the Franceville region of Africa (e.g., 890-860Ma, Cuney
417	and Mathieu, 2000), and vein type U deposits in the Kombolgie basin in Australia (e.g., \sim 1040Ma,
418	Rawlings and Page, 1999; Polito et al., 2006a, b; Cuney and Kyser, 2008). The sediment-hosted
419	stratiform Cu deposits were represented by the Mesoproterozoic Keweenaw basin of the Mid-
420	Continent Rift of the USA (White Pine, Brown, 1971; White, 1971; Mauk et al., 1992). Moreover,
421	the reported MVT and SEDEX Pb-Zn deposits were fewer during the quiescence period (Fig. 3).
422	

423 **5.3 Metallogenic Period of Phanerozoic**

424

425 The quiescence period ended at about 0.8-0.7 Ga. From 0.8 to 0.5 Ga, the basin-related ore deposits 426 began to increase in quantity and resource (Fig. 3), and the Earth entered a basin-related 427 metallogenic period again. The second metallogenic period was mainly the Phanerozoic. Due to the lack of absolute values of resources of sediment-hosted stratiform Cu deposits, the author compiled 428 429 the number of Cu deposits that differed from the basin-related Pb-Zn and U deposits, both of which 430 were compiled in their resources (Fig. 4 and 5). The histogram of resource of basin-related U deposits and Pb-Zn deposits, and number of Cu deposits that formed within 600 Ma, referring to 431 432 their formation or ore-hosting rock ages, show that these types of ore deposits are strikingly similar 433 to each other (Fig. 4). The metallogenic peaks of basin-related U deposits are nearly coincident with 434 the Pb-Zn deposits, and partially coincident with the stratiform Cu deposits. There are five metallogenic peaks (Fig. 4) that include ~380-340 Ma (II-1), ~300-240 Ma (II-2), ~160-100 Ma (II-435 436 3), 60-40 Ma (II-4), and one stratiform Cu metallogenic concentration period of ~580-500 Ma (II-

- 437 5).
- 438

During the metallogenic peak of II-1, the basin-related U deposits were represented by the 439 440 Kokshetau and Kendyktas-Chuily-Betpak Dala U region of Kazakhstan, Eastern Karamazar-441 Northeastern Fergana U Region of Kyrgyzstan, and Schwarzach Valley U region of Germany (e.g., 442 Dahlkamp, 2010). The Pb-Zn deposits were represented by the East Tennessee and Pine Point Pb-443 Zn district of the United States, and Lennard Shelf Pb-Zn region of Australia (e.g., Leach et al., 2005, 2010). The sediment-hosted stratiform Cu deposits are represented by the famous Cha-Sarysu 444 445 Cu region of Kazakhstan, and numerous Cu deposits in Europe and the United States (e.g., Kirkham, 1989; Kirkham et al., 1994; Hitzman et al., 2010). The second metallogenic peak (II-2) was 446 447 represented by the supergiant stratiform Cu deposit of Kupferschiefer in Europe, and the East 448 Tennessee Pb-Zn region, Southeast Missouri Pb-Zn region, Tri-State Pb-Zn region, North Arkansas 449 Pb-Zn region, and Upper Mississippi Valley Pb-Zn region of the United States, and numerous U 450 regions in Europe (e.g., Dahlkamp, 2009, 2016; Hitzman et al., 2010; Leach et al., 2010). The 451 metallogenic peak of II-3 and II-4 were represented by the Upper Silesia Pb-Zn region in Europe, 452 Cevennes Pb-Zn region, Pine Point Pb-Zn region in the United States, South China metallogenic 453 province, Streltsovsk U district, Elkon U district, Bureinsky U District in the Russian Federation, 454 and numerous stratiform Cu deposits around the world (e.g., Dahlkamp, 2009, 2016; Hu et al., 2008, 455 2017; Hitzman et al., 2010). The temporal distributions of Phanerozoic hydrothermal type U 456 deposits, SEDEX and MVT Pb-Zn deposits, and stratiform Cu deposits show a similar pattern with 457 the Phanerozoic distribution of global evaporites (Warren, 2010; Fig.4).

458

The author has also compiled the paleo-latitudes of the Phanerozoic basin-related ore deposits during their mineralization (Fig. 5). The paleo-latitudes of basin-related U deposits, SEDEX and MVT Pb-Zn deposits, and stratiform Cu deposits are similar to each other. Most of the Phanerozoic basin-related ore deposits are formed at low to middle latitudes, with few deposits formed at middlehigh latitudes (e.g., Barton and Johnson, 1996; Scotese et al., 1999; Soloviev, 2010a, b; Leach et al., 2010; Boucot et al., 2013). The formation latitudes of the basin-related ore deposits generally coincide with the broadly contemporaneous evaporitic settings (Fig. 2 and 5). Previous researchers

466	have often emphasized the Earth's evolving tectonic setting and geochemical systems; many studies
467	have proposed that the large-scale formation of basin-related ore deposits is related to global tectonic
468	processes and patterns (orogenic processes, Wilson cycle, e.g., Nance et al., 1986; Larson, 1991;
469	Barley and Groves, 1992; Barley et al., 1998; Kerrich et al., 2000, 2005; Goldfarb et al., 2005).
470	However, the global tectonic evolution cannot explain the uneven distribution of basin-related ore
471	deposits in time and space well. Admittedly, many basin-related ore deposits have been destroyed
472	by subduction and erosion, or modified by post-ore metamorphism and tectonism, so that they are
473	no longer recognizable (e.g., Veizer et al., 1989; Bradley, 2008). However, some basic distribution
474	characteristics should still be retained; for example, if there were basin-related ore deposits formed
475	at high latitudes (e.g., >70°), it is impossible to destroy them all; if there were a significant amount
476	of basin-related ore deposits formed during 1.4-0.8 Ga, it is impossible that all the hydrothermal
477	type U deposits, SEDEX and MVT Pb-Zn deposits, and stratiform Cu deposits showed one
478	mineralization quiescence during this period (Fig.2).

479

480 6. Discussion

481

482 6.1 Another explanation for the genesis of basin related Pb-Zn deposits

483

The metal-fertile saline brines that are contemporaneous with evaporites are probably the initial ore-484 forming fluid of basin-related ore deposits (e.g., Zhang et al., 2022, 2023a, 2023b). This view comes 485 486 from current research on saline lakes. The buildup of metals in basinal saline brines was mainly caused by the balance between water inflow and evaporation over time (Jones and Bodine, 1987). 487 During the evaporation, the commonly enriched ions include Na⁺, K⁺, Ca²⁺, Mg²⁺, Cl⁻, HCO₃⁻, SO₄²⁻ 488 489 (S²⁻ and/or HS⁻), and sometimes Li⁺ (e.g., Zheng, 1997; Dugamin et al., 2021). Due to the 490 evaporation over time, some dissolved metals can accumulate by exceeding the saturated solubility 491 of various minerals, usually beginning with alkaline-earth carbonates, then progressing to gypsum, 492 and then to halite and sylvite (Warren, 2014). These chemical deposition processes generally limit the salinities of saline brines to not exceed 40%. In this enriching process, some trace metals build 493 up to unusually high levels, such as U concentrations of Lake Shuiquanzi (China) reaching 35.0 494

- mg/L, Pb and Zn concentrations of the central Mississippi Salt Dome Basin (US) reaching 100.0
 mg/L and 250.0 mg/L, respectively (Hagni, 1983; Kharaka et al., 1987; Kharaka and Hanor, 2014),
 and Cu concentrations of Lake Merouane Chott (northern Africa) reaching 800.0 mg/L (Hacini and
 Oelkers, 2010), and so on.
- 499

The ores of basin-related Pb-Zn deposits (MVT and SEDEX) throughout the world are commonly 500 501 fine-grained, banded, or colloform and dendritic in texture, which highly suggests sulfide deposition 502 in an open space (McLimans et al., 1980; Leach and Sangster, 1993). The parallel bedding sulfides 503 are assumed to be permissive evidence for exhalative ores (Leach et al., 2005). It is true that metal-504 rich exhalative fluids have been found in seafloor spreading centers, such as the Atlantis II Abyss of the Red Sea (Thisse et al., 1982, 1983; Barrett et al., 2021) and the Galapagos Spreading Center 505 506 in the Eastern Pacific Ocean (Perfit et al., 1983, 1999). However, most of the Pb-Zn deposits 507 classified as SEDEX lack unequivocal evidence of an exhalite in the ore or alteration component 508 (Leach et al., 2005, 2010). In addition, the bedrocks of the Pb-Zn ores found in seafloor spreading 509 centers include pillow lavas, pelagic sediments, and hyaloclastites. In contrast, most basin-related 510 Pb-Zn deposits are thought to have been formed in extensional basins associated with orogeny, 511 intracontinental and intracratonic failed rifts (Ervin and McGinnis, 1975), and continental marginal 512 basins (Leach et al., 2005; Large et al., 2005). The bedrocks are commonly shoal and/or neritic 513 carbonate rocks and continental clastic rocks (Leach et al., 2005). There are few basin-related Pb-514 Zn deposits thought to have been formed in ocean spreading centers. Therefore, researchers should 515 look for another reasonable explanation. There is no denying that the exhalative process can result 516 in the formation of laminated Pb-Zn ores. Here, the author proposes another simple explanation, 517 referring to the studies of modern saline lakes.

518

519 What economic geologists who focus on basin-related ore deposits easily ignore is that condensed 520 seawater and saline brines can be significantly enriched in metals and sulfates (e.g., Volkova, 1998; 521 Hacini and Oelkers, 2010; Linhoff et al., 2011; Shvartsev et al., 2014). Previous studies of saline 522 lakes have identified that many of them show vertical stratification of their water masses over 523 extended periods (e.g., Lake Walker, Lake Mono, Lake Great Salt, Domagalski et al., 1990; Boehrer

524 and Schultze, 2008; Deocampo and Jones, 2014; Fig.6). This stratification includes density, 525 temperature, dissolved substances, oxygen fugacity, and even living organisms. It can be caused by 526 many factors, such as higher atmospheric temperatures during the warm season (e.g., Peeters et al., 527 2000) and external inflow of river water with lower density into saline lakes (e.g., Boehrer and 528 Schultze, 2008). In some cases, stratification of saline lakes is temporarily destroyed by full or partial overturning, which may occur as a result of seasonal winds or seasonal temperature change 529 530 (especially in the transition from the warm season to cold season; e.g., Steinhorn, 1985). The Dead Sea in the Middle East is a representative example of the occurrence of switching between 531 532 stratification and full circulation in saline lakes; this switch occurs once a year, with stratification 533 being weak in spring, autumn, and winter, but fully developed in summer (Steinhorn, 1985; Bartov 534 et al., 2002; Arnon et al., 2019). The Jordan River was the water recharge source for the Dead Sea.

536

Fig. 6 Schematic diagrams showing redox status of saline lakes since the 3.5 Ga (A, appearance of
photosynthetic algae), and 2.4-2.2 Ga (Global Oxidation Event, stratification of B and full overturn
of C) to present (Boehrer and Schultze, 2008; Deocampo and Jones, 2014; Saleh et al., 2018; Arnon
et al., 2019).

541

542 After the GOE, SO_4^{2-} is a common ion in saline lakes, and the stratification of saline lakes would 543 transform the SO_4^{2-} into S^{2-} in the deeper reducing layer, following which the enriched sulfurophiles (e.g., Pb, Zn, Fe) would be deposited as sulfides, including galena, sphalerite, and pyrite (Fig. 6; 544 Domagalski et al., 1990; Stoffell et al., 2008; Deocampo and Jones, 2014). When the stratification 545 546 is terminated (i.e., the saline lakes experience vertical circulation), the water mass becomes oxidizing, SO_4^{2-} again becomes one of the major ions (Boehrer and Schultze, 2008), and sulfurophile 547 548 metal ions start to become enriched again (Steinhorn, 1985; Boehrer and Schultze, 2008). The switching between stratification and full (or partial) overturn of saline lakes (condensed seawater) 549 550 would form alternating-layered sedimentary structures of sulfurophile sulfides and other sediments. In this case, the laminated Pb-Zn ores would be formed (Schmalz, 1969; Fig. 6). 551

552

If the concentrations of S (SO $_4^{2-}$ + S²⁻) are relatively low, or the concentrations of sulfurophile ions 553 are much greater than those of S (SO42- + S2-) ions, the stratification of saline lakes would allow for 554 555 the enrichment of sulfurophile metal ions, commonly Fe²⁺, in the deeper reducing layer. The full (or partial) overturn of saline lakes would lead to the oxidation of Fe²⁺ to Fe³⁺, which is then deposited 556 557 as hematite. In this case, the switch between stratification and full (or partial) overturn may form 558 the alternating-layered sedimentary structure of hematite and other sediments, which is likely the 559 origin of the structure of partial banded iron formations (Fig. 6C; Gutzmer et al., 2006; Boehrer and 560 Schultze, 2008; Deocampo and Jones, 2014). This is the reason that the SEDEX Pb-Zn deposits and 561 BIF deposits have similar sedimentary textures.

562

563 The surficial saline brines and evaporated seawater were commonly located above regional faults, 564 such as Lake Maharlou in the central Shiraz Basin of Iran (Fayazi et al., 2007), Lake Olduvai in 565 Tanzania (Blumenschine et al., 2012), and various saline lakes on the Tibet Plateau (Zheng, 1997). 566 Due to their high salinities, these brines have higher densities than those of fresh and brackish 567 groundwater and seawater. Therefore, these saline brines migrate downward into the underlying or basal sequence of sedimentary basins. During the migration, the saline brines are heated and 568 569 pressurized, in some cases, by high heat flow and/or igneous activity, and there is an exchange of 570 elements between fluids and surrounding rocks, and/or metal deposition from metal-fertile saline

- brines (Hoeve and Sibbald, 1978; Komninou and Sverjensky, 1996; Kyser, 2014; Chi et al., 2017).
 These saline brines may utilize fault systems within and connect to the basin to escape to other
 suitable regions and precipitate some specific minerals when they react with certain rocks. This is
 the reason that the researchers can observe Pb-Zn ores with vein-like texture (Fig. 1; Zhang et al.,
 2022). If the saline lakes are always in a non-stratified oxidation state, sulfurophile metal ions, such
 as Pb²⁺, Zn²⁺, Cu²⁺, Mo²⁺, and so on, are enriched.
- 577

578 6.2 The factors that influence the formations of Ore-forming fluid

579

The factor that controls the formation of initial ore-forming fluid also influences the formation of 580 581 basin-related ore deposits (Zhang et al., 2022, 2023a, 2023b). The ancient metal-rich saline lakes 582 have disappeared, but they have left evidence of their existence, such as evaporites, fossils, and 583 residual metal-fertile brines (Ba, bel and Schreiber, 2014). The metal-rich saline brines in 584 hydrologically closed basins are controlled jointly by arid-semiarid climate, tectonic setting, and 585 circulation processes underground (Carroll and Bohacs, 1999). However, the climatic setting is the 586 dominant factor, even if seawater was the starting fluid (Deocampo and Jones, 2014). The 587 distribution of global arid-to-semiarid zones is firstly controlled by the global atmospheric 588 circulation model, which means the arid-to-semiarid zones are closely related to the latitudes (Fig. 589 2; Trewartha and Horn, 1980; Schneider and Londer, 1989).

590

591 Geologists working with continental saline lakes have reached a consensus that these lakes, as well 592 as evaporites, form mostly in hot, arid to semi-arid zones within world-scale climatic regions known 593 as the horse latitudes (Warren, 2010). The term "horse latitudes" encompasses the regions beneath 594 the north and south Subtropical High atmospheric pressure belts (Oliver, 2005); see Warren (2010) for a detailed explanation of the formation of the horse latitudes. For marine saline brines, at 595 596 particular times in the Earth's past, the hydrologies that facilitated the deposition of widespread 597 sulfate or halite evaporites across large parts of ancient salt basins were tied to platform or basin-598 wide settings that have no same-scale modern counterparts (Fig. 5; Warren, 2010). The location of 599 marine Phanerozoic evaporites in zones of appropriate adiabatic aridity and continentality extended

600	well into the equatorial belts; therefore, in the Earth's past, the equatorial belts could also have been
601	the location of saline lakes (Ziegler et al., 2003). This is because evaporation rates of ocean waters
602	were at their maximum if the seawater were drawn into isolated evaporitic depressions (Kendall et
603	al., 2003; Warren, 2010). This is the reason that the paleo-latitudes of basin-related ore deposits
604	range from 60° north to 60° south, and there are hardly any basin-related ore deposits formed at
605	latitudes higher than 60° (Fig. 5). The paleo-latitudinal distribution of basin-related ore deposits
606	should not be explained by the selective preservation of basin-related ore deposits.

607

608 The factors that influence global climate include CO₂ concentrations in the atmosphere (the primary 609 driver of Phanerozoic climate, with large igneous provinces being the main source, according to Royer et al., 2004 and Royer, 2016), plate tectonics and continental weathering (which influence 610 the long-term global temperature, Berner, 1994; van der Meer, 2017; Brune et al., 2017), the amount 611 of solar radiation, biological influences (e.g., C4 grasses can reduce the atmospheric CO2 contents 612 613 faster than C₃ plants, Lunt et al., 2007; Jiang, 2019), and ocean currents, which influence the global climatic pattern (Holland et al., 1986; Hoffman and Schrag, 2002; Huybers and Langmuir, 2009; 614 615 Gnanaseelan and Deshpande, 2018). Of these factors, atmospheric CO2 concentration might be the 616 most important (Anagnostou et al., 2016; Wally, 2018; Scotese et al., 2021).

617

618 High concentrations of atmospheric CO₂ result in a greenhouse effect, accelerating evaporation 619 globally (Linacre et al., 1970; Gilman, 1994). More importantly, these high concentrations result in greater volumes of precipitation (Walker et al., 1981; Lackner et al., 2012), making surface waters 620 621 more acidic, leading to enhanced dissolution of calcium and silicates and accelerating the leaching 622 of specific metals from rocks, thereby enhancing the degree of enrichment of trace metals in saline lakes under semi-arid climates (Almendinger, 1990; White and Buss, 2014). Greenhouse eustasy 623 624 (with associated epeiric seaways) favors the formation of surface saline brine as well as platform evaporites (Warren, 2010). 625

626

Except for the planet-scale atmospheric circulation mainly caused by the varying intensity of solarirradiation from the equator to the poles, there are three interrelated factors which influence the

629	broad scale distribution of the world's arid climate belts in time and their associated saline brines
630	and evaporitic sediments (Warren, 2010). These three factors are also controlled by the latitudinal
631	position of continental plates and variations in styles of plate-plate interaction. How these three
632	factors influence the distribution of arid belts was discussed in Warren (2010). Meanwhile, the
633	orogenic factor is also crucial for the development of arid to semi-arid regions. Likewise, orographic
634	deserts are better developed at times when two continental plates collide or a transcontinental rift
635	valley forms (Kendall et al., 2003; Warren, 2006). A rising mountain range, which is the direct result
636	of tectonic activity, is a barrier to atmospheric circulation, especially if perpendicular to the
637	incoming circulation (Sun et al., 2008). Tectonic activity is one dominant factor that influences the
638	formation of hydrological closed basins which are home to metal-rich saline brines (Zhang et al.,
639	2022, 2023a, 2023b). Therefore, in addition to climate, tectonic activity is the second prime factor
640	that influences the formation and distribution of continental and marine saline brines (Warren, 2010).
641	

642 The global tectonics are governed by the Wilson Cycle of plate-plate interactions, which encapsulates the notion that as new ocean basins open (rift of continents) via the formation of new 643 644 seafloor, oceans close due to the processes of subduction of oceanic crust, and ultimately by 645 continent-continent collision (Wilson, 1966; Nisbet and Fowler, 1983). Compilations of the time-646 related distribution of ancient evaporites suggest there are four plate tectonic situations where 647 significant amounts of metal-rich saline brines could be produced at particular times in the past 648 (Jackson et al., 2000; Warren, 2010). These four tectonic settings are: (1) rifting basins where continental plates are beginning to move apart, (2) foreland basins where continental plates are 649 coming close to each other, (3) intracontinental or intraplate sagging (intracratonic basins), which 650 651 are caused by the far-field effects of continental orogeny, (4) rapidly subsiding continental depressions in transform or strike-slip settings where plates are sliding horizontally past one-another 652 (e.g., Kingston et al., 1983; Gasse and Fontes, 1989; Bosworth et al., 2005; Warren, 2006; Jordan et 653 al., 2007). These saline brines occur in both continental and marine realms (Warren, 2010). The 654 655 existence of metal-fertile saline brines is evidenced by the large volume of evaporites; see the detailed reasons and formation processes of surficial saline brines in different tectonic settings in 656 657 Warren (2010). In summary, the factors that can affect global or regional climates indirectly affect

- 658 the formation of global or regional basin-related ore deposits.
- 659
- 660 6.3 How the major geological events influence the formation and distribution of basin
- 661 related ore deposits globally?
- 662

Major geological events that can significantly influence climates include mantle super-plume events 663 (or large igneous provinces), snowball Earth, and plate-plate tectonic events (Zhang et al., 2022, 664 2023a, 2023b). Mantle super-plume events create large volumes of igneous rocks (large igneous 665 666 province, Coffin and Eldholm, 1994; Ernst and Buchan, 2001; Courtillot and Renne, 2003), triggering the input of large volumes of gas, including CO2, into the ocean-atmosphere system 667 668 (Prokoph et al., 2008, 2013). As a result, CO₂ concentrations in the atmosphere increase to high 669 levels; for example, the Siberian large igneous province (ca. 251 Ma) is estimated to have released $0.7-4.8 \times 10^7$ Tg CO₂, which could have raised the global temperature by 1.5-4.5 °C (Wignall, 2001; 670 671 Berner, 2002; White and Saunders, 2005; Tang et al., 2013). Mantle super-plume events thus 672 influence both atmosphere and ocean chemistry (Coltice et al., 2007; Ernst and Youbi, 2017). 673 Furthermore, the increase in global temperature during mantle super-plume events would increase 674 the rates of rainfall and evaporation, as well as the rate of weathering of silicate minerals, giving 675 rise to bursts of metal-fertile saline brines and evaporites (Fig. 4). In addition, snowball Earth events 676 could also result in a burst of global metallogenesis. Such an event dramatically slows the normal 677 consumption of CO₂ through chemical weathering of silicate rocks. However, shifting tectonic 678 plates would continue to generate volcanoes and supply the atmosphere with CO₂ (Hoffman et al., 679 1998; Hoffman and Schrag, 2000, 2002). In this situation, CO₂ could accumulate to an extremely 680 high level (roughly 350 to 1000 times the present-day concentration of CO_2 in the atmosphere; 681 Hoffman and Schrag, 2000; Higgins and Schrag, 2003; Le Hir et al., 2009). The heat-trapping capacity of CO₂ would warm the planet and begin to melt the ice that wrapped the planet. The thaw 682 683 would take only a short time (a few hundred years), after which Earth would enter a brutal 684 greenhouse stage (Allen and Hoffman, 2005; Font et al., 2010). Surface temperatures would soar 685 to >50 °C, driving an intense cycle of evaporation and rainfall (Hoffman and Schrag, 2000). Torrents 686 of carbonic-acid rain would erode exposed rocks, with the weathered metal ions being transported

- into the oceans and (locally) lakes. In this case, there would most likely be more numerous and
 larger metal-bearing brine bodies on Earth's surface compared to the present. This explains the
 global burst of basin-related ore deposits in the period 295-260 Ma (e.g., Hein and Lehmann, 2009;
- 690 Dolníček et al., 2009, 2014), following the snowball Earth event of the early Permian.
- 691

During Icehouse times (not Snowball Earth times), the oceanic eustatic response to rapidly waxing 692 693 and waning polar ice sheets is excessively high amplitude and too short in time to allow continental 694 (or periplatform) margin biogenic buildups to grow into continuous barriers (more than 100m of sea 695 level oscillation every 100,000 years, Fischer, 1981; Warren, 2010). In contrast, the less than 5-10m 696 of sea level change every 100,000 years during Greenhouse times are much more beneficial to the formation of barriers of platform-edge reefs and shoals (Fischer, 1981; Warren, 2010). These barriers 697 are the key to the periodical hydrographic disconnection of back-barrier lagoons (periplatform) from 698 the open ocean. This facilitated the creation of metal-fertile saline brines that originated from 699 700 seawater, and therefore the formation of related SEDEX and MVT Pb-Zn deposits, stratiform Cu 701 deposits, and so on (Warren, 2006, 2010).

702

Fig.7 A Log-log plot of base cation weathering rates vs. soil age (Blum, 1997). Data points are longterm weathering rates (RLT) from the references listed on the figure. The dark solid line is a powerlaw curve fit to the data from Taylor and Blum (1995, R = 0.99). Light dotted lines bracket curve fit
to data and represent estimated maximum uncertainties of a factor of two in weathering rates.
Question mark indicates two points from Bain et al. (1993) that are suspect on the basis of high Zr

- contents of parent materials. Dashed line represents present-day weathering rates (RPD) calculated from solid curve (see text). The shaded area represents the range of fluxes in glacier-covered catchments compiled by Sharp et al. (1995) and are plotted at an arbitrary age. Fig.7 B Linear plot of the same data and power law function as in Fig. 7A, but with the age axis truncated at 25 thousand years.
- 714

715 For the mantle Super-plume event (or Large Igneous Provinces), Snowball Earth, and Plate-Plate 716 tectonic events, there is one collective result: these geological events can produce a large area of 717 exposed fresh bedrocks. Especially for the aftermath of Snowball Earth Events, chemical weathering rates (or metal and base cation releasing rates) should be at their peak, as all the continents are 718 exposed with fresh bedrock (Fig. 7; Allen and Hoffman, 2005; Font et al., 2010). Because the 719 720 weathering rates for all of the base cations decrease with increasing soil age, such as the weathering 721 rates of soil age of 0.4 thousand years being at least two orders of magnitude higher than the soils 722 with age of 138 thousand years (Fig. 7; e.g., Bain et al., 1993; Sharp et al., 1995; Taylor and Blum, 723 1995). When the soil age is relatively large, such as bigger than 138kyr, the weathering rate would 724 be relatively low and stable (e.g., 1-5 meg/m².yr.; Blum, 1997). Actually, there are many factors 725 other than soil age that influence the chemical weathering rates, including human activities, 726 precipitation, temperature, vegetation, relief, silicate rock mineralogy, uplift rate, and glacial history 727 (Raymo and Ruddiman, 1992; Richter et al., 1992; Blum, 1997). However, it is extremely difficult 728 to confidently isolate the influence of the various factors affecting weathering rates. On the whole, 729 the relation between soil age and silicate weathering rates suggests one well-defined power law 730 relation for young soils (≤138 thousand years old), and the chemical weathering rates are 731 significantly accelerated in fresh bedrock outcropping environments (Fig. 7; Bain et al., 1993; Sharp 732 et al., 1995; Taylor and Blum, 1995). Therefore, the releasing rate of metals of continents is the fastest following Snowball Earth Events, and the accumulation rate of metals elements in saline 733 lakes is the fastest, with consideration of the Greenhouse Effect of Snowball Earth Events. 734

735

736 In contrast to the Snowball Earth Event, Plate-Plate Tectonic Events, particularly plate convergence,

737 can result in the rapid uplifting of mountainous areas, which undergo high rates of mechanical

738	denudation, often predominantly by mass wasting (Derry and France-Lanord, 1997). In addition,
739	mountainous areas are more likely to experience earthquakes and mass failures, as well as, for
740	example, heavy rains and snow melts, all of which facilitate erosion. Mechanical erosion processes
741	periodically regenerate fresh mineral surfaces and expose them to the agents of chemical weathering
742	(Berner and Berner, 1997; Taylor and Blum, 1995). Furthermore, one of the consequences of
743	tectonic uplift is that mountain ranges are often raised to elevations that can support alpine glaciation.
744	The available data on chemical weathering rates of silicate catchments containing active alpine
745	glaciers has shown that they are elevated by at least an order of magnitude compared to nonglaciated
746	catchments, although the exact magnitude of this increase is difficult to estimate (Hallet et al., 1996;
747	Blum, 1997). Both glaciation and rapid uplift are accompanied by rapid physical denudation, which
748	exposes fresh bedrock minerals to the agents of chemical weathering. This means that the rapid
749	uplifting of mountains caused by plate convergence can quickly release dissolved metals into nearby
750	hydrological basins. Other indirect outcomes of uplift are the changes in mean annual temperatures
751	that accompany high elevation, and changes in precipitation patterns owing to orographic effects
752	(e.g., rain shadow effect, An et al., 2014; Caves, 2016). Therefore, metal-rich saline lakes are likely
753	to be produced in this geological context.

754

755 The Large Igneous Provinces are massive crustal emplacements of predominantly iron- and 756 magnesium-rich (mafic) rock that formed by processes other than normal seafloor spreading (Coffin 757 and Eldholm, 2005). They are the dominant form of near-surface magmatism on the terrestrial 758 planets, with areal extents greater than 0.1 million km² (Ernst and Jowitt, 2013). These occurrences 759 on the continents, such as the continental flood basalt provinces and volcanic passive margins well 760 preserved in the Mesozoic and Cenozoic periods, created a cover of fresh bedrocks. In this situation, the large igneous provinces could also rapidly release base and metal cations into regional 761 hydrological closed basins. These are the reasons that the Snowball Earth events, large igneous 762 763 provinces, and plate-plate tectonic events are commonly related to global and regional basin-related 764 ore deposits in time and space (e.g., Ernst and Jowitt, 2013; Zhang et al., 2022).

765

766 Global tectonism controls the distribution of lithologic assemblages (both supracrustal rocks and

767	intrusive rocks), styles of deformation, and the grade, duration, and location of metamorphic events.
768	Rock assemblages that form in specific plate tectonic settings and which are available for weathering
769	exert control on the initial chemistry of water flowing into closed basins and, therefore, influence
770	subsequent brine chemistry (Deocampo and Jones, 2014; Zhang et al., 2022). In addition, the
771	geology of watersheds (drainage divides) is commonly affected by tectonic processes, which
772	directly affect the topography and lithologic assemblages (Pietras et al., 2003; Singh and Jain, 2009;
773	Sangma and Balamurugan, 2017). As a consequence, certain patterns of major ions and enriched
774	metals correspond to particular tectonic settings around the world (Deocampo and Jones, 2014). For
775	example, calc-alkaline volcanic activity has dominated East Africa since the Miocene and has
776	produced widespread sodium carbonate water (Jones et al., 1977; Cerling, 1996). In contrast, the
777	northern plains of North America are underlain by Paleozoic to Mesozoic evaporitic sedimentary
778	rocks and Quaternary till, which have helped to generate strongly sulfatic waters (Last, 1999). Trace-
779	metal compositions of brines, such as the brines of Inner Mongolia, are enriched in U-Mo, whereas
780	brines in the Tien Shan mountains and northern Qinghai-Tibet Plateau are enriched in Cu-Cr and
781	Co-Mn, respectively (Zhang et al., 2022). These differences suggest that heterogeneity in the
782	evolution and nature of continental crust may be an additional large-scale influence on basin-related
783	mineralization (O'Nions and Oxburgh, 1988; Rudnick and Gao, 2014; Tang et al., 2016).

784

Another important role of tectonism is to provide the geological and structural setting for metalbearing brines, including the generation of fractures or fold-related structures that can act as fluid conduits and points/zones of flow convergence (e.g., Sibson, 1985, 1987; Cox et al., 1991). This would favor the convergence of large volumes of ore-forming fluids in a relatively small space (several kilometers) over a relatively short time (<1Ma; Cox and Knackstedt, 1999; Skinner, 1997), thus creating the opportunity for mineralization to occur (Cox et al., 2001).

791

From a metallogenic viewpoint, the emergence of basin-related ore deposits in the rock record between 2.02 Ga and 1.85 Ga (Hitzman et al., 2010; Leach et al., 2010) shows that these deposits are unevenly distributed in two periods: 2.1-1.4 Ga (Period I) and 0.8 Ga to present (Period II), with few scattered between these two periods and barely before the Great Oxygenation Event (GOE; Fig.

796	3 and 6). The Period I occurred following the GOE, which is very significant due to the major
797	changes of the atmosphere, especially the rise of oxygen contents in the atmosphere at around 2.2-
798	2.4 Ga (Catling, 2014). Before the GOE, the surficial water bodies were mainly in a reducing state,
799	and sulfur existed in the form of S^{2-} (e.g., Roscoe, 1969; Prasad and Roscoe, 1996; Williford et al.,
800	2011). The existence of S^{2-} limited the contents of sulfophilic elements (e.g., Cu, Zn, Pb, Fe) in the
801	surficial water bodies. The Fe, S, Zn, Pb and Cu contents in the crust are $\sim\!\!58000$ ppm, 200-500 ppm,
802	60-95 ppm, 10-16 ppm, and ${\sim}55$ ppm, respectively (Liu et al., 1984). The solubility product of
803	galena is 1×10^{-29} , of chalcopyrite is 25×10^{-36} , of sphalerite is 8×10^{-26} , and of pyrite is 4×10^{-19} (the
804	chemical reaction equations are as follows; Liu et al., 1984). This means that $\mathrm{S}^{2\text{-}}$ would consume
805	the Pb^{2+} and Zn^{2+} first. In addition, the abundance of sulfur is much higher than that of Pb and Zn.
806	In this situation, it is difficult to accumulate Zn, Pb, and Cu (sulphophile elements) but can
807	accumulate Fe in surficial water bodies.
808	$Cu^{2+}+Fe^{2+}+2S^{2-}=CuFeS_2$ (\downarrow , Ksp=25×10 ⁻³⁶)

- 809 $Pb^{2+}+S^{2-}=PbS(\downarrow, Ksp=1\times 10^{-29})$
- 810 $Zn^{2+}+S^2=ZnS(\downarrow, Ksp=8\times 10^{-26})$
- 811 $Fe^{2+}+S=FeS_2(\downarrow, Ksp=4\times 10^{-19})$

The solubility of uranium in surficial water is primarily controlled by its oxidation state. Generally, U is more soluble in oxidizing, alkaline, and carbonate-rich water than in acidic, reducing water (Cuney, 2010). This is due primarily to the tendency of U⁶⁺ to form strong complexes in oxidizing fluids, regardless of the temperature. Before the GOE, Earth's surficial waters were dominantly reducing and acidic, both of which restricted the uranium content in surficial brines at that time (e.g., Fig.6A; Cuney and Kyser, 2008; Kyser, 2014). Therefore, there were barely any basin-related Pb-Zn, Cu, and U deposits before the GOE.

819

After the GOE, the relatively high oxygen content resulted in the oxidation of surficial waters, and sulfur existed in the form of SO_4^{2-} , which was different from the time before the GOE (e.g., Roscoe, 1969; Prasad and Roscoe, 1996; Williford et al., 2011). In this environment, some metals in the surficial saline brines were significantly enriched to an extreme high level, such as Cu (~800 ppm), Zn (lack of S²⁻, locally up to 250 ppm), Pb (lack of S²⁻, locally up to ~100 ppm), and so on (Hagni,

825 1983; Kharaka et al., 1987; Hacini and Oelkers, 2010; Kharaka and Hanor, 2014; Zhang et al., 2022). 826 This means that metal-fertile saline brines were present on the Earth's surface since this time point, which was the prerequisite for the formation of basin-related Pb-Zn, and Cu deposits. In addition, 827 828 after the GOE, the surficial brines had the ability to render greater solubilities of uranium by several 829 orders of magnitude (over tens of ppm), particularly when phosphate and carbonate were present 830 (Cuney, 2010; Kyser, 2014). Therefore, basin-related U deposits began to emerge. 831 832 The period of 1.9-1.8 Ga was the transformational period from plume-influence tectonics to modern-833 style plate tectonics (e.g., de Wit, 1998; Goldfarb et al., 2001a, b; Condie, 2002a, 2002b, 2014), and 834 Cordilleran-style tectonics began to dominate Earth by 1.7 Ga (Goldfarb et al., 2010). The start-up 835 of modern-style plate tectonics and the widespread development of evaporite sediments meant the 836 extensive development of hydrological closed basins covered by arid-semi arid climates similar to the Phanerozoic (e.g., Condie, 2005; Warren, 2006, 2010). This is the main reason that the period of 837 838 1.8-1.5 Ga was the peak period of basin-related mineralization and characterized by a global basin-839 related U and Pb-Zn metallogeny (Fig. 3; e.g., Rozendaal, 1980; Rozendaal and Stumpfl, 1984; 840 Bodon, 1998; Chapman, 2004; Stalder and Rozendaal, 2004; Large et al., 2005; Dahlkamp, 2009, 841 2010, 2016). For the famous U and Pb-Zn districts, contemporaneous saline deposits (direct 842 evidence of the existence of metal-fertile saline brines) were developed in their region, such as the 843 Lower Proterozoic saline giants in Australia, Proterozoic redbeds and saline giants in Canada, Lower 844 Proterozoic saline giants in Papaghni Group of India, Lower Proterozoic redbeds in North China 845 Cratons, and Lower Proterozoic evaporites in Europe (detailed comparison in Appendix A and B,

e.g., Pirajno and Grey, 2002; Pope and Grotzinger, 2003; Bekker et al., 2006; Evans, 2006; Aspler
and Chiarenzelli, 2002; Walker et al., 1977). Basin-related mineralization could last for tens of
millions to hundreds of millions of years within the evolving basins (Brown, 2009; Hitzman et al.,
2010), because as long as it was covered by semi-arid climatic environments, there would be (metalrich oxidizing) saline brines existing in the hydrological closed basins, as well as basin-related
mineralization.

852

853 In contrast to Period I, the distribution of evaporites and evolution of paleoclimate of the Earth is

854	relatively well understood (e.g., Prokoph et al., 2013; Godderis et al., 2014; Wang et al., 2020;
855	Scotese et al., 2021), and there is a greater degree of confidence that the semi-arid sediments
856	accompanied the basin-related ore deposits during Period II, which is mainly the Phanerozoic Eon
857	(a detailed comparison is shown in Fig.4 and 5). There are many famous basin-related mineral
858	regions during Period II, such as the Central Massif of France (U-W, 290-260Ma), Bohemian Massif
859	of the Czech Republic (U-W, 290-260Ma), Pyrenees Peninsula (U-W, 290-260Ma), stratiform red-
860	bed hosted Cu-Ag ores of the Permian Kupferschiefer in Poland and Germany, Devonian to Permian
861	and Cretaceous to Paleogene SEDEX and MVT Pb-Zn deposits in the USA, and South China
862	Polymetallic Province (Leach et al., 2005; Zhang et al., 2022). During the mineralization period of
863	these basin-related deposits, they were generally located in semi-arid to arid zones of low to middle
864	latitudes, and accompanied by the development of evaporites (detailed locations are in Zhang et al.,
865	2022).
866	

867 6.4 One Warm, Humid and Flat Era during 1.4-0.8 Ga

868

The statistical results of basin-related ore deposits show one quiescence period during 1.4-0.8 Ga 869 870 (Fig. 3). This mineralization gap has been addressed by Meyer (1981, 1988), and is now referred to 871 as the "Boring Billion". During this quiescence period, the saline giants were much less than in 872 Metallogenic Periods I and II, which means the surficial metal-fertile saline brines were also much 873 less than in both periods. There are several possibilities for the cause of this Metallogenic 874 Quiescence Period: I. there were few hydrologically closed basins; II. the climate zoning was weak, 875 and the arid-semi arid climatic zones or "horse latitudes" during this period were relatively small; 876 III. both I and II.

877

Fig.8 Three supercontinents and the major saline giants in Earth's history: (A) Pangea formed 300250Ma ago (Rogers et al., 1995); (B) Rodinia formed ~1.0 Ga ago (Dalziel, 1997; Dalziel et al.,
2000); and (C) Columbia formed ~1.8Ga ago (Rogers and Santosh, 2002).

882

For Possibility I, Tang et al. (2021a) proposed that the Earth was in an Orogenic Quiescence Period 883 884 in its middle age, using a recently calibrated zircon-based crustal thickness proxy (Tang et al., 885 2021b). The zircon-based crustal thickness proxy uses pressure-sensitive Eu systematics during 886 magmatic differentiation, which is recorded as Eu anomalies in crystallizing zircons (see Tang et al., 887 2021a, b for details). The reconstructed thickness of active continental crust averaged 50 to 60 km 888 in Metallogenic Periods I and II (Fig. 3J). In contrast, the average thickness of continental crust was 889 smaller than 45 km and even close to 40 km during the metallogenic quiescence period. This thin 890 continental crust suggests that the continents were likely flat and lacked hydrological closed 891 continental basins during the metallogenic quiescence period.

892

For Possibility No. II, much less saline deposits were reported during the metallogenic quiescence period than Metallogenic Periods I and II (Fig.3 and 8; e.g., Kozary et al., 1968; Boucot et al., 2013). The metallogenic quiescence period witnessed the breakup of the Nuna supercontinent (1.6-1.2 Ga) and the subsequent amalgamation of the Rodinia supercontinent during 1.2 to 0.9 Ga (e.g., Zhao et al., 2002; Roberts, 2013; Cawood et al., 2016). Published evidence suggests that the breakup of Nuna was limited and transitioned to Rodinia with only minor reconfiguration (Bradley, 2008; Cawood and Hawkesworth, 2014; Cawood, 2020). The Rodinia supercontinent consisted of most of

900	the continents and was characterized by multiple Grenvillian continent-continent collisions
901	(Bradley, 2008). These collision belts are generally located inboard of the supercontinental
902	boundaries (Hoffman, 1991; Condie and Rosen, 1994; Pelechaty, 1996; Frost et al., 1998; Rainbird
903	et al., 1998). Geodynamically, the mainlands were at low to mid latitudes during this period (Robb
904	and Hawkesworth, 2020). In this context, the Earth was probably in a warm and humid greenhouse
905	stage during this gap, which ended with glaciations of ~850-630 Ma, despite a 7-14% reduction in
906	solar output compared to modern during this interval (Fiorella and Sheldon, 2017). Elevated
907	greenhouse gas concentrations have been invoked to explain the warmth of this period, such as high
908	contents of CO ₂ (10-300 \times preindustrial CO ₂ level, ~280ppmv., Kah and Riding, 2007; Sheldon,
909	2006; Kanzaki and Murakami, 2015) and/or CH4 (~28-140ppmv., Fiorella and Sheldon, 2017). CIA
910	and Eu/Eu* values of the Mesoproterozoic argillites from India and North America signify the
911	intensity of secular weathering similar to CIA values for the Orinoco, Nile, and Amazon (Bose et
912	al., 2008). These sedimentary researches also suggest that the Earth was generally in a hot, wet
913	climate and the mainlands were experiencing aggressive chemical weathering during the basin-
914	related metallogenic gap, since Proterozoic rivers had less sediment residence times due to a lack of
915	vegetation cover and hydrological closed basins (Bose et al., 2008). This warm and humid climate
916	was also supported by the fact that Grenvillian-aged zircon grains are everywhere, which means the
917	sediments during this period were laid down by a colossal river system that emanated from the same
918	Grenvillian mountain chain (Rainbird and Young, 2009). Such river systems may have covered a
919	large part of the supercontinent Rodinia (Rainbird and Young, 2009). In this context, there were
920	barely any hydrological closed basins.

921

The climatic conditions can also be roughly estimated by the life on Earth. During the period of the Precambrian, stromatolites were the most prominent and widespread life forms, as suggested by the widely preserved Precambrian benthic microbial carbonates (Walter, 1994). Several ecological factors combine to permit stromatolite formation and preservation, regardless of geologic age (Pratt, 1982). These include sufficient light and oxygen, and favorable water temperature and chemistry (Peters et al., 2017). The constraints of oxygen concentrations during the Proterozoic were poor, but were estimated to be within 1-10% of today's value (e.g., Buick et al., 1995; Canfield, 2014). The

- 929 Sun was about 85% of its present value at 2.2 Ga, and was gradually getting brighter to 95% at the 930 Late Precambrian. Therefore, the light and oxygen can be regarded as stable factors. The water 931 temperature and chemistry are the remaining major factors, which could influence the stromatolites' 932 abundance and diversity.
- 933

934 Two categories of abundance data have been compiled for the stromatolites since GOE (Walter, 935 1994). Morphotype diversity data counts the number of stromatolite form taxa through time. Forms 936 are based on macroscopic features such as external shape and internal lamina arrangement (Awramik, 937 1971; Walter and Heys, 1985; Awramik and Sprinkle, 1999; Semikhatov and Raaben, 2000). 938 Stromatolites increased in abundance from the Paleoproterozoic to ~1450Ma ago, at the beginning of the basin-related metallogenic gap, and then rapidly increased to a peak between ~1350Ma and 939 940 1100Ma ago. An irregular decline from the peak occurred between ~900 and ~700Ma ago, 941 corresponding to the global glaciation of the Cryogenian and also the end of the basin-related 942 metallogenic quiescence period. In addition, the stromatolites diversity shows similar variation 943 characteristics to the stromatolites abundance (Fig.3; Walter and Heys, 1985; Sheldon, 2013), with 944 the stromatolite diversity increasing rapidly at about ~1.4 Ga and reaching a peak at about ~1350Ma. 945 After the peak, the stromatolite diversity declined gradually to 550 Ma ago. The stromatolite 946 diversity of the basin-related quiescence period was generally at least two times that of metallogenic 947 period I (Fig.3). After the Precambrian biological explosion, the stromatolites were restricted to 948 locations where the activity of metazoans was limited, so the stromatolites abundance and diversity 949 of the Phanerozoic were not used to reflect the climate conditions (Awramik and Sprinkle, 1999). 950 The peak of stromatolites diversity and abundance during 1.4-0.8 Ga suggests that there should have 951 been widely developed shallow marine environments on the continents at middle and low latitudes. 952 The environments were unfavorable for the formation of saline brines on the continents and their margins (Fig.8). Therefore, this Metallogenic Quiescence Period was probably caused by the 953 954 combination of the lack of hydrological closed basins and a relatively warm and humid climate 955 during 1.4-0.8 Ga. 956

957 7. Conclusion

958

959	For the basin-related ore deposits, the ore-forming fluids were probably metal-rich saline brines
960	formed in hydrologically closed basins. These saline brines usually exist in the form of saline lakes
961	and mainly develop in arid to semi-arid environments. The main influence on the formation of these
962	brines is evaporation, which is the primary or only way for water to leave the convergent area.
963	Therefore, climate is an important factor influencing global metallogeny.
964	
965	The statistical results of basin-related mineral deposits worldwide show that there are two
966	metallogenic periods after the great oxidation event: 2.1-1.4Ga (Period I) and 0.8Ga to present
967	(Period II), with a few scattered between these two periods (the metallogenic gap period). In addition,
968	Metallogenic Period II has five metallogenic peaks: ~380-340Ma (II-1), ~300-240Ma (II-2), ~160-
969	100Ma (II-3), 60-40Ma (II-4), and one stratiform Cu metallogenic concentration period of ${\sim}580{\text{-}}$
970	$500 \mbox{Ma}$ (II-5). These two metallogenic periods and five metallogenic peaks are coupled with the
971	widespread development of saline deposits in time and space. The metallogenic quiescence period
972	corresponded to the scarcity of saline deposits, and was probably caused by the combination of the
973	lack of hydrologically closed basins and arid to semi-arid environments during 1.4-0.8 Ga.
974	
975	Acknowledgement
976	
977	The authors thank Dr. Junxian Wang for his helpful comments.
978	
979	Author contributions
980	
981	Chuang Zhang wrote the paper and drafted the figures.
982	
983	Competing interests
984	
985	The author has declared that there isn't any competing interests.

39

986	
987	Financial support
988	
989	This research has been supported by the Uranium Exploration Projects (Grant No. 22045004) of
990	China National Nuclear Corporation.
991	
992	Reference
993	
994	Abramov, B.N.: Petrochemistry of the Paleoproterozoic Udokan copper-bearing sedimentary
995	complex. Lithol. Miner. Resour., 43, 37-43, doi: 10.1134/S0024490208010033, 2008.
996	Abrantes, Jr.F.R., Nogueira, A.C.R., de Andrade, L.S., Bandeira, J., Soares, J.L., Medeiros, R.S.P.:
997	Register of increasing continentalization and palaeoenvironmental changes in the west-central
998	Pangaea during the Permian-Triassic, Parnaíba Basin, Northern Brazil. J. South Am. Earth Sci.,
999	93, 294-312, doi: 10.1016/j.jsames.2019.05.006, 2019.
1000	Allen, P.A., and Hoffman, P.F.: Extreme winds and waves in the aftermath of a Neoproterozoic
1001	glaciation. Nature, 433 (7022), 123-127, doi: 10.1038/nature03176, 2005.
1002	Almendinger, J.E.: Groundwater control of closed-basin lake levels under steady-state conditions.
1003	J. Hydrol., 112 (3-4), 293–318, doi: 10.1016/0022-1694(90)90020-X, 1990.
1004	An, Z.S., Sun, Y.B., Chang, H., Zhang, P.Z., Liu, X.D., Cai, Y.J., Jin, Z.D., Qiang, X.K., Zhou,
1005	W.J., Li, L., Shi, Z.G., Tan, L.C., Li, X.Q., Zhang, X.B., Jin, Z.: Late Cenozoic Climate Change
1006	in Monsoon-Arid Asia and Global Changes. In: An, Z.S. (Ed.), Late Cenozoic Climate Change
1007	in Asia - Loess, Monsoon and Monsoon-arid Environment Evolution. Springer, Netherlands,
1008	pp. 491–582, doi: 10.1007/978-94-007-7817-7_6, 2014.
1009	Anagnostou, E., John, E.H., Edgar, K.M., Foster, G.L., Ridgwell, A., Inglis, G.N., Pancost, R.D.,
1010	Lunt, D.J., Pearson, P.N.: Changing atmospheric CO2 concentration was the primary driver of
1011	early Cenozoic climate. Nature, 533 (7603), 380-384, doi: 10.1038/nature17423, 2016.
1012	Anderson, H.E., Davis, D.W.: U-Pb geochronology of the Moyie sills, Purcell Supergroup,
1013	southeastern British Columbia: Implications for the Mesoproterozoic geologic history of the
1014	Purcell (Belt) basin. Can. J. Earth Sci., v. 32, p. 1180-1193, doi: 10.1139/e95-097, 1995.

1015

1016 Cretaceous sedimentary succession, south-central Alberta basin, Canada. AAPG Bulletin, 85, 637-660, doi: 10.1016/S0927-0248(00)00249-X, 2001. 1017 1018 Arnon, A., Brenner, S., Selker, S.J., Gertman, I., Lensky, N.G.: Seasnonal dynamics of internal 1019 waves governed by stratification stability and wind: Analysis of highresolution observations from the Dead Sea. Limnol. Oceanogr., 9999, 1-19, doi: 10.1002/lno.11156, 2019. 1020 1021 Arthurton, R.S., Hemingway, J.E.: The St. Bees Evaporites-A carbonate-evaporite formation of 1022 Upper Permian age in West Cumberland, England. Proc. Yorks. geol. SOC., 38, 565, doi: 1023 10.1144/pygs.38.4.565, 1972. Aspler, L.B., Chiarenzelli, J.R.: Mixed siliciclastic-carbonate storm-dominated ramp in a 1024 1025 rejuvenated Palaeoproterozoic intracratonic basin: Upper Hurwitz Group, Nunavut, Canada. 1026 In: Altermann, W., Corcoran, P.L. (eds.) Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems. Spec. Public. Int. Assoc. Sedimentol., 33, 293-1027 1028 321. UK: Blackwell Science, 2002. 1029 Awramik, S.M.: Precambrian columnar stromatolite diversity: reflection of metazoan appearance. 1030 Science, 174, 825-827, doi: 10.1126/science.174.4011.825, 1971. 1031 Awramik, S.M., Sprinkle, J.: Proterozoic stromatolites: the first marine evolutionary biota. Hist. 1032 Biol., 13, 241-253, doi: 10.1080/08912969909386584, 1999. Ba, bel, M., Schreiber, B.C.: Geochemistry of evaporites and evolution of Seawater. In: Holland, 1033 1034 H.D., Turekian, K.K. (Eds.) Treatise on Geochemistry 9, Elsevier, Oxford, pp. 484-548, doi: 1035 10.1016/B978-0-08-095975-7.00718-X, 2014. 1036 Badham, J.P.N.: Shale-hosted Pb-Zn deposits: Products of exhalation of formation waters? T. Ins. 1037 Mini. Metallur., sec. B, 90, B70-B76, 1981. 1038 Bain, D.C., Mellor, A., Robertson-Rintoul, M.S.E., Buckland, S.T.: Variations in weathering 1039 processes and rates with time in a chronosequence of soils from Glen Feshie, Scotland. 1040 Geoderma, 57(3), 275-293, doi: 10.1016/0016-7061(93)90010-I, 1993. 1041 Balkwill, R.H.: Evolution of Sverdrup Basin, Arctic Canada. AAPG Bulletin, 62, 1004-1028, doi: 10.1306/C1EA4F86-16C9-11D7-8645000102C1865D, 1978. 1042

Anfort, S.J., Bachu, S., Bentley, L.R.: Regional-scale hydrogeology of the Upper Devonian-Lower

1043	Barley, M.E., Groves, D.I.: Supercontinent cycles and distribution of metal deposits through time.
1044	Geology, 20, 291-94, doi: 10.1130/0091-7613(1992)020<0291:SCATDO>2.3.CO;2,
1045	1992.
1046	Barley, M.E., Krapez, B., Groves, D.I., Kerrich, R.: The late Archaean bonanza: metallogenic and
1047	environmental consequences of the interaction between mantle plumes, lithospheric tectonics
1048	and global cyclicity. Precambrian Res., 91, 65-90, doi: 10.1016/S0301-9268(98)00039-4,
1049	1998.
1050	Barrett, T.J., Jarvis, I., Hannington, M.D., Thirlwall, M.F.: Chemical characteristics of modern
1051	deep-sea metalliferous sediments in closed versus open basins, with emphasis on rare-earth
1052	elements and Nd isotopes. Earth-Sci. Rev., 222, 103801, doi: 10.1016/j.earscirev.2021.103801,
1053	2021.
1054	Barth, S.R.: Stable isotope geochemistry of sediment-hosted groundwater from a Late Paleozoic-
1055	Early Mesozoic section in central Europe. J. Hydrol., 235, 72-87, doi: 10.1016/S0022-
1056	1694(00)00264-X, 2000.
1057	Barton, M.D.: Iron Oxide(-Cu-Au-REE-P-Ag-U-Co) Systems. In: Holland, H.D., Turekian, K.K.
1058	(Eds.) Treatise on Geochemistry 13, 515-536. Elsevier, Oxford, doi: 10.1016/B978-0-08-
1059	095975-7.01123-2, 2014.
1060	Barton, M.D., Johnson, D.A.: Evaporitic source model for igneous-related Fe oxide-(REE-Cu-Au-
1061	U) mineralization. Geology, 24, 259–262, doi: 10.1130/0091-7613(1996)0242.3.CO;2, 1996.
1062	Bartov, Y., Stein, M., Enzel, Y., Agnon, A., Reches, Z.: Lake Levels and Sequence Stratigraphy of
1063	Lake Lisan, the Late Pleistocene Precursor of the Dead Sea. Quatern. Res., 57, 9-21, doi:
1064	10.1006/qres.2001.2284, 2002.
1065	Basuki, N.I., Spooner, E.T.C.: A review of fluid inclusion temperatures and salinities in Mississippi
1066	V alley-type Zn-Pb deposits: Identifying thresholds for metal transport. Explor. Mining Geol.,
1067	v. 11, p. 1–17, doi: 10.2113/11.1-4.1, 2004.
1068	Bekker, A., Holland, H.D.: Oxygen overshoot and recovery during the early Paleoproterozoic. Earth
1069	Planet. Sci. Lett., 317-318, 295-304, doi: 10.1016/j.epsl.2011.12.012, 2012.

42

- 1070 Bekker, A., Karhu, J.A., Kaufman, A.J.: Carbon isotope record for the onset of the Lomagundi
- 1071 carbon isotope excursion in the Great Lakes area, North America. Precambrian Res., 148, 145-
- 1072 180, doi: 10.1016/j.precamres.2006.03.008, 2006.
- 1073 Bekker, A., Slack, F.J., Planavsky, N., Krapez, B., Hofmann, A., Konhauser, O.K., Rouxel, J.O.:
- 1074 Iron Formation: The Sedimentary Product of a Complex Interplay among Mantle, Tectonic,
- 1075 Oceanic, and Biospheric Processes. Econ. Geol., 105, 467-508, doi:
- 1076 10.2113/gsecongeo.105.3.467, 2010.
- Bell, C.M., Suarez, M.: The depositional environments and tectonic development of a Mesozoic
 intra-arc basin, Atacama Region, Chile. Geol. Mag., 130, 417-430, doi:
 10.1017/S0016756800020501, 1993.
- Benison, K.C., Goldstein, R.H., Wopenka, B., Burruss, R.C., Pasteris, J.D.: Extremely acid Permian
 lakes and ground waters in North America. Nature, 392, 911-914, doi: 10.1038/31917, 1998.
- 1082 Berner, R.A.: GEOCARB II: A revised model of atmospheric CO2 over Phanerozoic time. Am. J.
- 1083 Sci. 294 (1), 56–91, doi: 10.2475/ajs.294.1.56, 1994.
- 1084 Berner, R.A.: Examination of hypothesis for the Permo-Triassic boundary extinction by carbon
- 1085 cycle modeling. P. Nati. Acad. Sci. USA 99, 4172–4177, doi: 10.1073/pnas.032095199, 2002.
- 1086 Berner, R.A., Berner, E.K.: Silicate weathering and climate. In Ruddiman et al. (eds) Tectonic uplift
- 1087 and climate change. Springer, Boston, MA, 353-365, doi: 10.1007/978-1-4615-5935-1_15,
 1088 1997.
- Bhattacharya, H.N., Bull, S.: Tectono-sedimentary setting of the Paleoproterozoic Zawar Pb–Zn
 deposits, Rajasthan, India. Precambrian Res., 177, 323-338, doi:
 10.1016/j.precamres.2010.01.004, 2010.
- 1092 Blum, J.D.: The effect of late Cenozoic glaciation and tectonic uplift on silicate weathering rates
- and the marine 87Sr/86Sr record. In Ruddiman et al. (eds) Tectonic uplift and climate change.
 Springer, Boston, MA, 259-288, doi: 10.1007/978-1-4615-5935-1_11, 1997.
- 1095 Blumenschine, R.J., Masao, F.T., Stollhofen, H., Stanistreet, I.G., Bamford, M.K., Albert, R.M.,
- 1096 Njau, J.K., Prassack, K.A.: Landscape distribution of Oldowan stone artifact assemblages
- 1097 across the fault compartments of the eastern Olduvai Lake Basin during early lowermost Bed
- 1098 II times. J. Hum. Evol. 63 (2), 384–394, doi: 10.1016/j.jhevol.2011.05.003, 2012.

- Bodon, S.B.: Paragenetic relationships and their implications for ore genesis at the Cannington AgPb-Zn deposit, Mt. Isa inlier, Queensland, Australia. Econ. Geol., 93, 1463–1489, doi:
- 1101 10.2113/gsecongeo.93.8.1463, 1998.
- 1102 Boehrer, B., Schultze, M.: Stratification of lakes. Rev. Geophys. 46, 2006RG000210, 1-27, doi:
- 1103 10.1029/2006rg000210, 2008.
- 1104 Bose, K.P., Sarkar, S., Mukhopadhyay, S., Saha, B., Eriksson, P.: Precambrian basin-margin fan

1105 deposits: Mesoproterozoic Bagalkot Group, India. Precambrian Res., 162, 264-283, doi:

- 1106 10.1016/j.precamres.2007.07.022, 2008.
- 1107 Bostrom, K., Rydell, H., Joensuu, O.: Langban-An Exhalative Sedimentary Deposits? Econ. Geol.,
- 1108 74, 1002-1011, doi: 10.2113/gsecongeo.74.5.1002, 1979.
- Bosworth, W., Huchon, P., McClay, K.: The Red Sea and Gulf of Aden Basins. J. Afr. Earth Sci.,
 43, 334–378, doi: 10.1016/j.jafrearsci.2005.07.020, 2005.
- 1111 Boucot, A.J., Xu, C., Scotese, C.R.: Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of

1112 Climate. SEPM Concepts in Sedimentology and Paleontology, (Print-on-Demand Version), 11,

1113 478. Soc. Sediment. Geol, Tulsa, OK, doi: 10.2110/sepmcsp.11, 2013.

- 1114 Bourquin, S., Bercovici, A., López-Gómez, J., Diez, J.B., Broutin, J., Ronchi, A., Durand, M., Arché,
- 1115 A., Linol, B., Amour, F.: The Permian-Triassic transition and the onset of Mesozoic
- 1116 sedimentation at the northwestern peri-Tethyan domain scale: Palaeogeographic maps and
- 1117 geodynamic implications. Palaeogeogr. Palaeocl., 299, 265-280, doi:
- 1118 10.1016/j.palaeo.2010.11.007, 2011.
- Bradley, D.C.: Passive margins through earth history. Earth-Sci. Rev., 91(1-4), 1-26, doi:
 10.1016/j.earscirev.2008.08.001, 2008.
- 1121 Bradley, D.C., Leach, D.L.: Tectonic controls of Mississippi Valley-type lead-zinc mineralization
- 1122 in orogenic forelands. Miner. Deposita, 38, 652-667, doi: 10.1007/s00126-003-0355-2, 2003.
- 1123 Brasier, A.T., Fallick, A.E., Prave, A.R., Melezhik, V.A., Lepland, A., FAR-DEEP Scientists:
- 1124 Coastal sabkha dolomites and calcitised sulphates preserving the Lomagundi-Jatuli carbon
- 1125 isotope signal. Precambrian Res., 189, 193–211, doi: 10.1016/j.precamres.2011.05.011, 2011.
- 1126 Brown, A.C.: Zoning in the White Pine copper deposit, Ontonogan County, Michigan. Econ. Geol.,
- 1127 66, 543–573, doi: 10.2113/gsecongeo.66.4.543, 1971.

- 1128 Brown, A.C.: Sediment-hosted copper deposits: Deposit-type name and related terminology. Geol.
- 1129 Assoc. Can. Spec. Paper, 36, p. 39–52, doi: 10.1016/0926-9851(92)90063-g, 1989.
- 1130 Brown, A.C.: Sediment-hosted stratiform copper deposits. Geosci. Can., 19, 125–141, 1992.
- 1131 Brown, A.C.: Sediment-hosted stratiform copper deposits. Geol. Assoc. Can. Geosci. Reprint Ser.,
- 1132 6, 99–116, doi: 10.1007/978-94-011-3925-012, 1993.
- 1133 Brown, A.C.: World-class sediment-hosted stratiform copper deposits: Characteristics, genetic
- 1134 concepts and metallotects. Aust. J. Earth Sci., 44, 317–328, doi: 101080/08120099708728315,
 1135 1997.
- 1136 Brown, A.C.: A process-based approach to estimating the copper derived from red beds in the
- sediment-hosted stratiform copper deposit model. Econ. Geol., 104, 857–868, doi:
 10.2113/gsecongeo.104.6.857, 2009.
- Brune, S., Williams, S.E., Müller, R.D.: Potential links between continental rifting, CO2 degassing
 and climate change through time. Nat. Geosci., 10 (12), 941–946, doi: 10.1038/s41561-0170003-6, 2017.
- 1142Burke, K.: Atlantic evaporites formed by evaporation of water spilled from Pacific, Tethyan, and1143Southern oceans. Geology, 3, 613-617, doi: 10.1130/0091-7613(1975)3<613:aefbeo>2.0.co;2,
- 1144 1975.
- Cameron, E.M.: Evidence from early Proterozoic anhydrite for sulphur isotopic partitioning in
 Precambrian oceans. Nature, 304, 54–56, doi: 10.1038/304054a0, 1983.
- Carpenter, A.B., Trout, M.L., Pickett, E.E.: Preliminary report on the origin and chemical evolution
 of lead- and zinc-rich brines in central Mississippi. Econ. Geol., 69, 1191–1206, doi:
- 1149 10.2113/gsecongeo.69.8.1191, 1974.
- 1150 Carroll, A.R., Bohacs, K.M.: Stratigraphic classification of ancient lakes: Balancing tectonic and
- 1151 climatic controls. Geology, 27 (2), 99-102, doi: 10.1130/0091-7613(1999)0272.3.CO;2, 1999.
- 1152 Catling, D.C.: The great oxidation event transition. In: Holland, H.D., Turekian, K. K. (Eds.),
- 1153 Treatise on Geochemistry 7, Elsevier, Oxford, pp. 177–193, doi: 10.1016/b978-0-08-0959751154 7.01307-3, 2014.
- 1155 Caves, J.K.: The Cenozoic climatic and tectonic history of Asia. A dissertation submitted to Stanford
- 1156 University for the degree of Doctor of Philosophy, 2016.

1157 Cawood, P.A.: Earth Matters: A tempo to our planet's evolution. Geology, 48(5), 525-526, doi: 1158 10.1130/focus052020.1, 2020. Cawood, P.A., Hawkesworth. C.J.: Earth's middle age. Geology, 42(6), 503-506, doi: 1159 1160 10.1130/g35402.1, 2014. 1161 Cawood, P.A., Strachan, R.A., Pisarevsky, S.A., Gladkochub, D.P., Murphy, J.B.: Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for 1162 1163 models of supercontinent cycles. Earth Planet. Sci. Lett., 449, 118-126, doi: 10.1016/j.epsl.2016.05.049, 2016. 1164 1165 Cerling, T.E.: Pore water chemistry of an alkaline lake: Lake Turkana. In: Johnson, C., Odada, E.O. (Eds.), The Limnology, Climatology, and Paleoclimatology of the East African Lakes. Gordon 1166 and Breach Science, Amsterdam, pp. 225-240, doi: 10.1201/9780203748978-12, 1996. 1167 1168 Chapman, L.H.: Geology and mineralization styles of the George Fisher Zn-Pb-Ag deposit, Mount Isa, Australia. Econ. Geol., 99, 233-256, doi: 10.2113/gsecongeo.99.2.233, 2004. 1169 1170 Chen, J., Liu, D.Y., Peng, P.A., Chen, N., Hou, X.L., Zhang, B.S., Xiao, Z.Y.: Iodine-129 chronological study of brines from an Ordovician paleokarst reservoir in the Lunnan oilfield, 1171 1172 Tarim Basin. Appl. Geochem., 65, 14-21, doi: 10.1016/j.apgeochem.2015.10.012, 2016. 1173 Chi, G., Haid, T., Quirt, D., Fayek, M., Blamey, N., Chu, H.: Petrography, fluid inclusion analysis 1174 and geochronology of the End uranium deposit, Kiggavik, Nunavut. Canada. Miner. Deposita, 1175 52 (2), 211-232, doi: 10.1007/s00126-016-0657-9, 2017. 1176 Chi, G., Li, Z.H., Chu, H., Bethume, K.M., Quirt, D.H., Ledru, P., Normand, C., Card, C., Bosman, 1177 S., Davis, W.J., Potter, E.G.: A Shallow-Burial Mineralization Model for the Unconformity-1178 Related Uranium Deposits in the Athabasca Basin. Econ. Geol., 113, 1209-1217, doi: 1179 10.5382/gecongeo.2018.4588, 2018. Cody, R.D., Anderson, R.R., McKay, R.M.: Geology of the Fort Dodge Formation (Upper Jurassic) 1180 Webster County, Iowa. Iowa Geological Survey Bureau Guide book Series No.19, 74 p., doi: 1181 10.17077/2160-5270.1271, 1997. 1182 1183 Coffin, M.F., Eldholm, O.: Large igneous provinces: crustal structure, dimensions, and external consequences. Rev. Geophys., 32 (1), 1, doi: 10.1029/93RG02508, 1994. 1184

- 1185 Coffin, M.F., Eldholm, O.: Large Igneous Provinces. Encyclopedia of geology, 315-323, doi:
- 1186 10.1016/b0-12-369396-9/00455-X, 2005.
- 1187 Coltice, N., Phillips, B.R., Bertrand, H., Ricard, Y., Rey, P.: Global warming of the mantle at the
- 1188 origin of flood basalts over supercontinents. Geology, 35 (5), 391., doi: 10.1130/G23240A.1.,
 1189 2007.
- 1190 Condie, K.C.: The supercontinent cycle: Are there two patterns of cyclicity? J. Afr. Earth Sci., 35,
- 1191 179–183, doi: 10.1016/s0899-5362(02)00005-2, 2002a.
- 1192 Condie, K.C.: Continental growth during a 1.9-Ga superplume event. J. Geodyn., 34, 249–264, doi:
- 1193 10.1016/s0264-3707(02)00023-6, 2002b.
- 1194 Condie, K.C.: Earth as an evolving planetary system. Amsterdam, Elsevier, 447 p, doi:
- 1195 10.1016/b978-012088392-9/50001-3, 2005.
- 1196 Condie, K.C.: Growth of continental crust: a balance between preservation and recycling. Miner.
- 1197 Mag., 78, 623-637, doi: 10.1180/minmag.2014.078.311, 2014.
- 1198 Cooke, D.R., Bull, S.W., Large, R.R., McGoldrick, P.J.: The importance of oxidized brines for the
- 1199 formation of Australian Proterozoic stratiform sediment-hosted Pb-Zn (Sedex) deposits. Econ.
- 1200 Geol., 95, 1-18, doi: 10.2113/gsecongeo.95.1.1, 2000.
- 1201 Courtillot, V.E., Renne, P.R.: On the ages of flood basalt events. C.R. Geosci., 335 (1), 113–140,
- doi: 10.1016/s1631-0713(03)00006-3, 2003.
- 1203 Cox, D.P., Lindsey, D.A., Singer, D.A., Diggles, M.F.: Sediment hosted copper deposits of the
 1204 world: Deposit models and database. USGS Open-File Report 03-107, 50 p, doi:
- 1205 10.3133/ofr2003107, 2003.
- 1206 Cox, S.F., Braun, J., Knackstedt, M.A.: Principles of structural control on permeability and fluid
- 1207 flow in hydrothermal systems. Rev. Econ. Geol. 14, 1–24, doi: 10.5382/rev14.01, 2001.
- 1208 Cox, S.F., Knackstedt, M.A.: Ore genesis in fracture-controlled hydrothermal systems: percolation
- 1209 theory approaches. PACRIM'99, doi: 10.5382/rev.21.02, 1999.
- 1210 Cox, S.F., Wall, V.J., Etheridge, M.A., Potter, T.F.: Deformational and metamorphic processes in
- 1211 the formation of mesothermal vein–hosted gold deposits examples from the Lachlan fold belt
- 1212 in central Victoria. Australia. Ore Geol. Rev., 6 (5), 391-423, doi: 10.1016/0169-
- 1213 1368(91)90038-9, 1991.

1214	Cuney, M.: Evolution of uranium fractionation processes through time: driving the secular variation
1215	of uranium deposit types. Econ. Geol., 105 (3), 553-569, doi: 102113/gsecongeo.105.3.553,
1216	2010.
1217	Cuney, M.: Uranium and thorium: The extreme diversity of the resources of the world's energy
1218	minerals. In: Sinding-Larsen, R., Wellmer, FW. (Eds.), NonRenewable Resource Issues:
1219	Geoscientific and Societal Challenges, International Year of Planet Earth, Springer, 91-129,
1220	doi: 10.1007/978-90-481-8679-2_6, 2011.
1221	Cuney, M.: Uranium and thorium resources and sustainability of nuclear energy. In: Burns, P.,
1222	Sigmon, G. (Eds.), Uranium: Cradle to Grave. Mineral. Assoc. Can., Short Course Ser. 43, 15,
1223	417-438, doi: 10.3749/9780921294689.ch15, 2013.
1224	Cuney, M.: Felsic magmatism and uranium deposits. Bulletin De La Societe Geologique De France,
1225	185, 75-92. Bruneton, doi: 10.2113/gssgfbull.185.2.75, 2014.
1226	Cuney, M.: Geology of uranium deposits. In "Uranium for Nuclear Power. Resources, Mining and
1227	Transformation to Fuel". Edt. Ian Hore Lacy. Elsevier. 488, doi: 10.1016/b978-0-08-100307-
1228	7.00002-8, 2016.
1229	Cuney, M., Emetz, A., Mercadier, J., Mykchaylov, V., Shunko, V., Yuslenko, A.: Uranium deposits
1230	associated with Na-metasomatism from central Ukraine: A review of some of the major
1231	deposits and genetic constraints. Ore Geol. Rev., 44, 82-106, doi:
1232	10.1016/j.oregeorev.2011.09.007, 2012.
1233	Cuney, M., Kyser, K.: Recent and not-So-Recent developments in uranium deposits and
1234	implications for exploration. Quebec, Mineral. Assoc. Can. Short course ser., 39, 161–223, doi:
1235	10.2113/gsecongeo.104.4.600, 2008.
1236	Cuney, M., Mathieu, R.: Extreme light rare earth element mobilization by diagenetic fluids in the
1237	geological environment of the Oklo natural reactor zones, Franceville basin, Gabon. Geology,
1238	28, 743-746, doi: 10.1130/0091-7613(200002830743:elreem>2.3.co;2, 2000.
1239	Dahlkamp, F.J. (Ed.): Uranium Deposits of the World (Asia). Springer Berlin Heidelberg, Berlin,
1240	Heidelberg, doi: 10.1007/978-3-540-78558-3_19, 2009.
1241	Dahlkamp, F.J. (Ed.): Uranium Deposits of the World (USA and Latin America). Springer, Berlin,
1242	Heidelberg, doi: 101007/978-3-540-78943-7, 2010.

1243

1244	Dalziel, I.W.D.: Neoproterozoic-Paleozoic geography and tectonics: review, hypothesis,
1245	environmental speculation. GSA Bulletin, 108, 16-42. , doi: 10.1130/0016-
1246	7606(1997)109<0016:onpgat>2.3.co;2, 1997.
1247	Dalziel, I.W.D., Mosher, S., Gahagan, L.M.: Laurentia-Kalahari collision and the assembly of
1248	Rodinia. J. Geol., 108, 499–513, doi: 10.1086/314418, 2000.
1249	Darnell, W.L., Staylor, W.F., Gupta, S.K., Ritchey, N.A., Wilber, A.C.: Seasonal variation of
1250	surface radiation budget derived from international satellite cloud climatology project C1 data.
1251	J. Geophys. Res., 97, 15741-15760, doi: 10.1029/92jd00675, 1992.
1252	Davis, A.D., Rahn, P.H.: Karstic gypsum problems at waste water stabilization sites in the Black
1253	Hills of South Dakota. Carbonate Evaporite, 12, 73-80, doi: 101007/bf03175804, 1997.
1254	de Wit, M.J.: On Archean granites, greenstones, cratons and tectonics: Does the evidence demand
1255	a verdict? Precambrian Res., 91, 181-227, doi: 10.1016/s0301-9268/98100043-6, 1998.
1256	Dean, W.E., Johnson, K.S.: Anhydrite deposits of the United States and characteristics of anhydrite
1257	important for storage of radioactive wastes. USGS Professional Paper, 1794, 132 p, doi:

Dahlkamp, F.J. (Ed.): Uranium Deposits of the World (Europe). Springer, Berlin, Heidelberg. 2016.

1258 10.3133/b1794, 1989.

- 1259 Deocampo, D.M., Jones, B.F.: Geochemistry of Saline Lakes. In: Holland, H.D., Turekian, K.K.
- 1260 (Eds.), Treatise on Geochemistry 7, Elsevier, Oxford, pp. 437–469, doi: 10.1016/b978-0-08-

1261 095975-7.00515-5, 2014.

- 1262 Derry, L.A., France-Lanord, C.: Himalayan weathering and erosion fluxes: climate and tectonic
- 1263 controls. In Ruddiman et al. (eds) Tectonic uplift and climate change. Springer, Boston, MA,
 1264 289-312, doi: 10.1007/978-1-4615-5935-1 12, 1997.
- 1265 Diaz, G.C.: The Cenozoic saline deposits of the Chilean Andes Between 18"00' and 27*00' South
- 1266 Lattitude. In Bahlburg, H., Breitkreuz, Ch., Giese, P., (Eds.) Lecture Notes in Earth Sciences,
- 1267 17, 137-151, doi: 101007/bfb0045179, 1988.
- 1268 Doelling, H.H.: Geology of Salt Valley anticline and Arches National Parle, Grand County, Utah.
- 1269 Utah Geol. Miner. Sur. Bulletin, 122, 58, doi: 10.3133/b863, 1988.

1270	Dolníčcek, Z., Fojt, B., Prochaska, W., Kučcera, J., Sulovský, P.: Origin of the Z´ alesí U-Ni-Co-
1271	As-Ag/Bi deposit, Bohemian Massif, Czech Republic: fluid inclusion and stable isotope
1272	constraints. Miner. Deposita, 44 (1), 81–97, doi: 101007/s00126-008-0202-6, 2009.
1273	Dolníčcek, Z., Ren´e, M., Hermannova, ´S., Prochaska, W.: Origin of the Okrouhl' a Radoun'
1274	episyenite-hosted uranium deposit, Bohemian Massif, Czech Republic: fluid inclusion and
1275	stable isotope constraints. Miner. Deposita, 49 (4), 409-425, doi: 10.1007/s00126-013-0500-
1276	5, 2014.
1277	Domagalski, J.L., Eugster, H.P., Jones, B.F.: Trace metal geochemistry of Walker, Mono, and Great
1278	Salt Lakes. In: Spencer, R.J., Chou, I.M. (Eds.), Fluid-Mineral Interactions: A Tribute to H.P.
1279	Eugster, Special Public., 2, 315-354. San Antonio, TX: Geochemical Society, doi:
1280	10.1016/0016-7037(89)90163-4, 1990.
1281	Donnadieu, Y., Godderis, Y., Bouttes, N.: Exploring the climate impact of the continental vegetation
1282	on the Mesozoic atmospheric CO2 and climate history. Clim. Past, 4, 2012-11045, doi:
1283	10.5194/cp-5-85-2009, 2008.
1284	Duan, X.X., Zeng, Q.D., Wang, Y.B., Zhou, L.L., Chen, B.: Genesis of the Pb- Zn deposits of the
1285	Qingchengzi ore field, eastern Liaoning, China: Constraints from carbonate LA- ICPMS trace
1286	element analysis and C-O-S-Pb isotopes. Ore Geol. Rev., 89, 752-771, doi:
1287	10.1016/j.oregeorev.2017.07.012, 2017.
1288	Dugamin, E.J.M., Richard, A., Cathelineau, M., Boiron, M-C., Despinois, F., Brisset, A.:
1289	Groundwater in sedimentary basins as potential lithium resource: a global prospective study.
1290	Sci. Rep., 11, 21091, doi: 10.1038/s41598-021-99912-7, 2021.
1291	Elliott, W.C., Aronson, L.J.: The timing and extent of illite formation in Ordovician K-bentonites at
1292	the Cincinnati Arch, the Nashville Dome and north-eastern Illionis basin. Basin Res., 5, 125-
1293	135, doi: 10.1111/j.1365-2117.1993.tb00061.x, 1993.
1294	El-Tabakh, M., Grey, K., Pirajno, F., Schreiber, B.C.: Pseudomorphs after evaporitic minerals
1295	interbedded with 2.2 Ga stromatolites of the Yerrida Basin, Western Australia: origin and
1296	significance. Geology, 27, 871–874, doi: 10.1130/0091-
1297	7613(1999)027<0871:PAEMIW>2.3.CO;2, 1999.

- 1298 El-Tabakh, M., Mory, A., Schreiber, B.C., Yasin, R.: Anhydrite cements after dolomitization of 1299 shallow marine Silurian carbonates of the Gascoyne Platform, Southern Carnarvon Basin, 1300 Western Australia. Sediment. Geol., 164, 75-87, doi: 10.1016/j.sedgeo.2003.09.003, 2004. 1301 Engle, M.A., Reyes, F.R., Varonka, M.S., Orem, W.H., Ma, L., Ianno, A.J., Schell, T.M., Xu, P., 1302 Carroll, K.C.: Geochemistry of formation waters from the Wolfcamp and "Cline" shales: 1303 Insights into brine origin, reservoir connectivity, and fluid flow in the Permian Basin, USA. 1304 Chem. Geol., 425, 76-92, doi: 10.1016/j.chemgeo.2016.01.025, 2016. 1305 Ernst, R.E.: Large Igneous Provinces. Cambridge University Press, Cambridge, UK, p. 653, doi: 1306 10.1017/cbo9781139025300, 2014. Ernst, R.E., Buchan, K.L.: Large mafic magmatic events through time and links to mantle-plume 1307 1308 heads. Geol. Soc. Am. Spec. Pap. 352, 483-575, doi: 10.1130/0-8137-2352-3.483, 2001. 1309 Ernst, R.E., Jowitt, S.M.: Large igneous provinces (LIPs) and metallogeny. Soc. Econ. Geol. Spec. 1310 Public., 17, 17-51, doi: 105382/sp17.02, 2013. 1311 Ernst, R.E., Youbi, N.: How Large Igneous Provinces affect global climate, sometimes cause mass 1312 extinctions, and represent natural markers in the geological record. Palaeogeogr. Palaeocl. 478, 1313 30-52, doi: 10.1016/j.palaeo.2017.03.014, 2017. 1314 Ervin, C.P., McGinnis, D.L.: Reelfoot Rift: Reactivated Precursor to the Mississippi Embayment. 1315 GSA Bulletin, 86, 1287-1295, doi: 10.1130/0016-7606(1975)86<1287:rrrptt>2.0.co;2, 1975. 1316 Evans, D.A.D.: Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite 1317 palaeolatitudes. Nature, 444, 51-55, doi: 10.1038/nature05203, 2006. 1318 Evans, K.V., Aleinikoff, J.N., Obradovich, J.D., and Fanning, C.M.: SHRIMP U-Pb geochronology 1319 of volcanic rocks, Belt Supergroup, western Montana: Evidence for rapid deposition of 1320 sedimentary strata. Can. J. Earth Sci., 37, 1287-1300, doi: 10.1139/e00-036, 2000. 1321 Farquhar, J., Wu, N.P., Canfield, E.D., Oduro, H.: Connections between Sulfur Cycle Evolution, Sulfur Isotopes, Sediments, and Base Metal Sulfide Deposits. Econ. Geol., 105, 509-533, doi: 1322 1323 10.2113/gsecongeo.105.3.509, 2010. 1324 Farquhar, J., Zerkle, A.J., Bekker, A.: Geologic and Geochemical Constraints on Earth's Early 1325 Atmosphere. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry 6, Elsevier, 1326 Oxford, pp. 91-129, doi: 10.1016/6978-0-08-095975-7.01304-8, 2014.
 - 51

1327	Fayazi, F., Lak, R., Nakhaei, M.: Hydrogeochemistry and evolution of Maharlou saline lake,
1328	Southwest of Iran. Carbonate. Evaporite., 22, 33-42, doi: 10.1007/bf03175844, 2007.
1329	Fiorella, P.R., Sheldon, D.N.: Equable end Mesoproterozoic climate in the absence of high CO2.
1330	Geology, 45, 231-234, doi: 10.1130/g38682.1, 2017.
1331	Fischer, A.G.: Climatic oscillations in the biosphere. In: Nitecki, M. (Ed.), Biotic crises in ecological
1332	and evolutionary time. Academic Press, New York, pp. 103-131, doi: 10.1016/b978-0-12-
1333	519640-6.50012-0, 1981.
1334	Font, E., N'ed'elec, A., Trindade, R.I.F., Moreau, C.: Fast or slow melting of the Marinoan snowball
1335	Earth? The cap dolostone record. Palaeogeogr. Palaeocl. 295 (1-2), 215-225, doi:
1336	101016/j.palaeo.2010.05.039, 2010.
1337	Forbes, J., Nance, R.: Stratigraphy, sedimentology, and structural geology of gypsum caves in
1338	southeast New Mexico. Carbonate Evaporite, 12, 64-72, doi: 10.1007/bf03175803, 1997.
1339	Frape, S.K., Blyth, A., Stotler, R.L., Rusheeniemi, T., Blomqvist, R., Mcnutt, R.H., Gascoyne, M.:
1340	Deep fluids in the continents. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on
1341	Geochemistry 7, Elsevier, Oxford, pp. 518-561, doi: 10.1016/b978-0-08-095975-7.00517-9,
1342	2014.
1343	Galamay, R.A., Bukowski, K., Zinchuk, M.I., Meng, F.W.: The Temperature of Halite
1344	Crystallization in the Badenian Saline Basins, in the Context of Paleoclimate Reconstruction
1345	of the Carpathian Area. Minerals, 11, 831, doi: 10.3390/min11080831, 2021.
1346	Garnett, R.H.T., Bassett, N.C.: Placer Deposits. Econ. Geol., 100, 813-843, doi: 105382/av100.25,
1347	2005.
1348	Gasse, F., Fontes, J.C.: Palaeoenvironments and palaeohydrology of a tropical closed lake (Lake
1349	Asal, Djibouti) since 10,000 yr B.P. Palaeogeogr. Palaeocl. 69, 67-102, doi: 10.1016/0031-
1350	0182(89)90156-9, 1989.
1351	Gaupp, R., Gast, R., Forster, C.: Late Permian Playa Lake Deposits of the Southern Permian Basin
1352	(Central Europe). AAPG Studies Geol., 46, 75-86, doi: 10.1306/st46706c5, 2000.
1353	Gillet, H., Lericolais, G., R´ehault, JP.: Messinian event in the black sea: Evidence of a Messinian
1354	erosional surface. Mar. Geol. 244 (1-4), 142–165, doi: 10.1016/j.margeo.2007.06.004, 2007.

52

1355	Gilman, K.: Hydrology and Wetland Conservation. Wiley, Chichester. Walker, J.C.G., Hays, P.B.,
1356	Kasting, J.F., 1981. A negative feedback mechanism for the long-term stabilization of Earth's
1357	surface temperature. J. Geophys. Res., 86, 9776–9782, doi: 10.1029/jc086ic10p09776, 1994.
1358	Gnanaseelan, C., Deshpande, A.: Equatorial Indian Ocean subsurface current variability in an Ocean
1359	General Circulation Model. Clim. Dynam., 50 (5-6), 1705-1717, doi: 10.1007/s00382-017-
1360	3716-8, 2018.
1361	Godderis, Y., Donnadieu, Y., Le Hir, G., Lefebvre, V., Nardin, E.: The role of palaeogeography in
1362	the Phanerozoic history of atmospheric CO2 and climate. Earth-Sci. Rev., 128, 122-138, doi:
1363	10.1016/j.earscirew.2013.11.004, 2014.
1364	Goldberg, T., Poulton, W.S., Strauss, H.: Sulphur and oxygen isotope signatures of late
1365	Neoproterozoic to early Cambrian sulphate, Yangtze Platform, China: Diagenetic constraints
1366	and seawater evolution. Precambrian Res., 137, 223-241, doi:
1367	10.1016/j.precamres.2005.03.003, 2005.
1368	Goldfarb, J.R., Bradley, D., Leach, D.L.: Secular Variation in Economic Geology. Econ. Geol., 105,
1369	459-465, doi: 10.2113/gsecongeo.105.3.459, 2010.
1370	Goldfarb, R.J., Groves, D.I., and Gardoll, S.: Orogenic gold and geologic time: A global synthesis.
1371	Ore Geol. Rev., 18, 1–75, doi: 10.1016/s0169-1368(01)00016-6, 2001a.
1372	Goldfarb, R.J.: Rotund versus skinny orogens: Well-nourished or malnourished gold? Geology, 29,
1373	539-542, doi: 10.1130/0091-7613(2001)02<0539:rvsown>2.0.co;2, 2001b.
1374	Goldfarb, R.J., Baker, T., Dube, B., Groves, D.I., Hart, C.J., Gosselin, P.: Distribution, character,
1375	and genesis of gold deposits in metamorphic terranes. Econ. Geol., 100, 407-450, doi:
1376	10.5382/av100.14, 2005.
1377	Goodfellow, W.D., and Lydon, J.W.: Sedimentary-exhalative (SEDEX) deposits. Geol. Assoc. Can.,
1378	Mineral Deposits Division, Spec. Public., 5, 163-183, doi: 10.4095/207970, 2007.
1379	Goodfellow, W.D., Lydon, J.W., Turner, R.J.W.: Geology and genesis of stratiform sediment-
1380	hosted (SEDEX) zinc-lead-silver sulphide deposits. Geol. Assoc. Can. Spec. Paper, 40, 201-
1381	251, 1993.

1382	Groves, D.I., Condie, K.C., Goldfarb, R.J., Hronsky, J.M.A., Vielreicher, R.M.: Secular changes in
1383	global tectonic processes and their influence on the temporal distribution of gold-bearing
1384	mineral deposits. Econ. Geol., 100, 203-224, doi: 10.2113/gsecongeo.100.2.203, 2005a.
1385	Groves, D.I., Vielreicher, R.M., Goldfarb, R.J. and Condie, K.C.: Controls on the heterogeneous
1386	distribution of mineral deposits through time, in Mc Donald, I. et al., eds., Mineral deposits
1387	and earth evolution. Geol. Soc., London, Spec. Public., 248, 71-101, doi:
1388	10.1144/aslsp.2005.248.01.04, 2005b.
1389	Groves, I.D., Bierlein, P.F., Meinert, D.L., Hitzman, W.M.: Iron Oxide Copper-Gold (IOCG)
1390	Deposits through Earth History: Implications for Origin, Lithospheric Setting, and Distinction
1391	from Other Epigenetic Iron Oxide Deposits. Econ. Geol., 105, 641-654, doi:
1392	10.2113/gsecongeo.105.3.641, 2010.
1393	Gu, A.L., Eastoe, C.J.: The Origins of Sulfate in Cenozoic Non-Marine Evaporites in the Basin and-
1394	Range Province, Southwestern North America. Geosciences, 11, 455, doi:
1395	10.3390/geosciences11110455, 2021.
1396	Gu, X.X., Zhang, Y.M., Schulz, O., Vavtar, F., Liu, J.M., Zheng, M.H., Zheng, L.: The Woxi W-
1397	Sb-Au deposit in Hunan, South China: An example of Late Proterozoic sedimentary exhalative
1398	(SEDEX) mineralization. J. Asian Earth Sci., 57, 54-75, doi: 10.1016/j.jseaes.2012.06.006,
1399	2012.
1400	Guo, P., Liu, C.Y., Gibert, L., Huang, L., Zhang, D.W., Dai, J.: How to find high-quality petroleum
1401	source rocks in saline lacustrine basins: A case study from the Cenozoic Qaidam Basin, NW
1402	China. Marine Petrol. Geol., 111, 603-623, doi: 10.1016/j.marpetgeo.2019.08.050, 2020.
1403	Guo, P., Liu, C.Y., Huang, L., Yu, M.L., Wang, P., Zhang, G.Q.: Palaeohydrological evolution of
1404	the late Cenozoic saline lake in the Qaidam Basin, NE Tibetan Plateau: Tectonic vs. climatic
1405	control. Global Planet. Change, 165, 44-61, doi: 10.1016/j.gloplacha.2018.03.012, 2018.
1406	Gutzmer, J., Mukhopadhyay, J., Beukes, N.J., Pack, A., Hayashi, K., Sharp, Z.D.: Oxygen isotope
1407	composition of hematite and genesis of high-grade BIF-hosted iron ores. Geol. Soc. Am.
1408	Mem., 198, 257–268, doi: 10.1130/2006.1198(15), 2006.
1409	Guzman, E.J.: Sedimentary volumes in Gulf Coastal Plain of the United States and Mexico. GSA
1410	Bulletin, 63, 1201-1220, doi: 10.1130/0016-7606(1952)63[1201:svigcp]2.0.co;2, 1962.

1411	Hacini, M., Oelkers, E.H.: Geochemistry and behavior of trace elements during the complete
1412	evaporation of the Merouane Chott Ephemeral Lake: Southeast Algeria. Aquat. Geochem., 17
1413	(1), 51–70, doi: 10.1007/s10498-010-9106-z, 2010.
1414	Hagni, R.D.: Ore microscopy, paragenetic sequence, trace element content, and fluid inclusion
1415	studies of the copper-lead-zinc deposits of the Southeast Missouri lead district. In: Kisvarsanyi,
1416	G., Grant, S.K., Pratt, W.P., Koenig, J.W. (Eds.) Proceedings of International Conference on
1417	Mississippi Valley Type Lead–Zinc Deposits: Rolla, University of Missouri–Rolla Press, 243–
1418	256, doi: 10.5382/mono.03.18, 1983.
1419	Hallet, B., Hunter, L., Bogen, J.: Rates of erosion and sediment evacuation by glaciers: A review of
1420	field data and their implications. Global Planet. Change, 12(1-4), 213-235, doi: 10.1016/0921-
1421	8181(95)00021-6, 1996.
1422	Hanor, J. S., McIntosh, J. C.: Diverse origins and timing of formation of basinal brines in the Gulf
1423	of Mexico sedimentary basin. Geofluids, 7, 227-237, doi: 10.1111/1468-81232007.00177.x,
1424	2007.
1425	Hardie, L.A., Smoot, J.P., Eugster, H.P.: Saline lakes and their deposits: a sedimentological
1426	approach. Modern and Ancient Lake Sediments. Wiley, 7-41, doi:
1427	10.1002/9781444303698.ch2, 1978.
1428	Hardie, L.A., Eugster, H.P.: The evolution of closed-basin brines. Spec. Public. Miner. Soc. Am., 3,
1429	273–290, doi: 10.2475/ajs.279.6.609, 1970.
1430	Hay, W.W., Migdisov, A., Balukhovsky, A.N., Wold, C.N., Flögel, S., and Söding, E.: Evaporites
1431	and the salinity of the ocean during the Phanerozoic: Implications for climate, ocean circulation
1432	and life. Palaeogeogr., Palaeocl., 240, 3-46, doi: 10.1016/,palaeo.2006.03.044, 2006.
1433	Hecht, L., Cuney. M.: Hydrothermal alteration of monazite in the Precambrian crystalline basement
1434	of the Athabasca Basin (Saskatchewan, Canada): Implications for the formation of
1435	unconformity-related uranium deposits. Miner. Deposita, 35, 791-795, doi:
1436	10.1007/s001260050280, 2000.
1437	Hein, D., Lehmann, B.: The Ro'zna' uranium deposit (Bohemian Massif, Czech Republic): shear
1438	zone-hosted, late Variscan and post-Variscan hydrothermal mineralization. Miner. Deposita,
1439	44, 99–128, doi: 10.1007/s00126-008-018-0, 2009.

55

- 1440 Heinrich, C.A., Candela, P.A.: Fluids and ore formation in the Earth's Crust. In: Holland, H.D.,
- 1441 Turekian, K.K. (Eds.), Treatise on Geochemistry 13, Elsevier, Oxford, pp. 1–28, doi:
- 1442 10.1016/b978-0-08-095975-7.01101-3, 2014.
- 1443 Higgins, A.J., Schrag, P.D.: Aftermath of a snowball Earth. Geochem., Geophy., Geosy., 4, 1–20,
- 1444 doi: 10.1029/2002ac000403, 2003.
- 1445 Hite, R.J., Lohman, S.W.: Geologic appraisal of Paradox basin salt deposits for waste emplacement.
- 1446 USGS Open-File Report 4339-6, 75 p, doi: 103133/ofr73114, 1973.
- 1447 Hitzman, M., Kirkham, R., Broughton, D., Thorson, J., Selley, D.: The Sediment-Hosted Stratiform
- 1448 Copper Ore System. Econ. Geol., 100, 609-642, doi: 10.5382/av100.19, 2005.
- 1449 Hitzman, W.M., Selley, D., Bull, S.: Formation of Sedimentary Rock-Hosted Stratiform Copper
- 1450 Deposits through Earth History. Econ. Geol., 105, 627-639, doi: 10.2113/gsecongeo.105.3.627,
 1451 2010.
- 1452 Hoeve, J., Sibbald, T.I.I.: On the genesis of Rabbit Lake and other unconformity-type uranium
- 1453 deposits in northern Saskatchewan, Canada. Econ. Geol., 73, 1450–1473, doi:
 1454 10.2113/gsecongeo.73.8.1450, 1978.
- 1455 Hoffman, P.F., Kaufman, A.J., Halverson, G.P., Schrag, D.P.: A Neoproterozoic Snowball Earth. A
- 1456 Neoproterozoic snowball Earth. Science 281 (5381), 1342–1346, doi:
 1457 10.1126/science.281.5381.1342, 1998.
- 1458 Hoffman, P.F., Schrag, D.P.: Snowball Earth. Sci. Am., 282 (1), 68–75, doi:
 1459 10.1038/scientificamerican0100-68, 2000.
- Hoffman, P.F., Schrag, D.P.: The snowball Earth hypothesis: testing the limits of global change.
 Terra Nova, 14 (3), 129–155, doi: 10.1046/.1365-3121.200200408.x, 2002.
- 1462 Holland, H.D.: The Chemical Evolution of the Atmosphere and the Oceans. Princeton University
- 1463 Press, doi: 101126/science226.4672.332, 1984.
- 1464 Holland, H.D.: Sedimentary mineral deposits and the evolution of Earth's near-surface
- 1465 environments. Econ. Geol., 100, 1489-1509, doi: 10.2113/asecongeo.100.8.1489, 2005.
- 1466 Holland, H.D., Lazar, B., McCaffrey, M.: Evolution of the atmosphere and oceans. Nature, 320
- 1467 (6057), 27–33, doi: 10.1038/320027a0, 1986.

1468	Horita, J., Weinberg, A., Das, N., Holland, D.H.: Brine Inclusions in Halite and the Origin of the
1469	Middle Devonian Prairie Evaporites of Western Canada. J. Sediment. Res., 66, 956-964, doi:
1470	10,1306/d4268450-2b26-11d7-8648000102c1865d, 1996.
1471	Hu, RZ., Bi, XW., Zhou, MF., Peng, JT., Su, WC., Liu, S., Qi, HW.: Uranium
1472	metallogenesis in South China and its relationship to crustal extension during the Cretaceous
1473	to Tertiary. Econ. Geol. 103 (3), 583-598, doi: 102113/gsecongeo.103.3.583, 2008.
1474	Hu, RZ., Chen, W.T., Xu, DR., Zhou, MF.: Reviews and new metallogenic models of mineral
1475	deposits in South China: An introduction. J. Asian Earth Sci., 137, 1-8, doi:
1476	10.1016/j.jseaes.2017.02.035, 2017.
1477	Huang, J.G.: Saltness and Geologic background of the Cambrian Strata in the Sichuan Basin in the
1478	Upper Yangtz Area. Sediment. Geol. Tethyan Geol., 13(5), 44-56 (in Chinese with English
1479	abstract), 1993.
1480	Hutchinson, R.W., Engels, G.G.: Tectonic Significance of Regional Geology and Evaporite
1481	Lithofacies in Northeastern Ethiopia. Philos. Trans. A. Math. Phys. Eng. Sci., 267, 313-329,
1482	doi: 10.1098/rsta.1970.0038, 1970.
1483	Huybers, P., Langmuir, C.: Feedback between deglaciation, volcanism, and atmospheric CO2. Earth.
1484	Planet. Sci. Lett. 286 (3-4), 479-491, doi: 10.1016/j.epsl.2009.07.014, 2009.
1485	Iturralde-Vinent, M.A.: Meso-Cenozoic Caribbean Paleogeography: Implications for the Historical
1486	Biogeography of the Region. Int. Geol. Rev., 48, 791-827, doi: 10.2747/0020-6814.48.9.791,
1487	2006.
1488	Jackson, M.P.A., Cramez, C., Fonck, J.M.: Role of subaerial volcanic rocks and mantle plumes in
1489	creation of South Atlantic margins: implications for salt tectonics and source rocks. Mar. Petrol.
1490	Geol., 17, 477-498, doi: 10.1016/s0264-8172(00)00006-4, 2000.
1491	Jiang, S., Henriksen, S., Wang, H., Lu, Y.C., Ren, J.Y., Cai, D.S., Feng, Y.L., Weimer, P.:
1492	Sequence-stratigraphic architectures and sand-body distribution in Cenozoic rifted lacustrine
1493	basins, east China. AAPG Bulletin, 97, 1447-1475, doi: 101306/03041312026, 2013.
1494	Jiang, W.Q.: Global C3 and C4 plant evolution and its response to climate and CO2 change since
1495	the last glacial maximum. Beijing, A doctoral dissertation submitted to University of Chinese
1496	Academy of Sciences, doi: 10.46427/gold2020.1691, 2019.

1497	Johnson, K.S.: Hydrogeology and karst of the Blaine gypsum dolomite aquifer, southwestern
1498	Oklahoma. Oklahoma Geol. Sur. Spec. Public., 90-5, 31 p, doi: 10.1306/83d9230-16:7-11d7-
1499	8645000102:1865d, 1990.
1500	Johnson, K.S.: Evaporite karst in the Permian Blaine Formation and associated strata in western
1501	Oklahoma, USA. In Back, W., Heman, J.S., and Paloc, H. (eds.), Hydrogeology of selected
1502	karst regions: International Association Hydrogeologists, Verlag Heinz Heisse Publishing Co.,
1503	Hannover, Germany, 13, 405-420, 1992.
1504	Johnson, S.K.: Evaporite karst in the United States. Carbonate Evaporite, 12, 2-14, doi:
1505	10.1007/bf03175797, 1997.
1506	Jones, B.F., Bodine, M.W.Jr.: Normative salt characterization of natural waters. In: Fritz, P., Frape,
1507	S.K. (Eds.) Saline Water and Gases in Crystalline Rocks. Geol. Assoc. Can. Spec. Pap. 33, 5-
1508	18, doi: 10.1002/gj.3350240317, 1987.
1509	Jones, B.F., Eugster, H.P., Rettig, S.L.: Hydrochemistry of the Lake Magadi basin, Kenya. Geochim.
1510	Cosmochim. Ac., 41 (1), 53-72, doi: 10.1016/0016-7037(77)90186-7, 1977.
1511	Jordan, T.E., Mpodozis, C., Munoz, N., Blanco, N., Pananont, P., Gardeweg, M.: Cenozoic
1512	subsurface stratigraphy and structure of the Salar de Atacama Basin, northern Chile. J. South
1513	Am. Earth Sci., 23, 122–146, doi: 10.1016/j.jsames.2006.09.024, 2007.
1514	Kah, L.C., Bartley, J.K., Teal, D.A.: Chemostratigraphy of the Late Mesoproterozoic Atar Group,
1515	Taoudeni Basin, Mauritania: Muted isotopic variability, facies correlation, and global isotopic
1516	trends. Precambrian Res., 200–203, 82–103, doi: 10.1016/j.precamres.2012.01.011, 2012.
1517	Kah, L.C., Lyons, T.W., Chesley, J.T.: Geochemistry of a 1.2 Ga carbonate-evaporite succession,
1518	northern Baffin and Bylot Islands: Implications for Mesoproterozoic marine evolution.
1519	Precambrian Res., 111, 203–234, doi: 10.1016/S0301-9268(01)00161-9, 2001.
1520	Kah, L.C., Riding, R.: Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria.
1521	Geology, 35, 799–802, doi: 10.1130/g23680a.1, 2007.
1522	Kanzaki, Y., Murakami, T.: Estimates of atmospheric CO2 in the Neoarchean-Paleoproterozoic
1523	from paleosols. Geochim. Cosmochim. Ac., 159, 190-219, doi: 10.1016/j.gca.2015.03.011,
1524	2015.

1525	Kasedde, H., Kirabira, B.J., Babler, U.M., Tilliander, A., Jonsson, S.: Characterization of brines and
1526	evaporites of Lake Katwe, Uganda. J. Afr. Earth Sci., 91, 55-65, doi:
1527	10.1016/j.jafrearsci.2013.12.004, 2014.
1528	Kelley, K.D., Dumoulin, J.A., and Jennings, S.: The Anarraaq Zn-Pb-Ag and barite deposit, northern
1529	Alaska: Evidence for replacement of carbonate by barite and sulfides. Econ. Geol., 99, 1577-
1530	1591, doi: 10.2113/gsecongeo.99.7.1577, 2004a.
1531	Kelley, K.D., Leach, D.L., Johnson, C.A., Clark, J.L., Fayek, M., Slack, J.F., Anderson, V.M.,
1532	Ayuso, R.A., Ridley, W.I.: Textural, compositional, and sulfur isotope variations of sulfide
1533	minerals in the Red Dog Zn-Pb-Ag deposits, Brooks Range, Alaska: Implications for ore
1534	formation. Econ. Geol., 99, 1509-1533, doi: 10.2113/gsecongeo.99.7.1509, 2004b.
1535	Kendall, G.C.S.C., Lake, P., Weathers III, H.D., Lakshmi, V., Althausen, J., Alsharan, A.S.:
1536	Evidence of rain shadow in the geologic record: repeated evaporite accumulation at extensional
1537	and compressional plate margins. In: Alsharan, A.S., Wood, W.W., Goudie, A.S., Fowler, A.,
1538	Abdellatif, E.M. (Eds.), Desertification in the Third Millennium: Lisse, Netherlands, Swets and
1539	Zeitlinger, 45–52, doi: 10.1201/noe9058095718.ch5, 2003.
1540	Kennedy, M.: The Undoolya sequence: Late Proterozoic salt influenced deposition, Amadeus Basin,
1541	central Australia. Aust. J. Earth Sci., 40, 217-228, doi: 10.1080/08120099308728076, 1993.
1542	Kerrich, R., Goldfarb, R., Groves, D., Garwin, S.: The geodynamics of world-class gold deposits:
1543	characteristics, space-time distributions, and origins. Rev. Econ. Geol., 13, 501-551, doi:
1544	10.5382/rev.13.15, 2000.
1545	Kerrich, R., Goldfarb, R.J., Cline, J., Leach, D.: Metallogenic provinces of North America in a
1546	superplume-supercontinent framework. Arizona Geol. Soc. Digest, 22, 1-18, 2008.
1547	Kerrich, R., Goldfarb, R.J., Richards, J.P.: Metallogenic provinces in an evolving dynamic
1548	framework. Econ. Geol. 100, 1097–1136, doi: 10.5382/av100.33, 2005.
1549	Kesler, S.E., Martini, A.M., Appold, M.S., W alter, L.M., Huston, T .J., and Furman, F.C.: Na-Cl-
1550	Br systematic of fluid inclusions from Mississippi Valley-type deposits, Appalachian basin:
1551	Constraints on solute origin and migration paths. Geochim. Cosmochim. Ac., 60, 225-233, doi:
1552	10.1016/0016-7037(95)00390-8, 1996.

59

1553 Kesler, S.E., Reich, M.H.: Precambrian Mississippi Valley-type deposits: relation to changes in 1554 composition of the hydrosphere and atmosphere. Geol. Soc. Am. Mem., 198, 185-204, doi: 10.1130/2006.1198(11), 2006. 1555 1556 Kesler, S.E.: Ore-Forming Fluids. Elements, 1, 13-18, doi: 10.2113/gselements.1.1.13, 2005. 1557 Ketzer, J. M., Iglesias, R., Einloft, S., Dullius, J., Ligabue, R., de Lima, V.: Water-rock-CO2 interactions in saline aquifers aimed for carbon dioxide storage: Experimental and numerical 1558 1559 modeling studies of the Rio Bonito Formation (Permian), southern Brazil. Appl. Geochem., 24, 1560 760-767, doi: 10.1016/j.apgeochem.2009.01.001, 2009. 1561 Kharaka, Y.K., Hanor, J.S.: Deep fluids in sedimentary basins. In: Holland, H.D., Turekian, K.K. (Eds.) Treatise on Geochemistry 7, 472-508. Oxford: Elsevier, doi: 10.1016/b978-0-08-1562 095975-7.00516-7, 2014. 1563 1564 Kharaka, Y.K., Maest, A.S., Carothers, W.W., Law, L.M., Lamothe, P.J., Fries, T.L.: Geochemistry 1565 of metalrich brines from central Mississippi Salt Dome Basin, USA. Appl. Geochem., 2 (5-6), 1566 543-561, doi: 10.1016/0883-2927(87)90008-4, 1987. 1567 Kharaka, Y.K., Thordsen, J.J.: Stable isotope geochemistry and origin of water in sedimentary 1568 basins. In: Clauer, N., and Chaudhuri, S. (Eds.) Isotope Signatures and Sedimentary Records, 1569 Berlin, Springer, pp. 411-466, doi: 10.1007/bfb0009873, 1992. 1570 Kiersnowski, H., Paul, J., Marek, T.M., Smith, D.B.: Facies, Paleogeography, and Sedimentary 1571 History of the Southern Permian Basin in Europe. Springer Berlin Heidelberg, 119-136, doi: 1572 10.1007/978-3-642-78590-0_7, 1995. 1573 Kiipli, E., Kiipli, T., Kallaste, T.: Reconstruction of currents in the Mid-Ordovician-Early Silurian 1574 central Baltic Basin using geochemical and mineralogical indicators. Geology, 37, 271-274, 1575 doi: 10.1130/g25075a.1, 2009. 1576 Kingston, D.R., Dishroon, C.P., Williams, P.A.: Global Basin Classification System. AAPG Bulletin, 67, 2175-2193, doi: 10.1306/ad460936-16f7-11d7-8645000102c1865d, 1983. 1577 Kirkham, R.V.: Distribution, settings, and genesis of sediment-hosted stratiform copper deposits: 1578 1579 Geol. Assoc. Can. Spec. Paper 36, p 3-38, 1989.

1580	Kirkham, R.V., Carriere, J.J., Laramee, R.M., and Garson, D.F.: Global distribution of sediment-
1581	hosted stratiform copper deposits and occurrences. GSC Open File 2915b, 256 p, doi:
1582	10.4095/207806, 1994.
1583	Kirkland, D.W., Evans, R.: Origin of castiles on Gypsum Plain of Texas and New Mexico, in
1584	Dickerson, P.W., Hoffer, J.M. ,(eds.) Trans-Pecos region, southeastern New Mexico and west
1585	Texas. New Mexico Geol. Soc. 31st Field Confer., 173-178, doi: 10.56577/ffc-31.173, 1980.
1586	Klingspor, A.M.: Middle Devonian Muskeg Evaporites of Western Canada. AAPG Bulletin, 53,
1587	927-948, doi: 10.1306/5d25c80b-16c1-11d7-8645000102c1865d, 1969.
1588	Knauth, L.P.: Temperature and salinity history of the Precambrian ocean: Implications for the course
1589	of microbial evolution. Palaeogeogr. Palaeocl., v. 219, p. 53-69, doi: 10.1016/b978-0-444-
1590	52019-7.50007-3, 2004.
1591	Komninou, A., Sverjensky, D.A.: Geochemical Modeling of the Formation of an Unconformity-
1592	Type Uranium Deposit. Econ. Geol., 91 (3), 590–606, doi: 10.2113/gsecongeo.91.3.590, 1996.
1593	Kovalevych, V.M.: Phanerozoic evolution of ocean water composition. Geochem. Int., 25, 20-27,
1594	doi: 10.1130/dnag-cot-pen.1, 1988.
1595	Kovalevych, V.M.: Galogenez i khimicheskaya evolutsia okeana v fanerozoye. Naukova Dumka,
1596	Kiev., 1990.
1597	Kovalevych, V.M., Zang, L.W., Peryt, T.M., Khmelevska, O.V., Halas, S., Iwasinska-Budzyk, I.,
1598	Boult, P.J., Heithersay, P.S.: Deposition and chemical composition of early Cambrian salt in
1599	the eastern Officer Basin, South Australia. Aust. J. Earth Sci., 53, 577-593, doi:
1600	101080/08120090600686736, 2006.
1601	Kowalewska, A., Cohen, A.S.: Reconstruction of paleoenvironments of the Great Salt Lake Basin
1602	during the late Cenozoic. J. Paleolimnol., 20, 381-407, doi: 10.1023/A:1008053505320, 1998.
1603	Kozary, M.T., Dunlap, J.C., Mumphrey, W.E.: Incidence of saline deposits in geological time. Geol.
1604	Soc. Am. Spec. Pap., 88, 45-57, doi: 10.1130/SPE88-p43, 1968.
1605	Krijgsman, W., Langereis, C.G., Zachariasse, W.J., Boccaletti, M., Moratti, G., Gelati, R., Iaccarino,
1606	S., Papani, G., Villa, G.: Late Neogene evolution of the Taza-Guercif basin (Rifian Corridor,
1607	Morocco) and implications for the Messinian salinity crisis. Mar. Geol., 153 (1-4), 147-160,
1608	doi: 10.1016/S0025-3227(98)00084-X, 1999.

- 1609 Kyser, K.: Uranium ore deposits. In: Holland, H.D., Turekian, K.K. (Eds.) Treatise on Geochemistry
- 1610 13, 489–510. Oxford: Elsevier, doi: 10.1016/B978-0-08-095975-7.01122-0, 2014.
- 1611 Lackner, K.S., Brennan, S., Matter, J.M., Park, A.-H., Wright, A., van der Zwaan, B.: The urgency
- 1612 of the development of CO2 capture from ambient air. P. Nati. Acad. Sci. USA 109 (33), 13156-
- 1613 13162, doi: 10.1073/pnas.1108765109, 2012.
- 1614 Land, L.S., Prezbindowski, D.R.: The origin and evolution of saline formation water, Lower
- 1615 Cretaceous carbonates, southcentral Texas, U.S.A. J. Hydrol., 54, 51–74, doi: 10.1016/0022-
- 1616 1694(81)90152-9, 1981.
- 1617 Large, R.R., Bull, S.W., McGoldrick, P.J., Derrick, G., Carr, G., Walters, S.: Stratiform and strata-
- bound Zn-Pb-Ag deposits of the Proterozoic sedimentary basins of northern Australia. Econ.
 Geol., 100, 931-963, doi: 10.5382/av100.28, 2005.
- 1620 Large, R.R., Bull, S.W., Yang, J., Cooke, D.R., Garven, G., McGoldrick, P.J., and Selley, D.:
- 1621 Controls on the formation of giant stratiform sediment-hosted Zn-Pb-Ag deposits with
- 1622 particular reference to the north Australian Proterozoic. University of Tasmania, Centre for
- 1623 Special Ore Deposit and Exploration (CODES) Studies Publication 4, p. 107-149, 2002.
- 1624 Larson, R.L.: Geological consequences of superplumes. Geology, 19, 963-6, doi: 10.1130/0091-

1625 7613(1991)019<0963:GCOS>2.3.CO;2, 1991.

- 1626 Last, W.M.: Geolimnology of the Great Plains of western Canada. In: Lemmen, D.S., Vance, R.E.
- 1627 (Eds.) Holocene Climate and Environmental Change in the Palliser Triangle. A Geoscientific
- 1628 Context for Evaluating the Impacts of Climate Change on the Southern Canadian Prairies, Geol.
- 1629 Surv. Can. Bull. 534, 23–55, doi: 10.4095/211045, 1999.
- 1630 Le Hir, G., Donnadieu, Y., Godd'eris, Y., Pierrehumbert, R.T., Halverson, G.P., Macouin, M., N'
- 1631 ed'elec, A., Ramstein, G.: The snowball earth aftermath: exploring the limits of continental
- 1632 weathering processes. Earth. Planet. Sci. Lett., 277 (3-4), 453–463, doi: 10.1016/j.epsl1633 2008.11.010, 2009.
- Leach, D. L., Apodaca, L. E., Repetski, J. E., Powell, J. W., Rowan E. L.: Evidence for hot
 Mississippi Valley-type brines in the Reelfoot Rift complex, south-central United States, in
 Late Pennsylvanian-Early Permian. U.S. Geol. Surv. Professional Paper 1577, 43 pp, doi:
 10.3133/pp1577, 1997.

- 1638 Leach, D.L., Sangster, D.F.: Mississippi Valley-type lead-zinc deposits. Geol. Assoc. Can. Spec.
- 1639 Paper 40, p. 289–314, doi: 104095/207988, 1993.
- 1640 Leach, L.D., Bradley, C.D., Huston, D., Pisarevsky, A.S., Taylor, D.R., Gardoll, J.S.: Sediment-
- 1641 Hosted Lead-Zinc Deposits in Earth History. Econ. Geol., 105, 593-625, doi:
- 1642 10.2113/gsecongeo.105.3.593, 2010.
- 1643 Leach, L.D., Sangster, F.D., Kelley, D.K., Large, R.R., Garven, G., Allen, R.C., Gutzmer, J.,

1644 Walters, S.: Sediment-hosted lead-zinc deposits: A global perspective. Econ. Geol., 100, 561-

- 1645 607, doi: 10.5382/av100.18, 2005.
- 1646 Li, B.P., Liu, L., Zhao, J.X., Chen, X.C., Feng, Y.X., Han, G.H., Zhu, J.X.: Chemical fingerprinting
- 1647 of whitewares from Nanwa site of the Chinese Erlitou state. Nuclear Instruments Method Phys.

1648 Res. B, 266, 2614–2622, doi: 10.1016/j.nimb.2008.03.202, 2008a.

- Li, Y.L., Wang, C.S., Li, Y.T.: Characteristics of the Jurassic saline deposits and its significance to
 hydrocarbon accumulation in Qiangtang Basin of Tibet area. Ac. Petrol. Sin., 29, 173-178,
- 1651 2008b.
- 1652 Li, M., Barnes, L.H.: Orbitally Forced Sphalerite Growth in the Upper Mississippi Valley District.

1653 Geochem. Perspect. Lett., 12, 18-22, doi: 10.7185/geochemlet.1929, 2019.

- 1654 Bonnetti, C., Cuney, M., Malartre, F., Michels, R., Liu, X.D., Peng, Y.B.: The Nuheting deposit,
- 1655 Erlian Basin, NE China: Synsedimentary to diagenetic uranium mineralization. Ore Geol. Rev.,
- 1656 69, 118-139, doi: 10.1016/j.oregeorev.2015.02.010, 2015.
- 1657 Liang, G.H., Xu X.W.: Potash Deformation and Enrichment Modes in Vientiane Sag, Laos. Earth
- 1658 Sci., 47, 136-148, doi: 10.1016/j.jseaes.2012.11.036, 2022.
- 1659 Linacre, E.T., Hicks, B.B., Sainty, G.R., Grauze, G.: The evaporation from a swamp. Agricult.
- 1660 Meteorol., 7, 375–386, doi: 10.1016/0002-1571(70)90033-6, 1970.
- 1661 Linhoff, B.S., Bennett, P.C., Puntsag, T., Gerel, O.: Geochemical evolution of uraniferous soda
- 1662 lakes in eastern Mongolia. Environ. Earth Sci., 62 (1), 171–183, doi: 10.1007/s12665-0101663 0512-8, 2011.
- 1664 Liu, C.L., Wang, L.C., Yan, M.D., Zhao, Y.J., Cao, Y.T., Fang, X.M., Shen, L.J., Wu, C.H., Lv,
- 1665 F.L., Ding, T.: The Mesozoic-Cenozoic tectonic settings, paleogeography and evaporitic

- 1666 sedimentation of Tethyan blocks within China: Implications for potash formation. Ore Geol.
- 1667 Rev., 102, 406-425, doi: 10.1016/j.oregeorev.2018.09.002, 2018.
- 1668 Liu, Y.L., Yang, G., Chen, J.F., Du, A.D., Xie, Z.: Re-Os dating of pyrite from Giant Bayan Obo
- 1669 REE-Nb-Fe deposit. Chinese Sci. Bull., 49, 2627-2631, doi: 10.1360/04wd0185, 2004.
- 1670 Liu, Y.J., Cao, L.M., Li, Z.L., Wang, H.N., Chu, T.Q., Zhang, J.R.: Geochemistry of Elements.
- 1671 Beijing, Science Press, pp. 460, 1984.
- 1672 Lüders, V., Plessen, B., Romer, R.L., Weise, S.M., Banks, D.A., Hoth, P., Dulski, P., Schettler, G.:
- 1673 Chemistry and isotopic composition of Rotliegend and Upper Carboniferous formation waters
- 1674 from the North German Basin. Chem. Geol., 276, 198-208, doi:
- 1675 10.1016/j.chemgeo.2010.06.006, 2010.
- Lunt, D.J., Ross, I., Hopley, P.J., Valdes, P.J.: Modelling Late Oligocene C4 grasses and climate.
 Palaeogeogr. Palaeocl. 251 (2), 239–253, doi: 10.1016/j.palaeo.2007.04.004, 2007.
- 1678 Lydon, J.W.: Chemical parameters controlling the origin and deposition of sediment-hosted
- stratiform lead-zinc deposits. Mineralogical Association of Canada Short Course Handbook, 9,
 175–250, doi: 10.5382/av75.06, 1983.
- 1681 Marjoribanks, R.W., Black, L.P.: Geology and Geochronology of the Arunta Complex, north of
- 1682 Ormiston Gorge, central Australia. J. Geol. Soc. Austr., 21, 291-299, doi:
 1683 10.1080/00167617408728852, 1974.
- 1684 Mauk, J.L., and Hieshima, G.B.: Organic matter and copper mineralization at White Pine, Michigan,
- 1685 U.S.A. Chem. Geol., 99, 189-211, doi: 10.1016/0009-2541(92)90038-7, 1992.
- 1686 Maynard, B.J.: The Chemistry of Manganese Ores through Time: A Signal of Increasing Diversity
- 1687 of Earth-Surface Environments. Econ. Geol., 105, 535-552, doi: 10.2113/gsecongeo.105.3.535,
 1688 2010.
- McGrain, P., Helton, W.L.: Gypsum and anhydrite in the St Louis Limestone in northwestern
 Kentucky. Kentucky Geological Survey, Series X. Information Circular 13, 26 p, 1964.
- 1691 McLaughlin, D.H.: Evaporite Deposits of Bogota Area, Cordillera Oriental, Colombia. AAPG
- 1692 Bulletin, 56, 2240-2259, doi: 10.1306/819A41FE-16C5-11D7-8645000102C1865D, 1972.
- 1693 McLimans, R.K., Barnes, H.L., Ohmoto, H.: Sphalerite stratigraphy of the Upper Mississippi Valley
- 1694 zinc-lead district. Econ. Geol., 75, 351–361, doi: 10.2113/gsecongeo.75.3.351, 1980.

1695	Melezhik, V.A., Fallick, A.F., Rychanchik, D.V., Kuznetsov, A.B.: Palaeoproterozoic evaporites in
1696	Fennoscandia: Implications for seawater sulphate, the rise of atmospheric oxygen and local
1697	amplification of the d13C excursion. Terra Nova, 17, 141-148, doi: 10.1111/j.1365-
1698	3121.2005.00600.x, 2005.
1699	Meng, F.W., Zhang, Z.L., Yan, X.Q., Ni, P., Liu, W.H., Fan, F., Xie, G.W.: Stromatolites in Middle
1700	Ordovician carbonate-evaporite sequences and their carbon and sulfur isotopes stratigraphy,
1701	Ordos Basin, northwestern China. Carbonate Evaporite., 34, 11-20, doi: 10.1007/s13146-017-
1702	0367-0, 2019.
1703	Mercadier J., Richard A., Cathelineau M.: Boron and magnesium-rich marine brines at the origin of
1704	giant unconformity-related uranium deposits: d11B evidence from Mg-tourmalines. Geology,
1705	40, 231–234, doi: 10.1130/G32509.1, 2012.
1706	Mercadier J., Skirrow, G.R., Cross, J.A.: Uranium and Gold deposits in the Pine Creek Orogen
1707	(North Australian Craton): A link at 1.8 Ga? Precambrian Res., 238, 111-119, doi:
1708	10.1016/j.precamres.2013.10.001, 2013.
1709	Mercadier, J., Richard, A., Boiron, MC., Cathelineau, M., Cuney, M.: Migrations of brines in the
1710	basement rocks of the Athabasca Basin through microfracture networks (P-Patch U deposits
1711	Canada). Lithos, 115, 121-136, doi: 10.1016/j.lithos.2009.11.010, 2010.
1712	Meyer, C.: Ore-forming processes in geologic history. Econ. Geol., 75, 6–41, doi: 10.5382/av75.02,
1713	1981.
1714	Meyer, C.: Ore deposits as guides to the geologic history of the Earth. An. Rev. Earth Planet. Sci.,
1715	16, 147–71, doi: 10.1146/annurev.ea.16.050188.001051, 1988.
1716	Mitchell, A.H.G., Garson, M.S.: Mineral deposits and global tectonic settings. New York, Academic
1717	Press, 410 p, doi: 10.1029/EO065i011p00098-02, 1981.
1718	Mpodozis, C., Arriagada, C., Basso, M., Roperch, P., Cobbold, P., Reich, M.: Late Mesozoic to
1719	Paleogene stratigraphy of the Salar de Atacama Basin, Antofagasta, Northern Chile:
1720	Implications for the tectonic evolution of the Central Andes. Tectonophysics, 399, 125-154,
1721	doi: 10.1016/j.tecto.2004.12.019, 2005.

1722 Mu"ller, W. D., Hsu". J.K.: Event stratigraphy and paleoceanography in the fortuna basin (Southeast 1723 Spain): A scenaria for the Messinian salinity crisis. Paleoceanography, 2, 679-696, doi: 10.1029/PA002i006p00679, 1987. 1724 1725 Muir, M.D.: Facies models for Australian Precambrian evaporites. In: Peryt, T.M. (ed.) Evaporite 1726 Basins. Lecture Notes in Earth Sciences, 13, 5-21. Berlin-Heidelberg: Springer, 1987. 1727 Nance, R.D., Worsley, T.R., Moody, J.B.: Post Archean biogeochemical cycles and long-term 1728 episodicity in tectonic processes. Geology, 14, 514-18, doi: 10.1130/0091-7613(1986)142.0.CO;2, 1986. 1729 1730 Neal, T.J., Johnson, K.S.: McCauley Sinks: A compound breccia pipe in evaporite karst, Holbrook 1731 basin, Arizona, U.S.A. Carbonates and Evaporites, 17, 98-106, doi: 10.1007/BF03176474, 1732 2002. Nemcok, M., Gayer, R.: Modelling palaeostress magnitude and age in extensional basins: a case 1733 study from the Mesozoic Bristol Channel Basin, U.K. J. Structural Geol., 18, 1301-1314, doi: 1734 1735 10.1016/S0191-8141(96)00048-X, 1996. 1736 Nisbet, E.G., Fowler, C.M.R.: Model for Archean plate tectonics. Geology, 11, 376-379, doi: 1737 10.1130/0091-7613(1983)11<376:MFAPT>2.0.CO;2, 1983. 1738 O'Nions, R.K., Oxburgh, E.R.: Helium, volatile fluxes, and the development of continental crust. 1739 Earth. Planet. Sci. Lett., 90 (3), 331-347, doi: 10.1016/0012-821x(88)90134-3, 1988. 1740 Oliver, J.E.: Encyclopedia of world climatology. Springer, Dordrecht. 854 pp, doi: 101007/1-4020-1741 3266-8, 2005. Palmer, M.R., Helvacı, C., Fallick, A.E.: Sulphur, sulphate oxygen and strontium isotope 1742 composition of Cenozoic Turkish evaporites. Chem. Geol., 209, 341-356, doi: 1743 1744 10.1016/j.chemgeo.2004.06.027, 2004. Peeters, F., Kipfer, R., Achermann, D., Hofer, M., AeschbachHertig, W., Beyerle, U., Imboden, 1745 D.M., Rozanski, K., Fro"hlich, K.: Analysis of deep-water exchange in the Caspian Sea based 1746 on environmental tracers. Deep Sea Res. Part I 47(4), 621-654, doi: 10.1016/s0967-1747 1748 0637(99)00066-7, 2000.

1749	Pe-Piper, G., Piper, D.J.W., Zhang, Y.Y., Chavez, I.: Diagenetic barite and sphalerite in middle
1750	Mesozoic sandstones, Scotian Basin, as tracers for basin hydrology. AAPG Bulletin, 99, 1281-
1751	1313, doi: 10.1306/02171514067, 2015.
1752	Perfit M R, Ridley W I, Jonasson I R.: Geologic, petrologic and geochemical relationships between
1753	magmatism and massive sulfide mineralization along the eastern Galapagos Spreading Center.
1754	Reviews in Econ. Geol., 8, 75-100, doi: 10.5382/rev08.04, 1999.
1755	Perfit, M.R., Fornari, D.J., Malahoff, A., and Embley, R.W.: Geochemical studies of abyssal lavas
1756	recovered by DSRV ALVIN from the eastern Galapagos Rift - Inca Transform - Ecuador Rift:
1757	III: Trace elements abundances and petrogenesis. J. Geophys. Res., 88, 10551-10572, doi:
1758	10.1029/jb088ib12p10551, 1983.
1759	Perfit, M.R., Ridley, W.I., Jonasson, I.R.: Geologic, petrologic and geochemical relationships
1760	between magmatism and massive sulfide mineralization along the eastern Galapagos
1761	Spreading Center. Rev. Econ. Geol., 8, 75-100, doi: 9781629490151, 1997.
1762	Pietras, J.T., Carroll, A.R., Rhodes, M.K.: Lake basin response to tectonic drainage diversion:
1763	Eocene Green River Formation. Wyoming. J. Paleolimnol. 30, 115-125, doi: 10.1130/0091-
1764	7613(2002)030<0167:siropa>2.0.co;2, 2003.
1765	Pirajno, F., Grey, K.: Chert in the Palaeoproterozoic Bartle Member, Killara Formation, Yerrida
1766	Basin, Western Australia: A rift-related playa lake and thermal spring environment?
1767	Precambrian Res., 113, 169–192, doi: 10.1016/s0301-9268(01)00196-6, 2002.
1768	Polito, P.A., Kyser, T.K., Jackson, M.J.: The role of sandstone diagenesis and aquifer evolution in
1769	the formation of uranium and zinc-lead deposits, southern McArthur Basin, Northern Territory,
1770	Australia. Econ. Geol. 101, 1189-1209, doi: 10.2113/qsecongeo.101.6.1189, 2006b.
1771	Polito, P.A., Kyser, T.K., Southgate, P.N., Jackson, M.J.: Sandstone diagenesis and aquifer
1772	evolution in the Mt Isa Basin: the isotopic and fluid inclusion history of fluid flow in the Mt
1773	Isa Basin. Econ. Geol., 101, 1159-1188, doi: 10.2113/gsecongeo.101.6.1159, 2006a.
1774	Pope, M.C., Grotzinger, J.P.: Paleoproterozoic Stark Formation, Athapuscow basin, northwest
1775	Canada: Record of cratonic-scale salinity crisis. J. Sediment. Res., 73, 280-295, doi:
1776	10.1306/091302730280, 2003.

67

1777 Prasad, N., Roscoe, S.M.: Evidence of anoxic to oxic atmosphere change during 2.45-2.22 Ga from 1778 lower and upper sub-Huronian paleosols Canada. Catena, 27, 105-121, doi: 10.1016/0341-8162(96)00003-3, 1996. 1779 1780 Pre'at, A., Bouton, P., Thie'blemont, D., Prian, J-P., Ndounze, S.S., Delpomdor, F.: 1781 Paleoproterozoic high d13C dolomites from the Lastoursville and Franceville basins (SE 1782 Gabon): Stratigraphic and synsedimentary subsidence implications. Precambrian Res., 189, 1783 212-228, doi: 10.1016/j.precamres.2011.05.013, 2011. 1784 Preiss, W.V.: The systematics of South Australian Precambrian and Cambrian stromatolites. I. 1785 Trans. R. Soc. S. Austr., 96, 67-100, 1972. 1786 Prokoph, A., El Bilali, H., Ernst, R.: Periodicities in the emplacement of large igneous provinces 1787 through the Phanerozoic: Relations to ocean chemistry and marine biodiversity evolution. Geosci. Front., 4 (3), 263–276, doi: 10.1016/gsf2012.08.001, 2013. 1788 Prokoph, A., Shields, G.A., Veizer, J.: Compilation and time-series analysis of a marine carbonate 1789 1790 d18O, d13C, 87Sr/86Sr and d34S database through Earth history. Earth-Sci. Rev. 87, 113-133, doi: 10.1016/j.earscirev.2007.12.003, 2008. 1791 1792 Puigdefabregas, C., Souquet, P.: Tecto-Sedimentary Cycles and Depositional Sequences of the 1793 Mesozoic and Tertiary from the Pyrenees. Tectonophysics, 129, 173-203, doi: 101016/0040-1794 1951(86)90251-9, 1986. 1795 Rahn, P.H., Davis, A.D.: Gypsum foundation problems in the Black Hills area, South Dakota. 1796 Environ. Eng. Geosci., 2, 213-223, doi: 10.2113/gseegeosci.II.2.213, 1996. 1797 Ramseyer, K., Amthor, J.E., Matter, A., Pettke, T., Wille, M., Fallick, A.E.: Primary silica 1798 precipitate at the Precambrian/Cambrian boundary in the South Oman Salt Basin, Sultanate of 1799 Oman. Mar. Petrol. Geol., 39, 187-197, doi: 10.1016/j.marpetgeo.2012.08.006, 2013. 1800 Ravenhurst, C.R., Reynolds, P.H., Zentilli, M., Krueger, H.W., Blenkinsop, J.: Formation of 1801 Carboniferous Pb-Zn and Barite Mineralization from Basin-Derived Fluids, Nova Scotia, Canada. Econ. Geol., 84, 1471-1488, doi: 10.2113/gsecongeo.84.6.1471, 1989. 1802 1803 Rawlings, D.J., Page, R.W.: Geology, geochronology and emplacement structures associated with the Jimbu Microgranite, McArthur Basin, Northern Territory. Precambrian Res., 94, 225-250, 1804 1805 doi: 10.1016/s0301-9268(98)00116-8, 1999.

1806	Raymo, M.E., Ruddiman, W.F.: Tectonic forcing of late Cenozoic climate. Nature, 359(6391), 117-
1807	122. 10.1038/359117a0, 1992.
1808	Regenspurg, S., Feldbusch, E., Norden, B., Tichomirowa, M.: Fluid-rock interactions in a
1809	geothermal Rotliegend/Permo-Carboniferous reservoir (North German Basin). Appl.
1810	Geochem., 69, 12-27, doi: 10.1016/j.apgeochem.2016.03.010, 2016.
1811	Retallack, G.J.: Laterization and bauxitization events. Econ. Geol., 105, 655-667, doi:
1812	10.2113/gsecongeo.105.3.655, 2010.
1813	Reuschel, M., Melezhik, V.A., Whitehoused, M.J., Lepland, A., Fallick, A.E., Strauss, H.: Isotopic
1814	evidence for a sizeable seawater sulfate reservoir at 2.1 Ga. Precambrian Res., 192-195, 78-
1815	88, doi: 10.1016/j.precamres.2011.10.013, 2012.
1816	Richard, A., Boulvais, P., Mercadier, J., Boiron, MC., Cathelineau, M., Cuney, M., France-Lanord,
1817	C.: From evaporated seawater to uranium-mineralizing brines: Isotopic and trace element
1818	study of quartzdolomite veins in the Athabasca system. Geochim. Cosmochim. Ac. 113, 38-
1819	59, doi: 10.1016/j.gca.2013.08.008, 2013.
1820	Richard, A., Kendrick, M.A., Cathelineau, M.: Noble gases (Ar, Kr, Xe) and halogens (Cl, Br, I) in
1821	fluid inclusions from the Athabasca Basin (Canada): Implications for unconformity-related U
1822	deposits. Precambrian Res. 247, 110-125, doi: 10.1016/j.precamres.2014.03.020, 2014.
1823	Richard, A., Rozsypal, C., Mercadier, J., Banks, D.A., Cuney, M., Boiron, MC., Cathelineau, M.:
1824	Giant uranium deposits formed from exceptionally uranium-rich acidic brines. Nat. Geosci., 5,
1825	142–146, doi: 10.1038/ngeo1338, 2012.
1826	Richter, F.M., Rowley, D.B., DePaolo, D.J.: Sr isotope evolution of seawater: the role of tectonics.
1827	Earth Planet. Sci. Lett., 109(1-2), 11-23, doi: 10.1016/0012-821x(92)90070-c, 1992.
1828	Robb, L., Hawkesworth, C.: Plate Tectonics and Metallogeny. Encyclopedia of Geology (Second
1829	Edition), 643-662, doi: 10.1016/b978-0-12-409548-9.12535-7, 2020.
1830	Robb, L.J.: Introduction to Ore-Forming Processes. Blcakwell Publishing Company, Oxford, 311-
1831	345, doi: 10.1144/1467-7873/05-073, 2005.
1832	Roberts, N.M.W.: The boring billion?-Lid tectonics, continental growth and environmental change
1833	associated with the Columbia supercontinent. Geosci. Frontiers, 4(6), 681-691, doi:
1834	10.1016/j.gsf.2013.05.004, 2013.

- 1835 Rogers, J.J.W., Santosh, M.: Configuration of Columbia, a Mesoproterozoic Supercontinent.
- 1836 Gondwana Res., 5, 5–22, doi: 10.1016/s1342-937x(05)70883-2, 2002.
- 1837 Rogers, J.J.W., Unrug, R., Sultan, M.: Tectonic assembly of Gondwana. J. Geodyn., 19, 1–34, doi:
- 1838 10.1016/0264-3707(94)00007-7, 1995.
- 1839 Rona, P.: Global plate motion and mineral resources, in Strangway, D.W., ed., The continental crust
- 1840 and its mineral deposits. Geol. Assoc. Can. Spec. Paper, 20, 607-622, doi:
- 1841 10.1126/science212.4498.1020.a, 1980.
- 1842 Roscher, M., Schneider, J.W.: Permo-Carboniferous climate: Early Pennsylvanian to Late Permian
- 1843 climate development of central Europe in a regional and global context. Geol. Soc., London,
- 1844 Spec. Public., 265, 95-136, doi: 10.1144/gsl.sp.2006.265.01.05, 2006.
- 1845 Roscoe, S.M.: Huronian rocks and uraniferous conglomerates in the Canadian Shield. Geol. Sur.
 1846 Can. Paper, 68-40, 205, doi: 10.4095/102290, 1969.
- 1847 Rowen, E.L., Engle, M.A., Kraemer, T.F., Schroeder, K.T., Hammack, R.W., Doughten, M.W.:
- 1848 Geochemical and isotopic evolution of water produced from Middle Devonian Marcellus shale
- 1849 gas wells, Appalachian basin, Pennsylvania. AAPG Bulletin, 99, 181-206, doi:
 1850 10.1306/07071413146, 2015.
- 1851 Royer, D.: Climate Sensitivity in the Geological Past. Annu. Rev. Earth. Planet. Sci., 44, 277–293,
 1852 doi: 101146/annurev-earth-100815-024150, 2016.
- 1853 Royer, D.L., Berner, R.A., Montanez, I.P., Tabor, N.J., Beerling, D.J.: CO2 as a primary driver of
 1854 Phanerozoic climate. GSA Today, 14 (3), 4–10, doi: 10.1130/10521855 5173(2004)014<4:caapdo>2.0.co;2, 2004.
- 1856 Rozendaal, A.: The Gamsberg zinc deposit, South Africa: A banded stratiform base-metal sulfide
- 1857 ore deposit. In Ridge, J.D., ed., Proceedings of the Quadrennial IAGOD Symposium, 5:
- 1858 Stuttgart, E. Schweizerbart'sche Verlagsbuchhandlung (Naegele u. Obermiller), 619–633, doi:
- 1859 10.5382/econgeo.4725, 1980.
- Rozendaal, A., Stumpfl, E.F.: Mineral chemistry and genesis of Gamsberg zinc deposit, South
 Africa. T. Ins. Mining Metall., sec. B, 93, B161–B175, doi: 10.1201/9781003077503-82, 1984.

1862	Rudnick, R.L., Gao, S.: Composition of the continental crust. In: Holland, H.D., Turekian, K.K.
1863	(Eds.) Treatise on Geochemistry 4, 1-45. Oxford: Elsevier, doi: 10.1016/b978-0-08-095975-
1864	7.00301-6, 2014.
1865	Saleh, A., Hamzehpour, A., Mehdinia, A., Bastami, D.K., Mazaheri, S.: Hydrochemistry and
1866	nutrient distribution in southern deep-water basin of the Caspian Sea. Mar. Pollut. Bull. 127,
1867	406–411, doi: 10.1016/j.marpolbul.2017.12.013, 2018.
1868	Sanchez, J.A., Coloma, P., Perez, A.: Sedimentary processes related to the groundwater flows from
1869	the Mesozoic Carbonate Aquifer of the Iberian Chain in the Tertiary Ebro Basin, northeast
1870	Spain. Sediment. Geol., 129, 201-213, doi: 101016/s0037-0738(99)00016-0, 1999.
1871	Sando, W.J.: Madison Limestone (Mississippian) paleokarst: a geologic synthesis, in James, N.P.,
1872	Choquette, P.W. (eds.) Paleokarst. Springer-Verlag, New York, p. 256-277, doi: 10.1007/978-
1873	1-4612-3748-8_13, 1988.
1874	Sangma, F., Balamurugan, G.: Morphometric Analysis of Kakoi River Watershed for Study of
1875	Neotectonic Activity Using Geospatial Technology. Int. J. Geosci., 8, 1384-1403, doi:
1876	10,4236/ijg.2017.811081, 2017.
1877	Sangster, D.F.: Mississippi Valley-type and sedex lead-zinc deposits: A comparative examination.
1878	Ins. Mining Metall. T., 99, sec. B, B21-B42, doi: 10.4095/207988, 1990.
1879	Sawkins, F.J.: Metal Deposits in Relation to Plate Tectonics. Berlin, Springer-Verlag, Berlin, 325
1880	p, doi: 10.1017/s0016756800030892, 1984.
1881	Sawkins, F.J.: Metal Deposits in Relation to Plate Tectonics. Springer-Verlag, 461, doi:
1882	10.1007/978-3-662-08681-0_11, 1990.
1883	Schenk, P.E., Matsumoto, R., von Bitter, P.: Loch Macumber (early Carboniferous) of Atlantic
1884	Canada. J. Paleolimnol., 11, 151-172, doi: 10.1007/bf00686863, 1994a.
1885	Schenk, P.E., von Bitter, P., Matsumoto, R.: Deep basin/Deep water carbonate evaporite deposition
1886	of a Saline Giant: Loch Macumber (Visean), Atlantic Canada. Carbonate Evaporite, 9, 187-
1887	210, doi: 10.1007/bf03175230, 1994b.
1888	Schmalz, R.F.: Deep water evaporite deposits: a genetic model. AAPG Bull., 53, 798-823, doi:
1889	10.1306/5d257fd-16c1-11d7-8645000102c1865d, 1969.

- 1890 Schneider, S.H., Londer, R.: The Coevolution of Climate and Lift. Sierra Club Books, San Francisco.
- 1891 56-154, doi: 10.1017/s0084255900046295, 1989.
- 1892 Schro"der, S., Bekker, A., Beukes, N.J., Strauss, H., and van Niekerk, H.S.: Rise in seawater
- 1893 sulphate concentration associated with the Paleoproterozoic positive carbon isotope excursion:
- 1894 Evidence from sulphate evaporites in the 2.2–2.1 Gyr shallow-marine Lucknow Formation,
- 1895 South Africa. Terra Nova, 20, 108–117, doi: 10.1111/j.1365-3121.2008.00795.x, 2008.
- 1896 Schubel, K.A., Lowenstein, T. K.: Criteria for the Recognition of Shallow-Perennial-Saline Lake
- 1897 Halites based on Recent Sediments from the Qaidam Basin, Western China. J. Sediment. Res.,
- 1898 67, 74-87, doi: 10.1306/d42684fa-2b26-11d7-8648000102c1865d, 1997.
- 1899 Scotese, C.R., Boucot, A.J., McKerrow, W.S.: Gondwanan paleogeography and paleoclimatology,
- 1900 in Gondwana 10: Event Stratigraphy. J. Afr. Earth Sci., 28, 99–114, doi: 10.1016/s0899-
- 1901 5362(98)00084-0, 1999.
- 1902 Scotese, C.R., Song, H.J., Mills, B.J.W., van der Meer, D.G.: Phanerozoic paleotemperatures: The
- 1903 earth's changing climate during the last 540 million years. Earth Sci. Rev.
 1904 https://doi.org/10.1016/j.earscirev.2021.103503, 2021.
- 1905 Selley, D., Broughton, D., Scott, R., Hitzman, M., Barra, F.: A New Look at the Geology of the
- 1906 Zambian Copperbelt. Econ. Geol., 100, 965-1000, doi: 10.5382/av100.29, 2005.
- 1907 Semikhatov, M.A., Raaben, M.E.: Proterozoic stromatolite taxonomy and biostratigraphy. In:
- 1908 Riding, R., Awramik, S.M. (Eds.), Microbial Sediments. Springer-Verlag, Heidelberg, pp.
 1909 295–306, doi: 10.1007/978-3-662-04036-2_32, 2000.
- 1910 Sharp, M., Tranter, M., Brown, G.H., Skidmore, M.: Rates of chemical denudation and CO2
- 1911 drawdown in a glacier-covered alpine catchment. Geology, 23(1), 61-64, doi: 10.1130/0091-
- 1912 7613(1995)023<0061:rocdac>2.3.co;2, 1995.
- 1913 Sheldon, D.N.: Causes and consequences of low atmospheric pCO2 in the Late Mesoproterozoic.
- 1914 Chem. Geol., 362, 224-231, doi: 10.1016/j.chemgeo.2013.09.006, 2013.
- 1915 Sheldon, N.D.: Precambrian paleosols and atmospheric CO2 levels. Precambrian Res., 147, 148–
- 1916 155, doi: 10.1016/j.precamres.2006.02.004, 2006.

1917	Shvartsev, S.L., Kolpakova, M.N., Isupov, V.P., Vladimirov, A.G., Ariunbileg, S.: Geochemistry
1918	and chemical evolution of saline lakes of Western Mongolia. Geochem. Int., 52, 388-403, doi:
1919	10.1134/s0016702914030070, 2014.
1920	Sibson, R.H.: A note on fault reactivation. J. Struct. Geol., 7, 751-754, doi: 10.1016/0191-
1921	8141(85)90150-6, 1985.
1922	Sibson, R.H.: Earthquake rupturing as a mineralizing agent in hydrothermal systems. Geology, 15,
1923	701-704, doi: 10.1130/0091-7613(1987)15<701:eraama>2.0.co;2, 1987.
1924	Sinclair W.D., Chorlton L.B., Laramee R.M., Eckstrand O.R., Kirkham R.V., Dunne K.P.E., and
1925	Good D.J.: World minerals geoscience databaseproject: Digital databases of generalized world
1926	geology and mineral deposits for mineral exploration and research, in Stanley C.L., et al, eds.,
1927	Mineral deposits: Processes to Processing: Rotterdam, Balkema, p. 1435-1437, doi:
1928	10.4095/214766, 1999.
1929	Singh, T., Jain, V.: Tectonic constraints on watershed development on frontal ridges: Mohand Ridge,
1930	NW Himalaya, India. Geomorphology, 106, 231–241, doi: 10.1016/j.geomorph.2008.11.001,
1931	2009.
1932	Skinner, B.J.: Hydrothermal mineral deposits-what we do and don't know. In: Barnes, H.L., (Ed.)
1933	Geochemistry of hydrothermal ore deposits (3rd ed.). New York, Wiley, 1-26, doi:
1934	101126/science.159.3813.418, 1997.
1935	Slack, J.F., Cannon, W.F.: Extraterrestrial demise of banded iron formations 1.85 billion years ago.
1936	Geology, 37, 1011–1014, doi: 10.1130/g30259a.1, 2009.
1937	Smoot, P.J.: Sedimentary facies and depositional environments of early Mesozoic Newark
1938	Supergroup basins, eastern North America. Palaeogeogr. Palaeocl., 84, 369-423, doi:
1939	10.1016/0031-0182(91)90055-v, 1991.
1940	Soloviev, S.G.: Iron oxide copper-gold and related mineralisation of the Siberian Craton, Russia: I
1941	- Iron oxide deposits in the Angara and Ilim river basins, southcentral Siberia. In: Porter TM
1942	(ed.) Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective -
1943	Advances in the Understanding of IOCG Deposits, 4, 495–514. Adelaide: PGC Publishing, doi:
1944	10.31223/x5c330, 2010a.

1945	Soloviev, S.G.: Iron oxide copper-gold and related mineralisation of the Siberian Craton, Russia: 2
1946	- Palaeoproterozoic and Mesozoic assemblages of iron oxide, Cu, Au and U deposits of the
1947	Aldan Shield, Southeastern Siberia. In: Porter TM (ed.) Hydrothermal Iron Oxide Copper-
1948	Gold and Related Deposits: A Global Perspective - Advances in the Understanding of IOCG
1949	Deposits, 4, 515–534. Adelaide: PGC Publishing, doi: 1013188/2330-0396.1000040, 2010b.
1950	Spray, J.: Earth Impact Database (EID). http://passc.net/EarthImpactDatabase/Ne
1951	w%20website_05-2018/Index.html., 2020.
1952	Stalder, M., and Rozendaal, A.: Apatite nodules as an indicator of depositional environment and ore
1953	genesis for the Mesoproterozoic Broken Hill-type Gamsberg Zn- Pb deposit, Namaqua
1954	province, South Africa. Miner. Deposita, 39, 189–203, doi: 10.1007/s00126-003-0394-8, 2004.
1955	Steinhorn, I.: The disappearance of the long term meromictic stratification of the Dead Sea. Limnol.
1956	Oceanogr., 30, 451–472, doi: 10.4319/lo.1985.30.3.0451, 1985.
1957	Stoffell, B., Appold, M.S., Wilkinson, J.J., McClean, N.A., and Jeffries, T.E.: Geochemistry and
1958	evolution of Mississippi Valley-type mineralizing brines from the Tri-State and northern
1959	Arkansas districts determined by LA-ICP-MS microanalysis of fluid inclusions. Econ. Geol.,
1960	103, 1411-1435, doi: 10.2113/gsecongeo,103.7.1411, 2008.
1961	Stueber, A.M., Walter, L.M.: Glacial recharge and paleohydrologic flow systems in the Illinois basin:
1962	Evidence from chemistry of Ordovician carbonate (Galena) formation waters. GSA Bulletin,
1963	106, 1430-1439, doi: 10.1130/0016-7606(1994)106<1430:grapfs>2.3.co;2, 1994.
1964	Sun, J., Zhang, L., Deng, C., Zhu, R.: Evidence for enhanced aridity in the Tarim Basin of China
1965	since 5.3 Ma. Quatern. Sci. Rev., 27, 1012–1023, doi: 10.1016/i.quascirev.2008.01.011, 2008.
1966	Tang, L.J.: Multi-level Detachments and Petroleum Potential of the Tarim Basin. Acta Geologica
1967	Sinica, 5, 327-338, doi: 10.1111/j.1755-6724.1992.mp5004001.x, 1992.
1968	Tang, M., Chen, K., Rudnick, R.L.: Archean upper crust transition from mafic to felsic marks the
1969	onset of plate tectonics. Science, 351 (6271), 372-375, doi: 10.1126/scienc.aad5513, 2016.
1970	Tang, M., Chu, X., Hao, J.H., Shen, B.: Orogenic quiescence in Earth's middle age. Science,
1971	371(6530), 728-731, doi: 10.1126/science.abf1876, 2021a.

1972	Tang, M., Ji, W.Q., Chu, X., Wu, A.B., Chen, C.: Reconstructing crustal thickness evolution from
1973	europium anomalies in detrital zircons. Geology, 2021, 49, 76-80, doi: 10.1130/g47745.1,
1974	2021b.
1975	Tang, Q.Y., Zhang, M.J., Li, C.S., Yu, M., Li, L.W.: The chemical compositions and abundances
1976	of volatiles in the Siberian large igneous province: Constraints on magmatic CO2 and SO2
1977	emissions into the atmosphere. Chem. Geol., 339, 84–91, doi: 10.1016/j.chemgeo.2012.08.031,
1978	2013.
1979	Taylor, A., Blum, J.D.: Relation between soil age and silicate weathering rates determined from the
1980	chemical evolution of a glacial chronosequence. Geology, 23(11), 979-982, doi: 10.1130/0091-
1981	7613(1995)023<0979:rbsaas>2.3.co;2, 1995.
1982	Teng, X., Fang, X., Kaufman, A.J., Liu, C., Wang, J., Zan, J., Yang, Y., Wang, C., Xu, H., Schulte,
1983	R.F., Piatak, N.M.: Sedimentological and mineralogical records from drill core SKD1 in the
1984	Jianghan Basin, Central China, and their implications for late Cretaceous-early Eocene climate
1985	change. J. Asian Earth Sci., 182, 103936, doi: 10.1016/j.jseaes.2019.103936, 2019.
1986	Thisse, Y.: Sédiments métalliferès de la fosse Atlantis II (mer Rouge): Contribution à l'étude de
1987	leur contexte morpho-structural et de leurs caractéristiques minéralogiques et géochimiques.
1988	Thèse Université Orleans et BRGM, France, 155 pp, doi: 10.2113/gssgfbull.ii.3.511, 1982.
1989	Thisse, Y., Guennoc, P., Pouit, G., Nawab, Z.: The Red Sea: A natural geodynamic and metallogenic
1990	laboratory. Episodes, 3, 3-9, doi: 10.18814/epiiugs/1983/v6i3/002, 1983.
1991	Todd Ririe, G.: Evaporites and strata-bound tungsten mineralization. Geology, 17, 139-143, doi:
1992	10.1130/0091-7613(1989)017<0139:easbtm>2.3.co;2, 1989.
1993	Trewartha, G.T., Horn, L.H.: An Introduction to Climate. McGraw-Hill, New York, 416 pp, doi:
1994	10.1126/science.120.3130.1067.b, 1980.
1995	Utrilla, R., Pierre, C., Orti, F., Pueyo, J.J.: Oxygen and sulphur isotope compositions as indicators
1996	of the origin of Mesozoic and Cenozoic evaporites from Spain. Chem. Geol., 102, 229-244,
1997	doi: 10.1016/0009-2541(92)90158-2, 1992.
1998	Valero Garces, B.L., Aguilar, J.G.: Shallow Carbonate Lacustrine Facies Models in The Permian of
1999	the Aragon-Bearn Basin (Western Spanish-French Pyrenees). Carbonate Evaporite, 7, 94-107,
2000	doi: 10.1007/bf03175624, 1992.

2001	van der Meer, D.G., van den Berg van Saparoea, A.P.H., van Hinsbergen, D.J.J., van de Weg,
2002	R.M.B., Godderis, Y., Le Hir, G., Donnadieu, Y.: Reconstructing firstorder changes in sea
2003	level during the Phanerozoic and Neoproterozoic using strontium isotopes. Gondwana Res. 44,
2004	22–34, doi: 10.1016/j.gr.2016.11.002, 2017.
2005	Varol, B., Şen, Ş., Ayyıldız, T., Sözeri, K., Karakaş, Z., Métais, G.: Sedimentology and stratigraphy
2006	of Cenozoic deposits in the Kağızman-Tuzluca Basin, northeastern Turkey. Int. J. Earth Sci.,
2007	105, 107-137, doi: 10.1007/s00531-015-1201-3, 2016.
2008	Veizer, J., Laznicka, P., Jansen, S.L.: Mineralization through geologic time: recycling perspective.
2009	Am. J. Sci., 289, 484–524, doi: 10.2475/ajs.289.4.484, 1989.
2010	Viets, J.G., Hofstra, A.H., Emsbo, P., and Kozlowski, A.: The composition of fluid inclusions in ore
2011	and gangue minerals from Mississippi Valley type Zn-Pb deposits of the Cracow-Silesia region
2012	of southern Poland: Genetic and environmental implications. In Gorecka, E., and Leach, D.L.,
2013	eds., Carbonate-hosted zinc-lead deposits in the Silesian-Cracow area, Poland. Warsaw, Poland,
2014	Prace Panstwowego Instytuti Geologicznego, v. 154, p. 85-104, doi: 10.5382/sp.04.09, 1996.
2015	Visser, J.N.J., Kingsley, C.S.: Upper Carboniferous glacial valley sedimentation in the Karoo Basin,
2016	Orange Free State. Trans. Geol. Soc. S. Afr., 85, 71-79, doi: 10.1016/0031-0182(82)90065-7,
2017	1982.
2018	Volkova, N.I.: Geochemistry of rare elements in waters and sediments of alkaline lakes in the
2019	Sasykkul depression, East Pamirs. Chem. Geol., 147, 265-277, doi: 10.1016/s0009-
2020	2541(98)00020-5, 1998.
2021	Volodin, R.N., Chechetkin, V.S., Bogdanov, Yu. V., Narkelyun, L.F., and Trubachev, A.I.: The
2022	Udokan cupriferous sandstones deposit (eastern Siberia). Geol. Ore Deposits, 36, 1-25, 1994.
2023	Vysotsky, A. U., Galetsky, R.G., Krisrick, Y.U.: World potash deposit Basin. Yang, Q. (trans),
2024	Geological Press, Beijing (in Chinese), 2014.
2025	Walker, R.N., Muir, M.D., Diver, W.L., Williams, N., Wilkins, N.: Evidence of major sulphate
2026	evaporite deposits in the Proterozoic McArthur Group, Northern Territory, Australia. Nature,
2027	265, 526–529, doi: 10.1038/265526a0, 1977.

76

- 2028 Walker, J.C.G., Hays, P.B., Kasting, J.F.: A negative feedback mechanism for the long-term
- 2029 stabilization of Earth's surface temperature. J. Geophys. Res. 86, 9776-9782, doi:
- 2030 10.1029/JC086iC10p09776, 1981.
- 2031 Wally, B.: CO2: Earth's Climate Driver. Geochem. Perspect., 7, 117–190, doi:
 2032 10.7185/geochempersp.7.2, 2018.
- 2033 Walter, M.R.: Stromatolites: the main geological source of information on the evolution of the early

2034 benthos. In: Bengtson, S. (Ed.), Early Life on Earth, Nobel Symposium, vol. 84. Columbia
2035 University Press, New York, pp. 270–286, 1994.

- 2036 Walter, M.R., Heys, G.R.: Links between the rise of the metazoa and the decline of the stromatolites.
- 2037 Precambrian Res., 29, 149–174, doi: 10.1016/0301-9268(85)90066-X, 1985.
- 2038 Wang, J.B., He, Z.L., Zhu, D.Y., Gao, Z.Q., Huang, X.W., Liu, Q.Y.: Organic-Inorganic
- 2039 Geochemical Characteristics of the Upper Permian Pusige Formation in a High-Saline Lake
- 2040 Basin, Tarim Basin: Implications for Provenance, Paleoenvironments, and Organic Matter

2041 Enrichment. Geofluids, 2021, 6651747, doi: 10.1155/2021/6651747, 2021.

- 2042 Wang, R., Lang, X.G., Ding, W.M., Liu, Y.R., Huang, T.Z., Tang, W.B., Shen, B.: The coupling of
- 2043 Phanerozoic continental weathering and marine phosphorus cycle. Sci. Rep., 10, 5794, doi:
 2044 10.1038/s41598-020-62816-z, 2020.
- 2045 Wang, Z.M., Xie, H.W., Chen, Y.Q., Qi, Y.M., Zhang, K.: Discovery and exploration of Cambrian
- subsalt dolomite original hydrocarbon reservoir at Zhongshen-1 well in Tarim Basin. China
 Petrol. Explor., 2014, 19, 1–13 (in Chinese with English abstract), doi: 10.3969/j.issn.1672-
- 2048 7703.2014.02.001, 2014.
- Warren, J.K.: Evaporites: Sediments, Resources and Hydrocarbons. Springer, Berlin. 1036 p, doi:
 10.1007/3-540-32344-9, 2006.
- Warren, J.K.: Evaporites through time: Tectonic, climatic and eustatic controls in marine and
 nonmarine deposits. Earth-Sci. Rev., 98, 217-268, doi: 10.1016/j.earscirev.2009.11.004, 2010.
- 2053 Warren, J.K.: Geochemistry of Evaporite Ores in an Earth-Scale Climatic and Tectonic Framework.
- 2054 In: Holland, H.D., Turekian, K.K. (Eds.) Treatise on Geochemistry 13, Elsevier, Oxford, pp.
- 2055 569–591, doi: 10.1016/B978-0-08-095975-7.01125-6, 2014.

2056	Warren, J.K., Havholm, K.G., Rosen, M.R., Parsley, M.J.: Evolution of gypsum karst in the
2057	Kirschberg Evaporite Member near Fredericksburg, Texas. J. Sediment. Petrol., 60, 721-734,
2058	doi: 10.1306/212F925A-2B24-11D7-8648000102C1865D, 1990.
2059	Whelan, J.F., Rye, R.O., de Lorraine, W., Ohmoto, H.: Isotopic geochemistry of a mid-Proterozoic
2060	evaporite basin, Balmat, New York. Am. J. Sci., 290, 396-424, doi: 10.2475/ajs.290.4.396,
2061	1990.
2062	White, A.F., Buss, H.L.: Natural weathering rates of silicate Minerals, in Holland, H.D., and
2063	Turekian, K.K. (Eds.) Treatise on Geochemistry 7, 116-151. Oxford: Elsevier, doi:
2064	10.1016/B0-08-043751-6/05076-3, 2014.
2065	White, R.V., Saunders, A.D.: Volcanism, impact and mass extinctions: Incredible or credible
2066	coincidences. Lithos, 79, 299-316, doi: 10.1016/j.lithos.2004.09.016, 2005.
2067	White, W.S.: A paleohydrological model for mineralization of the White Pine copper deposit,
2068	northern Michigan. Econ. Geol., 66, 1-13, doi: 10.2113/gsecongeo.66.1.1, 1971.
2069	Wignall, P.B.: Large igneous provinces and mass extinctions. Earth. Planet. Sci. Lett., 53, 1–33, doi:
2070	10.1016/S0012-8252(00)00037-4, 2001.
2071	Williams, E.G.: Milankovitch-band cyclicity in bedded halite deposits contemporaneous with Late
2072	Ordovician-Early Silurian glaciation, Canning Basin, Western Australia. Earth Planet. Sci.
2073	Lett., 103, 143-155, doi: 10.1016/0012-821X(91)90156-C, 1991.
2074	Williford, K.H., Van Kranendonk, M.J., Ushikubo, T., Kozdon, R., Valley, J.W.: Constraining
2075	atmospheric oxygen and seawater sulfate concentrations during Paleoproterozoic glaciation: In
2076	situ sulfur three-isotope microanalysis of pyrite from the Turee Creek Group, Western
2077	Australia. Geochim. Cosmochim. Ac., 75, 5686–5705, doi: 10.1016/j.gca.2011.07.010, 2011.
2078	Willis, G.C.: Geologic map of the Salina quadrangle, Sevier Courtty, Utah. Utah Geol. Miner. Sur.
2079	Map, 83, 1986.
2080	Wilson, J.T.: Did the Atlantic close and then re-open? Nature, 211, 676-681, doi: 10.1038/211676a0,
2081	1966.
2082	Wilson, T.P., Long, D.T.: Geochemistry and isotope chemistry of Ca-Na-CI brines in Silurian strata,
2083	Michigan Basin, U.S.A. Appl. Geochem., 8, 507-524, doi: 10.1016/0883-2927(93)90079-V,
2084	1993.

- 2085 Witkind, I.J.: The role of salt in the structural development of central Utah. USGS. Professional
- 2086 Paper, 1528, 145, doi: 10.3133/pp1528, 1994.
- 2087 Wittrup, M.B., Kyser, T.K.: The petrogenesis of brines in Devonian potash deposits of western
- 2088 Canada. Chem. Geol., 82, 103-128, doi: 10.1016/0009-2541(90)90077-K, 1990.
- 2089 Witzke, B.J., Bunker, B.J., Rogers, F.S.: Eifelian through lower Frasnian stratigraphy and deposition
- 2090 in the Iowa area, central Midcontinent, U.S.A., in McMillan, N.J., Embry, A.F., and Glass, D.J.
- 2091 (eds.), Devonian of the world. Can. Soc. Petrol. Geol., I, 221-250, 1988.
- 2092 Wu, Y.P., Liu, C.L., Liu, Y.J., Gong, H.W., Awan, R.S., Li, G.X., Zang, Q.B.: Geochemical 2093 characteristics and the organic matter enrichment of the Upper Ordovician Tanjianshan Group,
- 2094 Qaidam Basin, China. J. Petrol. Sci. Eng., 208, 109383, doi: 10.1016/j.petrol.2021.109383,
 2095 2022.
- Xiong, Y., Tan, X.C., Dong, G.D., Wang, L.C., Ji, H.K., Liu, Y., Wen, C.X.: Diagenetic
 differentiation in the Ordovician Majiagou Formation, Ordos Basin, China: Facies,
 geochemical and reservoir heterogeneity constraints. J. Petrol. Sci. Eng., 191, 107179, doi:
 10.1016/j.petrol.2020.107179, 2020.
- 2100 Yang, X.Y., Lai, X.D., Pirajno, F., Liu, Y.L., Ling, M.X., Sun, W.D.: Genesis of the Bayan Obo
- Fe-REE-Nb formation in Inner Mongolia, north China craton: a perspective review.
 Precambrian Res., 2017, 288, 39-71, doi: 10.1016/j.precamres.2016.11.008, 2017.
- 2103 Yardley, B.W.D.: Metal concentrations in crustal fluids and their relationship to ore formation. Econ.
- 2104 Geol., 100, 613-632, doi: 10.2113/100.4.613, 2005.

2105 Yu, K., Cao, Y., Qiu, L., Sun, P.: Depositional environments in an arid, closed basin and their

- 2106 implications for oil and gas exploration: The lower Permian Fengcheng Formation in the
- 2107 Junggar Basin, China. AAPG Bull., 103, 2073–2115, doi: 10.1306/01301917414, 2019.
- 2108 Yu, K., Cao, Y., Qiu, L., Sun, P., Jia, X., Wan, M.: Geochemical characteristics and origin of sodium
- 2109 carbonates in a closed alkaline basin: The Lower Permian Fengcheng Formation in the Mahu
- 2110 Sag, northwestern Junggar Basin, China. Palaeogeogr. Palaeoclimatol. Palaeoecol., 511, 506–
- 2111 531, doi: 10.1016/j.palaeo.2018.09.015, 2018.

2112	Zhang, C., Cai, Y.Q., Dong, Q., Xu, H.: Cretaceous-Neogene basin control on the formation of								
2113	uranium deposits in South China: evidence from geology, mineralization ages, and H-O								
2114	isotopes. Int. Geol. Rev., 62, 3, 263-310, doi: 10.1080/00206814.2019.1598898, 2019.								
2115	Zhang, C., Cai, Y.Q., Xu, H., Dong, Q., Liu, J.L., Hao, R.X.: Mechanism of mineralization in the								
2116	Changjiang uranium ore field, South China: Evidence from fluid inclusions, hydrothermal								
2117	alteration, and H-O isotopes. Ore Geol. Rev. 86, 225-253, doi:								
2118	10.1016/j.oregeorev.2017.01.013, 2017.								
2119	Zhang, C., Richard, A., Hao, W.L., Liu, C.H., Tang, Z.S.: Trace metals in saline waters and brines								
2120	from China: Implications for tectonic and climatic controls on basin-related mineralization. J.								
2121	Asian Earth Sci., 233, 105263, doi: 10.1016/j.jseaes.2022.105263, 2022.								
2122	Zhang, C., Richard, A., Hao, W.L.: Active metal deposition in a giant geothermal system. Terre								
2123	Nova, 35, 313-328, doi: 10.1111/ter.12656, 2023a.								
2124	Zhang, C., Yang, H.T.: An Active Molybdenum (Polymetallic) - Enriching System in Foreland								
2125	Basins. Journal of Geochemical Explorations, doi: 10.1016/j.gexplo.2023.107309, 2023b.								
2126	Zhang, C.J., Cao, J., Li, E.T., Wang, Y.C., Xiao, W.J., Qin, Y.: Revisiting Controls on Shale Oil								
2127	Accumulation in Saline Lacustrine Basins: The Permian Lucaogou Formation Mixed Rocks,								
2128	Junggar Basin. Geofluids, 2021, 5206381, doi: 10.1155/2021/5206381, 2021.								
2129	Zhang, S.H., Zhao, Y., Liu, Y.S.: A precise zircon Th-Pb age of carbonatite sills from the world's								
2130	largest Bayan Obo deposit: Implications for timing and genesis of REE-Nb mineralization.								
2131	Precambrian Res., 2017, 291, 202-219, doi: 10.1016/j.precamres.2017.01.024, 2017.								
2132	Zhao, G.C., Cawood, P.A., Wilde, S.A., Sun, M.: Review of global 2.1-1.8Ga orogens: implications								
2133	for a pre-Rodinia supercontinent. Earth-Sci. Rev., 59, 125-162, doi: 10.1016/S0012-								
2134	8252(02)00073-9, 2002.								
2135	Zharkov, M.A.: Evaporite sedimentation in the Precambrian as related to changes in biosphere and								
2136	seawater chemistry. Article 1: Evaporites of the Archean and Lower Proterozoic. Stratigr. Geol.								
2137	Correl., 13, 134–142, doi: 10.2113/108.1.135, 2005.								
2138	Zheng, M.P.: An Introduction to Saline Lakes on the Qinghai–Tibet Plateau. Boston, MA, Kluwer,								
2139	294, 1997.								

2140	Zheng, M.P., Xiang, J., Wei, X.J., Zheng, Y.: Saline lakes on the Qinghai-Xizang (Tibet) Plateau.
2141	Beijing, Beijing Scientific and Technical Publishing House, 1-404 (in Chinese with English
2142	abstract), 1989.
2143	Zhong, R.C., Li, W.B., Chen, Y.J., Hou, H.L.: Ore-forming conditions and genesis of the Huogeqi
2144	Cu-Pb-Zn-Fe deposit in the northern margin of the North China Craton: evidence from ore
2145	petrologic characteristics. Ore Geol. Rev., 44, 107-120, doi: 10.1016/j.oregeorev.2011.09.008,
2146	2012.
2147	Zhu, G.Y., Yang, H.J., Zhang, B., Su, J., Chen. L., Lu. Y.H., Liu, X.G.: The geological feature and
2148	origin of Dina 2 large gas field in Kuqa Depression, Tarim Basin. Ac. Petrol. Sin., 28, 2479e92,
2149	doi: 10.1016/j.sedgeo.2012.06.004, 2012.
2150	Ziegler, A.M., Eshel, G., Rees, P.M., Rothfus, T.A., Rowley, D.B., Sunderlin, D.: Tracing the
2151	tropics across land and sea: Permian to present. Lethaia, 36, 227-254, doi:
2152	10.1080/00241160310004657, 2003.
2153	
2154	Appendix A Major hydrothermal type uranium districts of the world, with showing their major
2155	enriched metal affinities and regional contemporaneous saline deposits and/or redbeds (detailed

2156 reference in Dahlkamp, 2009, 2010, 2016).

No.	Continent	Country	Major U District (Belt)	Ore deposit type	Representative U Deposit	Resource	Mineralization Age	Contemporaneous Saline Giant (or Redbeds) in the Region?
1	Europe	Austria	Land Salzburg	Strata-bound and structure-controlled	Mitterberg	>700 t U, ~0.1% U	290-260Ma, 90±5Ma	Permian and Jurassic evaporites in Europe
2	Europe	Bulgaria	Bukhovo district and other deposits	Structure-controlled, Vein type	Bortshe, Goten, Kamiko	>25000 t U, 0.02-3% U	4Ma, 1-2Ma?	Messinian saline giant
3	Europe	Czech Republic	Northwest Bohemian U region	Structure-controlled, Vein type	Horni Rozmysl, Prisenice	>10000 t U, 0.1 to 1% U	280-260Ma	Permian evaporites in Europe
4	Europe	Czech Republic	Horni Slavkov (Schlaggenwald) district	Structure-controlled, Lignite, Coal type	Barbora, Nadlesi, Zdar Buh	1000 t U	280-260Ma	Permian evaporites in Europe
5	Europe	Czech Republic	West Bohemian district	Structure-controlled, Vein type	Tachova, Vitkov I and II	>12000 t U, 0.05-0.2% U	185±15Ma	Saline aquifers of Central Europe
6	Europe	Czech Republic	Central Bohemian U region	Structure-controlled, Vein type	Pribram district	>80000 t U, 0.15% U	280-240 (265±15) Ma	Permian evaporites in Europe

7	Europe	Czech Republic	Southwest Bohemian U region	Structure-controlled, Vein type	Dametice, Ustalec, Zelenov	> 3000 t U, 0.1-0.2% U	280-240 (265±15) Ma	Permian evaporites in Europe
8	Europe	Czech Republic	West Moravian region	Structure-controlled, Vein type	Dancovice, Slavkovice	>25000 t U, 0.08-0.15% U	270±15 Ma; 190±10Ma	Permian and Jurassic evaporites in Europe
9	Europe	Czech	Other Major U	Structure-controlled,	Rychlebskehor	>5000 t U,	280-250 (265)	Permian evaporites in
	1	Republic	deposits	Vein type	y, Orlickehory	0.1-0.2% U	Ma	Europe
10	Europe	Finland	Proterozoic U deposits in Finland	Structure-controlled, Vein type, Polymetallic	Juomasuo, Hangaslampi	>1500 t U, >20 g/t Au, 0.03% Co, 0.18% Cu, 0.13% Mo, 0.20% U	1900-1800Ma	Early Proterozoic evaporites in Baltica
11	Europe	France	La Crouzille district, Limousin	Structure-controlled, Vein type	Margnac-Peny ore field	25000 t U, 0.1-0.3% U	280-260 (270)Ma; 190- 150Ma; 30Ma	Permian and Jurassic evaporites in Europe
12	Europe	France	La Marche	Structure-controlled, Vein type	Bernardan, Mas Grimaud, Piegut	10000 t U, 0.03-1.5% U	280-260 (270)Ma; 190- 150Ma; 30Ma	Permian and Jurassic evaporites in Europe
13	Europe	France	Plateau de Millevaches	Structure-controlled, Vein type	Northern Millevaches	2000 t U, 0.15-0.3% U	270Ma; Oligocene-Early Miocene	Permian and Miocene evaporites in Europe
14	Europe	France	Forez District	Structure-controlled, Vein type	Bois Noirs- Limouzat	7500 t U, 0.05-0.5% U	270Ma; Oligocene-Early Miocene	Permian and Miocene evaporites in Europe
15	Europe	France	Morvan District	Structure-controlled, Vein type	Le Cartelet, Mazille, Niallin	1500 t U, 0.1-0.4% U	175±5Ma	Jurassic evaporites
16	Europe	France	Margeride district	Structure-controlled, Vein type	Le Vigan, Les Bondons	4024 t U, 0.05-0.3% U	188±12Ma	Jurassic evaporites
17	Europe	France	Rouergue-Levezou Massifs and adjacent regions	Structure-controlled, Vein type	Entraygues, Saint Leger de Peyre	759.2 t U; 0.15% U	180-170Ma	Jurassic evaporites
18	Europe	France	Mortagne Massif	Structure-controlled, Vein type	Le Chardon ore field	15600 t U, 0.03-0.7% U	420-390Ma; 345- 310Ma; 280- 260Ma (290- 270Ma); 180Ma; 70Ma	Middle Devonian, Carboniferous, Permian, Jurassic, Late Cretaceous Saline deposits
19	Europe	Germany	Schneeberg- Schlema-Alberoda ore field	Structure-controlled, Vein type	Schneeberg, Bernsbach	96603 t U;	278-270Ma, 250- 240Ma, 185- 180Ma, 160- 140Ma	Middle Devonian, Carboniferous, Permian, Jurassic Saline deposits

20	Europe	Germany	Schwarzenberg ore field	Structure-controlled, Vein type	Bermsgrun, Weiber Hirsch	1051.9 t U	278-270Ma, 250- 240Ma, 185- 180Ma, 160- 140Ma	Middle Devonian, Carboniferous, Permian, Jurassic Saline deposits
21	Europe	Germany	Johanngeorgenstadt ore field	Structure-controlled, Vein type	Rabenberg, Seifenbach	4537 t U	278-270Ma, 250- 240Ma, 185- 180Ma, 160- 140Ma	Middle Devonian, Carboniferous, Permian, Jurassic Saline deposits
22	Europe	Germany	Pohla-Tellerhauser ore field	Structure-controlled, Vein type	Ehrenzipfel, Tellerhauser	7918.6 t U	278-270Ma, 250- 240Ma, 185- 180Ma, 160- 140Ma	Middle Devonian, Carboniferous, Permian, Jurassic Saline deposits
23	Europe	Germany	Central Erzgebirge	Structure-controlled, Vein type	Barenstein- Niederschlag	800 t U	278-270Ma, 250- 240Ma, 185- 180Ma, 160- 140Ma	Middle Devonian, Carboniferous, Permian, Jurassic Saline deposits
24	Europe	Germany	East Erzgebirge	Structure-controlled, Vein type	Barenhecke, Freiberg	32000 t U	278-270Ma, 250- 240Ma, 185- 180Ma, 160- 140Ma	Middle Devonian, Carboniferous, Permian, Jurassic Saline deposits
25	Europe	Germany	Konigstein district, a northern extension of the North Bohemian Basin	Sandstone type	?	27812 t U	74Ma, 49.5Ma, 24Ma	Late Cretaceous – Early Paleogene, Miocene evaporites
26	Europe	Germany	Dohlen Basin, Freital district	Lignite type U deposits	Heidenschanze	3977 t U	240Ma	Triassic evaporites
27	Europe	Germany	Kyhna- Schenkenberg	Structure-controlled, Vein type	Schenkenberg, Quering	6660 t U	250-280Ma, 76- 40Ma	Permian, Late Cretaceous to Early Paleogene evaporites
28	Europe	Germany	Gera-Ronneburg Region, East Thuringia	Black Shale	Ronneburg, Stolzenberg	200 000 t U	280-260Ma, 240Ma, 120- 90Ma	Permian, Triassic, Late Cretaceous to Early Paleogene evaporites
29	Europe	Germany	East Thuringian Anticline	Black Shale	?	15 300 t U	280-260Ma, 240Ma, 120- 90Ma	Permian, Triassic, Late Cretaceous to Early Paleogene evaporites
30	Europe	Germany	Grobschloppen- Hebanz/Weibenstadt Granitic Massif	Structure-controlled, Vein type	Grobschloppen	>2000 t U	~268Ma, ~233Ma	Permian and Triassic evaporites
31	Europe	Germany	Poppenreuth- Mahring area	Structure-controlled, Vein type	Hohensteinwe g, Waldel	?	~336±17Ma, 295±5Ma	Carboniferous and Permian evaporites
32	Europe	Germany	Schwarzach Valley/Neunburg Massif	Structure-controlled, Vein type	Altfalter	?	~360Ma? ~210Ma?	Carboniferous and Triassic evaporites

33	Europe	Germany	Other deposits in Northeast Bavaria	Structure-controlled, Vein type	Schonthan, Wolsendorf- Nabburg	?	~295±14Ma?	Permian evaporite
34	Europe	Germany	Menzenschwand district	Structure-controlled, Vein type	Krunkelbach Mine	?	310±3Ma, 65Ma, 295±7Ma, 50±8Ma	Triassic, Permian, Late Cretaceous to Early Paleogene evaporites
35	Europe	Germany	Upper Kinzigtal district	Structure-controlled, Vein type	Stammelbach Valley, Wittichen	?	230-245Ma; 240Ma	Triassic evaporites
36	Europe	Germany	Other deposits in Schwarzwald region	Structure-controlled, Vein type	Sulzburg, St. Ulrich, Fischerhof	?	~240Ma, 160±20Ma	Triassic and Jurassic evaporites
37	Europe	Polland	Kowary Ore Field, Kletno Ore Field	Structure-controlled, Vein type	?	760 t U	265Ma, 70Ma	Triassic, Late Cretaceous to Early Paleogene evaporites
38	Europe	Romania	Major deposits in Romania	Structure-controlled, Vein type	Arieseni, Avram lancu	16500- 17000 t U	280Ma, 230Ma, 110Ma	Permian, Triassic, and Cretaceous evaporites
39	Europe	Russian Federation	Lake Ladoga district	Unconformity-related, Hydrothermal metasomatic type	Salmi, Shotkusa	35 000 t U	1.8-1.75Ga; 1.5Ga; 412±11Ma	Paleo-Proterozoic, Meso- proterozoic, and Late Silurian to Early Devonian evaporite
40	Europe	Russian Federation	Lake Onega district	Metasomatism type	Srednaya Padma, Tsarevskoye,	9 000 t U	1740±30Ma	Paleo-Proterozoic evaporite
41				G (1) (1) (1)	Naratinskove.		190Ma, 140Ma,	Jurassic, Cretaceous, and
	Europe	Russian Federation	Northern Caucasus region	Structure-controlled, Volcanic type	Dakhovskoye	?	115Ma, 40Ma?	Early Paleogene evaporites
42	Europe Europe	Russian Federation Slovak Republic	Northern Caucasus region Gemer zone	Structure-controlled, Volcanic type Structure-controlled, Volcanic type	Dakhovskoye Cierna hora, Haniskova	? 25000 t U; >3000 t Mo	115Ma, 40Ma? 240±30Ma, 130±20Ma	Early Paleogene evaporites Triassic and Cretaceous evaporites
42	Europe	Russian Federation Slovak Republic Slovak Republic	Northern Caucasus region Gemer zone Kozie Chrbty Mountains and Northern Lower Tatra	Structure-controlled, Volcanic type Structure-controlled, Volcanic type Stratiform type	Cierna hora, Haniskova Vikartov- Cierny Vah zone	? 25000 t U; >3000 t Mo >3000 t U, >0.10% U	115Ma, 40Ma? 240±30Ma, 130±20Ma 160Ma, 105- 70Ma	Early Paleogene evaporites Triassic and Cretaceous evaporites Jurassic and Cretaceous evaporite
42 43 44	Europe Europe Europe Europe	Russian Federation Slovak Republic Slovak Republic Slovak Republic	Northern Caucasus region Gemer zone Kozie Chrbty Mountains and Northern Lower Tatra Major deposits in Slovak Republic	Structure-controlled, Volcanic type Structure-controlled, Volcanic type Stratiform type Structure-controlled, Volcanic type	Cierna hora, Haniskova Vikartov- Cierny Vah zone Kalnica, Krajna dolina, Selec	? 25000 t U; >3000 t Mo >3000 t U, >0.10% U >2000 t U, 0.1% U	115Ma, 40Ma? 240±30Ma, 130±20Ma 160Ma, 105- 70Ma 160Ma,	Early Paleogene evaporites Triassic and Cretaceous evaporites Jurassic and Cretaceous evaporite Jurassic evaporite
42 43 44 45	Europe Europe Europe Europe Europe	Russian Federation Slovak Republic Slovak Republic Slovak Republic	Northern Caucasus region Gemer zone Kozie Chrbty Mountains and Northern Lower Tatra Major deposits in Slovak Republic Beiras (Guarda-	Structure-controlled, Volcanic type Structure-controlled, Volcanic type Stratiform type Structure-controlled, Volcanic type	Cierna hora, Haniskova Vikartov- Cierny Vah zone Kalnica, Krajna dolina, Selec	? 25000 t U; >3000 t Mo >3000 t U, >0.10% U >2000 t U, 0.1% U >10 000 t U,	115Ma, 40Ma? 240±30Ma, 130±20Ma 160Ma, 105- 70Ma 160Ma, 100-60Ma, 57- 200-20Ma	Early Paleogene evaporites Triassic and Cretaceous evaporites Jurassic and Cretaceous evaporite Jurassic evaporite Late Cretaceous to Early Data
42 43 44 45	Europe Europe Europe Europe Europe	Russian Federation Slovak Republic Slovak Republic Slovak Republic Portugal	Northern Caucasus region Gemer zone Kozie Chrbty Mountains and Northern Lower Tatra Major deposits in Slovak Republic Beiras (Guarda- Viseu) U region	Structure-controlled, Volcanic type Structure-controlled, Volcanic type Stratiform type Structure-controlled, Volcanic type Structure-controlled, Vein type	Cierna hora, Haniskova Vikartov- Cierny Vah zone Kalnica, Krajna dolina, Selec	? 25000 t U; >3000 t Mo >3000 t U, >0.10% U >2000 t U, 0.1% U >10 000 t U, 0.1-0.25% U	115Ma, 40Ma? 240±30Ma, 130±20Ma 160Ma, 105-70Ma 160Ma, 105-70Ma 160Ma, 57-37Ma	Early Paleogene evaporites Triassic and Cretaceous evaporites Jurassic and Cretaceous evaporite Jurassic evaporite Late Cretaceous to Early Paleogene evaporite

field

47	Europe	Sweden	Petrozoic U deposits in Sweden	Structure-controlled, Vein type, Metasomatism	Arvidsjaur, Arjeplog, and Sorsele region	10000 t U, 0.03-0.1% U	1738±10Ma, 1736-1767Ma	Paleo-Proterozoic evaporites
48	Europe	Sweden	Other U deposits in Sweden	Structure-controlled, Vein type	Flistjarn, Klappibacken	>2000 t U	420±1Ma	Late Silurian evaporites
49	Europe	Switzerland	Les Marecottes-La Creusa area	Structure-controlled, Vein type	Gisiger, Juillard	> 1000 t U	270Ma, 240Ma	Permian and Triassic evaporites
50	Europe	Ukraine	Kirovograd-Smolino region	Structure-controlled, Metasomatism	Michurinsk ore field	250 000 t U, 0.08-0.14% U	1812±42 to 1753±42Ma; 1.84-1.80Ga; 1.8- 1.7Ga	Paleo-Proterozoic evaporites
51	Europe	Ukraine	Krivoy Rog region	Structure-controlled, Metasomatism	Annovskoye, Krasnogvardei skoye	>25000 t U, 0.1% U	1770±50Ma	Paleo-Proterozoic evaporites
52	Europe	Ukraine	Pobuzhsky region	Structure-controlled, Metasomatism	Kalinovskoye, Lozovatskoye	>15000 t U, 0.5-0.22% U	1770±50Ma	Paleo-Proterozoic evaporites
53	Europe	Ukraine	Ingul Megablock	Structure-controlled, Vein type	Geikovskoye, Lagodovskoye	>3000 t U, >0.10% U	1770±50Ma	Paleo-Proterozoic evaporites
54	Europe	Ukraine	Dnieper Block	Structure-controlled, Vein type	Sergeevskoye	>3000 t U, >0.10% U	1770±50Ma	Paleo-Proterozoic evaporites
55	Europe	Ukraine	Priazov Block	Structure-controlled, Vein type	Barbasovskoye , Dibrovskoye	>3000 t U, >0.10% U	1770±50Ma	Paleo-Proterozoic evaporites
56	Europe	United Kingdom	Southwest U region in U.K.	Structure-controlled, Vein type	Restormel Royal, South Terras	>2000 t U	280-270Ma, 244- 212Ma, 175- 160Ma, 75-55Ma	Permian, Triassic, Jurassic and Late Cretaceous to Early Paleogene evaporites
57	Asia	China	Wuyishan Belt	Structure-controlled, Vein type	Maoyangtou	>50000 t U	127-137Ma, ~81Ma, 71-75Ma	Cretaceous evaporites
58	Asia	China	Taoshan-Zhuguang Belt	Structure-controlled, Vein type	Juntian, Dabu	>50000 t U	~147-152Ma, ~101-110Ma, ~82-89Ma; ~65- 67Ma, ~52- 57Ma, ~42-45Ma	Late Jurassic to Early Paleogene evaporites
59	Asia	China	Chenzhou-Qinzhou U Belt	Structure-controlled, Vein type	Jiuyishan	>50000 t U	~70Ma, ~55- 64Ma	Late Cretaceous to Early Paleogene evaporites
60	Asia	China	Gan-Hang Belt	Structure-controlled, Vein type	Xiangshan district	>50000 t U	~141-148Ma, ~120-130Ma, ~84-94Ma	Late Jurassic to Early Paleogene evaporites
61	Asia	China	Xixia-Luzong Belt	Structure-controlled, Vein type	Xixia	>20000 t U	110-120MaMa, 60Ma	Late Cretaceous to Early Paleogene evaporites

63	Asia	China	Xuefengshan- Jiuwandashan Belt	Structure-controlled, Vein type	Silihe	>20000 t U	~316-360Ma, ~60-71Ma, ~73- 88Ma, ~44Ma	Carboniferous, Late Cretaceous to Early Paleogene evaporites
64	Asia	China	Jungar-Tien Shan	Structure-controlled, Vein type	Baiyanghe	>1000 t U	~230Ma	Triassic evaporites and redbeds
65	Asia	China	Liaoning Region/Yinshan- Liaohe Belt	Structure-controlled, Vein type	Lianshanguan	>3000 t U	1894Ma; 1829Ma; 1810Ma; 1823Ma	Paleo-Proterozoic evaporites and redbeds
66	Asia	China	Yanshan Belt	Structure-controlled, Vein type	Dashiqiao	4 000 t U	1763-1794Ma; 226Ma	Paleo-Proterozoic, Triassic evaporites and redbeds
67	Asia	China	Taihangshan Belt	Structure-controlled, Vein type	Wutaishan	1500 t U	1765-1746Ma; 103Ma; 122Ma	Paleo-Proterozoic, Cretaceous evaporites and redbeds
68	Asia	China	Qinglong Region/Yinshan- Liaohe Belt	Structure-controlled, Vein type	Qinglong	8000 t U; 0.03 to 0.1% U	124Ma	Cretaceous evaporites
69	Asia	China	Guyuan Region/Yinshan- Liaohe Belt	Structure-controlled, Vein type	Zhangmajing	> 3000 t U	~90Ma; ~24Ma	Late Cretaceous evaporites
70	Asia	China	Hongshanzi Region/Yinshan- Liaohe Belt	Structure-controlled, Vein type	Hongshanzi	~3000 t U	~90Ma	Late Cretaceous evaporites
71	Asia	China	Longshoushan region/Qilian- Qinling	Structure-controlled, Vein type	Hongshiquan	1500-3000 t U, 0.03- 0.1% U	~1760Ma; 700- 600Ma	Paleo-Proterozoic redbeds,
72	Asia	China	Longshoushan region/Qilian- Qinling	Structure-controlled, Vein type	Jiling	1500-3000 t U, 0.03- 0.1% U	430-400Ma; 383- 357Ma	Devonian evaporites
73	Asia	China	North Qinling region/Qilian- Qinling	Structure-controlled, Vein type	Lantian	~8000 t U, 0.171 % U	96Ma	Late Cretaceous
74	Asia	China	North Qilian region/Qilian- Qinling	Structure-controlled, Vein type		<3000 t U	280-260Ma	Permian evaporites
75	Asia	China	Ruoergai region/Qilian- Qinling	Structure-controlled, Vein type	Luojungou	>3000 t U	130-45Ma	Late Cretaceous to Early Paleogene evaporites
76	Asia	India	Singhbhum Cu-U Belt	Structure-controlled, Vein type	Khadandungri- Purandungri ore field	56000 t U	1766+82Ma; 1.5- 1.6Ga	Paleo-Proterozoic redbeds

77	Asia	India	Cuddapah Basin	Unconformity-proximal, and fracture-controlled types	Nalgonda and Guntur Districts/ Srisailam Subbasin	22 000 t U	1756 ± 29 Ma	Paleo-Proterozoic redbeds
78	Asia	India	Bhima Basin	Unconformity-proximal, and fracture-controlled types		1300 t U; 0.16% U	1756 ± 29 Ma;	Paleo-Proterozoic redbeds
79	Asia	Iran	Saghand Ore Field	Metasomatic and hydrothermal vein type		1400 t U	?	?
80	Asia	Kazakhstan	Kokshetau region	Vein-stockwork type	Ishimsky Ore Field, Forty uranium deposits	230000 t U; 0.1-0.2% U	~380-360Ma	Devonian evaporites
81	Asia	Kazakhstan	Kendyktas-Chuily- Betpak Dala region	Vein-stockwork type	Dzhideli Ore Field	65000 t U; 0.1-0.3% U	370-350Ma; 285- 265Ma	Devonian and Permian evaporites
82	Asia	Kyrgyzstan	Eastern Karamazar- Northeastern Fergana Region	Vein-stockwork type	Charkasar, Mayluu-Suu, Shakaptar, and Malisay	12000 t U; 0.1-0.3% U	370-350Ma; 285- 265Ma	Devonian and Permian evaporites
83	Asia	Mongolia	Mardai, Ugtam, Turgen, Engershand	Vein type, volcanic type	Dornod, Gurvan bulag	57 000 t U; 0.16% U	138-136Ma	Cretaceous evaporites
84	Asia	Russian Federation, Asian Territory	Yenisey Region	Vein type, volcanic type	Labyshkoye, Solonechnoye	>2000 t U, 0.1% U	350-370Ma	Devonian evaporites
85	Asia	Russian Federation, Asian Territory	Streltsovsk district	Vein type, volcanic type	19 deposits, Streltsovskoye , Tulukuyevsko ye, and Octyabrskoye	28 0000 t U; 0.1-0.3% U	136-134Ma; 18- 17Ma	Cretaceous, Miocene evaporites
86	Asia	Russian Federation, Asian Territory	Central Transbaykal region	Vein type, volcanic type	Olovskoye and Imskoye	40000 t U; 0.01-0.1% U	110-100Ma	Cretaceous evaporites
87	Asia	Russian Federation, Asian Territory	Elkon district	vein-stockwork-type	Agdinskaya, Severnoye, Sokhsolookhsk	342 000 t U; 0.1-0.15% U	135-130Ma	Cretaceous evaporites

88	Asia	Russian Federation, Asian Territory	Bureinsky District	vein-stockwork type	Lastochka, Kamenushinsk oye, Skalnoye, Svetloye	29000 t U; 0.03-0.2% U	136-134Ma	Cretaceous evaporites
89	Asia	Russian Federation, Asian Territory	Tas-Kastabyt	Volcanic type, vein type		>3000 t U; 0.1-0.3% U	119-89Ma; 127Ma; 72Ma; 60-50Ma	Cretaceous to Early Paleogene evaporites
90	Asia	Turkmenistan	Karamazar Uranium Region	vein stockwork type	Chauli, Alatanga	20 000 t U; 0.1-0.3% U	275-267Ma; 280- 270±10Ma	Permian evaporites
91	America	USA	Arizona Strip Area	Collapse Breccia Pipes	Orphan Lode	12000- 15000 t U; 0.3-0.7% U	260Ma; 200±20Ma; 141Ma	Permian and Jurassic evaporites
92	America	USA	Spokane Mountain Area	Vein type	Midnite and Sherwood	15000 t U;	51Ma	Late Cretaceous to Early Paleogene evaporites
93	America	USA	Ralston Buttes	Vein type	Schwartzwalde r	>7500 t U; 0.408% U	70-52Ma; 69.3 ± 1.1 Ma	Late Cretaceous to Early Paleogene evaporites
94	America	USA	Marshall Pass District	Vein type	Pitch deposit	>11 000 t U; >0.1% U	Laramide to Mid- Teritary age	?
95	America	USA	McDermitt Caldera District, Nevada- Oregon;	Vein type	Aurora	>10000 t U; 0.04% U	13.3 ± 2 Ma; 12.3 ± 7 Ma	Miocene redbeds and evaporites
96	America	USA	Lakeview District, Oregon	Vein type	White King	>200 t U		?
97	America	USA	Spor Mountain/Thomas Caldera, Utah	Vein type	?	?	21Ma	Miocene redbeds and evaporites
98	America	USA	Marysvale Volcanic Complex, Utah	Vein type	?	540 t U	~20Ma; 19-18Ma	Miocene redbeds and evaporites
99	America	USA	Date Creek Basin, Arizona	Vein type	?	12000 t U; 0.06% U	~20Ma; 19-18Ma	Miocene redbeds and evaporites
100	America	USA	Sierra Ancha/Apache Proterozoic Basin, Arizona	Vein type	?	38 00 t U; 0.15-0.32% U	1.8-1.7Ga?	Paleo-Proterozoic redbeds and evaporites
101	America	USA	Coles Hill	Vein type, Disseminated impregnation-type	?	45770 t U; 0.05% U	562 ± 5 Ma; 417Ma	Neo-Proterozoic redbeds and evaporites; Late Silurian
102	America	Mexico	Sierra de Peña Blanca	Vein type	Nopal-1	4000 t U; 0.1% U	43.8-37.3Ma	Early Paleogene
103	America	Brazil	Caetité Massif	Metasomatite type	Ten deposits	85 000 t U; 0.15% U	1400Ma?	?
104	America	Brazil	Central Ceará Region, Itataia	Vein type	Santa Quitéria Deposit	12 0000 t U; 0.08% U	1.8-1.7Ga	Paleo-Proterozoic redbeds and evaporites

105	America	Brazil	Poços de Caldas Region	Vein type	Cercado and Agostinho	27000 t U; 0.07% U	80-60Ma;	Late Cretaceous to Early Paleogene
106	America	Brazil	Seridó Region	Metasomatite type	Espinharas Deposit	4240 t U; 0.04% U	450Ma?	?
107	America	Brazil	Parana Basin			11000 t U;	Triassic	?
108	America	Canada	Great Bear Batholith	Vein type, Metasomatite type		20000 t U	1860±20Ma, 1424±29Ma, 1076±96Ma, 457±26Ma, 511±86Ma, 415±29Ma, 536±66Ma, 339±22Ma, 125±48Ma	Episodic evaporites and redbeds of Paleo- Proterozoic to Neo- Proterozoic
109	America	Canada	Athabasca Basin	Unconformity type		150000 t U	1770-1730Ma (1740Ma), 1590Ma, 1500- 1520Ma, 1350- 1330Ma, 1350- 1330Ma, 1290Ma, 1250Ma, 1190Ma, 1150Ma, 1150Ma, 1075Ma, 1030Ma, 1000Ma, 920Ma, 825Ma, 750Ma, 671Ma, 643Ma, 530Ma, 250Ma, 116Ma	Episodic evaporites and redbeds of Paleo- Proterozoic to Neo- Proterozoic
110	America	Canada	Thelon	Unconformity type, vein type		5 0000 t U	1860Ma, 1667- 1640Ma, 1520- 1500Ma, 1284Ma, 1284Ma, 1131- 1100Ma, 982Ma, 577Ma, 532Ma, 513Ma, 489Ma, 284Ma	Episodic evaporites and redbeds of Paleo- Proterozoic to Neo- Proterozoic
111	America	Canada	Beaverlodge	Vein type		100000 t U	2058±34Ma, 1875-1855Ma, 1740Ma,	Episodic evaporites and redbeds of Paleo-

112	Australia	Australia	Kombolgie Basin	Unconformity type, vein type	3 0000 t U	1450Ma, 1200Ma, 422±38Ma, 340±4Ma 1690-1680Ma, 1650-1600Ma, 1521±8Ma, 1445±20Ma, 1348±16Ma,	Proterozoic to Neo- Proterozoic and redbeds of Paleo- Proterozoic to Neo-
						1040Ma, 474±6Ma	
113	Australia	Australia	North Olary Province	Vein type	3 0000 t U	1705Ma, 1580Ma, 580Ma, 513Ma	Episodic evaporites and redbeds of Paleo- Proterozoic to Neo- Proterozoic
114	Australia	Australia	Pink Creek Inlier	Unconformity type	5 0000 t U	1740Ma, 1723Ma, 1680Ma, 1650- 1600Ma, 1560Ma	Episodic evaporites and redbeds of Paleo- Proterozoic to Neo- Proterozoic
115	Australia	Australia	Mounte Isa	Na-Metasomatite type	3 0000 t U	1750-1730Ma, 1640Ma, 1534Ma, 1523- 1505Ma	Episodic evaporites and redbeds of Paleo- Proterozoic to Neo- Proterozoic
116	Australia	Australia	South Australia	Olympic Dam	30 0000 t U	1590Ma	Episodic evaporites and redbeds of Paleo- Proterozoic to Neo- Proterozoic
117	Africa	Gabon, Africa	Franceville	Unconformity type	5 0000 t U	1950±40Ma, 890-860Ma, 500Ma	Episodic evaporites and redbeds of Paleo- Proterozoic to Neo- Proterozoic

2157

2158 Appendix B Inferred and direct evidence of evaporites from Proterozoic to Cenozoic, based on the

E100 compliation of rope and orothinger (2000), Bennoaer et al. (2000)	2159	compilation by Po	pe and Grotzinger	(2003), Bekker et al.	(2006), Sch	roder et al. ((2008)
--	------	-------------------	-------------------	-----------------------	-------------	----------------	--------

No.	Location	Age (Ga)	Units	Evaporite evidence	Thickness	Notes	Reference
1	Canada	Ca. 2.22-2.3	Gordon Lake Formation, Huronian Supergroup	Ba (as beds), silicified and pristine anhydrite and gypsum nodules and layers, Si-tr-An, beds of anhydrite	Multiple horizons in >300m	SG, marine, passive margin, supratidal and sabkha zone, correlated with	Cameron, 1983; Bekker et al., 2006

				nodules		Chocolay Group	
2	USA	Ca. 2.22-2.3	Kona Dolomite, Chocolay Group	Si-ps-Gy, Si-ps-An, ps-Ha (moulds), sc- breccias	30-1000m	SG, marine, associated with volcanics, intracratonic basin, open to passive margin, correlated with Gordon lake Formation	Bekker et al., 2006
3	Australia	Ca. 2.2	Bartle Member, Killara Formation, Yerrida Group	Si-ps-An, Si-ps-Gy, Kao-ps-Gy or An, An (relics), ps-Sh, ps-Tro	?	Playa lake (Alkaline)	Pirajno and Gray, 2002
4	Africa	2.2	Pretoria Group, South Africa	Ps-Mir	< 2m	Sodic lake deposits in a playa setting	Pope and Grotzinger, 2003
5	Australia	Ca. 2.15 (2.2)	Bubble Well Member, Juderina Formation, Yerrida Group	Si-Evp, Q-ps-Gy, Q- ps-An	Ca. 100m	SG, Marine or marginal marine, associated with volcanics	El-Tabakh et al., 1999
6	Africa	Ca. 2.15 (2.10- 2.20)	Lucknow Formation, Olifanshoek Group and Transvaal Supergroup, South Africa	Q-ps-Gy, Q-ps-An, molds after gypsum and anhydrite	?	Marine, passive margin	Bekker et al., 2006; Schro der et al., 2008
7	Canada	Ca. 2.15	Laparre Formation, Peribonca Group, Otish Supergroup	Dol-ps-Gy, Dol-ps-An (after crystals and nodules)	?	Passive margin	Bekker et al., 2006
8	USA	Ca. 2.15	Lower part of the Nash Fork Formation, Snowy Pass Supergroup	Molds after anhydrite nodules and gypsum crystals	?	Passive margin	Bekker et al., 2006
9	Africa	Ca. 2.2- 2.0	Francevillian C Formation, Francevillian	Ca-ps-An, Ca-ps-Gy	?	Marine, supratidal- sabkha	Preat et al., 2011

·							
			Group, Gabon			environment	
10	Africa	Ca. 2.15	Norah Formation, Deweras Group, Zimbabwe	An, as layers	?	Intracratonic rift basin	Bekker et al., 2006
11	Russia	Ca. 2.1	Fedorovka (Fedorov) Formation (Aldan Shield)	An, as layers and veins	?	Passive margin	Zharkov, 2005; Bekker et al., 2006
12	Russia	Ca. 2.09	Tulomozero Formation, Upper Jatulian Group	Ca-ps-Gy, Dol-ps-Gy, Si-ps-Gy, An, pseudomorphs after anhydrite and gypsum crystals and nodules, ps-Ha, sc-breccias, enterolithic and chicken wire structures	Multiple units >20m, within ca. 500m of total thickness	SG, passive margin, playa lake, marine sabkha, intertidal flats	Melezhik et al., 2005; Brasier et al., 2011; Reuschel et al., 2012
13	Africa	2.06	Dewaras Group, South Africa	Gy		Lacustrine environment in rift	Pope and Grotzinger, 2003
14	Canada	Ca. 1.95	Rocknest Formation, Coronation Supergroup, Slave craton	Dol-ps-Gy, ps-An, ps- Ha	Traces of evaporites dispersed within carbonates	SG, marine, lagoon on inner shelf, passive margin	Evans, 2006
15	Canada	1.8-2.0	Kasegalik and Mc-Leary formations, Belcher Group	Ps-Gy, ps-Ha	Ca. 150m	Marine	Pope and Grotzinger, 2003
16	Canada	Ca. 1.87	Stark and Hearne formations, Great Slave Lake Supergroup	Ps-Ha, silicified hopper casts, and pagoda halite, ps-Gy, sc-megabreccia	200-600m, reconstructe d thickness of evaporites are ca. 100m	SG, Marine to non-marine, halite>>gypsum	Pope and Grotzinger, 2003; Evans, 2006
17	Canada	1.81- 1.91	Tavani Formation, Hurwitz Group	Q-ps-Gy, Dol-ps-Gy, halite moulds	?	Coastal pans, marine to non- marine	Aspler and Chiarenzelli, 2002
18	Russia	1.8-1.9		Ps-Gy, ps-An	?	Associated with barite, sabkha	Pope and Grotzinger,
							2003

			Formation	breccias		marine	Grotzinger,
20	Canada	1.8	Cowles Lake Formation Vempalle Formation	Ps-Ha, ps-Gy, sc- breccias	>200m	Marine to non- marine halite>>gypsum Marine, associated with	Pope and Grotzinger, 2003 Pope and Grotzinger
21	mana	- 1.7	Papaghni Group	15 Hu, p5 Gy		lava flows	2003
22	Australia	1.74 (1.54- 1.74)	Corella Formation, McArthur-Mt Isa basins	Ps-Sh, ps-Gy, quartz replacing anhydrite nodules	Ca. 500m	SG, alkaline lake suggested by shortite	Walker et al., 1977; Muir, 1987; Evans, 2006
23	Australia	1.66	Mallapunyah, Paradise Greek, Esperanza, Staveley formations, McArthur-Mt Isa basins	Ps-Gy,ps-Ha,botryoidalquartznodulesafteranhydrite,massivereplacementbygypsum	>10m	SG, marine sabkha	Walker et al., 1977; Evans, 2006
24	Australia	1.645	Myrtle, Emmerugga, and other formations, McArthur-Mt Isa basins	Ps-Gy, ps-Ha	Ca. 200m	SG	Walker et al., 1977; Evans, 2006
25	Australia	1.635	Lynott Formation, McArthur-Mt Isa basins	Ps-Gy, ps-Ha, cauliflower cherts	Ca. 300m	SG, marine sabkha	Walker et al., 1977; Evans, 2006
26	Australia	1.61	Balbirini Formation, McArthur-Mt Isa basins	Ps-Ha, pseudomorphs after sulfates, ps-Sh, Cauliflower cherts	?	SG, alkaline lake suggested by shortite	Walker et al., 1977; Evans, 2006
27	Australia	1.5	Discovery Formation, Edmund Group, Bangemall Supergroup, Bangemall basin	Ps-Gy, or ps-An	70	SG, marine, several evaporite horizons	Evans, 2006
28	USA, Canada	1.46	Waterton, Altyn, Prichard, and Wallace formations, Belt Supergroup	Ps-Evp, ps-Gy, ps-An, ps-Ha, length-slow chalcedony, chicken- wire textures, scapolite	100 m	SG, marine, two evaporite horizons	Evans, 2006

29	USA	1.15-1.3	Upper Marble, Grenville Series	An, as lenses and beds	Beds (or lenses) > 40m thick	Metamorphosed evaporites	Whelan et al., 1990
30	Canada	1.2	Society Cliffs Formation, Victor Bay Group, Borden Basin	Gy, ps-Ha, sc-breccias	Multiple beds a few cm's to meter's thick, >100 m	SG, restricted marine	Kah et al., 2001; Evans, 2006
31	Africa	Ca. 1.2	Char Group, Mauritania, Douik Group, Algeria, Mauritania	ps-Ha	Ca. 50m	SG, marine, possibly correlate with evaporites in Atar and EI Mreiti Groups	Evans, 2006
32	Africa	Ca. 1.1	Qued Tarioufet Formation, Atar Group, Gouamir and Tenoumer formations, EI Mreiti Group, Taoudeni Basin, Mauritania	Ca-Evp, Ca-ps-Gy or Ar, ps-Ha, sc-breccias, chicken-wire texture	Ca. 50 m	SG, marine	Kah et al., 2012
33	Canada	0.7-1.2	Minto inlet and Kilian formations, Shaler Group	Gy	Multiple gypsum beds up to 30m thick	Marine	Pope and Grotzinger, 2003
34	Australia	0.80- 0.83	Centralian superbasin	Gy, Ha	SG, ~140 000km3	intracratonic basin	Babel and Schreiber, 2014
35	Africa	0.30- 0.27	Dwyka Formation, Karoo Basin, South Africa	Ha, Gy	?	Intracratonic basin	Visser and Kingsley, 1982
36	Africa	0.16-0.13	Late Jurassic to Early Cretaceous, Morocco, Casamance River, Old Bahama Channel	Gy, Ha	SG	marine	Burke, 1975
37	Africa	0.23- 0.20	Upper Triassic, basins in North Africa	An, Gy, Ha, Syl	Multiple horizons in >20m	SG, marine	Vysotsky et al., 2014

38	Asia	0.54- 0.52	Salt Mountain Formation, Lower Cambrian, Salt Range, Pakistan	Ha, Gy, An, as layers; Dol-ps-Gy	Multiple horizons in > 100m	SG, marine	Vysotsky et al., 2014
39	Asia	0.02- 0.01	Badenian, Middle Miocene, Carpathian Region	Ha, Gy	SG, Multiple horizons in > 10m	Intracratonic basin	Galamay et al., 2021
40	Asia	0.30- 0.25	Kungurian Salt, Permian, Caspian Sea	Gy, Ha, An	SG	Intracratonic basin	Vysotsky et al., 2014
41	Australia	0.51- 0.49	Saline River Formation, Northwest Territories	Ha, An; Dol-ps-An	Multiple horizons in > 200m	SG, marine to lagoonal, sub- tidel to peritidal environment, similar to Sabkahs	Vysotsky et al., 2014
42	Australia	0.54- 0.52	Ouldburra Formation, Lower Cambrian, Officer basin, South Australia	Ha, An	Multiple horizons in > 20m	SG, marginal to restricted marine environments, mudflat	Kovalevych, 1988, 1990; Kovalevych et al., 2006
43	Australia	0.46- 0.44	Carribuddy Group, Late Ordovician to Early Silurian, Canning basin, Western Australia	Ha, An, Dol-ps-An	Multiple horizons in > 100m	SG, marginal marine to ephemeral saltpan and saline mudflat	Williams, 1991
44	Australia	0.45- 0.41	Dirk Hartog Group, Silurian, Southern Carnar∨on Basin	An, Gy, Evaporite karst	?	Subtidal, peritidal, mudlfat	El-Tabakh et al., 2004
45	Australia	0.63- 0.54	Gillen Member, Undoolya Sequence, Late Proterozoic, Amadeus Basin	An, Gy, Ha	?	Intracratonic basin, marginal marine	Kennedy, 1993
46	Australia	0.9	Bitter Spring Formation	Gy, Ha	SG	Marine	Preiss, 1972; Marjoribanks

							and Black, 1974
47	Canada	0.42- 0.41	Salina Formation, Upper Silurian, Great Lake	An, Gy, Dol-ps-An	?	intracratonic basin	Vysotsky et al., 2014
48	Canada	0.36- 0.30	Carboniferous, Sverdrup Basin, Arctic Canada	Gy, An	SG, evaporite diapirs	Intracratonic basin	Balkwill, 1978
49	Canada	0.40- 0.38	Fort Vermilion Formation, Western Canada basins	An, Gy, Ha, Syl, Car	SG, Multiple horizons in > 100m	Sabkham marginal marine	Klingspor, 1969; Wittrup and Kyser, 1990
50	Canada	0.40- 0.38	Elk Point Group, Middle Devonian, Saskatchewan, Western Canada	Ha, Gy, An,	SG, Multiple horizons in > 10m	Intracratonic basin	Horita et al., 1996
51	Canada	0.39- 0.36	Wabamun Group, Alberta Basin, West Canada	An, Dol-ps-An	?	Intracratonic basin	Anfort et al., 2001
52	Canada	0.35- 0.33	WindsorGroup,EarlyMiddleVisean,NovaScotia,NewBrunswick,Atlantic Canada	Ha, Gy, An	SG, Multiple horizons in > 100m	Intracratonic basin	Schenk et al., 1994a, b; Ravenhurst et al., 1989
53	China	0.53- 0.50	Wusonggeer Formation, Sayilike Formation, Awatage Formation, Lower-Middle Cambrian, Tarim basin, NW China	An, Dol-ps-An	Multiple horizons in > 100m	SG, lagoonal to tidal flat,	Wang et al., 2014
54	China	0.53- 0.50	Meishucun Formation, Canglangpu Formation, Qingxu Formation,	Gy, Ha, An; Dol-ps- An	Multiple horizons in > 100m	SG, marine to lagoonal, to intracontinental, tidal flat	Huang, 1993; Goldberg et al., 2005

			0: 1 :				
			Qiongzhusi				
			Formation,				
			Shilengshui				
			Formation,				
			Lower-Middle				
			Cambrian,				
			Yangtz Block				
		0.46	Tanjianshan			Marginal	
55	China	0.46-	Group, Qaidam	Gy	?	marine,	Wu et al., 2022
		0.44	basin			restricted basin	
			G 1 10			Marginal marine	
56	China	0.36-	Carboniferous,	Gy,	?	to restricted	Chen et al., 2016
		0.30	Tarim			basin	
			Majiagou				
			Formation,				
			Middle	Gy, Ha, Ca-ps-An	SG,		
		0.47- 0.46	Ordovician		Multiple	Inter-tidal	Meng et al.,
57	China		carbonate-		horizons		2019; Xiong et
			evaporite		in > 20m		al., 2020
			sequence Ordos				
			basin				
			ousin			Marginal marine	
58	China	0.06- 0.03	Paleogene,	Gy	2	to restricted	Chen et al. 2016
58			Tarim	Gy	2	basin	Cheff et al., 2010
			Suurivi		SG	bushi	<u> </u>
		0.02- 0.005	Eormation	Gy, An, Ha	Multiple	Intracratonic basin	Tang, 1992
59	China		Miocono Tarim		horizons		
			Danin		in > 10m		
			Basiii				
		0.26	Lower		SG,	In the sector is	
60	China	0.30-	Carboniferous,	Gy, An, Ha	Multiple	Intracratoric	Tang, 1992
		0.32	Tarim Basin		horizons	basin	
					in > 10m		
					SG,		Schubel and
61	China	0.01-	Quaternary,	Gy, Ha, An	Multiple	Foreland basin	Lowenstein,
01		present	Qaidam Basin		horizons		1997
					in > 10m		
			Lucaogou				
			Formation,				Zhang et al
62	China	0.28-	Fengcheng	He Co	9	Intracratonic	2021: Vu at al
	Cinila	0.26	Formation,	па, Оу	1	basin	2021, 10 et al.,
			Permian,				2010, 2019
			Junggar Basin				
(2)	<i>c</i> t :	0.28-	Pusige		0	Intracratonic	Wang et al.,
63	China	0.26	Formation,	Ha, Gy	?	basin	2021

			Permian, Tarim				
			Basin				
64	China	0.23- 0.20	Jialingjiang Formation, Leikoupo Formation, Triassic, Sichuan Basin	Gy, An	?	Intracratonic basin, Tidal flats, lagoon	Liu et al., 2018
65	China	0.10- 0.06	Mengyejing Formation, Yunlong Formation, Late Cretaceous, Simao Basin,	Gy, An, Ha, Syl	?	Marginal marine	Liu et al., 2018
66	China	0.10- 0.03	Tuyiluoke Formation, Altash Formation, Kumugelimu Formation, Late Cretaceous to Oligocene, Tarim Basin	Gy, An	?	Marginal marine	Liu et al., 2018
67	China	0.18- 0.16	Qiangtang basin	Gy, An	?	Intracratonic basin, lagoonal, subkha	Li et al., 2008a, b
68	China	0.01- present	Late Miocene to Pliocene, Qaidam Basin, China	Gy, Ha	?	Intracratonic basin	Guo et al., 2018
69	China	0.06- 0.02, 0.01- present	Eocene, Qaidam, Tarim, Junggar, Bohai Bay, Subei, Nanxiang, Jianghan Basin, South China Grabens	Gy, Ha	?	Intracratonic basin	Guo et al., 2020; Jiang et al., 2013
70	China	0.15- 0.03	graben, Middle- Lower reaches of Yangtze River	GY, Ha, An	SG	Intracratonic basin	Teng et al., 2019
71	China	0.06- 0.02	Paleogene, Tarim basin	Gy, An	Multiple horizons	SG, marine	Zhu et al., 2012

					in >200m		
72	Europe	0.48- 0.43	Middle Ordovician to Late Silurian red beds, Baltic basin	Red beds	?	Intracratonic sedimentary basin	Kiipli et al., 2009
73	Europe	0.26- 0.25	St. Bees evaporites, Upper Permian, England	An, Gy	?	Intracratonic basin	Arthurton and Hemingway, 1972; Kiersnowski et al., 1995
74	Europe	0.32- 0.25	Late Carboniferous to Permian, Lodeve Basin, Autun Basin, Bourbon l' Archambault basin, Saar- Nahe Basin, Nahe Basin, Thuringiar Forest Basin, Saale Basin, North German- Polish Basin, Central and Western Bohemiar Basins, Intra- Sudetic Basin, Boskovice Graben, Graben, Basins	Ha, Gy, An	SG, Multiple horizons in > 100m	Intracratonic basin	Roscher and Schneider, 2006
75	Europe	0.27- 0.25	Permian, Zechstein Basin	Ha, Gy, An	SG, Multiple horizons in > 10m	Isolated deep basin	Regenspurg et al., 2016; Lüders et al., 2010
76	Europe	0.28- 0.25	Rotliegend Supergroup, South Permian Basin, Europe	Ha, Gy	SG, Multiple horizons in > 100m	Intracratonic basin	Kiersnowski et al., 1995; Gaupp et al., 2000
77	Europe	0.28-	Unidad Roja	Ha, Gy	?	Intracratonic	Valero Garces

0.25 Superior Group, Permian, Aragon-Beam Basin, Pyrences basins basin and Aguilar, 1992 78 Europe 0.23- 0.20 Formation, Late of pyrences Gy, An, Ha ? Intracratonic rift basin Puigdefabregas and Souquet, 1986 79 Europe 0.23- 0.20 Formation, Late Source Gy, An, Ha ? Intracratonic basin Puigdefabregas and Souquet, 1986 80 Europe 0.02- 0.01 Miccene, Ebro Basin, U.K. Gy, An, Ha ? Intracratonic basin Barth, 2000 81 Europe 0.23- 0.20 Upper Triassic, 0.00 Gy, An, Ha ? Intracratonic basin Nemcok and Gayer, 1996 82 Europe 0.30- 0.20 Triassic, Triassic, Bay of 0.02 Gy, An, Ha SG Intracratonic basin Bourquin et al., basin 83 Europe 0.06- 0.02 Triassic, Gy, An, Ha SG Intracratonic basin Bourquin et al., basin 84 Europe 0.40- 0.02 Devonian, Morsov Basin Gy, An, Ha, Syl Multiple horizons SG, marine Vysotsky et al., 2014 85 Europe 0.36- 0.36 Devonian, Gy, An, Ha, Syl Multiple horizons SG, marine Vysotsky et al., 2014 86 Europe 0.36- 0.36 Devonian, Gy, An, Ha, Syl Multiple								
Aragon-Beam Basin, Pyrenees basins78Europe 0.23 0.20 Late Foreland basinsGy, An Gy, Yan Gy, Yan Gy, An, Ha7Intracratonic basinPuigdeflabregas and Souquet, 198679Europe 0.23 0.20 Formation, Late Guence, Ebro 0.01 Gy, An, Ha7Intracratonic basinBarth, 200080Europe 0.02 - 0.01 Miccene, Ebro BasinGy, An, Ha7Intracratonic basinBarth, 200081Europe 0.23 - 0.20 Opper Triassic, Cartral EuropeGy, An, Ha7Intracratonic basinBarth, 200081Europe 0.23 - 0.20 Opper Triassic, Bay of Basin, U.K.Permian, Triassic, Bay of Biseny, Europe basinsIntracratonic basinBourquin et al., 201182Europe 0.30 - Triassic, Bay of Gy, An, HaSGIntracratonic basinBourquin et al., 201183Europe 0.40 - Miccene, Ebro, Tajo, Calarayud Gy, An, Ha, SylMultiple horizonsVysotsky et al., 201484Europe 0.40 - 0.38 Middle Devonian, Gy, An, Ha, SylMultiple horizonsSG, marine in >20mVysotsky et al., 201485Europe 0.39 - 0.30 - 0.36 Devonian, DaisnGy, An, Ha, SylMultiple horizonsVysotsky et al., 201486Europe 0.36 - 0.36 - 0.36 - 0.30 - 0.36 - 0.36 - 0.36 - 0.36 - 0.36 - 0.30 - 0.36 - 0.30 - $0.$			0.25	Superior Group, Permian,			basin	and Aguilar, 1992
basins78Europe0.23- 0.20Late Foreland basinsGy, An of pyrenees?Intracratonic basinPuigdefabregas and Souquet, 				Aragon-Bearn Basin, Pyrenees				
78Europe0.23 0.20LateTriassic, foreland basinsGy, An Gy, ShanIntracratonic 				basins				
78 Europe 0.20 Foreland basins Gy, An ? Intracration is basin and Souquet, 1986 79 Europe 0.21 Formation, Late Europe Gy, An, Ha ? Intracratonic basin Barth, 2000 80 Europe 0.02- Micene, Ebro Gy, An, Ha ? Intracratonic basin Barth, 2000 81 Europe 0.23- Upper Triassic, Gy, An, Ha ? Intracratonic basin Barth, 2000 81 Europe 0.23- Upper Triassic, Gy, An, Ha ? Intracratonic basin Gayer, 1996 82 Europe 0.30- Bristol Channel Basins Gy, An, Ha ? Intracratonic basin Bourquin et al., 2011 83 Europe 0.30- Triassic, Upper Triassic, Upper Triassic, Upper Triassic, Upper Triassic, Upper Basins Gy, An, Ha SG Intracratonic basin Bourquin et al., 2011 84 Europe 0.06- Bicecene to Micene, Ebro, Tajo, Calatayud and Teruel basin ? Intracratonic basin Upril et al., 2014 84 Europe 0.38- Devonian, Gy, An, Ha, Syl Multiple Norizons SG, marine 1992 2014 </td <td></td> <td></td> <td>0.23-</td> <td>Late Triassic,</td> <td></td> <td></td> <td>Intracratonic rift</td> <td>Puigdefabregas</td>			0.23-	Late Triassic,			Intracratonic rift	Puigdefabregas
rightarrow rescale to the second se	78	Europe	0.20	Foreland basins	Gy, An	?	basin	and Souquet,
Keuper79Europe 0.23 Formation, Late FurgesGy, An, Ha?Intracratonic basinBarth, 200080Europe 0.02 Miocene, Ebro BasinGy, An, Ha?Intracratonic basinSanchez et al., basin80Europe 0.02 Miocene, Ebro Bistol ChannelGy, An, Ha?Intracratonic basinSanchez et al., basin81Europe 0.23 Upper Triassic, Bistol ChannelGy, An, Ha?Intracratonic basinSanchez et al., basin82Europe 0.30 D.20Permian, Triassic, Upper Triassic, Bay of Biscay, Europe basinsSGIntracratonic basinBourquin et al., 201183Europe 0.06 D.20Miocene, Ebro, Toissic, Bay of Gy, An, HaMultiple horizonsVysotsky et al., 201184Europe 0.40 D.35Middle Devonian, D.36Multiple Gy, An, Ha, SylMultiple horizonsVysotsky et al., 201485Europe 0.39 D.36Devonian, Devonian, DasinGy, An, Ha, SylMultiple horizonsSG, marine in >20mVysotsky et al., 201486Europe 0.39 Devonian, D.36Devonian, Gy, An, Ha, SylMultiple horizonsSG, marine in >20mVysotsky et al., 201487Europe 0.39 Devonian, D.36Devonian, Gy, An, Ha, SylMultiple horizonsSG, marine in >20mVysotsky et al., 201486Europe 0.36 Devo				of pyrenees				1986
79 Europe 0.20 Trinsisic, Central Gy, An, Ha ? Intractatione Barth, 2000 80 Europe 0.02 Miocene, Ebro Gy, An, Ha ? Intractatione Sanchez et al., 1999 81 Europe 0.23 Upper Triassic, 020 Gy, An, Ha ? Intractatione Sanchez et al., 1999 81 Europe 0.23 Upper Triassic, 020 Gy, An, Ha ? Intractatione Nemcok and basin 82 Europe 0.30- Triassic, Upper Triassic, Bay of Biscay, Europe basins Gy, An, Ha SG Intractatione basin Bourquin et al., 2011 83 Europe 0.06- Tajo, Calatayud Gy, Ha and Teruel basin ? Intractatione basin Utrilla et al., 1992 84 Europe 0.40- Devonian, Gy, An, Ha, Syl Multiple horizons SG, marine 2014 2014 85 Europe 0.39- Devonian, Gy, An, Ha, Syl Multiple horizons in >20m Vysotsky et al., 2014 86 Europe 0.39- Devonian, Gy, An, Ha, Syl Multiple horizons in >20m SG, marine 2014 2014 87 Europe			0.23-	Keuper			Intracratonic	
	79	Europe	0.23-	Triassic Central	Gy, An, Ha	?	basin	Barth, 2000
80Europe 0.02 - 0.01 Miocene, Ebro Basin Gy, An, Ha ?Intracratonic basinSanchez et al., in 199981Europe 0.23 - 0.20 Upper Triassic, Bristol Channel Basin, U.K. Gy, An, Ha ?Intracratonic basinNemcok and Gayer, 199682Europe 0.30 - 0.20 Triassic, Upper Triassic, Upper Triassic, Upper Biscay, Europe basinsPermian, Triassic, Upper Triassic, Upper Triassic, Upper Biscay, Europe basinsSGIntracratonic basinBourquin et al., 201183Europe 0.06 - 0.02 0.06 - Miocene, Ebro, Tajo, Calatayud Basin, Spain?Intracratonic basinBourquin et al., 201184Europe 0.40 - 0.36 Middle Devonian, Morsov BasinGy, An, Ha, Syl horizonsMultiple horizons in >20mVysotsky et al., 201485Europe 0.39 - 0.36 Upper Devonian, Dieper Donets Gy, An, Ha, SylMultiple horizons in >20mVysotsky et al., 201486Europe 0.39 - 0.36 Upper Devonian, 0.30 - 0.25 Permian, Dieper Donets Gy, An, Ha, SylMultiple horizons in >20mVysotsky et al., 201487Europe 0.30 - 0.25 Permian, Dieper Donets Gy, An, Ha, SylMultiple horizonsVysotsky et al., 201487Europe 0.30 - 0.25 Permian, Dieper Donets Gy, An, Ha, SylMultiple horizonsVysotsky et al., 201488Europe 0.30 - <b< td=""><td></td><td></td><td>0.20</td><td>Europe</td><td></td><td>ousin</td><td></td></b<>			0.20	Europe			ousin	
80Europe0.01BasinGy, An, Ha?basin199981Europe0.23Upper Triassic, Opper Triassic, Gy, An, Ha?Intracratonic basinNemcok and basin82Europe0.30- 0.20Triassic, Upper Triassic, Bay of Biscay, Europe basinsGy, An, Ha?Intracratonic basinNemcok and basin82Europe0.30- 0.20Triassic, Upper Triassic, Bay of Biscay, Europe basinsGy, An, HaSGIntracratonic basinBourquin et al., 201183Europe0.06- 0.02 and Teruel basin SpainPaleocene to Miocene, Ebro, Tajo, Calatayud Morsov BasinGy, An, Ha, SylNultiple horizonsVysotsky et al., 201484Europe0.40- 0.36Middle Devonian, Morsov BasinMultiple horizonsSG, marine in >20mVysotsky et al., 201485Europe0.39- 0.36Devonian, Devonian, 0.36Gy, An, Ha, Syl Dieper Dotets BasinMultiple horizonsSG, marine in >20mVysotsky et al., 201486Europe0.30- 0.25Pripyat Operonian, 0.25Gy, An, Ha, Syl Dieper Dotets BasinMultiple horizonsSG, marine in >20mVysotsky et al., 201487Europe0.30- 0.25Pripyat Dieper Dotets BasinGy, An, Ha, Syl horizonsMultiple horizonsSG, marine in >20mVysotsky et al., 201488Europe0.30- 0.25Pripyat Dieper Dotets BasinMultiple horizons			0.02-	Miocene, Ebro			Intracratonic	Sanchez et al.,
81Europe0.23- 0.20Upper Triassic, Bristol Channel Basin, U.K.Gy, An, Ha?Intracratonic basinNemcok and Gayer, 199682Europe $0.30-$ 0.20Triassic, Upper Triassic, Bay of 0.20Gy, An, HaSGIntracratonic basinBourquin et al., 201183Europe $0.06-$ 0.02Micene, Ebro, Tajo, Calatayud and Teruel basin?Intracratonic basinBourquin et al., 201184Europe $0.06-$ 0.02Middle Devonian, Morsov BasinGy, An, Ha, SylMultiple horizonsYysotsky et al., 201485Europe $0.39-$ 0.36Dieper Donets basinGy, An, Ha, SylMultiple horizonsVysotsky et al., 201486Europe $0.39-$ 0.36Dieper Donets basinGy, An, Ha, SylMultiple horizonsVysotsky et al., 201486Europe $0.39-$ 0.36Devonian, Dieper Donets basinGy, An, Ha, SylMultiple horizonsVysotsky et al., 201487Europe $0.39-$ 0.36Devonian, Dieper Donets basinGy, An, Ha, SylMultiple horizonsVysotsky et al., 201487Europe $0.30-$ 0.25Pripyat Dieper DonetsGy, An, Ha, SylMultiple horizonsSG, marine in >20mVysotsky et al., 201487Europe $0.30-$ 0.25Priman, Dieper DonetsGy, An, Ha, SylMultiple horizonsSG, marine in >20mVysotsky et al., 2014	80	Europe	0.01	Basin	Gy, An, Ha	?	basin	1999
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Mercia Group,				
SolutionData per0.20Bristol ChannelOyner HaSolutionDasinGayer, 1996Basin, U.K.Permian,Triassic, UpperPermian,Triassic, UpperBasinBourquin et al., 201182Europe0.30- 0.20Triassic, Bay of Biscay, Europe basinsGy, An, HaSGIntracratonic basinBourquin et al., 201183Europe0.06- 0.02Tajo, Calatayud and Teruel basin, SpainGy, Ha and Teruel basin?Intracratonic basinUtrilla et al., 199284Europe0.40- 0.38Middle Devonian, 0.36Multiple Devonian, basinMultiple horizonsVysotsky et al., 201485Europe0.39- 0.36Devonian, Devonian, 0.30-Gy, An, Ha, Syl basinMultiple horizons in >20mVysotsky et al., 201486Europe0.39- 0.36; 0.25Devonian, basinGy, An, Ha, Syl horizons in >20mSG, marine in >20mVysotsky et al., 201487Europe0.30- 0.25Permian, basinMultiple horizons in >20mSG, marine in >20mVysotsky et al., 201487Europe0.30- 0.25Permian, basinMultiple horizons in >20mVysotsky et al., 201487Europe0.30- 0.25Permian, basinMultiple horizons in >20mVysotsky et al., 201487Europe0.30- 0.25Denets basinGy, An, Ha, Syl horizons in >20mMultiple horizons 	81	Europe	0.23-	Upper Triassic,	Gv An Ha	?	Intracratonic	Nemcok and
Basin, U.K.82Europe 0.30 0.20 Permian, Triassic, Upper Triassic, Bay of Biscay, Europe basinsSGIntracratonic basinBourquin et al., 201183Europe 0.06 - 0.02 Paleocene to Tajo, Calatayud basinMicene, Ebro, Tajo, Calatayud basin?Intracratonic basinUtrilla et al., basin84Europe 0.40 - 0.38 Middle Devonian, Morsov BasinMultiple horizonsMultiple horizonsVysotsky et al., 201485Europe 0.39 - 0.36 Devonian, Dieper Donets basinGy, An, Ha, SylMultiple horizonsVysotsky et al., 201486Europe 0.39 - 0.36 Upper Devonian, Dieper Donets basinMultiple horizonsVysotsky et al., 201487Europe 0.30 - 0.25 Permian, Dieper Donets basinGy, An, Ha, SylMultiple horizons in >20mVysotsky et al., 201487Europe 0.30 - 0.25 Permian, Dineper Donets basinMultiple horizons in >20mVysotsky et al., 2014	or Europe	Larope	0.20	Bristol Channel	0,,,,,,,,	·	basin	Gayer, 1996
82Europe 0.30 0.20 Triassic, Upper Triassic, Bay of Biscay, Europe basinsSGIntracratonic basinBourquin et al., 201183Europe 0.06 0.02 0.06 Tajo, Calatayud and Teruel basin, SpainPaleocene to Miocene, Ebro, Tajo, Calatayud Gy, Ha and Teruel basin, Spain 0.06 Teruel basinIntracratonic basinUtrilla et al., 199284Europe 0.40 0.38 Middle Morsov BasinMultiple horizonsVysotsky et al., 201485Europe 0.39 - 0.36 Upper Devonian, basinMultiple horizonsSG, marine in >20mVysotsky et al., 201486Europe 0.39 - 0.36 Upper Devonian, basinMultiple horizonsSG, marine in >20mVysotsky et al., 201487Europe 0.30 - 0.25 Devonian, depressionGy, An, Ha, SylMultiple horizons in >20mVysotsky et al., 201487Europe 0.30 - 0.25 Permian, Dineper Donets basinGy, An, Ha, SylMultiple horizons in >20mVysotsky et al., 201487Europe 0.30 - 0.25 Permian, basinMultiple horizonsVysotsky et al., 201487Europe 0.30 - 0.25 Permian, basinMultiple horizonsVysotsky et al., 201487Europe 0.30 - 0.25 Dineper Donets basinGy, An, Ha, SylMultiple horizonsVysotsky et al., 2014				Basin, U.K.				
82Europe 0.30 - 0.20 Trassle, Upper Trassle, Bay of Biscay, EuropeSGIntracratonic basinBourquin et al., 201183Europe 0.06 - 0.02 0.06 - Tajo, Calatayud and Teruel basinPaleocene to Miocene, Ebro, Tajo, Calatayud and Teruel basin 1 Intracratonic basinUtrilla et al., 199284Europe 0.40 - 0.38 Middle Morsov BasinMultiple horizons $Vysotsky et al.,201485Europe0.39-0.38UpperDevonian,Dieper DonetsbasinMultiplehorizonsVysotsky et al.,201486Europe0.39-0.36UpperDevonian,Dieper DonetsbasinMultiplehorizonsm > 20mVysotsky et al.,201487Europe0.30-0.25PripyatdepressionGy, An, Ha, SylMultiplehorizonsin >20mVysotsky et al.,201487Europe0.30-0.25Permian,basinGy, An, Ha, SylMultiplehorizonsin >20mVysotsky et al.,201487Europe0.30-0.25Permian,basinMultiplehorizonsin >20mVysotsky et al.,201487Europe0.30-0.25Permian,basinMultiplehorizonsbasinVysotsky et al.,201487Europe0.30-0.25Permian,basinMultiplehorizonsbasinVysotsky et al.,201487Europe0.30-0.25Permian,basinMultiplehorizonsbasinVys$				Permian,				
62Europe0.20Intastr., Bay of Gy, An, Ha33basin2011Biscay, EuropebasinsPaleoceneto83Europe 0.06 - 0.02 Miocene, Ebro, Tajo, CalatayudGy, Ha?Intracratonic basinUtrilla et al., 199284Europe 0.40 - 0.38 Middle Devonian, Morsov BasinMultiple horizonsVysotsky et al., 201485Europe 0.39 - 0.36 Devonian, Dnieper Donets basinGy, An, Ha, Syl horizonsMultiple horizonsVysotsky et al., 201486Europe 0.39 - 0.36 Upper Devonian, Dnieper Donets basinMultiple horizonsVysotsky et al., 201486Europe 0.30 - 0.25 Devonian, Devonian, Dnieper Donets basinGy, An, Ha, SylMultiple horizons in >20mVysotsky et al., 201487Europe 0.30 - 0.25 Permian, basinMultiple Gy, An, Ha, SylMultiple horizons in >20mVysotsky et al., 201487Europe 0.30 - 0.25 Permian, basinMultiple horizons in >20mVysotsky et al., 201487Europe 0.30 - 0.25 Permian, basinMultiple horizons in >20mVysotsky et al., 2014	82	Europa	0.30-	Triassic, Upper	Gy An Ha	80	Intracratonic basin	Bourquin et al.,
$\frac{1}{1} = \frac{1}{1} = \frac{1}$	62	Lurope	0.20	Biscay Europe	Oy, All, Ha	50		2011
83Europe 0.06 - 0.02 Paleocene to Miocene, Ebro, Tajo, Calatayud Gy, Ha 				basins				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				Paleocene to				
83Europe 0.00^{-1} 0.02Tajo, Calatayud Gy, HaGy, Ha $?$ basinInflationite basinOfflationite offlationite84Europe 0.40^{-1} 0.38Middle Devonian, Morsov BasinMultiple in >20mMultiple horizonsVysotsky et al., 201485Europe 0.39^{-1} 0.36Devonian, Dnieper Donets basinGy, An, Ha, Syl horizonsMultiple horizonsVysotsky et al., 201486Europe 0.39^{-1} 0.36; 0.30- 0.25Upper depressionMultiple horizons gy, An, Ha, Syl in >20mVysotsky et al., 201487Europe 0.30^{-1} 0.25Permian, basinGy, An, Ha, Syl horizons in >20mMultiple horizons in >20mVysotsky et al., 201487Europe 0.30^{-1} 0.25Permian, basinMultiple horizons in >20mVysotsky et al., 201487Europe 0.30^{-1} 0.25Permian, basinMultiple horizons in >20mVysotsky et al., 201487Europe 0.30^{-1} 0.25Permian, basinMultiple horizons in >20mVysotsky et al., 2014			0.06- urope 0.02	Miocene, Ebro,	Gy, Ha		Introprotonio	Litrillo at al
84 Europe 0.40- 0.38 Middle Devonian, Morsov Basin Multiple in >20m Multiple boxin Vysotsky et al., 2014 85 Europe 0.39- 0.36 Devonian, Dnieper Donets basin Gy, An, Ha, Syl Multiple horizons in >20m Vysotsky et al., 2014 86 Europe 0.36; 0.30- 0.25 Devonian, Gy, An, Ha, Syl Multiple horizons in >20m Vysotsky et al., 2014 87 Europe 0.30- 0.25 Permian, Dnieper Donets Gy, An, Ha, Syl Multiple horizons in >20m Vysotsky et al., 2014 87 Europe 0.30- 0.25 Permian, Dnieper Donets Gy, An, Ha, Syl Multiple horizons in >20m Vysotsky et al., 2014 87 Europe 0.30- 0.25 Permian, Dnieper Donets Basin Gy, An, Ha, Syl Multiple horizons in >20m Vysotsky et al., 2014	83	Europe		Tajo, Calatayud		?	basin	1992
basin, Spain84Europe 0.40 - 0.38 Middle Devonian, Morsov BasinMultiple in >20mVysotsky et al., 201485Europe 0.39 - 0.36 Devonian, Devonian, Dieper Donets basinGy, An, Ha, Syl Gy, An, Ha, SylMultiple horizons in >20mVysotsky et al., 201486Europe 0.36 ; 0.30 - 0.25 Devonian, Devonian, Bernian, 0.25 Gy, An, Ha, Syl Gy, An, Ha, SylMultiple horizons in >20mVysotsky et al., 201487Europe 0.30 - 0.25 Permian, Dnieper Donets Gy, An, Ha, SylMultiple horizons in >20mVysotsky et al., 201487Europe 0.30 - 0.25 Permian, Dnieper Donets Gy, An, Ha, SylMultiple horizons in >20mVysotsky et al., 201487Europe 0.30 - 0.25 Permian, Dnieper Donets Gy, An, Ha, SylMultiple horizons in >20mVysotsky et al., 201487Europe 0.30 - 0.25 Permian, basinMultiple in >20mVysotsky et al., 2014				and Teruel				1992
84Europe 0.40 - 0.38 MiddleMultipleMultipleVysotsky et al., 201484Europe 0.38 0.40 - 0.38 Devonian, Morsov BasinGy, An, Ha, Sylhorizons in >20mSG, marine 2014 85Europe 0.39 - 0.36 Devonian, Dnieper Donets basinGy, An, Ha, SylMultiple horizons in >20mVysotsky et al., 201486Europe 0.36 ; 0.30 - 0.25 Devonian, Devonian, depressionGy, An, Ha, SylMultiple horizons in >20mVysotsky et al., 201487Europe 0.30 - 0.25 Permian, Dnieper Donets Gy, An, Ha, SylMultiple horizons in >20mVysotsky et al., 201487Europe 0.30 - 0.25 Permian, Dnieper Donets Gy, An, Ha, SylMultiple horizons in >20mVysotsky et al., 201487Europe 0.30 - 0.25 Permian, Dnieper Donets Gy, An, Ha, SylMultiple horizons in >20mVysotsky et al., 201487Europe 0.30 - 0.25 Permian, basinMultiple horizons in >20mVysotsky et al., 2014				basin, Spain				
84Europe 0.38 Devonian, Morsov BasinGy, An, Ha, Sylhorizons in >20mSG, marine 201485Europe 0.39 - 0.36 Devonian, Dieper Donets basinGy, An, Ha, SylMultiple horizons in >20mVysotsky et al., 201486Europe 0.39 - 0.36 ; 0.30 - 0.25 Upper Devonian, Devonian, 0.36 ; 0.25 Multiple Horizons 0.30 - 0.25 Multiple Permian, Dieper Donets $Gy, An, Ha, SylMultiplehorizonsin >20mVysotsky et al.,201487Europe0.30-0.25Permian,Dieper DonetsGy, An, Ha, SylMultiplehorizonsin >20mVysotsky et al.,201487Europe0.30-0.25Permian,Dieper DonetsBasinMultiplehorizonsSG, marinein >20mVysotsky et al.,201487Europe0.30-0.25Permian,Dieper DonetsBasinMultiplehorizonsin >20mVysotsky et al.,2014$	0.4	F	0.40-	Middle		Multiple		Vysotsky et al.,
Interview Interview 85 Europe 0.39- 0.36 Devonian, Dnieper Donets basin Gy, An, Ha, Syl Multiple horizons in >20m Vysotsky et al., 2014 86 Europe 0.39- 0.36; 0.30- 0.25 Upper depression Multiple for in >20m Vysotsky et al., 2014 87 Europe 0.30- 0.25 Permian, Dnieper Donets Gy, An, Ha, Syl Multiple horizons Vysotsky et al., 2014 87 Europe 0.30- 0.25 Permian, Dnieper Donets Gy, An, Ha, Syl Multiple horizons Vysotsky et al., 2014 87 Europe 0.30- 0.25 Permian, Dnieper Donets Gy, An, Ha, Syl Multiple horizons Vysotsky et al., 2014 1 Latin 0.16- Minas Vieias Marine to	84	Europe	0.38	Devonian, Morsov Bosin	Gy, An, Ha, Syl	horizons	SG, marine	2014
$85 \text{Europe} \begin{bmatrix} 0.39 \\ 0.39 \\ 0.36 \end{bmatrix} \begin{array}{c} \text{Devonian,} \\ \text{Dnieper Donets} \\ \text{basin} \end{bmatrix} \begin{array}{c} \text{Gy, An, Ha, Syl} \\ \text{horizons} \\ \text{in } > 20m \end{bmatrix} \begin{array}{c} \text{SG, marine} \\ \text{SG, marine} \\ 2014 \end{bmatrix} \begin{array}{c} \text{Vysotsky et al.,} \\ 2014 \end{bmatrix} \begin{array}{c} \text{Output} \\ Out$				Upper		111 ~ 20111		
85Europe 0.36 Dnieper Donets basinGy, An, Ha, Sylhorizons in >20mSG, marine 2014201486Europe 0.36 ; 0.36 ; 0.30 - 0.25 Devonian, depressionGy, An, Ha, Sylhorizons horizons in >20mSG, marine $0.20m$ Vysotsky et al., 201487Europe 0.30 - 0.25 Permian, Dnieper Donets 0.25 Multiple permian, Dnieper Donets 0.25 Multiple $0.25m$ Vysotsky et al., 201487Europe 0.30 - 0.25 Permian, Dnieper Donets 0.25 Multiple $0.25m$ Vysotsky et al., 2014 87Europe 0.30 - 0.25 Permian, Dnieper Donets $0.25m$ Multiple $0.25m$ Vysotsky et al., 2014			0.39-	Devonian.		Multiple		Vysotsky et al
basin in >20m 86 Europe 0.39- 0.36; 0.30- 0.25 Upper Devonian, 0.30- 0.25 Multiple borizons depression Multiple horizons in >20m Vysotsky et al., 2014 87 Europe 0.30- 0.25 Permian, Dnieper Donets basin Multiple borizons in >20m Vysotsky et al., 2014 87 Europe 0.30- 0.25 Permian, Dnieper Donets basin Multiple in >20m Vysotsky et al., 2014	85	Europe	0.36	Dnieper Donets	Gy, An, Ha, Syl	horizons	SG, marine	2014
86Europe 0.39 - $0.36;$ 0.30 - 0.25 Upper Devonian, 0.30 - 0.25 Multiple horizons 0.25 Vysotsky et al., 2014 87Europe 0.30 - 0.25 Permian, Dnieper Donets basinMultiple horizons 0.25 Vysotsky et al., 2014 87Europe 0.30 - 0.25 Permian, Dnieper Donets basinMultiple in >20mVysotsky et al., 2014				basin		in>20m		
86 Europe 0.36; 0.30- 0.25 Devonian, Gy, An, Ha, Syl horizons in >20m SG, marine SG, marine Vysotsky et al., 2014 87 Europe 0.30- 0.25 Permian, Dnieper Donets Multiple Gy, An, Ha, Syl Multiple horizons Vysotsky et al., 2014 87 Europe 0.30- 0.25 Permian, Dnieper Donets Multiple Gy, An, Ha, Syl Multiple horizons Vysotsky et al., 2014 1 Latin 0.16- Minas Vieias Marine to			0.39-	Upper		Multiple		
87 Europe 0.30- 0.25 Permian, basin Multiple in >20m Vysotsky et al., 2014 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	86	Furone	0.36;	Devonian,	Gv An Ha Svl	horizons	SG marine	Vysotsky et al.,
0.25 depression 87 Europe		Europe	0.30-	Pripyat	Gy, 111, 114, 691	in >20m	SG, marine	2014
87 Europe 0.30- 0.25 Permian, Dnieper Donets Gy, An, Ha, Syl Multiple horizons Vysotsky et al., 2014 Latin 0.16- Minas Vieias Marine to			0.25	depression				
87 Europe Drieper Donets Gy, An, Ha, Syl horizons SG, marine 0.25 basin in >20m 2014	07	E	0.30-	Permian,	C A II - C 1	Multiple	SC main	Vysotsky et al.,
Latin 0.16- Minas Viejas Marine to	8/	Europe	0.25	Dnieper Donets	Gy, An, Ha, Syl	in >20m	SG, marine	2014
		Latin	0 16-	Minas Vieias		III ~ 20111	Marine to	
88 Gy, An, Ha SG Guzman, 1962 America 0.14 Formation, Late lagoonal	88	America	0.14	Formation, Late	Gy, An, Ha	SG	lagoonal	Guzman, 1962

			Jurassic, Sierra				
			Madre Oriental,				
			Mexico				
			Upper Jurassic,				
	Latin	0.16-	Mexican Gulf				
89	America	0.14	Coastal Plain,	Gy, An, Ha	SG	Marginal basin	Guzman, 1962
			Mexico				
			Late Jurassic to				
	Latin	0.16-	Early				Iturralde-
90	Amorion	0.13	Cretaceous	Gy, Ha	SG	marine	Vinent 2006
	7 mierieu	0.15	Caribbean				Villent, 2000
	Maditarra		Massinian				
	noon and	0.07	Solino Coint	Cy Ha An Dalma		SC Decidenting	Mu"llar and
91	Diagle	0.07-	Saine Gaint,	Gy, Ha, All, Dol-ps-	10 ⁶ km ³	deen basin	Muller and
	Бласк	0.05	Late Milocene,	An		deep basin	Hsu , 1987
	Sea		Mediterranean				
			Birba				
	Middle- East		Formation,			SG, marginal to	
		0.63-	U/Athel		Multiple	restricted	Ramseyer et al.,
92		0.50	Formation, Al	Ha, An, Ca-ps-Ha	horizons	marine	2013
			Noor Formation,		in > 200m	environments	
			South Oman				
			Salt Basin				
			Miocene,				
		0.02- present	Pleistocene,	Ha, Gy, Eva	Multiple	SG, Marine	
02	Middle-		Danakil		horizons in > 200m		Hutchinson and
95	East		depression,				Engels, 1970
			Ethiopian rift,				
			Red Sea Basin				
			Tuzluca				
			Formation,				Palmer et al.,
94	Middle-	0.04-	Kagizman and	Gy, Ha	SG	Marginal marine	2004; Varol et
	East	0.01	Tuzluca basin,				al., 2015
			Anatolian basins				
			Argo Formation.				
	North	0.23-	Late Triassic to			Intracratonic	Pe-Piper et al.
95	Atlantic-	0.18	Early Jurassic	Ba, Gy, An	SG	basin	2015
	Canada	0.10	Scotian Basin			ousin	2010
			Motava		Multiple		
04	Russia	0.68-	Formation	An, as layers; Ca-ps-	harizona	SG, non-marine	Vysotsky et al.,
90		ussia 0.57	Formation,	Gy; Ps-Ha	in > 20m	to marine	2014
					in > 20m	86	
		0.54	Jonov		Multiple	SG, non-marine	T 7 (1) 1
97	Russia	0.54-	Formation,	Ha, Gy, as layers; Ca-	(16)	to	vysotsky et al.,
		0.51	Huchtuisk	ps-Gy	horizons marine, >60000	2014	
			Formation,		in > 400m	0 km ³	

			Eastern Siberia, Ussoli Formation, Lower Cambrian				
98	Russia	0.30- 0.25	Permian, Ural depression	Gy, An, Ha, Syl	Multiple horizons in >20m	SG, marine	Vysotsky et al., 2014
99	South America	0.15- 0.08	Caqueza Group, Villeta Group, Cretaceous, Cordillera Oriental, Columbia	An, Gy	SG, Multiple horizons in > 5m	foreland basin	McLaughlin, 1972
100	South America	0.28- 0.25	Rio Bonito Formation, Permian, Parana Basin, Brazil	Ha, Gy	?	Intracratonic basin	Ketzer et al., 2009
101	South America	0.28- 0.25	Motuca Formation, Parnaiba Basin, Brazil	Ha, Gy	SG, ?	Intracratonic basin	Abrantes Jr et al., 2019
102	South America	0.13- 0.06	Codocedo Formation, Quebrada Monardes Formation, Atacama region	Gy, An	?	Marginal marine	Bell and Suarez, 1993
103	South America	0.04- present	Purilactis Group, Oligocene- Pliocene, Salar de Atacama basin	Gy, An	SG	Intracratonic basin	Mpodozis et al., 2005
104	South America	0.06- present	Cenozoic, Central Andes	Gy, Ha, An	SG	Intracratonic basin	Diaz, 1988
105	South America	0.30- 0.25	Permian, Amazon Basin, Brazil	Gy	?	?	Vysotsky et al., 2014
106	Southeast Asia	0.10- 0.06	Late Cretaceous, Laos-Khorat basin	Gy, An	?	Marginal marine	Liang and Xu, 2022
107	Southeast ern Asia	0.10- 0.06	Upper Cretaceous,	Gy, An, Syl	Multiple horizons	SG	Vysotsky et al., 2014

			Nam Kam Basin		in >20m		
108	USA	0.46- 0.44	Ordovician Galena Group, Illinois basin	Gy, An	?	Marginal basin	Stueber and Walter, 1994
109	USA	0.43- 0.42	Niagara and Salina Group, Silurian, Michigan basin	Ha, Gy, Car, Ca-ps-Gy	SG, >500m thick	Intracratonic sedimentary basin	WilsonandLong,1993;ElliottandAronson,1993
110	USA	0.42- 0.40	DetroitRiverGroup,LowerDevonian,Michigan basin	Gy, Ha, An	SG, Multiple horizons in > 30m	Intracratonic basin	Wilson and Long, 1993
111	USA	0.43- 0.41	Salina Group, Appalachian basin	Ha, Gy, Car, Ca-ps-Gy	SG, >500m thick	Intracratonic sedimentary basin	Johnson, 1997
112	USA	0.36- 0.32	Mississippian Michigan Formation, Michigan basin	Gy	SG, Multiple horizons in > 1-10m	Intracratonic sedimentary basin	Johnson, 1997
113	USA	0.33- 0.32	St. Louis Formation, Illinois basin	Evaporite karst	?	Intracratonic basin	McGrain and Helton, 1964
114	USA	0.41- 0.36	Wapsipinicon Group, Cedar Valley Group, Devonian, Forest City basin	Gy, An, Evaporite karst	Multiple horizons in > 1-10m	Intracratonic basin	Witzke et al., 1988; Cody et al., 1997
115	USA	0.20- 0.15	Fort Dodge Formation, Jurassic, Forest City basin	Evaporite karst	Multiple horizons in > 1-10m	Intracratonic basin	Witzke et al., 1988; Cody et al., 1997
116	USA	0.17- 0.15	Louann Salt and Salt Domes, Gulf Coast basin	Ha, Gy, Evaporite karst	Multiple horizons in > 500m	SG, marine	Babel and Schreiber, 2014
117	USA	0.27- 0.25	Schnebly Hill Formation, Holbrook basin	Ha, Gy, Evaporite karst	?	SG	Neal and Johnson, 2002
118	USA	0.32- 0.30	Hermosa Formation, Paradox basin	Ha, Evaporite karst	?	Salt anticline	Hite and Lohman, 1973; Doelling, 1988
119	USA	0.17- 0.15	Jurassic Arapien Formation,	Ha, Evaporite karst	?	Salt anticline	Willis, 1986; Witkind, 1994

			Paradox basin				
120	USA	0.26- 0.25	Castile Formation, Salado Formation, Rustler Formation, Delaware basin	Gy, Ha, An, Evaporite karst	SG, Multiple horizons in > 500m	Intracratonic basin	Dean and Johnson, 1989; Kirkland and Evans, 1980
121	USA	0.26- 0.25	Castile Formation, Salado Formation, Rustler Formation, Midland basin	Gy, Ha, An, Evaporite karst	SG, Multiple horizons in > 500m	Intracratonic basin	Dean and Johnson, 1989; Kirkland and Evans, 1980
122	USA	0.27- 0.25	Artesia Group, San Andres Formation, New Mexico	Gy, Ha, An, Evaporite karst	SG, Multiple horizons in > 100m	Intracratonic basin	Forbes and Nance, 1997
123	USA	0.27- 0.25	Blaine Formation, Cloud Chief Formation, Texas and Oklahoma	Gy, Ha, An, Evaporite karst	SG, Multiple horizons in > 5m	Intracratonic basin	Johnson, 1990, 1992
124	USA	0.14- 0.10	Terrett Formation, Cretaceous, Central Texas	Gy, Evaporite karst	>10m	Intracratonic basin	Warren et al., 1990
125	USA	0.30- 0.25	Permian, Palo Duro Basin, Texas	Gy, An	SG	Intracratonic basin	Gu and Eastoe, 2021
126	USA	0.25- 0.20	Spearfish Formation, South Dakota,	Gy, Evaporite karst	~5m	Intracratonic basin	Rahn and Davis, 1996; Davis and Rahn, 1997
127	USA	0.36- 0.32	Madison Formation, Wyoming	Gy, Evaporite karst	?	Intracratonic basin	Sando, 1988
128	USA	0.28- 0.25	Permian, Appalachian basin	An, Gy	?	Intracratonic basin	Rowen et al., 2015

129 USA	0.28- 0.26	Opeche Shales, Nippewalla Group, Ochoan Series, Summer Group, Chase Group, Wolfcampian Formation, Salado Formation, Permian, Palo Duro Basin, Denver Basin, Central Basin, Delaware Basin, Midland Basin, North Amercia Sain,	Ha, Gy, An, Syl, Ca	SG, Multiple horizons in > 100m	Intracratonic basin	Benison et al., 1998; Engle et al., 2016	
130 USA	0.23- 0.19	Newark Supergroup, North Amercia grabens	Gy	?	Intracratonic basin	Smoot et al., 1991	
131 USA	0.14- 0.10	Edwards Group, Lower Cretaceous, Gulf Basin, Texas	Gy, An	SG	Marginal marine	Land and Prezbindowski, 1981; Hanor and Mcintosh, 2007	
132 USA	0.02- present	Late Great Salt Lake, Picacho basin, Safford basin, Tucson basin, SE North Amercia	Gy, Ha	?	Intracratonic basin	Kowalewska and Cohen, 1998	
2160	Saline Gian	ts (SG), with volu	ume > 1000km3;				
2161	An, anhydri	te;					
2162	Ank-ps-Gy,	ankerite pseudon	norphs after gypsum;	,			
2163	Ba, barite; H	Ba-ps-Gy, barite p	seudomorphs after g	ypsum;			
2164	Ca-Evp, calcitized evaporites; Ca-ps-Ar, carbonate pseudomorphs after aragonite;						
2165	Ca-ps-An, c	arbonate pseudon	norphs after anhydrit	te;			
2166	Ca-ps-Gy, c	arbonate pseudon	norphs after gypsum	;			
2167	Ca-ps-Gy or	r -Ar, carbonate p	seudomorphs after g	ypsum or arag	jonite;		
2168	Dol-ps-An,	dolomite pseudor	norphs after anhydri	te;			
2169	Dol-ps-Gy,	dolomite pseudon	norphs after gypsum	; Gy, gypsum;			

2170 Kao-ps-Gy or An, kaolinite pseudomorphs after gypsum or anhydrite;

- 2171 ps-An, pseudomorphs after anhydrite;
- 2172 ps-Evp, pseudomorphs after evaporites;
- 2173 ps-Gy, pseudomorphs after gypsum;
- 2174 ps-Mir, pseudomorphs after mirabilite;
- 2175 ps-Nah, pseudomorphs after nahcolite;
- 2176 ps-Nat, pseudomorphs after natron;
- 2177 ps-Ha, pseudomorphs after halite;
- 2178 ps-Sh, pseudomorphs after shortite;
- 2179 ps-Tro, pseudomorphs after trona;
- 2180 Q-ps-An, quartz pseudomorphs after anhydrite;
- 2181 Q-ps-Gy, quartz pseudomorphs after gypsum;
- 2182 sc-breccias, solution collapse breccias;
- 2183 Si-Evp, silicified evaporites;
- 2184 Si-ps-An, silicified pseudomorphs after anhydrite;
- 2185 Si-ps-Ar, silicified pseudomorphs after aragonite;
- 2186 Si-ps-Gy, silicified pseudomorphs after gypsum;
- 2187 Si-ps-Nah, silicified pseudomorphs after nahcolite;
- 2188 Si-tr-An, quartz filled traces after anhydrite;
- 2189 Si-tr-Gy, quartz filled traces after gypsum.