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correlation is weaker, which is expressed in the weighted-
difference (WD) vector (Eq. 2). The larger the number of
proxy maps used for downscaling emissions from a partic-
ular sector, the stronger the correlation generally is. This is
due to the damping effect on outliers. This results in the fol-5

lowing set of equations:

STDc,m,g = fc,m ·Em,g · σm, (1)

WDc,m =
∣∣∣∣ STDc,m,CO2∑

(Wc,m,CO2)/n
−

STDc,m,CO∑
(Wc,m,CO)/n

∣∣∣∣ , (2)

PCc =
stdev(WDc,m)

n
and PFc =

max(WDc,m)
n

, (3)

where g is one of the two trace gases (CO or CO2), f is the10

fraction of a proxy map in a grid cell, and n is the number
of proxy maps contributing to a grid cell. Note that the pre-
dictor is slightly different for GNFR C and GNFR F, being
based on the standard deviation and maximum value, respec-
tively, of the WD values of the proxy maps contributing to15

each grid cell. We define a relationship between the predic-
tor and the Monte Carlo-based correlation coefficient to cal-
culate the CO : CO2 error correlation per grid cell based on
the predictor. For the Monte Carlo method, an ensemble of
gridded emissions was produced by randomly perturbing the20

grid cell emissions of CO2 and CO for each proxy map, fol-
lowing the defined uncertainty ranges. The perturbations are
applied equally to CO2 and CO emissions, assuming a full er-
ror correlation for each proxy map, which is a valid assump-
tion at the grid cell level. The correlation coefficient results25

from a linear regression of the total CO2 and CO emissions
per grid cell for a given GNFR sector. The results are shown
in Sect. 3.1 and the Supplement.

For the other sectors, we estimate a fixed value for all grid
cells. For the public-power and shipping sectors, the correla-30

tion is likely to be very strong since there is little variation in
sub-sector activities. Therefore, we set the error correlation
to 0.95. For industry, the correlation is much smaller due to
different sub-processes taking place, and we set the error cor-
relation to 0.5.35

2.2.3 Uncertainty propagation

We have now gathered all relevant information on the uncer-
tainties, which needs to be propagated to match the level of
detail pertaining to the dataset on prior emissions.

The country-level uncertainties represent a 95 % CI (nor-40

malized to be unitless), which is given either as one value or
as lower and upper values. For the latter, when the lower and
upper values show less than a 5 % difference, we use a Gaus-
sian uncertainty distribution; otherwise, we use a log-normal
uncertainty distribution. For CO, the uncertainty distribution45

is often log-normal. When the reported standard deviation
exceeds 30 %, we also use a log-normal uncertainty distribu-
tion to avoid obtaining negative values. We use uncertainty
propagation to estimate the uncertainty in emissions from the

standard deviations (σ ) in AD and EFs: 50
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To examine the importance of error correlations in AD and
EFs, we performed a sensitivity analysis on the European
emissions (see the Supplement). We found that including er-
ror correlations in AD and EFs has limited importance, and, 55

henceforth, we ignore these correlations.
Since these uncertainty error propagation equations as-

sume Gaussian errors, we need to translate log-normal error
distributions into equivalent Gaussian distributions. We ap-
proximate the Gaussian standard deviation of a log-normal 60

distribution using

σX
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4
, (5)

where limupper is the 97.5 percentile and limlower is the
2.5 percentile of the log-normal distribution. Note that the
combination of Gaussian and log-normal functions does not 65

result in a log-normal function because the result can be neg-
ative. However, here we assume that the combined distribu-
tion is log-normal because the Gaussian uncertainty is often
relatively small compared to the log-normal uncertainty.

The sub-sector-level emission uncertainty estimates are 70

propagated to obtain an uncertainty estimate at the GNFR
level:

σE,agg =

√√√√ n∑
i=s

σ 2
E,sub,s, (6)

where the subscript “agg” refers to the aggregated emissions
and uncertainties and the subscript “sub” refers to the sub- 75

sectors that are part of the aggregated sector. To use Eq. (6),
we need the emission budgets because this equation uses ac-
tual standard deviations instead of normalized ones.

These simple uncertainty propagation functions work well
under specific circumstances. When uncertainties follow a 80

non-Gaussian distribution or are correlated, a Monte Carlo
simulation can provide a more reliable estimate of the fi-
nal uncertainty. However, a Monte Carlo approach is also
computationally demanding when using such an extensive
dataset. We tested and compared both approaches for se- 85

lected countries and sectors. Detailed information can be
found in the Supplement, but the main conclusion is that
we can mimic the results from the Monte Carlo simulation
well with the uncertainty propagation functions. The meth-
ods show a similar order of magnitude and variability be- 90

tween countries and trace gases. Although there is no perfect
match between the two methods, we argue that this source of
uncertainty is negligible compared to the uncertainty in the
prior uncertainty data.

For the spatial proxies, the same set of equations is ap- 95

plied, but to calculate the standard deviations, weighted
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