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Abstract. The gross primary production (GPP) of the terrestrial biosphere is a key source of variability in the global carbon

cycle. It is modulated by hydrometeorological drivers (i.e., shortwave radiation, air temperature, vapor pressure deficit and soil

moisture) and the vegetation state (i.e., canopy greenness, leaf area index) at instantaneous to interannual timescales. In this

study, we set out to evaluate the ability of GPP-models to capture this variability. 11 models were considered, which rely purely

on remote sensing data (RS-driven), meteorological data (meteo-driven, e.g., dynamic global vegetation models; DGVMs) or5

a combination of both (hybrid, e.g., light-use efficiency models; LUE). They were evaluated using in situ observations at 61

eddy covariance sites, covering a broad range of herbaceous and forest biomes.

The results illustrated how the determinant of temporal variability shifts from meteorological variables at sub-seasonal timescales

to biophysical variables at seasonal and interannual scale. RS-driven models lacked the sensitivity to the dominant drivers at

short timescales (i.e., shortwave radiation and vapor pressure deficit), and failed to capture the decoupling of photosynthesis10

and canopy greenness (e.g., in evergreen forests). Conversely, meteo-driven models accurately captured the variability accross

timescales, despite the challenges in the prognostic simulation of the vegetation state. Largest errors were found in water-

limited sites, where the accuracy of the soil moisture dynamics determines the quality of the GPP estimates. In arid herbaceous

sites, canopy greenness and photosynthesis were more tightly coupled, resulting in improved results with RS-driven models.

Hybrid models capitalized on the combination of RS observations and meteorological information. LUE models were among15

the most accurate models to monitor GPP across all biomes, despite their simple architecture.

Overall, we conclude that the combination of meteorological drivers and remote sensing observations is required to yield an

accurate reproduction of the spatio-temporal variability of GPP. To further advance the performance of DGVMs, improvements

in the soil moisture dynamics and vegetation evolution are needed.
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1 Introduction

Within the global carbon cycle, the exchange of carbon via photosynthesis and respiration in the terrestrial biosphere repre-

sents one of the largest and most dynamic components. Roughly 130 PgC/y flows through the plant stomata for gross primary

productivity (GPP), from the total 875 PgC stored in the atmosphere (Ciais et al., 2013; Friedlingstein et al., 2022). During

the decade 2012-2021, 3.1± 0.6 PgC/y was captured in the net terrestrial biosphere sink (i.e., gross primary productivity -25

ecosystem respiration). With an interannual variability of 1 PgC/y, it is considered the most variable element in the global

carbon cycle (Friedlingstein et al., 2022). Despite the substantial role of GPP in the global carbon cycle, quantifying this flux

remains associated with large uncertainties (Anav et al., 2015).

The temporal variability of GPP is largely modulated by the vegetation state (i.e., canopy greenness, leaf area index, etc.),

and hydrometeorological conditions (Beer et al., 2010; Delpierre et al., 2012; Anav et al., 2015; Baldocchi et al., 2018).30

Consequently, most GPP models rely on remotely-sensed (RS) observations of the vegetation, meteorological forcings, or a

combination thereof (Xiao et al., 2019; Friedlingstein et al., 2022; Jung et al., 2020). The vegetation state can be observed

via remote sensing, making it an attractive approach to estimate global GPP dynamics. Vegetation indices (VI), such as the

normalized difference vegetation index (NDVI; Rouse Jr et al., 1974), enhanced vegetation index (EVI; Huete et al., 2002)

or near-infrared reflectance of vegetation (NIRv; Badgley et al., 2017), are indicators of the presence of (green) vegetation.35

Given their robustness and the availability of relatively long timeseries, the potential of these VI as a (linear) proxy for GPP

has been explored by various studies (Tucker et al., 1986; Xiao et al., 2019; Huang et al., 2019; Balzarolo et al., 2019). Ad-

vancing beyond this, machine learning methods have been used to better exploit the potential of optical RS data in the recent

decade (e.g., FluxCom; Jung et al., 2020), and the potential of new RS proxies with a more direct link to photosynthesis has

been established, e.g., solar-induced chlorophyll fluorescence (SIF; Frankenberg et al., 2011; Liu et al., 2017; Pickering et al.,40

2022). The challenge associated with these models is that the relation between vegetation state and photosyntesis can decouple

due to other limiting factors, such as soil moisture, temperature, and shortwave radiation (Walther et al., 2016; Hu et al., 2022).

Opposed to RS-driven models, dynamic global vegetation models (DGVM) are driven largely by meteorological forcings.

They are process-based models in which the exchanges of energy, water and carbon between the terrestrial biosphere and the

atmosphere are simulated in a mechanistic manner. These models allow to assess the terrestrial carbon assimilation in the45

global carbon budget, or to investigate historic and future trends under a changing climate (Friedlingstein et al., 2022). The key

challenge in these highly complex models is the correct representation of all underlying processes, including the dynamics of

the canopy (Sitch et al., 2015; Fatichi et al., 2019). The entangled nature of these processes, and the resulting disagreements

in the model conceptualizations contribute to the large spread between these models and uncertainty associated with the land

surface sink in Earth System Models (Haughton et al., 2016; Collier et al., 2018; Seiler et al., 2022).50

In the frame of this study, hybrid models are models that rely on a combination of RS observations of the vegetation state and

meteorological forcings. The light use efficiency (LUE) model, proposed by Monteith (1972) is one of the most elementary for-

mulations. Thanks to its compatibility with RS observations and limited input requirements, this semi-mechanistic approach is

widely used and available in many flavours and degrees of complexity (Pei et al., 2022). Examples include the MODIS MOD17
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GPP product (Running et al., 2004) or the LSA SAF GPP product (Satellite Application Facility on Land Surface Analysis;55

Martínez et al., 2020). These models benefit from the complementary information in RS data and meteorological forcings, but

remain sensitive to uncertainties associated with RS observations of dense vegetation and the incomplete representation of soil

moisture stress (Stocker et al., 2018; Xiao et al., 2019; Bloomfield et al., 2023)

The impact of vegetation and hydrometeorological conditions on the temporal variability of GPP ranges from instantaneous to

interannual timescales (Stoy et al., 2009; Mahecha et al., 2010; Linscheid et al., 2020). As the available GPP models vary in60

architecture, in the representation of underlying processes (or absence thereof) and -eminently- in their forcings, their short-

comings vary across biomes and temporal scales (Anav et al., 2015; Mahecha et al., 2010; Xiao et al., 2019). Depending on

their application, models are required to give a good estimate of annual variability, response to climate extremes, or changes

in phenology. In order to adequately capture these temporal patterns, the time-scale dependent sensitivity of GPP to its drivers

needs to be represented accurately (Delpierre et al., 2012; Linscheid et al., 2021). Model evaluation studies or intercomparison65

studies are in this regard generally restricted to a single model type (RS-driven, meteo-driven or hybrid), driver and/or timescale

(Mahecha et al., 2010; Delpierre et al., 2012; Shao et al., 2015). Despite important efforts made in this domain, most notable

with the International Land Model Benchmarking system (ILAMB; Collier et al., 2018), it remains currently largely unclear

what the inter-model trade-offs are.

The overall objective of this study is to evaluate the ability of various modelling approaches (RS-driven, meteo-driven or70

hybrid) to capture the temporal variability of GPP. By comparing the simulations of GPP with in situ eddy covariance obser-

vations, we aim to assess 1) their performance across a broad range of biomes and temporal scales and 2) their sensitivity to

drivers of GPP (i.e., vegetation state and hydrometeorological conditions).

2 Materials & Methods

2.1 Test sites75

The evaluation of the GPP models was performed using in situ observations from eddy covariance stations. Test sites were se-

lected from the FLUXNET2015 dataset (Pastorello et al., 2020) and the ICOS ‘2018 drought initiative’ dataset (Drought 2018

Team and ICOS Ecosystem Thematic Centre, 2019). It was ensured that the sites had a homogeneous land cover, which could

be captured by the remote sensing products. A site was considered homogeneous when in 1×1 km area surrounding the station

location was dominated by a unique vegetation type (i.e., grassland, deciduous forest, evergreen forest). The site homogeneity80

was visually evaluated using high-resolution satellite images in Google Earth. Additionally, the sites were required to have

a minimum of 3 years of GPP data since 01/01/2007 (i.e., the start of the SIF timeseries). This resulted in a selection of 61

sites, listed in Tab. 1. The dataset contained 461 years worth of GPP data, in which evergreen needleleaf forests (ENF) and the

mid-latitude temperature-driven hydro-climatic biome (MidL_T; Papagiannopoulou et al., 2018) were dominantly represented.

85
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ID Name Period PFT HCB

AU-ASM Alice Springs 2009 - 2013 ENF SubTr_W

AU-Cpr Calperum 2009 - 2014 SAV Trans_W

AU-DaP Daly River Savanna 2006 - 2013 GRA Trans_E

AU-DaS Daly River Cleared 2007 - 2014 SAV Trans_E

AU-Dry Dry River 2007 - 2014 SAV Trans_E

AU-How Howard Springs 2000 - 2014 WSA Trans_E

AU-Stp Sturt Plains 2007 - 2014 GRA Trans_E

AU-Tum Tumbarumba 2000 - 2014 EBF Trans_E

BE-Bra Brasschaat 1995 - 2018 MF MidL_T

BE-Lon Lonzée 2003 - 2018 CRO MidL_T

BE-Vie Vielsalm 1995 - 2018 MF MidL_T

BR-Sa1 Santarém-Km67 2002 - 2012 EBF Tropic

CA-Gro Ontario - Groundhog River 2003 - 2015 MF Bor_T

CH-Lae Lägeren 2003 - 2018 MF MidL_T

CZ-BK1 Bílý Kříž forest 2003 - 2018 ENF MidL_T

CZ-Lnz Lanžhot 2014 - 2018 MF MidL_T

CZ-RAJ Rájec 2011 - 2018 ENF MidL_T

CZ-Stn Štítná 2009 - 2018 DBF MidL_T

DE-Geb Gebesee 2000 - 2018 CRO MidL_T

DE-Hai Hainich 1999 - 2018 DBF MidL_T

DE-Hte Hütelmoor 2008 - 2018 WET MidL_T

DE-Kli Klingenberg 2003 - 2018 CRO MidL_T

DE-Obe Oberbärenburg 2007 - 2018 ENF MidL_T

DE-RuS Selhausen Jülich 2010 - 2018 CRO MidL_T

DE-RuW Wustebach 2009 - 2018 ENF MidL_T

DE-Seh Selhausen 2006 - 2010 CRO MidL_T

DE-Spw Spreewald 2009 - 2014 WET MidL_T

DE-Tha Tharandt 1995 - 2018 ENF MidL_T

DK-Sor Sorø 1995 - 2018 DBF MidL_T

ES-Abr Albuera 2014 - 2018 SAV Trans_E

ES-LM1 Majadas del Tietar North 2013 - 2018 SAV Trans_E

ID Name Period PFT HCB

ES-LM2 Majadas del Tietar South 2013 - 2018 SAV Trans_E

FI-Hyy Hyytiälä 1995 - 2018 ENF Bor_WT

FI-Let Lettosuo 2008 - 2018 ENF Bor_WT

FI-Var Värriö 2015 - 2018 ENF Bor_E

FR-Fon Fontainebleau-Barbeau 2004 - 2014 DBF MidL_T

FR-Hes Hesse 2013 - 2018 DBF MidL_T

FR-Pue Puéchabon 1999 - 2014 EBF Trans_E

GF-Guy Guyaflux (French Guiana) 2004 - 2015 EBF Tropic

IT-Cp2 Castelporziano2 2011 - 2018 EBF Trans_E

IT-SR2 San Rossore 2 2012 - 2018 ENF Trans_E

IT-SRo San Rossore 1998 - 2012 ENF Trans_E

NL-Loo Loobos 1995 - 2018 ENF MidL_T

RU-Fy2 Fyodorovskoye dry spruce 2014 - 2018 ENF Bor_WT

RU-Fyo Fyodorovskoye 1997 - 2018 ENF Bor_WT

SE-Deg Degerö 2000 - 2018 WET Bor_WT

SE-Htm Hyltemossa 2014 - 2018 ENF MidL_T

SE-Lnn Lanna 2013 - 2018 CRO MidL_T

SE-Nor Norunda 2013 - 2018 ENF MidL_T

SE-Ros Rosinedal-3 2013 - 2018 ENF Bor_WT

SE-Svb Svartberget 2013 - 2018 ENF Bor_WT

US-ARM Southern Great Plains 2003 - 2013 CRO MidL_W

US-Ha1 Harvard Forest EMS (HFR1) 1991 - 2013 DBF MidL_W

US-Me6 Metolius Young Pine Burn 2010 - 2015 ENF Trans_E

US-MMS Morgan Monroe State Forest 1999 - 2015 DBF MidL_W

US-SRC Santa Rita Creosote 2008 - 2015 OSH Trans_E

US-SRG Santa Rita Grassland 2008 - 2015 GRA Trans_E

US-SRM Santa Rita Mesquite 2004 - 2015 WSA Trans_E

US-UMB UMich Biological Station 2000 - 2015 DBF Bor_T

US-UMd UMBS Disturbance 2007 - 2015 DBF Bor_T

ZA-Kru Skukuza 1999 - 2013 SAV Trans_W

Table 1. Selection of 61 FLUXNET/ICOS sites used in this study. Classification by plant functional type (PFT; evergreen broadleaf forest:

EBF, evergreen needleleaf forest: ENF, deciduous broadleaf forest: DBF, mixed forest: MF, wetland: WET, grassland: GRA, open shrubland:

OSH, savanna: SAV, woody savanna: WSA, cropland: CRO) and hydroclimatic biome (HCB; Boreal / Mid-Latitude / Transitional / Sub-

tropical / Tropical + Energy / Water / Temperature-driven; Papagiannopoulou et al., 2018). Note: only data beginning from 2007 was used

in this study. All sites with data until 2018 are taken from the ICOS 2018 drought initiative, data for the other sites was collected from the

FLUXNET2015 dataset.

All data was pre-processed with the ONEFLUX pipeline (Pastorello et al., 2020). The observed net ecosystem exchange

was partitioned in the ecosystem respiration and GPP components using the daytime fluxes and a constant friction veloc-

ity threshold across years (labeled as GPP_DT_CUT in the database). Depending on site data quality, the reference GPP
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(GPP_DT_CUT_REF) or mean GPP (GPP_DT_CUT_MEAN) method was selected.

Daily data with a quality flag indicating poor gapfilling (QF < 0.1) were discarded in the analysis. It was ensured that the same90

time periods were considered for all models at each site.

The test sites were classified per plant functional type (PFT; taken from the FLUXNET/ICOS IGBP metadata) and hydro-

climatic biome (HCB; Papagiannopoulou et al., 2018), see Tab. 1. The distribution of the sites across PFT and HCB is shown

in the supplement material (Tab. A1 and A2). Seven PFT-HCB classes were selected for extra detailed analysis, given their

importance and/or data quantity: evergreen broadleaf forest in tropical biome (EBF-Tropic), deciduous broadleaf forest in95

mid-latitude temperature-driven biome (DBF-MidL_T), evergreen needleleaf forest in boreal water-temperature driven biome

(ENF-Bor_WT), evergreen needleleaf forest in mid-latitude temperature-driven biome (ENF-MidL_T), evergreen needleleaf

forest in transitional energy-driven biome (ENF-Trans_E), savanna in transitional energy-driven biome (SAV-Trans_E) and

croplands in mid-latitude temperature-driven biome (CRO-MidL_T).

100

2.2 Meteorological data

Incoming shortwave radiation, long-wave radiation and precipitation data, required by the meteo-driven and hybrid GPP mod-

els, were taken from the half-hourly tower observations. Due to large gaps in the atmospheric humidity timeseries, ERA5

was used as an alternative source for air temperature, atmospheric humidity, wind speed, and atmospheric pressure (Hersbach

et al., 2020). It was verified that the impact of the use of ERA5 instead of local observations was limited for these variables105

(supplement material Fig. A2, Tab. A3 and Tab. A4). The forcing from ERA5 (hourly resolution) was linearly interpolated to

match the 30 minute temporal resolution from the tower observations. The atmospheric CO2 concentration was taken from the

TRENDY timeseries (Sitch et al., 2015, https://sites.exeter.ac.uk/trendy).

2.3 Remote sensing data

The simplest models considered were the linear regressions based on remote sensed proxies of GPP, including VI and SIF.110

Remote sensing data was gathered from SPOT Vegetation+PROBA-V (SPV) for each tower location (the nearest pixel). This

data product has a 10-day interval and 1km resolution. The SPV decadal synthesis product is derived using the Maximum

Value Composite after quality check of SPV native data and give the best reflectance value on the 10-day time. Though daily

data is available, it was not used here. The use of daily data would introduce gaps and noise in the SPV time series (in case

of cloudy conditions at satellite overpass time, for instance) while not adding significant information on the vegetation status115

throughout the study period.

Derived from the SPV data, the normalized difference vegetation index (NDVI), the enhanced vegetation index (EVI) and near

infrared of vegetation (NIRv) according to Tucker (1979),Huete et al. (2002) and Badgley et al. (2017):

NDVI =
R770−800 −R630−670

R770−800 +R630−670
(1)
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EVI = 2.5
R770−800 −R630−670

R770−800 +6 ·R630−670 +7.5 ·R460−475 +1
(2)120

NIRv =NDV I ·R770−800 (3)

where R is the reflectance between the wavelengths in the subscript (in nm). Wavelength 770-800 nm was used for the NIR

reflectance, 630-670 nm for red reflectance, and 460-475 nm for blue band reflectance.

Additionally, the canopy structure-related near-infrared reflectance of vegetation multiplied by incoming sunlight (NIRvP) was

included (Dechant et al., 2022). It was calculated as follows:125

NIRvP = NIRv ·PAR (4)

where PAR is the daily mean photosynthetically active radiation, calculated as a constant fraction (0.45) of the in-situ in-

coming shortwave radiation observations (Howell et al., 1983). For remotely sensed SIF data, we relied on the downscaled

GOME-2 SIF product by Duveiller et al. (2020) (8-day interval, 0.05◦ resolution), given the coarse spatial resolution of the

GOME-2 SIF product (>40 km), sparse global coveraged (only a dozen of GOME-2 observations for all tower locations were130

available per year) and the limited available timeseries of TROPOMI (starting in May 2018). The downscaling procedure

involves a LUE methodology, involving NIRv, normalised difference water index (NDWI; Gao, 1996) and land surface tem-

perature (LST) data from MODIS. Duveiller et al. (2020) demonstrated that this product has a high spatio-temporal agreement

with TROPOMI SIF observations, so the impact of the artefacts due to the downscaling procedure are assumed to be limited.

135

2.4 GPP models

A range of models to estimate GPP was selected, representing RS-driven, meteo-driven and hybrid approaches. An overview

is given in Tab. 2.

RS-based regression models

The simplest models considered were the linear regressions based on remotely sensed proxies of GPP. A robust linear regres-140

sion model of the RS data versus the daily GPP was constructed using quantile regression (Koenker and Hallock, 2001). The

complete dataset was used to obtain a model for each proxy. The use of daily or 16-day average GPP did not have a strong

impact on the results. Only NIRvP, which used in situ incoming shortwave radiation observations, had a significantly steeper

slope using the daily resolution GPP (see supplement material, Fig. A1).

Note that the training data used here was also used in the evaluation of the model performance. Furthermore, most models145

in this study were directly or indirectly trained with data from eddy covariance towers (e.g., FluxCom (Jung et al., 2020),
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Method Forcing Reference

Model RS data SWrad Other meteo

NDVI

−
−
−
−
→

E
m

pi
ri

ca
l

M
ec

ha
ni

st
ic
←
−
−
−
−

QR

R
S-

dr
iv

en SPV - - This study

EVI QR SPV - - This study

NIRv QR SPV - - This study

SIF QR GOME-2∗ - - This study

FluxComRS ML MODIS - - Jung et al. (2020)

NIRvP QR

H
yb

ri
d SPV in situ - This study

FluxComRSMet ML MODIS ERA5 ERA5 Jung et al. (2020)

MOD17 LUE MODIS GEOS5 GEOS5 Running et al. (2004)

LSA SAF LUE CGLS in situ in situ + ERA5 Martínez et al. (2020)

ISBA DGVM

M
et

eo - in situ in situ + ERA5 Delire et al. (2020)

ORCHIDEE DGVM - in situ in situ + ERA5 Krinner et al. (2005)

Table 2. Overview of the RS-driven, hybrid and meteo-driven GPP models used in this study. The following modelling methodologies are

used: quantile regression (QR), machine learning (ML), light use efficiency models (LUE) and dynamic global vegetation models (DGVMs).

The remote sensing (RS) sources are SPOT-Vegetation + PROBA-V (SPV), GOME-2, MODIS and Copernicus global land service (CGLS)

products. The shortwave radiation (SWrad) and other meteorological data were obtained from in situ tower observations, ERA-5 and GEOS5.
∗The SIF data from GOME-2 was the downscaled product from Duveiller et al. (2020), using NIRv, NDWI and LST from MODIS.

ORCHIDEE (Friend et al., 2007), ...). Consequently, it was not possible to ensure an independent validation of the models.

To minimize impact on the study results, the evaluation was largely based on metrics that are not impacted by the slope of

the linear regression (correlation and phenology analysis, see further below). Absolute errors and bias of the models were

not evaluated in this study, as these indices are significantly affected by the overlap between training and evaluation data,150

but they are shown in the supplement material for completeness (Fig. A3). Additionally, the robustness of the regression was

verified by performing the regression 20 times using a random subset of 50% of the tower sites (supplement material, Fig.

A1). The regression for NDVI had the largest uncertainty, where the coefficient of variation of the slope was 9%. For the other

proxies, this was around 4-5%. With this result, the quantile regression was found to be robust and independent of the training

data subselection. The impact of the shared data in the training and evaluation phase on the results is thus assumed to be limited.155

Machine learning models

The FluxCom dataset consists of up-scaled FLUXNET observations, using machine learning, remote sensing data and meteo-

rological data (Jung et al., 2020). In this study, we considered the FluxComRS GPP product (0.0833◦ grid, 8-daily resolution),

which relies on MODIS observations, and the FluxComRSMet GPP product (0.5◦ grid, daily resolution), which incorporates160

supplementary ERA5 meteorological data. Notably, a basic soil water balance model is used to derive the water availability

index from the meteorological data, and ingest it in the FluxComRSMet machine learning algorithm (Tramontana et al., 2016).

For each tower location, the closest pixel was extracted from the database.
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Light use efficiency models165

As opposed to the pure RS data-driven methods described above, semi-mechanistic models have been developed, which in-

corporate meteorological forcings to estimate GPP. A widely-applied method, thanks to its compatibility with remote sensing

observations, is the LUE model (Monteith, 1972). The core of this method is given in Eq. 5, where the plant productivity

depends on the absorbed photosynthetic active radiation (APAR) and a light use efficiency factor (ϵ).

GPP = ϵAPAR (5)170

This approach forms the basis of the MODIS MOD17 GPP product (Running et al., 2004) and the LSA SAF GPP product

(Martínez et al., 2020).

The algorithm behind MOD17 is a fairly simplistic formulation, where ϵ is linearly dependent on air temperature and vapor

pressure deficit. Atmospheric forcings for this product are taken from the GMAO/NASA daily global meteorological reanalysis

dataset, generated by GEOS-5. Soil moisture is not considered in the MOD17 model (Running et al., 2004). Conversely, in the175

LSA SAF model ϵ depends on the ratio between the actual and potential evapotranspiration. Consequently, the impact of soil

moisture is indirectly considered.

For MOD17, the closest pixel was extracted for each tower site (MOD17 GPP is available at 1 km resolution with 8-daily

interval). The LSA SAF GPP in this study was produced by executing the model for each site (As no global coverage or long

timeseries were operationally available in the LSA SAF GPP product). The inputs for this model were LAI and the fraction of180

absorbed photosynthetic active radiation (FAPAR) from the Copernicus Global Land Service, and ERA5 + in situ meteorolog-

ical forcings (see De Pue et al. (2022) for more details on the modelling approach).

Dynamic global vegetation models

DGVMs apply a largely mechanistic methodology to estimate GPP, and its temporal variability is driven exclusively by me-185

teorological forcings. Here, ISBA (Delire et al., 2020) and ORCHIDEE (Krinner et al., 2005) were considered. ISBA is the

component within Surfex v8.1 (SURFace EXternalisée), dedicated to the modelling of energy, water and carbon exchanges

between the soil-vegetation-snow continuum and the atmosphere. The numerous processes involved in these exchanges (e.g.,

soil moisture dynamics, evapotranspiration, stomatal closure, canopy growth, canopy radiation transfer, etc.) are fully coupled.

Similarly, ORCHIDEE is a well-established model for the simulation of vegetation in the context of earth system models. The190

version used here was the one that was prepared for the 6th coupled model inter-comparison project (CMIP6). Both DGVMs

share a similar architecture, but rely on different formulations for the same processes (e.g., photosynthesis following Goudriaan

et al. (1985) and Jacobs et al. (1996) in ISBA versus Farquhar et al. (1980) and Collatz et al. (1992) in ORCHIDEE) and differ

in parametrization.

The models were configured to run with identical atmospheric forcing (constructed from ERA5 and in situ meteorological195
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observations), identical land cover and prognostic vegetation growth. These models were run offline, and were not coupled to

an atmospheric model. For more details on the LSM configuration and an in-depth evaluation of these models, see (De Pue

et al., 2022).

2.5 Analysis200

To evaluate the performance of the models to capture the temporal variability, the timeseries in the dataset were decomposed

in 2 ways: 1) by separating the inter-site variability, seasonal variability and variability of seasonal anomalies, and 2) by sepa-

rating daily, weekly, monthly, seasonal and interannual components with singular spectral analysis (SSA).

The performance at these timescales was evaluated by comparing the simulated variability (quantified by the standard devi-

ation, σ) in observations and simulations, and by computing the Pearson correlation (r). Additionally, the covariance (cov)205

between GPP and its driver variables was used to assess the sensitivity of GPP to these variables. It was evaluated whether the

models reproduce the observed patterns.

Finally, the accuracy of the simulated carbon phenology was evaluated, by comparing the timing of the simulated seasonal

GPP cycle with observations. Details on the methodology are given below.

210

Inter-site, seasonal and seasonal anomalies

The variability of the simulated and observed GPP was decomposed into the inter-site (i.e., spatial) component, seasonal

component and the component associated with the anomalies. If we concatenate the GPP timeseries from all sites into one

array, we can decompose it as follows:

Xall =Xsite +Xseas +Xanom (6)215

where Xall is the full dataset, Xsite contains the mean GPP of each site, Xseas contains the mean seasonal cycle of each

site (after subtracting the mean of the site), and Xanom the resulting anomalies. An illustration of this decomposition is given

in Fig. 1. The mean seasonal cycle was obtained by subtracting the timeseries mean, and computing the smoothed (20-day

moving average) mean annual cycle. The accuracy of the models to capture each of these components was evaluated using the

metrics given further below.220

Singular spectrum analysis

To assess the spectral nature of the modelled GPP anomalies, the observed and modelled signals were decomposed in 5 classes

(daily, weekly, monthly, annual, and interannual) using Singular Spectrum Analysis (SSA, also referred to as Singular System

Analysis). SSA is a method which allows to decompose a signal into subsignals with specific spectral properties (Elsner and225
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Figure 1. Illustration of the GPP data (top subplot) decomposition into inter-site (i.e., spatial) component (second subplot), seasonal compo-

nent (third subplot) and the component associated with the anomalies (bottom subplot). This example shows the observed GPP from DE-Spw,

RU-Fyo and US-SRM (left to right).

Tsonis, 1996; Golyandina et al., 2001). The approach used here was similar to the one proposed by Mahecha et al. (2007).

The procedure can be summarized in two steps: the signal decomposition and the reconstruction of the subsignals. In the

signal decomposition step, lagged windows of the original signal were stacked. This array was subsequently decomposed into

its underlying orthogonal features by a PCA analysis. Resulting was a decomposition of the original series in elementary

subsignals, usually characterized by a simple oscillating feature.230

Next, these elementary subsignals were binned according to their spectral properties to reconstruct subsignals with uniform

spectral properties. In this study, similar bins as in the study by Mahecha et al. (2010) were used (see Tab. 3).

Timescale min - max period

Daily <8 days

Weekly 8 - 32 days

Monthly 32 - 128 days

Annual 128 - 512 days

Interannual >512 days
Table 3. Classification of the temporal scales in the SSA

As discussed by Mahecha et al. (2010), some elementary subsignals might contain features with mixed spectral properties.

To avoid this, Mahecha et al. (2010) proposed a double pass procedure, where the SSA is applied again on the reconstructed
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subsignals. However, this procedure yielded limited improvements in this study. Instead it was found to be beneficial attribute235

a higher weight to the high frequency bins compared to the low frequency bins. This was achieved using weights proportional

to the lower frequency limit of each bin. An example of the analysis is shown in Fig. 2.
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Figure 2. SSA decomposition of the observed GPP in DE-Spw and the simulation by ORCHIDEE.

The benefit of SSA compared to other spectral disaggregating methods (e.g., the Fourrier transformation), is that it is less

sensitive to gaps in the dataset, and that it can handle datasets with a lower sampling frequency (e.g., the NDVI timeseries with

8-daily resolution). Consequently, datasets with lower sampling frequency have no signal at the daily timescale. The SSA was240

applied to the observed and simulated GPP, allowing evaluation at each timescale. The evaluation was performed using the

metrics given below.

Performance metrics

The daily GPP estimations from the various models were compared to the observed GPP at the eddy covariance stations (Tab.

1). The variability of the (decomposed) timeseries was quantified using the standard deviation of the data (σ). The relative245

variance (rel.σ2) of a timeseries component was calculated as
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rel.σ2 =
σ2
comp

σ2
all

(7)

where σcomp and σall are the σ of the component and the full dataset, respectively. This calculation assumes all components

to be independent (as the covariance is ignored). It was verified that the covariance of the components is negligible compared

to the variance. Detailed results are given in supplement material (Tab. A8 and A9).250

Furthermore, the performance of the models was quantified using the Pearson correlation r:

r =

∑no(y∗ − y∗)(yo − yo)√∑no(y∗ − y∗)2
∑no(yo − yo)2

(8)

where y∗ and yo are the predicted and observed values, y the mean of y and no the number of observations). Significant

differences between the models were evaluated with the Wilcoxon signed-rank test.

Note that MOD17 or FluxComRS are 8-day integrated GPP products, yet treated here as daily instantaneous products, analogous255

to the other RS-based GPP products. Consequently, it can be expected that these GPP products will be less capable of estimating

the high-frequency anomalies.

Driver variables

Shortwave incoming radiation (SWrad; tower observation), air temperature at 2m (TA; tower observation), vapour pressure

deficit at 2m (VPD; tower observation) and surface soil moisture (SWC; ERA5) were selected as key hydrometeorological260

drivers for GPP. Their impact at daily to interannual timescales was assessed by decomposing each timeseries using SSA and

calculating the covariance (cov) with GPP at each time scale. This was computed as:

cov(x,y) =
1

no

no∑
i=1

(xi −x)(yi − y) (9)

where x and y represent two variables (e.g., GPP and SWrad). This analysis was performed for each site separately. The

similarity between the observed and simulated covariances was evaluated by comparing the median covariance across all sites,265

and by computing the root mean square error (RMSE) between both. RMSE is computed as:

RMSE =

√∑no (y∗ − yo)
2

no
(10)

where y∗ and yo are the predicted and observed values (covariances in this case). SWrad, TA and VPD were collected from

the tower meteorological observations. Given that no standardized soil moisture observations were available at each site, SWC

was taken from ERA5 (using the 0-7 cm layer) for each location.270

As these drivers are not mutually independent, their covariance was evaluated for each HCB, and is given in supplement mate-

rial (Fig. A4). A positive covariance was found between SWrad, TA and VDP in most sites, and a negative covariance of these

12



variables with SWC. The covariances were the strongest at seasonal scale. Most HCB-classes showed similar behaviour, with

some exception in the Tropic and Trans_W biomes.

275

Carbon phenology

The (carbon) phenology in the timeseries was quantified by the timing of the start, maximum and end of the seasonal GPP cycle

(SOS, MOS and EOS). This was achieved by applying a smoothing operation (20 day rolling mean), followed by a threshold

procedure (Maleki et al., 2020; De Pue et al., 2022). In this procedure, the minima and maxima were used to delineate the

growing and senescent phase of the season. MOS was defined as the date when the maximum of the season is reached, SOS280

and EOS were defined at the date where the growing or senescent phase crosses the threshold value T . T was calculated for

each growing or senescent phase as T = P5+0.2(P95−P5), where P5 and P95 are the 5th and 95th percentile. If the seasonal

cycle was not pronounced enough ((P5 −P95)/P50 < 0.2), the detected phenology was considered unreliable and ommitted.

The bias and accuracy of the phenology were evaluated by calculating the mean error (ME) and root mean square error (RMSE).

285

3 Results

3.1 Inter-site and seasonal variability

A comparison of the variability of GPP in observations and simulations is given in Tab. 4. The overall observed variability

of σ = 4.18 gC/m2/d was underestimated in all models, except LSA SAF. After decomposing the observed GPP dataset, the

inter-site variance represented 18% of the total variance, the seasonal cycles 62% and the anomalies 24% (the sum of these290

fractions is larger than 100% due to covariances, see Tab. A8 and A9 in the supplement material). This partitioning was not

well represented in the NDVI, EVI and NIRv timeseries, where a large fraction of the variance (> 30%) was attributed to the

inter-site component, and a very small fraction (< 12%) to the anomalies. In the NDVI observations, the inter-site variance

was even larger than the seasonal variance. In SIF, the contribution of the spatial and seasonal components was reasonably ac-

curate, but the relative variance of the anomalies was too low (10%). The relative variance of the seasonal pattern was strongly295

overestimated in the FluxCom products (∼ 80%), whereas the contribution of the anomalies was the lowest of all datasets

(∼ 5%). The closest match with the observed variance partitioning was found in NIRvP, MOD17, LSA SAF and the DGVMs.

To ensure that these results were not affected by the temporal resolution of the timeseries, the same analysis was performed

after downsampling to 10 day interval. This did not result in substantial changes of the variability or its partitioning (Tab. A5

in the supplement material).300
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All Inter-site Seasonal Anomalies

Observation 4.18 1.77 0.18 3.29 0.62 2.05 0.24

NDVI 2.10 1.46 0.48 1.33 0.40 0.74 0.12

EVI 2.95 1.69 0.33 2.25 0.58 0.90 0.09

NIRv 3.13 1.78 0.33 2.40 0.59 0.97 0.10

FluxComRS 2.81 1.12 0.16 2.50 0.79 0.66 0.06

SIF 3.41 1.65 0.23 2.78 0.66 1.05 0.10

NIRvP 3.34 1.17 0.12 2.72 0.66 1.77 0.28

FluxComRSMet 2.83 1.15 0.16 2.59 0.84 0.54 0.04

MOD17 3.13 1.39 0.20 2.42 0.60 1.51 0.23

LSA SAF 4.83 2.24 0.21 3.68 0.58 2.38 0.24

ISBA 3.64 1.46 0.16 2.88 0.63 1.85 0.26

ORCHIDEE 3.68 1.34 0.13 3.18 0.75 1.75 0.23

Table 4. Standard deviation of the observed and simulated GPP (gC/m2/d), decomposed in the inter-site, seasonal and anomalies (obtained

after subtracting the spatial and seasonal component) components, and the fraction of the total variance (grey columns). This analysis done

after grouping all sites together.

Depending on the land cover type, the variability and its partitioning between different components varied (Tab. 5). As

expected, limited seasonal variability was observed in the EBF-Tropic sites (σseason = 0.68 gC/m2/d), compared to DBF-

MidL_T sites (σseason = 5.11 gC/m2/d). Still, the variability of the anomalies of the tropical sites was comparable to that

in other sites (σanom ≈ 2.00 gC/m2/d). The CRO-MidL_T sites had the largest variability in the anomalies (σanom = 3.43305

gC/m2/d).

All Seasonal Anomalies

EBF-Tropic 2.25 0.68 0.09 2.15 0.91

DBF-MidL_T 5.11 4.79 0.90 2.01 0.17

ENF-Bor_WT 3.61 3.41 0.86 1.53 0.19

ENF-MidL_T 3.50 3.14 0.81 1.98 0.28

ENF-Trans_E 3.25 2.53 0.61 2.03 0.39

SAV-Trans_E 2.05 1.65 0.65 1.21 0.35

CRO-MidL_T 4.75 3.46 0.50 3.43 0.53

Table 5. Median standard deviation of the observed GPP per land cover class (gC/m2/d), decomposed in the seasonal component and its

anomalies. The fraction of the total variability is given in the grey columns.

The Taylor diagram of the modelled GPP and its seasonal anomalies is shown in Fig. 3. In terms of correlation, the DGVMs,

LSA SAF and the FluxCom products achieved a distinctly better performance (r > 0.83, median for all sites), compared to

the linear regression-based models (and MOD17). The NDVI-based model had the weakest correlation with observations

(r = 0.57, median for all sites). The correlation of the simulated GPP was substantially reduced after subtracting the mean310

seasonal cycle. For NDVI, EVI, NIRv and SIF, ranom was smaller than 0.2 (median for all sites). LSA SAF and ISBA were the

only models with ranom > 0.5 (median for all sites). The performance of FluxCom to estimate the anomalies was similar to the

NDVI-, EVI- and NIRv-based models. Though FluxComRSMeteo achieved ranom = 0.43 (median for all sites), the variability

of the anomalies was strongly underestimated.
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A notable difference emerged in the anomalies simulated with NIRvP and SIF. While both datasets showed a similar perfor-315

mance in the full GPP timeseries, SIF performed much poorer than NIRvP in the anomalies.

0.0 0.2
0.4

0.6
0.7

0.8

0.9
0.95

0.99
1.0

Correlation

0.00 0.15 0.30 0.45 0.60 0.75 0.90 1.05
Normalized  GPP (-)

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

NDVI
EVI
NIRv
FluxComRS
SIF
NIRvP
FluxComRSMet
MOD17
LSA SAF
ISBA
ORCHIDEE
GPP
Anomalies

Figure 3. Taylor diagram of the simulated GPP (circles) and its seasonal anomalies (squares). Median of the metrics at all sites.

The RS-driven models, which relied purely on RS observation of the vegetation state, had a significantly lower σanom

(Wilcoxon p < 0.05) compared to the models that used meteorological forcing. This difference in performance was most

pronounced in the forest sites (Fig. 4). In sites dominated by (water-limited) herbaceous vegetation, this was less the case; GPP320

estimations based on simple greenness sensitive NDVI-, EVI- and NIRv-based models often even outperformed DGVMs.
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Figure 4. Pearson correlation of the modelled GPP and its anomalies, for sites in 7 PFT-HCB classes (see Tab. 1).
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3.2 Timescale disaggregation

The variability of the timeseries after SSA decomposition is given in Tab. 6. In agreement with the variability of the seasonal

GPP and its anomalies, the largest variability was explained by the annual timescale (77%, median for all sites). At daily,

weekly and monthly timescale, the relative variance was roughly a tenfold smaller. The least variability was found for the325

inter-annual scale (1%, median for all sites). More detailed results per land cover type are given in the supplement material

(Tab. A6). Most land covers followed the same pattern, with the exception of the EBF-Tropic sites, where seasonal variance

was smaller than the variance at daily, weekly, monthly or even annual timescales.

All Daily Weekly Monthly Annual Interannual

Observation 3.50 0.98 0.07 0.79 0.06 0.75 0.05 2.88 0.77 0.34 0.01

NDVI 1.20 0.21 0.06 0.47 0.33 0.65 0.57 0.05 0.00

EVI 1.60 0.21 0.04 0.52 0.24 1.10 0.70 0.07 0.00

NIRv 1.68 0.22 0.04 0.53 0.29 1.03 0.65 0.09 0.00

FluxComRS 2.47 0.35 0.03 0.45 0.05 2.24 0.92 0.09 0.00

SIF 2.69 0.55 0.06 0.90 0.16 1.79 0.76 0.11 0.00

NIRvP 2.45 0.60 0.17 0.81 0.29 1.32 0.54 0.06 0.00

FluxComRSMet 2.57 0.35 0.02 0.22 0.01 0.25 0.01 2.49 0.95 0.04 0.00

MOD17 2.83 0.92 0.19 0.79 0.15 1.61 0.63 0.07 0.00

LSA SAF 3.59 1.42 0.16 0.82 0.06 0.63 0.03 3.09 0.72 0.17 0.00

ISBA 3.01 0.93 0.10 0.71 0.05 0.45 0.04 2.58 0.80 0.23 0.01

ORCHIDEE 3.13 0.72 0.06 0.57 0.03 0.73 0.06 2.70 0.85 0.15 0.00

Table 6. Standard deviation of the observed and simulated GPP (gC/m2/d), decomposed in the different timescale components using SSA

(median values for all test sites). The fraction of the total variability is given in the grey columns.

The RS-driven models underestimated the variance at all timescales, especially at annual scale. Furthermore, very limited330

variability was found at the interannual scale, and the relative variance at monthly scale was overestimated in these models.

NDVI was the least suitable proxy to capture this variability, whereas the relative variance partitioning in SIF approximated

most closely the observations. Notably, the inclusion of PAR in NIRvP improved the GPP variability, but degraded the variance

partitioning across timescales.

The FluxCom products contained a too strong annual signal, and underestimated variability at other scales. The incorporation335

of daily meteorological forcing in FluxComRSMet added variability at the daily timescale, but reduced variability at weekly

and monthly timescale. The annual variability was approximated relatively well, but the variability at shorter timescales was

roughly threefold too small.

The variability across all timescales was best represented by the meteo-driven DGVMs (Tab. 6). There were minor differences

between ORCHIDEE and ISBA, as the variance at daily and weekly scale was slightly more accurate in ISBA, and the variance340

at monthly and annual timescale was more accurate in ORCHIDEE. This trend was confirmed in most land-covers (see A5,

Tab. A6 in the supplement material). LSA SAF also estimated the variability reasonably accurate, but overestimated the daily
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variability.

The correlation of the simulations at these timescales is given in Fig. 5. Note that the strength of the signal at interannual345

scale was relatively low (in observed and simulated GPP). Evaluating the correlation of this component should thus be done

with caution, as the SSA itself can induce errors of comparable magnitude (Mahecha et al., 2010). It is shown here, but not

discussed in detail.
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Figure 5. Pearson r across timescales after SSA decomposition; median score for all sites. Error bars indicate the 25-75 quantiles.

Most models had a good correlation with GPP at the annual timescale (r > 0.80, median for all sites), except the NDVI-based350

model. At monthly timescale, the correlation dropped to r ≈ 0.25 for all models (median for all sites). At weekly timescale,

the models that relied solely on remote sensing observations were very poorly correlated to the observed GPP. Compared to

these models, the models that included meteorological data achieved a significantly higher correlation (Wilcoxon p < 0.05).

At daily scale, r increased again. LSA SAF and ISBA achieved r > 0.65 (median for all sites) at this spectral range.

Separating the results by PFT (Fig. 6) shows that the correlation at monthly and seasonal scale was generally larger for DBF-355

sites, compared to ENF-sites. At seasonal scale, this was most pronounced for the greenness-sensitive VI proxies (NDVI, EVI

and NIRv).
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Figure 6. Pearson r in DBF, ENF, SAV and CRO across timescales

Dry-land sites, such as the SAV-sites, generally showed a higher correlation at the inter-annual scale for the RS-driven

models. Not all models manage to capture these interannual patterns. For example, ORCHIDEE obtained only a very low360

correlation at this scale. Regardless, the interannual scale had only a minor contribution to the total variability.

In the CRO-sites, the RS-driven models had a significantly lower r at weekly timescale, compared to the DGVMs (Wilcoxon

p < 0.05, with the exception of NIRv vs ORCHIDEE and MOD17 vs ORCHIDEE). However, at monthly timescale, the RS-

driven models had a higher r than the DGVMs (significantly for SIF, FluxComRS and MOD17), and at annual scale this trend

persisted (significantly for EVI, NIRv, FluxComRSMet and MOD17).365

3.3 Drivers of GPP

Given the different performances across timescales, the covariance between the GPP and its key drivers (SWrad, TA, VPD

and SWC) was evaluated. The observed and simulated covariances are shown in Fig. 7. These are the median covariances
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for all sites. The covariance is impacted by the variance of the GPP estimates, as opposed to the Pearson correlation. For

completeness, the latter is computed as well and is given in the supplement material (Fig. A5).370
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Figure 7. Covariance (median for all sites) of the simulated GPP and its drivers (SWrad, TA, VPD and SWC). Covariance based on obser-

vations are in the hashed bars. The colored barplots indicate the covariance in the simulations. Note that the covariance is shown using a

symmetric logscale.

In the observations, all drivers had the highest covariance with GPP at the seasonal scale. SWrad and VPD had a stronger

covariance at daily scale compared to weekly and monthly scale, whereas TA had a slightly stronger covariance at weekly

scale. The covariance between SWC and GPP was negative, indicating that GPP was smaller during wet rootzone soil moisture

anomalies (and higher during dry anomalies). This was largely attributed to the negative covariance between SWC and the

other drivers, as wet conditions are associated with periods of rain and cloudy weather (Fig. A4 in the supplement material).375

The covariance between GPP and SWC was similar at daily, weekly and monthly scale. For all drivers and GPP, the interannual

signal was very weak, resulting in a negligibly small covariance.

Substantial differences in the observed correlations were found between different biomes, as highlighted in the plots of the
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weekly, monthly and annual covariance (Fig. 8). For example, the covariance between SWrad and GPP at annual scale was

very strong for most biomes, but it was very weak for EBF-Tropic (due to small variability of the GPP signal at this scale) and380

SAV-Trans_E sites (due to downregulation of photosynthesis by other constraining factors). Another clear trend was the shift

in covariance between SWC and GPP from negative in biomes where water is not a constraining factor (e.g., DBF-MidL_T) to

waterlimited biomes (e.g., SAV-Trans_E).
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Figure 8. Covariance of the simulated GPP and its drivers at weekly, monthly and seasonal scale. Covariance based on observations are in

the hashed bars and gray bars highlight the deviation for a land cover from the overall average. The colored barplots indicate the covariance

in the simulations.
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The accuracy of the models to reproduce these patterns was quantified by RMSE (see Tab. A10 and A11 in the supplement385

material, for detailed results). The RS-driven models generally had a very low sensitivity to all drivers at weekly and monthly

scale. The covariances at annual scale were underestimated as well. This can be attributed partly to the lower variance of the

RS-driven GPP estimates at annual scale, but the Pearson r also indicated a too low sensitivity (Fig. A6 in the supplement

material). Conversely, the sensitivity of the meteo-driven models was generally more accurate. Some oversensitivity to the me-

teorological drivers was found in ISBA, whereas ORCHIDEE was generally among the most accurate models. The covariance390

with soil moisture was more accurate in ISBA than ORCHIDEE (e.g., RMSE at weekly, monthly and annual scale 10-30%

more accurate)

The performance of the hybrid models was highly variable. LSA SAF was generally too sensitive to meteorological drivers,

whereas MOD17 (also a LUE model) was too insensitive to all drivers (though more sensitive than the RS-driven models). The

covariance of GPP with its drivers was generally most accurate in the FluxCom products. Their largest shortcoming was a too395

low sensitivity to SWrad at daily and weekly scale.

The dynamics in temperate DBF forest sites were reproduced fairy well by most models. The strong annual covariances were

represented well by all models. Even the RS-driven models had a relatively high covariance at this scale. At annual scale,

the DGVMs and LSA SAF were most accurate in this biome (RMSE 3-4 fold lower than RS-driven models). In contrast, the

high annual covariance was not represented well by the NDVI-,EVI and NIRv-based models in the ENF sites. The covariance400

between GPP and the drivers the drivers at annual scale was generally too weak. FluxCom and the DGVMs were more accurate

(RMSE 4-5 fold lower than in VI-based models).

VPD and SWC were strong drivers for annual variability in the savanna sites. This was reproduced accurately by the RS-driven

models, and ISBA. NIRvP, FluxComRSMet and ORCHIDEE did not capture the annual covariance with VPD and SWC (RMSE

for SWC and VPD 2-3 fold higher than ISBA, i.e., the most accurate model).405

In the EBF-Tropic biome, all models had a too strong relation with the drivers at annual scale. Only in the FluxComRSMet prod-

uct, a resemblance with the observed annual relations was found. It was the only model with an accurate positive GPP-SWC

annual covariance for the EBF-Tropic sites.

The results for the FluxCom products highlight the importance of incorporating meteorological forcings in the GPP product.

FluxComRSMet was superior to FluxComRS in the reproduction of GPP at different timescales. The coarser spatial resolution of410

FluxComRSMet did not have a negative impact on the performance in this study.

This analysis gives a coarse estimate of the (linear) sensitivity of the simulated GPP to the drivers impacting GPP. Note that

many effects were not accounted for, including compound effects, legacy effects, or the impact of other constraining variables

(e.g., LAI in the DGVMs).

3.4 Phenology415

The accuracy of the simulated timing of the seasonal GPP cycle (start, max and end of season) is plotted in Fig. 9 (RMSE

scores are calculated for every site individually). Generally, the simulations of SOS and EOS were generally less accurate in

the RS-driven models (RMSE SOS ≈ 30-38d, EOS ≈ 25-50d; except FluxComRS ), compared to the meteo-driven models
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(RMSE SOS ≈ 24-28d, EOS ≈ 17-21d). The phenology in the NDVI-based model was the least accurate, which was largely

attributed to a bias in the timing, especially in the EOS (≈ 50d delayed, see Fig A7 in the supplement material). This bias was420

also observed in EVI and NIRv, but was smaller (≈ 10d delayed). Notably, the most accurate simulations of SOS and EOS

were obtained with FluxComRS, which purely relied on remote sensing observations.
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Figure 9. RMSE (per site) in the timing of the start, max and end of the seasonal GPP cycle (SOS, MOS and EOS). Bars show overall results

(median for all sites), markers show separate results for three PFT-HCB classes.

To highlight differences between biomes, the mean annual cycle of DBF-MidL_T, ENF-MidL_T and SAV-Trans_E is plot-

ted in Fig. 10 (the annual cycle of the other biomes can be found in the supplements, Fig. A8 and A9). The DBF-MidL_T had

a very distinct SOS around the 5th month of the year. The interannual variability of the observed GPP cycle was limited, com-425

pared to other biomes. Most models reproduced the phenology fairly accurately. In the NDVI-timeseries, an evident illustration

of the so-called ‘saturation effect’ was observed, as the simulated GPP reached a plateau during mid-summer.

In the ENF-MidL_T biome, the coupling between canopy greenness and GPP was less strong than in DBF-MidL_T. Conse-

quently, the meteo-driven and hybrid models were generally more accurate to simulate the timing of the GPP-cycle in this

biome (RMSE SOS ≈ 10-18d, EOS ≈ 10-18d; see also Fig. 9) than the RS-driven models (RMSE SOS ≈ 35-50d, EOS ≈430

22-50d). Also note the delayed MOS in the ISBA simulations for this biome. This was largely associated with the delay in the

prognostic LAI seasonal cycle (De Pue et al., 2022).

A strong variability of the annual GPP cycle was observed in the SAV-Trans_E biome (Fig. 10), making it very challeng-

ing to capture the timing of the GPP cycle accurately (Fig. 9). However, in these sites, a stronger coupling existed between

GPP and the canopy greenness. At the SOS, a distinct difference between the RS-driven models and the meteo-driven mod-435

els emerged. The RS-driven models were more accurate (RMSE SOS ≈ 20-30d for NDVI, EVI and NIRv), compared to the

DGVMs (RMSE SOS ≈ 46-82d). In this biome, the inclusion of PAR in NIRvP resulted in a less accurate phenology compared

to NIRv. In NIRv, the reduced photosynthesis due to water-limiting conditions in the second half of the growing season was
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evident, whereas GPP remained high in NIRvP.
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Figure 10. Annual GPP cycle in observations and models, for sites in the DBF-MidL_T, ENF-MidL_T and SAV-Trans_E biomes. The lines

show the median cycle, and the shaded area shows the 25-75 percentile. Timeseries of sites located at the southern hemisphere were shifted

by 6 months, to match with the annual cycle of sites in the northern hemisphere.
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4 Discussion

The variability of GPP is largely modulated by the vegetation state (i.e., canopy greenness, leaf area index, etc), and hy-

drometeorological conditions. As indicated by Stoy et al. (2009), the relation of GPP to these factors shifts across timescales:

“Quantifying flux variability at longer time scales requires information on how ecosystems change in response to climatic

variability, rather than how they merely respond to climatic variability”. In this study, we investigated how well the impact of445

these factors is captured in RS-driven, meteo-driven and hybrid models.

4.1 Vegetation state

Depending on the biome, the vegetation state is tightly coupled (e.g., in water-limited herbaceous sites), more loosely coupled

(e.g., deciduous broadleaf forests) or completely decoupled (e.g., tropical evergreen broadleaf forests) to GPP (Hu et al., 2022).

Vegetation indices, such as NDVI, EVI and NIRv are effective proxies to track the vegetation state via remote sensing. They450

have proven to be an effective, low-cost proxy for GPP in biomes with an evident coupling between canopy greenness and

photosynthesis (Xiao et al., 2019; Huang et al., 2019).

However, an important discrepancy was found between the RS observations and the observed GPP in the spatio-temporal par-

titioning of their variability. The inter-site variability of NDVI, EVI, NIRv and (to a lesser extent) SIF was substantially higher

than that of the GPP observations. Furthermore, the variability of the anomalies in the models was relatively small (see Tab455

4). This high inter-site variability indicated that there was a need to use land cover-dependent relations to estimate GPP from

the remotely sensed vegetation proxies. Several studies have confirmed that PFT-specific relations considerably improved the

GPP estimates from NDVI (Huang et al., 2019), EVI (Shi et al., 2017; Huang et al., 2019), NIRv (Badgley et al., 2019; Huang

et al., 2019) and SIF (Gao et al., 2021). FluxComRS also relied on land cover data to estimate GPP from RS observations (Jung

et al., 2020), and captured the spatial and seasonal variability more accurately (see Tab. 4). Results from explorative tests with460

PFT-specific regression models are shown in the supplement materials (Fig. A10 and Fig. A11). They indicated that improved

results were largely caused by improved spatial correlation. The variability of the seasonal signal and anomalies remained

underestimated.

The biome-dependent relation between vegetation greenness and GPP was also evident in the seasonal cycle (Fig. 4) and in the

annual timescale (Fig. 6). For DBF and CRO biomes, the coupling between VI and GPP resulted in high correlations at these465

timescales, whereas the decoupling in other biomes emerged. This was most pronounced in evergreen forest sites (ENF and

EBF), and the decoupling increased as the climate was increasingly water-limited (ENF-Bor_WT < ENF-MidL_T < ENF-

Trans_E, see Fig. 4 and Fig. 8). Opposed to herbaceous sites in the same arid biomes (e.g., SAV-Trans_E), the photosynthesis

downregulation in ENF sites was not translated into rapid changes in vegetation greenness.

As often reported, the decoupling of leaf phenology and carbon phenology was also poorly captured in the VI-based models.470

This was most pronounced in the senescent phase, where photosynthesis halts, due to decrease in SWrad and TA, before canopy

greenness drops (Kong et al., 2020; Wang et al., 2020).

All VI were insensitive to the decoupling of canopy greenness and photosynthesis at seasonal timescale, but NDVI performed
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significantly worse than EVI and NIRv in this respect. Saturation in dense canopies, background effects and atmospheric in-

fluences (Huete et al., 2002; Olofsson et al., 2008) likely explain the underestimated variability of the seasonal cycle in NDVI475

timeseries, especially in forest biomes (illustrated in Fig. 10). Between EVI and NIRv, no substantial differences in perfor-

mance were found.

SIF is a more direct proxy for photosynthesis, and is therefore expected to capture the decoupling between vegetation greenness

and GPP more accurately than VI (Duveiller et al., 2020; Pickering et al., 2022). However, SIF did not perform significantly bet-

ter than EVI or NIRv at annual timescale (Fig. 5 and Fig. 6). Exceptions were the arid biomes, ENF_Trans-E and SAV_Trans-E,480

where SIF outperformed EVI and NIRv. It remains unclear in what measure the downscaling processing is responsible for the

moderate SIF scores. Future missions with high resolution SIF, such as European Spatial Agency’s Earth Explorer - FLEX

(FLuorescence EXplorer, due to be launched in 2025) will provide further insights (Duveiller et al., 2020).

The results with the VI-based models seemed to indicate that the remotely sensed observations of the vegetation state were in-

sufficient to describe GPP in evergreen vegetation. However, FluxComRS relied exclusively on these observations as predictors,485

and managed to capture GPP patterns in ENF. Furthermore, it produced the most accurate results regarding the GPP phenology.

This product illustrated that, in combination with land cover information and non-linear relations, accurate estimates of GPP

at seasonal timescale can be obtained from optical remote sensing (Tramontana et al., 2016).

Conversely, it is very challenging to accurately model the state of the vegetation without RS observations (Fatichi et al., 2019).

In a detailed evaluation of the water, energy and carbon modelling in ISBA and ORCHIDEE, it was reported that the leaf490

phenology in ISBA and ORCHIDEE was delayed compared to observations and that it failed to capture the observed seasonal

variability. De Pue et al. (2022) reported that these errors were strongly correlated to errors in GPP. Despite these inaccuracies,

the performance of the DGVMs was generally better than the VI-based models. The dominant impact of meteorological forc-

ings, and the decoupling of greenness and photosynthesis was captured accurately in the DGVMs.

Next to the complexity of plant physiology and biomass allocation, there can be a substantial impact of management practices495

(e.g., crop rotations, sowing and harvest in croplands ; Osborne et al., 2010). The lack of these practices in the configuration of

the DGVMs in this study resulted also in a poorer performance of the monthly and annual-scale GPP in croplands (see Fig. 6).

Observations of these practices in remote sensing contribute to a better performance in croplands with RS-driven models. At a

global scale, the lack of an adequate description of land management contributes considerably to uncertainties associated with

the global carbon cycle in earth system models (Friedlingstein et al., 2022).500

In summary, based on the observed vegetation state, a coarse estimate of the annual-scale GPP can be made. However, veg-

etation indices and linear regressions are insufficient to capture the decoupling of greenness and photosynthesis due to other

confounding factors. Information on the hydrometeorological conditions is needed to capture this variability in all biomes,

even at seasonal scale.

505
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4.2 Meteorological conditions

Meteorological conditions are the main drivers of variability of GPP at sub-seasonal scale (Stoy et al., 2009). At daily timescale,

patterns were largely dominated by SWrad and VPD (see Fig. 7). The impact of TA was more pronounced at weekly and

monthly scale (though still dominated by SWrad).

The RS-driven models had a very low performance to simulate these sub-seasonal patterns (Fig. 5). They had a temporal reso-510

lution of 8-10 days, so the variability at daily timescale was absent. At weekly and monthly scale, they had nearly no sensitivity

to the driver variables (Fig. 7). Consequently, the correlation of the anomalies was very weak in comparison to other models

(Fig. 4).

NIRvP was the most simplistic approach to incorporate SWrad (as PAR) as key driver for photosynthesis (Eq. 4). Compared to

NIRv (and SIF), NIRvP captured anomalies in GPP more accurately, in particular at the weekly timescale (Fig. 3, and Fig. 5).515

Alternatively, light-use efficiency models ingest more meteorological variables, such as VPD and TA, in addition to SWrad

and vegetation state variables. Consequently, the quality of the simulated GPP strongly depended on the quality of the meteo-

rological forcings. The MOD17 product relied on the coarse GMAO/NASA reanalysis dataset for the meteorological forcing,

and failed to achieve a better performance than the VI-based models (Fig. 3). The LSA SAF GPP model, here forced by in

situ SWrad observations, excelled in the simulation of temporal variability at all timescales and in all domains. Although there520

were other factors that impact the performance (e.g., the incorporation of soil moisture stress, which was absent in MOD17),

the difference in SWrad forcings likely contributed substantially to the difference in performance, given the sensitivity of the

models to SWrad and the quality of SWrad in reanalysis products (Anav et al., 2015; Urraca et al., 2018; Zheng et al., 2018).

The incorporation of meteorological forcings in FluxComRSMet improved the algorithm’s ability to capture the anomalies, com-

pared to FluxComRS (Fig. 3). This was most evident in forest sites (Fig 4), though the improvement was restricted to the weekly525

timescale (Fig. 5). Still, despite the introduction of meteorological variables, the variance of the anomalies remained strongly

underestimated (Tab 4).

In contrast, the meteo-driven DGVMs represented the variability of GPP accurately across timescales. A significant difference

between ISBA and ORCHIDEE was found in the performance at daily timescale (Fig. 5). The superior performance of ISBA

at this timescale, seemed to be originating from a more accurate sensitivity to SWrad than ORCHIDEE (Fig. 7). Conversely,530

the sensitivity to atmospheric drivers at weekly and monthly timescales was more accurate in ORCHIDEE, whereas ISBA was

generally oversensitive (Fig. 7 and 6). Though the performance of ORCHIDEE to simulate GPP at these longer timescales was

not superior (due to other confounding factors, e.g., soil moisture or LAI), ORCHIDEE is likely more accurate in assessing

the impact larger meteorological anomalies, such as heat waves, on GPP. Further research, addressing the performance of the

models under extreme conditions is needed to confirm this.535
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4.3 Soil moisture

At sub-seasonal scale, the RS-driven models demonstrated a big difference in performance between forest and herbaceous

biomes. A substantially better performance was achieved in herbaceous sites (Fig. 4), where the coupling between vegetation

greenness and GPP is much tighter than in forest sites Hu et al. (2022). The indirect observation of soil moisture stress in VI540

allowed accurate sub-seasonal-scale modeling of GPP in these strongly water-limited biomes (AghaKouchak et al., 2015). In

other biomes, the combination with a drought indicator is required to simulate GPP in such conditions (Maleki et al., 2022).

No downregulation due to soil moisture or temperature stress is considered explicitely in NIRvP. However, changes in light

use efficiency are partly reflected in changes in the canopy structure (Xu et al., 2021). Consequently, NIRvP can yield similar

results than SIF, as demonstrated in the work by (Dechant et al., 2022). Regardless, in water-limited herbaceous sites (e.g.,545

SAV-Trans_E), the sensitivity to soil moisture stress in NIRv was eliminated in NIRvP, due to a too high sensitivity to SWrad

(Fig. 8). An illustration of this lack of soil moisture stress downregulation was evident in the mean annual cycle of NIRvP,

where GPP was consistently overestimated during the dry season (Fig. 10). The downregulation was more accurately reflected

in the SIF model.

The seasonal GPP patterns in water-limited sites (e.g., ENF-Trans_E or SAV-Trans_E) were generally simulated less accurately550

(see Fig. 4) in DGVMs, indicating that the soil moisture dynamics or the soil moisture stress response of the vegetation were

an important source of errors (Vereecken et al., 2019; Raoult et al., 2021; De Pue et al., 2022). In the arid biomes, differences

between ISBA and ORCHIDEE were most evident. The soil moisture dynamics and response to soil moisture stress in OR-

CHIDEE were demonstrated to be less accurate compared to ISBA in a previous study by De Pue et al. (2022).

555

4.4 Uncertainties

The in situ observation uncertainty may contribute to the disagreement between models and observations. The eddy covariance

observations are associated with site-dependent random errors due to instrumentation, stochastic nature of turbulence and vary-

ing footprint (Mauder et al., 2020). Additionally, the typical non-closure of the energy balance might indicate that the observed

carbon fluxes suffer from a similar bias (Gao et al., 2019), and there are significant uncertainties associated with the carbon560

flux partitioning in the ONEFLUX preprocessing pipeline (Pastorello et al., 2020).

Though land cover homogeneity and data quality were criteria for site selection, the discrepancy between the spatial scale of

the in situ and remote sensing observations may contribute to the disagreement between observed and simulated GPP (Xie

et al., 2021). Furthermore, there is a representation bias in the selection of test-sites used here. There are limited sites included

from South America, Africa and Asia. Consequently, some of the results reported here might be biased due to the dominant565

representation of (needleleaf) forest sites in temperate climates.

Lag effects of the drivers were not investigated in the frame of this study. Generally, it is mainly precipitation which leads

to time lag effects (Papagiannopoulou et al., 2017), but that effect was largely accounted for by considering soil moisture.

However, severe drought extremes can have a legacy effect, with a substantial impact on the inter-annual variability of GPP in
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terrestrial ecosystems (Bastos et al., 2020). These effects fall out of the scope of this study.570

The interannual variability in the SSA-decomposed timeseries was relatively small, in agreement with the results of Mahecha

et al. (2010). Given the associated uncertainty, and relatively short timeseries in most sites, interpretation of the results at these

timescales should be done with caution. In savanna biomes, there was an indication that RS-driven models captured the inter-

annual variability better than meteo-driven models (see Fig. 6). In other biomes, the interannual correlation was very weak.

This study evaluated the ability of the models to capture the variability in GPP. It relied on analysis of the variance, the Pearson575

correlation, and metrics for phenology. The absolute errors were not evaluated here. These results give no guidance on the bias

or accuracy of the simulated GPP itself.

5 Conclusions

The temporal variability of GPP is modulated by vegetation state and hydrometeorological factors, operating at instantaneous580

to interannual timescales. In this study, we set out to evaluate the ability of GPP-models to capture this variability. 11 models

were considered, encompassing remote sensing-driven models (e.g., NDVI regression, SIF, FluxComRS ), meteo-driven models

(i.e., ISBA and ORCHIDEE DGVMs), and hybrid models that combined both inputs (e.g., FluxComRSMet or LUE algorithms,

such as MOD17 and LSA SAF). They were evaluated using in situ observations of GPP at 61 eddy covariance sites, covering

a broad range of biomes. The analysis comprises decomposition of the signal in daily to inter-annual timescales, covariance585

with driver variables and phenology.

The results illustrated how the determinant of temporal variability shifts from meteorological variables at sub-seasonal timescales

to biophysical variables at seasonal and interannual scale. Consequently, shortcomings were accordingly associated with RS-

driven and meteo-driven models. To capture the full range of variability accurately, RS-driven models lack the sensitivity to the

dominant drivers at short timescales, i.e., SWrad and VPD. Furthermore, they failed to capture the decoupling of photosynthe-590

sis and canopy greenness in evergreen vegetation or during senescence. Conversely, meteo-driven models accurately captured

the variability accross timescales. Though the progonostic simulation of the vegetation state remains elusive, the seasonal pat-

terns in GPP are accurately reproduced.

Important challenges remain in the simulation of soil moisture and the response of vegetation to soil moisture stress, illustrated

by the poorer performance of the DGVMs in water-limited sites. RS-driven models captured the GPP anomalies accurately in595

these sites, as they were characterized by a tight coupling of vegetation greenness.

Hybrid models capitalized on the combination of RS observations and meteorological information. The simple inclusion of

PAR in NIRvP was beneficial to capture the variability of GPP at all timescales. LUE models were among the most accurate

models to monitor GPP across all biomes, but large differences between MOD17 and LSA SAF illustrated their sensitivity to

the quality of the meteorological forcings used.600

Overall, we conclude that the combination of meteorological drivers and remote sensing observations are needed to yield an

accurate reproduction of the spatio-temporal variability of GPP. To further advance the performance of DGVMs, improvements
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in the soil moisture dynamics and vegetation evolution are needed.

Code and data availability. The dataset is published at https://www.zenodo.org/ (DOI: 10.5281/zenodo.7928514). It contains GPP605

from all sources + in situ radiation, temperature, vapor pressure deficit and ERA5 soil moisture. The scripts used in this study are freely

available upon request to the authors.
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Appendix A: Appendix

A1 Validation Sites

Tot
al
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_T

Bor
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W
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Hydro-climatic biome

Total

EBF

DBF

MF

ENF

WET

GRA

OSH

SAV

WSA

CRO

PF
T

61

5

9

5

19

3

3

1

7

2

7

1

FI-Var

3

US-UMB
US-UMd

CA-Gro

7

FI-Hyy
FI-Let
RU-Fy2
RU-Fyo
SE-Ros
SE-Svb

SE-Deg

25

CZ-Stn
DE-Hai
DK-Sor
FR-Fon
FR-Hes

BE-Bra
BE-Vie
CH-Lae
CZ-Lnz

CZ-BK1
CZ-RAJ
DE-Obe
DE-RuW
DE-Tha
NL-Loo
SE-Htm
SE-Nor

DE-Hte
DE-Spw

BE-Lon
DE-Geb
DE-Kli
DE-RuS
DE-Seh
SE-Lnn

3

US-Ha1
US-MMS

US-ARM

1

AU-ASM

17

AU-Tum
FR-Pue
IT-Cp2

IT-SR2
IT-SRo
US-Me6

AU-DaP
AU-Stp
US-SRG

US-SRC

AU-DaS
AU-Dry
ES-Abr
ES-LM1
ES-LM2

AU-How
US-SRM

2

AU-Cpr
ZA-Kru

2

BR-Sa1
GF-Guy

Table A1. Distribution of the selected testsites across PFT and HCB.
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461

35

75

47

140

26

19

6

36

16

58

3

3

22

15

7

58

46

12

223

46

40

71

14

52

20

14

6

3

3

107

22

16

19

6

26

16

10

10

12

12

Table A2. Total length of GPP timeseries available (years), aggregated per PFT and HCB.
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A2 Quantile regression610
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Figure A1. Evaluation of the robustness of the quantile regression between RS observations and tower GPP. The regression was done for

daily data (red) and 16-day aggregated data (blue). For each approach, the opaque line shows the mean of 20 regressions using a 50%

subsample of the dataset (transparent lines).
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A3 Impact of ERA5 forcing

Given the gaps in the meteorological observations at the sites, used to force the models, ERA5 data was used to replace some

of these variables: air temperature, atmospheric humidity, wind speed, and atmospheric pressure. Simulations with ISBA were

performed using this configuration, and compared with simulations using only the tower observations (for sites that had < 5%

gaps in the timeseries), to verify that the impact on the simulated GPP was limited. An example of simulations with both615

configurations is given in Fig. A2, validation indices of both simulations compared to the observed GPP is given in Tab. A3,

and metrics of the similarity between both simulations are given in Tab. A4. From these results, we conclude that the impact

of using ERA5 for some of the forcing variables is negligible.
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Figure A2. Timeseries of the observed GPP at CZ-RAJ, compared to ISBA simulations with ERA5 variables (as used in the study), and

ISBA simulations forced by the in situ meteorological observations (ISBA_Tower). The two simulations are largely overlapping.
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ME RMSE r rseas ranom

(gC/m2/d) (gC/m2/d) (-) (-) (-)

CZ-RAJ ISBA -1.01 2.24 0.82 0.94 0.45

ISBA_Tower -1.28 2.48 0.80 0.93 0.40

DE-RuW ISBA -2.71 3.50 0.78 0.95 0.45

ISBA_Tower -2.67 3.48 0.77 0.95 0.46

FR-EM2 ISBA -2.01 5.98 0.54 0.92 -0.14

ISBA_Tower -1.68 5.96 0.53 0.91 -0.17

FR-Hes ISBA 0.36 2.88 0.85 0.94 0.54

ISBA_Tower 0.52 2.75 0.86 0.96 0.55

DE-Geb ISBA 0.81 3.70 0.66 0.85 0.33

ISBA_Tower 0.68 3.59 0.66 0.87 0.34

IT-SR2 ISBA 0.60 2.07 0.85 0.98 0.56

ISBA_Tower 0.52 2.03 0.85 0.99 0.57

CZ-Stn ISBA 0.11 2.53 0.87 0.98 0.49

ISBA_Tower 0.16 2.49 0.87 0.98 0.51

DE-Hte ISBA -0.44 2.28 0.62 0.90 0.04

ISBA_Tower -0.34 2.31 0.62 0.90 0.05

ES-LM1 ISBA -0.72 1.39 0.87 0.99 0.69

ISBA_Tower -0.78 1.45 0.87 0.98 0.69

ES-LM2 ISBA -0.75 1.38 0.87 0.98 0.67

ISBA_Tower -0.80 1.46 0.86 0.95 0.67

Table A3. Validation of GPP similated with ISBA (partly with ERA5 forcing variable) and ISBA_Tower (with tower forcing). The 10 sites

were selected based on the good quality of the meteorological observations.

ME RMSE r rseas ranom

(gC/m2/d) (gC/m2/d) (-) (-) (-)

CZ-RAJ -0.266 0.377 0.996 0.999 0.988

DE-RuW 0.038 0.158 0.998 1.000 0.995

FR-EM2 0.332 0.728 0.992 0.996 0.980

FR-Hes 0.161 0.504 0.995 0.996 0.988

DE-Geb -0.136 0.487 0.995 0.999 0.988

IT-SR2 -0.083 0.500 0.991 0.993 0.985

CZ-Stn 0.059 0.661 0.990 0.996 0.973

DE-Hte 0.088 0.322 0.993 0.999 0.980

ES-LM1 -0.066 0.368 0.989 0.993 0.980

ES-LM2 -0.056 0.351 0.989 0.993 0.979

Table A4. Metrics to quantify the similarity between GPP similated with ISBA (partly with ERA5 forcing variable) and ISBA_Tower (with

tower forcing). The 10 sites were selected based on the good quality of the meteorological observations.
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A4 Impact temporal resolution

All Inter-site Seasonal Anomalies

Observation 4.16 1.75 0.18 3.17 0.58 2.01 0.24

NDVI 2.11 1.46 0.48 1.32 0.40 0.72 0.12

EVI 2.95 1.70 0.33 2.23 0.57 0.86 0.08

NIRv 3.13 1.79 0.33 2.38 0.58 0.92 0.09

NIRvP 3.34 1.17 0.12 2.57 0.59 1.75 0.27

SIF 3.42 1.63 0.23 2.78 0.66 1.06 0.10

FluxComRS 2.82 1.12 0.16 2.48 0.78 0.67 0.06

FluxComRSMet 2.83 1.15 0.17 2.52 0.79 0.52 0.03

MOD17 3.13 1.36 0.19 2.38 0.58 1.47 0.22

LSA SAF 4.83 2.23 0.21 3.59 0.55 2.30 0.23

ISBA 3.61 1.45 0.16 2.76 0.58 1.80 0.25

ORCHIDEE 3.68 1.34 0.13 2.95 0.64 1.68 0.21

Table A5. Standard deviation of the observed and simulated GPP (gC/m2/d), decomposed in the inter-site, seasonal and anomalies (obtained

after subtracting the spatial and seasonal component) components, and the fraction of the total variance (grey columns). This analysis done

after grouping all sites together. A downsampling to 10-daily resolution was performed prior to this analysis.
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A5 Variability620

All Daily Weekly Monthly Annual Interannual

Obs EBF-Tropic 2.25 1.21 0.36 1.03 0.26 0.98 0.24 0.58 0.08 0.70 0.12

DBF-MidL_T 5.11 1.11 0.06 1.06 0.04 1.08 0.04 4.47 0.86 0.30 0.00

ENF-Bor_WT 3.61 0.94 0.07 0.80 0.06 0.66 0.04 3.07 0.83 0.30 0.01

ENF-MidL_T 3.50 1.16 0.10 1.00 0.07 0.74 0.05 3.02 0.77 0.36 0.01

ENF-Trans_E 3.25 1.20 0.15 0.94 0.09 0.71 0.07 2.46 0.67 0.40 0.02

SAV-Trans_E 2.05 0.57 0.07 0.54 0.09 0.52 0.07 1.71 0.75 0.30 0.02

CRO-MidL_T 4.75 1.03 0.06 0.93 0.04 1.47 0.09 3.98 0.76 0.74 0.03

NDVI EBF-Tropic 0.79 0.04 0.02 0.15 0.32 0.29 0.29 0.62 0.74

DBF-MidL_T 1.89 0.33 0.07 0.80 0.38 0.92 0.56 0.08 0.01

ENF-Bor_WT 1.08 0.09 0.01 0.37 0.25 0.74 0.70 0.05 0.00

ENF-MidL_T 1.02 0.21 0.10 0.47 0.49 0.47 0.38 0.05 0.00

ENF-Trans_E 0.64 0.19 0.16 0.37 0.38 0.23 0.46 0.03 0.01

SAV-Trans_E 1.41 0.19 0.05 0.41 0.22 0.78 0.71 0.03 0.00

CRO-MidL_T 1.42 0.24 0.06 0.65 0.36 0.76 0.58 0.04 0.00

EVI EBF-Tropic 1.03 0.15 0.07 0.14 0.04 0.66 0.77 0.33 0.25

DBF-MidL_T 3.59 0.48 0.04 1.38 0.33 2.08 0.63 0.07 0.00

ENF-Bor_WT 1.44 0.08 0.00 0.45 0.24 0.86 0.74 0.05 0.00

ENF-MidL_T 1.40 0.19 0.03 0.48 0.19 0.88 0.76 0.08 0.01

ENF-Trans_E 0.53 0.15 0.09 0.22 0.32 0.23 0.59 0.13 0.07

SAV-Trans_E 1.34 0.21 0.05 0.32 0.30 0.77 0.65 0.03 0.00

CRO-MidL_T 2.76 0.42 0.03 1.15 0.21 1.63 0.75 0.11 0.00

NIRv EBF-Tropic 1.35 0.19 0.07 0.17 0.05 0.84 0.77 0.43 0.22

DBF-MidL_T 4.02 0.56 0.04 1.61 0.39 2.27 0.57 0.11 0.00

ENF-Bor_WT 1.38 0.08 0.00 0.45 0.22 0.85 0.76 0.07 0.00

ENF-MidL_T 1.36 0.17 0.03 0.50 0.23 0.89 0.72 0.07 0.01

ENF-Trans_E 0.48 0.14 0.10 0.22 0.36 0.21 0.54 0.10 0.07

SAV-Trans_E 1.36 0.21 0.05 0.31 0.32 0.75 0.63 0.04 0.00

CRO-MidL_T 3.15 0.42 0.03 1.28 0.23 1.88 0.75 0.15 0.00

NIRvP EBF-Tropic 2.06 0.42 0.15 0.42 0.15 1.13 0.63 0.54 0.14

DBF-MidL_T 4.93 1.43 0.16 1.85 0.31 2.34 0.54 0.13 0.00

ENF-Bor_WT 2.17 0.24 0.04 0.75 0.20 1.40 0.75 0.13 0.00

ENF-MidL_T 2.38 0.71 0.22 0.82 0.29 1.15 0.46 0.04 0.00

ENF-Trans_E 1.65 0.44 0.14 0.50 0.29 0.88 0.57 0.09 0.01

SAV-Trans_E 1.49 0.43 0.18 0.49 0.30 0.86 0.52 0.01 0.00

CRO-MidL_T 4.01 0.86 0.08 1.55 0.33 2.07 0.56 0.10 0.00

SIF EBF-Tropic 1.47 0.53 0.22 0.47 0.17 0.89 0.61 0.11 0.01

DBF-MidL_T 4.31 0.72 0.05 1.41 0.18 3.12 0.78 0.13 0.00

ENF-Bor_WT 2.12 0.43 0.06 0.91 0.43 1.27 0.50 0.12 0.01

ENF-MidL_T 2.55 0.63 0.09 0.84 0.17 1.71 0.73 0.09 0.00

ENF-Trans_E 1.44 0.30 0.06 0.29 0.06 1.15 0.88 0.00 0.00

SAV-Trans_E 1.68 0.26 0.03 0.48 0.13 1.48 0.84 0.03 0.00

CRO-MidL_T 3.83 0.67 0.05 1.32 0.16 2.78 0.79 0.15 0.00

Table A6. Standard deviation of the observed and simulated GPP (gC/m2/d), decomposed in the different timescale components using

SSA. The median values for 6 land cover types are reported here. The fraction of the total variability is given in the grey columns.
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All Daily Weekly Monthly Annual Interannual

Obs EBF-Tropic 2.25 1.21 0.36 1.03 0.26 0.98 0.24 0.58 0.08 0.70 0.12

DBF-MidL_T 5.11 1.11 0.06 1.06 0.04 1.08 0.04 4.47 0.86 0.30 0.00

ENF-Bor_WT 3.61 0.94 0.07 0.80 0.06 0.66 0.04 3.07 0.83 0.30 0.01

ENF-MidL_T 3.50 1.16 0.10 1.00 0.07 0.74 0.05 3.02 0.77 0.36 0.01

ENF-Trans_E 3.25 1.20 0.15 0.94 0.09 0.71 0.07 2.46 0.67 0.40 0.02

SAV-Trans_E 2.05 0.57 0.07 0.54 0.09 0.52 0.07 1.71 0.75 0.30 0.02

CRO-MidL_T 4.75 1.03 0.06 0.93 0.04 1.47 0.09 3.98 0.76 0.74 0.03

FluxComRS EBF-Tropic 0.49 0.19 0.20 0.12 0.08 0.37 0.72 0.03 0.00

DBF-MidL_T 3.07 0.45 0.03 0.71 0.08 2.78 0.90 0.09 0.00

ENF-Bor_WT 2.90 0.33 0.02 0.40 0.02 2.75 0.96 0.08 0.00

ENF-MidL_T 2.95 0.45 0.03 0.53 0.04 2.70 0.93 0.10 0.00

ENF-Trans_E 1.87 0.28 0.02 0.33 0.04 1.64 0.93 0.07 0.00

SAV-Trans_E 0.92 0.18 0.03 0.34 0.12 0.79 0.86 0.02 0.00

CRO-MidL_T 2.78 0.47 0.03 0.69 0.08 2.44 0.88 0.10 0.00

FluxComRSMet EBF-Tropic 0.75 0.53 0.59 0.22 0.10 0.22 0.10 0.31 0.21 0.05 0.01

DBF-MidL_T 3.05 0.42 0.02 0.26 0.01 0.41 0.02 2.95 0.95 0.03 0.00

ENF-Bor_WT 2.53 0.35 0.02 0.20 0.01 0.27 0.01 2.49 0.97 0.01 0.00

ENF-MidL_T 2.88 0.42 0.02 0.24 0.01 0.29 0.01 2.82 0.96 0.05 0.00

ENF-Trans_E 1.90 0.22 0.01 0.15 0.01 0.19 0.01 1.86 0.97 0.03 0.00

SAV-Trans_E 1.07 0.20 0.04 0.14 0.02 0.20 0.04 1.00 0.91 0.06 0.00

CRO-MidL_T 2.94 0.45 0.03 0.24 0.01 0.29 0.01 2.87 0.96 0.03 0.00

MOD17 EBF-Tropic 3.29 1.64 0.39 1.26 0.23 1.61 0.38 0.07 0.00

DBF-MidL_T 3.61 1.21 0.24 0.97 0.12 2.23 0.63 0.07 0.00

ENF-Bor_WT 3.24 1.05 0.23 0.92 0.17 1.84 0.60 0.06 0.00

ENF-MidL_T 2.89 0.98 0.21 0.79 0.13 1.77 0.64 0.04 0.00

ENF-Trans_E 2.35 0.74 0.16 0.67 0.13 1.57 0.71 0.06 0.00

SAV-Trans_E 1.81 0.47 0.09 0.50 0.15 1.33 0.74 0.03 0.00

CRO-MidL_T 2.69 0.91 0.18 0.93 0.19 1.71 0.63 0.09 0.00

LSA SAF EBF-Tropic 3.20 2.20 0.57 1.00 0.11 0.67 0.06 1.49 0.26 0.31 0.01

DBF-MidL_T 6.72 2.47 0.15 1.46 0.06 0.87 0.03 5.72 0.77 0.10 0.00

ENF-Bor_WT 5.45 2.07 0.15 1.27 0.06 0.94 0.03 4.59 0.76 0.17 0.00

ENF-MidL_T 4.74 2.00 0.19 1.29 0.07 0.62 0.02 3.92 0.72 0.14 0.00

ENF-Trans_E 2.66 1.03 0.18 0.58 0.05 0.33 0.02 2.26 0.75 0.27 0.01

SAV-Trans_E 1.57 0.71 0.15 0.51 0.12 0.33 0.07 1.19 0.67 0.13 0.01

CRO-MidL_T 3.06 1.21 0.16 0.72 0.05 0.68 0.05 2.52 0.75 0.15 0.00

ISBA EBF-Tropic 2.94 1.95 0.53 0.94 0.12 0.57 0.05 1.49 0.30 0.07 0.00

DBF-MidL_T 4.47 1.37 0.10 0.95 0.05 0.88 0.04 3.88 0.80 0.49 0.01

ENF-Bor_WT 2.76 0.79 0.08 0.60 0.05 0.43 0.02 2.43 0.84 0.15 0.00

ENF-MidL_T 2.89 0.94 0.11 0.70 0.06 0.39 0.02 2.49 0.81 0.14 0.00

ENF-Trans_E 3.72 1.17 0.10 0.72 0.05 0.47 0.03 3.22 0.84 0.25 0.01

SAV-Trans_E 2.34 0.40 0.06 0.40 0.08 0.53 0.05 2.01 0.77 0.40 0.03

CRO-MidL_T 4.26 1.42 0.13 0.95 0.07 1.14 0.08 3.34 0.72 0.48 0.01

ORCHIDEE EBF-Tropic 1.32 0.89 0.55 0.33 0.08 0.45 0.15 0.56 0.21 0.04 0.00

DBF-MidL_T 5.03 1.13 0.05 1.04 0.05 1.34 0.07 4.52 0.81 0.18 0.00

ENF-Bor_WT 3.22 0.64 0.04 0.49 0.02 0.34 0.01 3.07 0.92 0.12 0.00

ENF-MidL_T 2.47 0.63 0.07 0.51 0.04 0.34 0.02 2.25 0.86 0.13 0.00

ENF-Trans_E 2.23 0.66 0.09 0.47 0.04 0.73 0.10 1.91 0.72 0.14 0.00

SAV-Trans_E 2.41 0.53 0.05 0.54 0.05 0.55 0.06 2.19 0.83 0.61 0.05

CRO-MidL_T 4.57 0.96 0.05 0.79 0.03 1.35 0.08 4.14 0.85 0.33 0.01

Table A7. (Continued) Standard deviation of the observed and simulated GPP (gC/m2/d), decomposed in the different timescale compo-

nents using SSA. The median values for 6 land cover types are reported here. The fraction of the total variability is given in the grey columns.
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A6 GPP Covariance

Spatial Seasonal Anomalies Spatial Spatial Seasonal

Spatial Seasonal Anomalies Seasonal Anomalies Anomalies

Observation 3.13 10.84 4.22 0.12 -0.12 -0.34

NDVI 2.13 1.77 0.55 0.04 -0.04 -0.01

EVI 2.87 5.07 0.81 0.00 0.00 -0.04

NIRv 3.19 5.77 0.94 -0.01 0.01 -0.05

NIRvP 1.36 7.38 3.15 0.02 -0.02 -0.37

SIF 2.74 7.70 1.11 -0.03 0.03 0.05

FluxComRS 1.26 6.24 0.44 0.00 0.00 -0.01

FluxComRSMet 1.31 6.70 0.29 0.04 -0.04 -0.16

MOD17 1.94 5.86 2.27 0.03 -0.03 -0.15

LSA SAF 5.01 13.53 5.66 0.17 -0.16 -0.44

ISBA 2.13 8.31 3.43 0.09 -0.09 -0.31

ORCHIDEE 1.81 10.09 3.08 0.16 -0.16 -0.71

Table A8. (Co-)variance of the observed and simulated GPP (gC/m2/d), decomposed in the inter-site, seasonal and anomalies (obtained

after subtracting the spatial and seasonal component) components. Analysis of the concatenated timeseries.

Daily Weekly Monthly

D W M S I D W M S I D W M S I

Observation 0.96 0.11 0.00 0.02 0.00 0.11 0.62 0.07 0.06 0.00 0.00 0.07 0.56 0.12 0.00

NDVI 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.06 0.07 0.00 0.00 0.06 0.23 0.22 0.01

EVI 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.05 0.11 0.00 0.00 0.05 0.28 0.42 0.02

NIRv 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.06 0.12 0.00 0.00 0.06 0.29 0.41 0.02

NIRvP 0.00 0.00 0.00 0.00 0.00 0.00 0.37 0.33 0.38 0.01 0.00 0.33 0.67 0.67 0.01

SIF 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.14 0.21 0.01 0.00 0.14 0.81 0.74 0.02

FluxComRS 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.04 0.03 0.00 0.00 0.04 0.21 0.21 0.01

FluxComRSMet 0.12 0.01 0.00 0.00 0.00 0.01 0.05 0.00 0.00 0.00 0.00 0.00 0.06 0.01 0.00

MOD17 0.00 0.00 0.00 0.00 0.00 0.00 0.88 0.41 0.49 0.01 0.00 0.41 0.60 0.51 0.01

LSA SAF 2.01 0.24 0.03 0.00 0.00 0.24 0.65 0.07 0.01 0.00 0.03 0.07 0.38 0.02 0.00

ISBA 0.86 0.11 0.01 0.00 0.00 0.11 0.47 0.06 0.00 0.00 0.01 0.06 0.21 0.03 0.01

ORCHIDEE 0.53 0.06 0.00 0.00 0.00 0.06 0.34 0.04 0.00 0.00 0.00 0.04 0.48 0.04 0.00
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Seasonal Interannual

D W M S I D W M S I

Observation 0.02 0.06 0.12 8.31 0.03 0.00 0.00 0.00 0.03 0.08

NDVI 0.00 0.07 0.22 0.43 0.02 0.00 0.00 0.01 0.02 0.00

EVI 0.00 0.11 0.42 1.22 0.03 0.00 0.00 0.02 0.03 0.00

NIRv 0.00 0.12 0.41 1.08 0.03 0.00 0.00 0.02 0.03 0.01

NIRvP 0.00 0.38 0.67 1.79 0.03 0.00 0.01 0.01 0.03 0.00

SIF 0.00 0.21 0.74 2.93 0.05 0.00 0.01 0.02 0.05 0.01

FluxComRS 0.00 0.03 0.21 5.03 0.07 0.00 0.00 0.01 0.07 0.01

FluxComRSMet 0.00 0.00 0.01 6.38 0.00 0.00 0.00 0.00 0.00 0.00

MOD17 0.00 0.49 0.51 2.63 0.03 0.00 0.01 0.01 0.03 0.00

LSA SAF 0.00 0.01 0.02 8.66 0.01 0.00 0.00 0.00 0.01 0.02

ISBA 0.00 0.00 0.03 6.74 0.02 0.00 0.00 0.01 0.02 0.04

ORCHIDEE 0.00 0.00 0.04 7.43 0.01 0.00 0.00 0.00 0.01 0.02

Table A9. (Co-)variance of the observed and simulated GPP (gC/m2/d), of the daily, weekly, monthly, seasonal and inter-annual timescale

(obtained with SSA). The median for all sites is given here.

A7 Model performance: ME and RMSE
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Figure A3. ME (top) and RMSE (bottom) of the GPP obtained by the models, validated with the in-situ observations. Bars show the median

score accross the sites, errorbars indicate the 25 and 75 percentile. Note: this is not an independent validation.
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A8 Covariance of GPP Drivers

Daily Weekly Monthly Annual Interannual
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Figure A4. Covariance of the GPP drivers: SWrad, TA, VPD and SWC. Median of the sites, classified per land cover type.
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A9 Correlation between GPP and its drivers
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Figure A5. Correlation of the simulated GPP and its drivers (median for all sites). Correlation based on observations are in the hashed bars.

The colored barplots indicate the correlation in the simulations.
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Figure A6. Pearson r of the simulated GPP and its drivers at weekly, monthly and seasonal scale. Correlation based on observations are in

the hashed bars and gray bars highlight the deviation for a land cover from the overall average. The colored barplots indicate the correlation

in the simulations.
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A10 Accuracy of the GPP-driver covariance625

Daily
SWrad TA VPD SWC

Weekly
SWrad TA VPD SWC

Monthly
SWrad TA VPD SWC

Annual
SWrad TA VPD SWC

Interannual
SWrad TA VPD SWC

NDVI

EVI

NIRv

FluxComRS

SIF

NIRvP

FluxComRSMet

MOD17

LSA SAF

ISBA

ORCHIDEE

2.68 1.67 1.70 1.36 1.74 1.93 1.56 1.31 3.23 2.64 2.12 2.34 1.03 1.25 1.74 1.22

2.67 1.68 1.71 1.36 1.68 2.31 1.43 1.32 2.58 2.16 1.67 1.78 1.01 1.25 1.57 1.24

2.66 1.69 1.71 1.37 1.72 2.49 1.56 1.39 2.53 2.14 1.63 1.74 1.08 1.22 1.47 1.17

2.08 1.31 1.37 1.74 1.00 1.00 1.02 1.00 1.14 1.01 1.00 1.24 1.24 1.09 1.42 1.12

2.31 1.60 1.45 1.24 1.63 1.84 1.85 1.87 1.97 2.03 1.46 1.58 2.19 1.41 1.03 1.19

2.08 1.36 2.23 1.37 2.43 1.68 4.14 2.19 2.17 2.11 1.66 1.74 1.16 1.23 1.75 1.19

1.83 1.00 1.17 1.23 1.59 1.00 1.00 1.00 1.22 1.22 1.00 1.14 1.00 1.00 1.07 1.15 1.00 1.10 1.00 1.22

2.06 1.66 1.88 2.31 1.68 1.70 1.99 1.86 2.07 2.07 1.56 1.83 1.14 1.00 1.26 1.00

3.44 3.49 4.06 1.86 5.57 2.64 4.38 2.00 3.68 1.57 2.37 1.59 1.46 1.10 1.04 1.00 1.92 1.14 1.63 1.05

1.00 2.69 1.61 1.19 2.27 2.46 2.44 1.31 1.68 1.52 1.83 1.37 1.12 1.01 1.07 1.06 2.05 1.62 2.64 1.38

1.54 1.26 1.00 1.00 1.00 1.36 1.63 1.44 1.36 1.32 1.54 1.61 1.18 1.15 1.19 1.36 1.89 1.76 2.87 1.58

Table A10. RMSE of the driver-GPP covariances at weekly, monthly and annual timescale. The values are relative to the lowest RMSE score

(best model has unitless value 1)
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DBF-MidL_T
SWrad TA VPD SWC

EBF-Tropic
SWrad TA VPD SWC
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SWrad TA VPD SWC
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SWrad TA VPD SWC

NDVI

EVI

NIRv

FluxComRS

SIF

NIRvP

FluxComRSMet

MOD17

LSA SAF

ISBA

ORCHIDEE

6.08 5.45 4.65 4.01 1.00 1.92 1.00 3.85 6.28 6.06 5.95 7.00 7.31 5.44 6.58 7.23 10.32 9.25 9.27 5.22 13.46 1.50 1.44 2.13

4.56 4.09 3.36 2.89 6.05 7.25 4.16 7.21 5.79 5.61 5.42 6.17 6.16 4.70 5.54 5.89 8.67 7.75 7.64 4.47 11.02 1.54 1.63 1.91

4.38 3.98 3.24 2.81 7.91 9.44 5.22 9.91 5.73 5.61 5.32 5.92 6.19 4.74 5.53 5.98 8.93 7.99 7.78 4.51 9.67 1.28 1.50 1.99

2.87 3.17 2.60 2.61 3.83 3.53 2.03 3.84 1.34 1.42 1.12 1.00 1.31 1.00 1.00 1.00 2.69 2.30 2.64 1.28 1.00 1.11 1.62 1.31

3.46 3.94 2.88 2.89 14.09 14.09 8.38 11.63 5.16 5.54 4.73 5.73 4.69 3.99 4.14 4.64 1.96 1.42 1.00 2.51 5.10 1.49 1.98 1.73

4.06 4.11 3.09 2.70 11.50 11.25 5.98 14.12 4.98 5.72 4.59 5.44 5.40 4.61 5.26 5.20 4.79 4.18 3.61 2.56 5.07 2.39 3.36 2.94

2.35 2.77 2.13 2.23 1.19 1.00 1.03 1.00 1.29 1.55 1.21 1.20 1.00 1.04 1.05 1.00 2.35 2.99 3.84 2.15 2.87 1.74 2.00 1.72

4.21 4.30 3.52 3.11 31.24 28.31 14.26 15.25 4.15 4.65 3.92 3.90 3.41 3.18 3.58 3.31 3.84 4.07 3.05 1.44 4.80 1.26 1.11 1.57

2.19 1.50 1.47 1.00 32.25 23.89 11.58 17.02 3.71 3.02 3.72 3.15 2.86 1.80 2.60 3.06 1.00 1.00 1.27 1.00 3.83 1.24 1.54 1.45

1.00 1.00 1.00 1.09 31.42 33.01 18.53 12.91 2.02 1.90 1.97 1.92 1.98 1.24 1.50 1.12 3.58 4.04 3.93 1.73 3.44 1.00 1.00 1.00

1.33 1.00 1.15 1.13 5.72 3.57 1.13 3.56 1.00 1.00 1.00 1.48 1.82 1.56 1.94 1.42 1.79 1.46 1.68 1.39 9.35 1.99 2.09 2.96

Table A11. RMSE of the driver-GPP covariances at annual timescale, per biome. The values are relative to the lowest RMSE score (best

model has unitless value 1)
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A11 Phenology
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Figure A7. Mean errors (per site) in the timing of the start, max and end of the seasonal GPP cycle (SOS, MOS and EOS)
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A12 Mean annual cycle

01 02 03 04 05 06 07 08 09 10 11 12
Month

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Da
il

y 
me

an
 G

PP
 g

C 
m

2 d
1

DBF-MidL_T NDVI
EVI
NIRv
SIF
NIRvP
Observation

01 02 03 04 05 06 07 08 09 10 11 12
Month

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Da
il

y 
me

an
 G

PP
 g

C 
m

2 d
1

DBF-MidL_T FluxComRS
FluxComRSMet
MOD17
LSA SAF
ISBA
ORCHIDEE
Observation

01 02 03 04 05 06 07 08 09 10 11 12
Month

0

2

4

6

8

10

12

14

16

Da
il

y 
me

an
 G

PP
 g

C 
m

2 d
1

ENF-Bor_WT

01 02 03 04 05 06 07 08 09 10 11 12
Month

0

2

4

6

8

10

12

14

16

Da
il

y 
me

an
 G

PP
 g

C 
m

2 d
1

ENF-Bor_WT

01 02 03 04 05 06 07 08 09 10 11 12
Month

0

2

4

6

8

10

12

Da
il

y 
me

an
 G

PP
 g

C 
m

2 d
1

ENF-MidL_T

01 02 03 04 05 06 07 08 09 10 11 12
Month

0

2

4

6

8

10

12

Da
il

y 
me

an
 G

PP
 g

C 
m

2 d
1

ENF-MidL_T

01 02 03 04 05 06 07 08 09 10 11 12
Month

2

4

6

8

10

12

Da
il

y 
me

an
 G

PP
 g

C 
m

2 d
1

ENF-Trans_E

01 02 03 04 05 06 07 08 09 10 11 12
Month

2

4

6

8

10

12

Da
il

y 
me

an
 G

PP
 g

C 
m

2 d
1

ENF-Trans_E

Figure A8. Annual GPP cycle in observations and models, for sites in the DBF-Midl_T, ENF-Bor_WT , ENF-Midl_T and ENF-Trans_E

biomes. The lines show the median cycle, and the shaded area shows the 25-75 percentile. Timeseries of sites located at the southern

hemisphere were shifted by 6 months, to match with the annual cycle of sites in the northern hemisphere.
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Figure A9. Annual GPP cycle in observations and models, for sites in the EBF-Tropic, SAV-Trans_E , and CRO-Midl_T biomes. The lines

show the median cycle, and the shaded area shows the 25-75 percentile. Timeseries of sites located at the southern hemisphere were shifted

by 6 months, to match with the annual cycle of sites in the northern hemisphere.
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A13 PFT-specific regressions
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Figure A10. Quantile regression models to estimate GPP from NDVI. The global regression (in black) and PFT-specific regressions (in

colors) are shown. The same was performed for EVI, NIRv, SIF and NIRvP.
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Figure A11. Taylor diagram of the simulated GPP with global and PFT-specific regression. The validation of the full dataset is shown (top

left), as well as the spatial component (top right), seasonal component (bottom left) and anomalies (bottom right)
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