

Insights into Soil NO Emissions and the Contribution to Surface Ozone Formation in China

Ling Huang^{1,2}, Jiong Fang^{1,2}, Jiaqiang Liao^{1,2}, Greg Yarwood³, Hui Chen^{1,2}, Yangjun Wang^{1,2}, Li Li^{1,2*}

¹School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China

²Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai, 200444, China

³Ramboll, Novato, California, 94945, USA

Correspondence: Li Li (lily@shu.edu.cn)

Keywords: Soil NO emissions; Ground-level ozone; BDSNP; OSAT

Abstract. Elevated ground-level ozone concentrations have emerged as a major environmental issue in China. Nitrogen oxide (NO_x) is a key precursor to ozone formation. Although control strategies aimed at reducing NO_x emissions from conventional combustion sources are widely recognized, soil NO_x emissions (mainly as NO) due to microbial processes have received little attention. The impact of soil NO emissions on ground-level ozone concentration is yet to be evaluated. This study estimated soil NO emissions in China using the Berkeley-Dalhousie soil NO_x parameterization (BDSNP) algorithm. A typical modeling approach was used to quantify the contribution of soil NO emissions to surface ozone concentration. The Brute-force method (BFM) and the Ozone Source Apportionment Technology (OSAT) implemented in the Comprehensive Air Quality Model with extensions (CAMx) were used. The total soil NO emissions in China for 2018 were estimated to be 1157.9 Gg N, with an uncertainty range of 715.7~1902.6 Gg N. Spatially, soil NO emissions are mainly concentrated in Central China, North China, Northeast China, northern Yangtze River Delta (YRD) and eastern Sichuan Basin, with distinct diurnal and monthly variations that are mainly affected by temperature and the timing of fertilizer application. Both the BFM and OSAT results indicate a substantial contribution of soil NO emissions to the maximum daily 8-hour (MDA8) ozone concentrations by 8~12.5 $\mu\text{g}/\text{m}^3$ on average for June 2018, with the OSAT results consistently higher than BFM. The results also showed that soil NO emissions led to a relative increase in ozone exceedance days by 10%~43.5% for selected regions. Reducing soil NO emissions resulted in a general decrease in monthly MDA8 ozone concentrations, and the magnitude of ozone reduction became more pronounced with increasing reductions. However, even with complete reductions in soil NO emissions, approximately 450.3 million people are still exposed to unhealthy ozone levels, necessitating multiple control policies at the same time. This study

38 highlights the importance of soil NO emissions for ground-level ozone concentrations and the
39 potential of reducing NO emissions as a future control strategy for ozone mitigation in China.

40 **1. Introduction**

41 A substantial decrease in the atmospheric fine particulate matter (PM_{2.5}) concentrations has
42 been witnessed during the past decade in China (Zhai et al., 2019; Xiao et al., 2020; Maji, 2020)
43 while the ground-level ozone (O₃) concentrations do not exhibit a steady downward trend (Lu
44 et al., 2020; Lu et al., 2021; Wang et al., 2022a; Sun et al., 2021). Because high ozone
45 concentration increases respiratory and circulatory risks (Malley et al., 2017; Cakaj et al., 2023;
46 Wang et al., 2020) and reduces crop yields (Feng et al., 2019; Lin et al., 2018; Mukherjee et al.,
47 2021; Montes et al., 2022), the coordinate control of PM_{2.5} and O₃ was proposed as part of the
48 14th Five-year plan (State Council, 2021). A continuous increase in summertime surface ozone
49 was observed across China's nationwide monitoring network from 2013 to 2019, followed by
50 an unprecedented decline in 2020 (except for Sichuan Basin) (Sun et al., 2021), which is equally
51 attributed to meteorology and anthropogenic emissions reductions (Yin et al., 2021). As a
52 secondary air pollutant, ozone is generated by the photochemical oxidation of volatile organic
53 compounds (VOC) in the presence of nitrogen oxides (NO_x = NO + NO₂), both of which are
54 considered ozone precursors. The control strategies to mitigate ozone pollution in China
55 focused on reducing NO_x emissions at an early stage and started to stress the control of VOCs
56 emissions in recent years (e.g., the 2020 action plan on VOCs mitigation), including control of
57 fugitive emissions, stringent emissions standards, and substituting raw materials with low
58 VOCs content (Ecology, 2020). Ding et al. (2021) concluded that for North China Plain (NCP),
59 a region that experienced the most severe PM_{2.5} and ozone pollution in China, reductions in
60 NO_x emissions are essential regardless of VOC reduction.

61 Existing control strategies for NO_x emissions are almost exclusively targeted at combustion
62 sources, for example, power plants, industrial boilers, cement production, and vehicle exhausts
63 (Sun et al., 2018; Ding et al., 2017; Diao et al., 2018). However, NO_x emissions from soils
64 (mainly as NO), as a result of microbial processes (e.g., nitrification and denitrification), could
65 make up a substantial fraction of the total NO_x emissions (Lu et al., 2021; Drury et al., 2021),
66 yet is often overlooked. In California, soil NO_x emissions in July accounted for 40% of the
67 state's total NO_x emissions (when using an updated estimation algorithm) and resulted in 23%
68 of enhanced surface ozone concentration (Sha et al., 2021). However, a wide range of annual
69 soil NO_x emissions from 8,685 tons (as NO₂, (Guo et al., 2020) to 161,100 metric tons of NO_x-
70 N (Almaraz et al., 2018) were reported depending on different methods. Romer et al. (2018)
71 estimated that nearly half of the increase in hot-day ozone concentration in a forested area of
72 the rural southeastern United States is attributable to the temperature-induced increases in NO_x
73 emissions, mostly likely due to soil microbes.

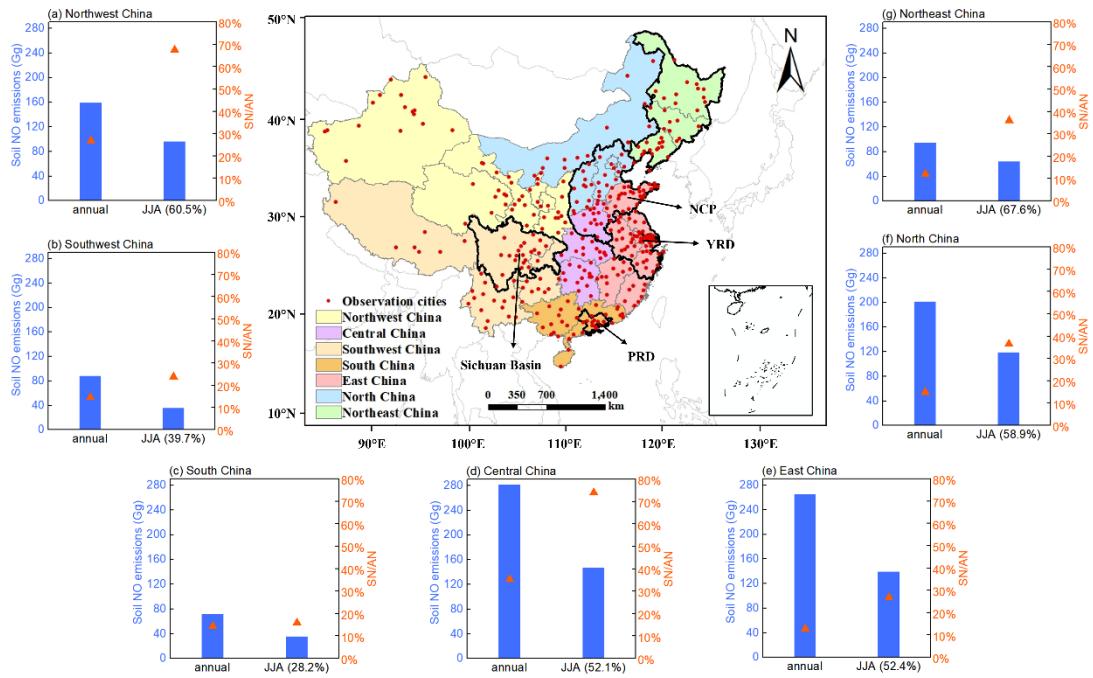
74 Soil NO emissions are affected by many factors, including nitrogen fertilizer application, soil
75 organic carbon content, soil temperature, humidity, and pH (Vinken et al., 2014; Yan et al., 2005;
76 Wang et al., 2021; Skiba et al., 2021). The amount of nitrogen fertilizer application in China
77 was estimated to account for one-third of the global nitrogen fertilizer application (Heffer and
78 Prud'homme, 2016), with most of the land under high nitrogen deposition (Liu et al., 2013; Lü
79 and Tian, 2007). Therefore, soil NO emissions in China are expected to be significant, and their
80 impacts on ozone pollution need to be systematically evaluated. So far, only a limited number
81 of studies have addressed this issue in China (Lu et al., 2021; Shen et al., 2023; Wang et al.,
82 2008; Wang et al., 2022b). Lu et al. (2021) concluded that soil NO significantly reduced the
83 ozone sensitivity to anthropogenic emissions in NCP, therefore, causing a so-called “emissions
84 control penalty”. Wang et al. (2022b) reported NOx emissions from cropland contributed 5.0%
85 of the maximum daily 8h average ozone (MDA8 O₃) and 27.7% of NO₂ concentration in NCP.
86 These studies focused solely on NCP, a region with persistent O₃ pollution in warm seasons
87 (Liu et al., 2020; Lu et al., 2020). The impact of soil NO emissions on ozone concentrations
88 over other regions, for example, the northern Yangtze River Delta (YRD) and Sichuan Basin,
89 where soil emissions are high (see Section 3.1) and ozone pollution is also severe (Shen et al.,
90 2022; Yang et al., 2021), has not been much evaluated in details (Shen et al., 2023). In addition,
91 the method employed in existing studies to evaluate soil NO emissions on ozone concentration
92 is the conventional “brute-force” zero-out approach, which might be inappropriate given the
93 strong nonlinearity of the ozone chemistry (Clappier et al., 2017; Thunis et al., 2019).
94 With the deepening of emissions control measures for power, industrial and on-road sectors,
95 anthropogenic NOx emissions from combustion sources have decreased at a much faster rate
96 (by 4.9% since 2012) than that from soil (fertilizer application decreases at a rate of 1.5% since
97 2015, Fig. S1). Therefore, understanding the impacts of soil NO emissions on ground-level
98 ozone concentration, particularly considering the spatial heterogeneities over different regions
99 of China, is of great importance for formulating future ozone mitigation strategies. In this study,
100 soil NO emissions in China for 2018 were estimated based on a most recent soil NO
101 parameterization scheme with updated fertilizer data as input. The spatial and temporal
102 variations of soil NO emissions were described first. Uncertainties associated with estimation
103 of soil NO emissions were discussed. An integrated meteorology and air quality model was
104 applied to quantify the impact of soil NO emissions on surface ozone concentration based on
105 two different methods. Lastly, we evaluated the changes in ozone concentration and exposed
106 population under different emission scenarios to highlight the effectiveness of reducing soil NO
107 emissions as potential control policy. Our results provide insights into developing effective
108 emissions reduction strategies to mitigate the ozone pollution in China.

109 **2. Methodology**

110 **2.1. Estimation of soil NO emissions in China**

111 Soil NO emissions were estimated based on the Berkeley-Dalhousie Soil NO_x Parameterization
112 (BDSNP) that is implemented in the Model of Emissions of Gases and Aerosols from Nature
113 (MEGAN) version 3.2 (<https://bai.ess.uci.edu/megan/data-and-code>, accessed on September 1st,
114 2021). The BDSNP algorithm estimates the soil NO emissions by adjusting a biome-specific
115 NO emissions factor in response to various conditions, including the soil temperature, soil
116 moisture, precipitation-induced pulsing, and a canopy reduction factor (Eq. 1, Rasool et al.,
117 2016):

$$NO_{\text{emission flux}} = A'_{\text{biome}} (N_{\text{avail}}) \times f(T) \times g(\theta) \times P(l_{\text{dry}}) \times CRF(LAI, Biome, Meterology) \quad \text{Eq. 1}$$


118 where $f(T)$ and $g(\theta)$ is the temperature (T , unit: K) and soil moisture (θ , unit: m³/m³) dependence
119 functions, respectively; $P(l_{\text{dry}})$ represents the pulsed soil emissions due to wetting of dry soils;
120 l_{dry} (hours) is the antecedent dry period of a pulse; and CRF describes the canopy reduction
121 factor, which is a function of the leaf area index (LAI, m²/m²) and the meteorology. A'_{biome} (ng
122 N m⁻² s⁻¹) is the biome-specific emission factor, which is further calculated as Eq.2:

$$A'_{\text{biome}} = A_{w,\text{biome}} + N_{\text{avail}} \times \bar{E} \quad \text{Eq. 2}$$

123 In Eq. 2, $A_{w,\text{biome}}$ (ng N m⁻² s⁻¹) is the wet biome-dependent emission factor; N_{avail} is the available
124 nitrogen from fertilizer and deposition; \bar{E} is the emission rate based on an observed global
125 estimates of fertilizer emissions (Rasool et al., 2016). The detailed expressions of these
126 parameters are presented in the Supporting Information. More information on the BDSNP
127 parameterizations can be found in previous studies (Hudman et al., 2012).

128 The default N fertilizer input data provided with the BDSNP algorithm is based on the a (Potter
129 et al., 2010), which gives a number of 19.6 Tg N/a. In this study, we collected fertilizer data
130 from statistical yearbooks at the provincial level. The total amount of pure nitrogen fertilizer
131 (hereafter N fertilizer) applied in the year 2018 is 20.7 Tg N/a, which is similar (5.6% higher)
132 to IFA value. However, besides the N fertilizer, NPK compound fertilizer (containing nitrogen
133 (N), phosphorous (P), and potassium (K)) is being increasingly applied in China. According to
134 the statistical yearbook, the amount of N fertilizer applied decreased from 23.5 Tg in 2010 to
135 20.7 Tg in 2018 (a relative reduction of 11.9%). In contrast, NPK fertilizer increased from 18.0
136 in 2010 to 22.7 Tg in 2018 (a relative increase of 26.1%). We assumed one-third of the NPK
137 fertilizer is nitrogen (Liu, 2016); thus, the total amount of nitrogen applied as fertilizer is 28.2
138 Tg N in 2018, which is 43.9% higher than the value from Potter et al. (2010). We divided China
139 into seven regions for emission analysis at regional scale, namely Northeast China, North China,
140 Central China, East China, South China, Southwest China, and Northwest China, as indicated
141 by different colors in Fig. 1 (see Table S1 for the list of provinces in each region). At the regional

142 level, the amount of total fertilizer differs by as much as 9.1% to 46.4% from the default
 143 fertilizer (Table S2).

144
 145 **Figure 1.** Modeling domain and region definitions. Surrounding charts show the annual
 146 summer (June-July-August, JJA) soil NO emissions and ratio of soil NO to anthropogenic
 147 NOx emissions for each region.

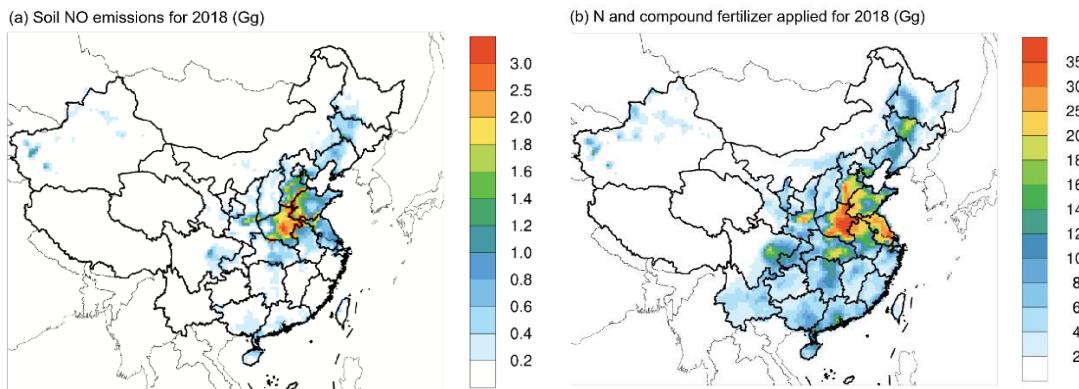
148 2.2. Model configurations

149 A typical modeling approach was applied to evaluate the contribution of soil NO emissions to
 150 surface ozone concentration. The Weather Research and Forecasting (WRF) model (version 3.7,
 151 <https://www.mmm.ucar.edu/wrf-model-general>, accessed on December 1st, 2021) and the
 152 Comprehensive Air Quality Model with Extension (CAMx, version 7.0, <http://www.camx.com/>,
 153 accessed on December 1st, 2021) were applied to simulate the meteorological fields and
 154 subsequent ozone concentrations. Table S3 listed the detailed model configurations for WRF
 155 and CAMx. Anthropogenic emissions include the Multi-resolution Emission Inventory of
 156 China for 2017 (MEIC, <http://www.meicmodel.org>, accessed on December 1st, 2021) and the
 157 2010 European Commission's Emissions Database for Global Atmospheric Research (EDGAR,
 158 <http://edgar.jrc.ec.europa.eu/index.php>, accessed on December 1st, 2021) for outside China.
 159 Biogenic emissions were calculated along with the soil NO emissions using MEGAN3.2. Open
 160 biomass burning emissions are adopted from the Fire INventory from NCAR version (FINN,
 161 version 1.5, <https://www.acom.ucar.edu/Data/fire/>) with MOZART speciation and converted to
 162 CAMx CB05 model species. The gaseous and aerosol modules used in CAMx include the CB05
 163 chemical mechanism (Yarwood et al., 2010) and the CF module. The aqueous-phase chemistry
 164 is based on the updated mechanism of the Regional Acid Deposition Model (RADM) (Chang

165 et al., 1987). A base case simulation was conducted for June 2018 when soil NO emissions
166 reached maxima (Section 3.1) and ozone pollution was severe over eastern China (Mao et al.,
167 2020; Jiang et al., 2022). Base case model performances have been evaluated in our previous
168 studies (Huang et al., 2021; Huang et al., 2022b). Here we evaluated simulated ozone
169 concentrations using the Pearson correlation coefficient (R), mean bias (MB), root-mean-square
170 error (RMSE), normalized mean bias (NMB), and normalized mean error (NME) against hourly
171 observed ozone concentrations for 365 cities in China. The formula for each of the statistical
172 metrics is given in Table S4. Observed hourly ozone concentrations were obtained from the
173 China National Environmental Monitoring Center.

174 **2.3. Brute-force and OSAT**

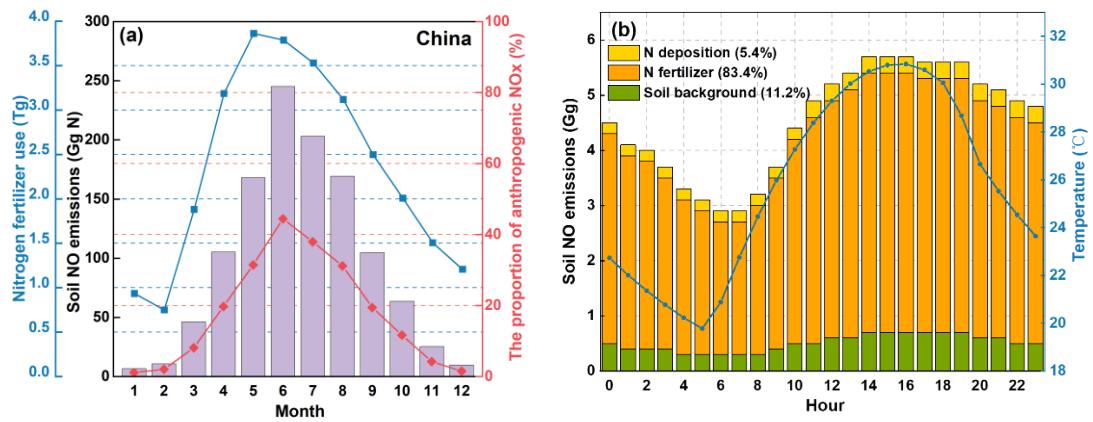
175 In this study, two methods were used to quantify the impact of soil NO emissions on surface
176 ozone concentration during the simulation period. The first is the conventional brute-force
177 method (BFM), which involves comparing the simulated ozone concentration between the base
178 case and a scenario case without soil NO emissions. The difference between these two scenarios
179 was considered to represent the contribution of soil NO emissions to ozone. The second method
180 applies the widely used Ozone Source Apportionment Technology (OSAT) implemented in
181 CAMx (Yarwood et al., 1996), with soil NO emissions being tagged as an individual emission
182 group. OSAT attributes ozone formation to NO_x or VOCs based on their relative availability
183 and apportions NO_x and VOCs emissions by source group/region (Ramboll, 2021). In addition
184 to soil NO emissions, anthropogenic and natural emissions (including biogenic VOC emissions,
185 lightning NO emissions, and open biomass burning) were also tagged as individual emission
186 groups.


187 **3. Results and discussions**

188 **3.1. Soil NO emissions for 2018 in China**

189 **3.1.1. Spatial and temporal variations**

190 National total soil NO emissions for 2018 is estimated to be 1157.9 Gg N, with an uncertainty
191 range of 715.7~1902.6 Gg N, which will be discussed more in Section 3.1.2. On an annual scale,
192 soil NO emissions accounted for 17.3% of the total anthropogenic NO_x emissions in China for
193 2017 (based on MEIC inventory). This ratio varies from 12.0% to 35.3% at regional scale.
194 Unlike the anthropogenic NO_x emissions that concentrate over densely populated regions (e.g.,
195 NCP, YRD), soil NO emissions are most abundant in Central China, particularly Henan
196 Province and nearby provinces, including Hebei and Shandong in the NCP, Jiangsu and Anhui
197 in northern YRD (Fig. 2a). Other hotspots of soil NO emissions include Northeast China and
198 the eastern part of the Sichuan Basin. As expected, the spatial distribution of soil NO emissions
199 closely mirrors that of the fertilizer application (Fig. 2b). Henan (located in Central China),


200 Shandong (NCP), and Hebei (NCP) are the top three provinces that have the highest fertilizer
201 application (together accounting for 24.1% of national totals in 2018) and thus highest soil NO
202 emissions (together accounting for 35.7%).

203 **Figure 2.** Spatial distribution of (a) soil NO emissions for 2018 and (b) N and compound
204 fertilizer applied for 2018.

205 In terms of the monthly variations, the total soil NO emissions show a unimodal pattern (as
206 shown in Fig. 3a with the highest emissions occurring in the summer months of June, July, and
207 August), except for South China and Southeast China (Fig. S2), where the peak emissions occur
208 in April or May. Soil NO emissions during the summer months account for 28.2% (South China)
209 to 67.6% (Northeast China) of the annual totals (Fig. 1 and Table S5). The shape of monthly
210 soil NO emissions is influenced by temperature and the timing of fertilizer application. The
211 BDSNP algorithm assumes that 75% of the annual fertilizer is applied over the first month of
212 the growing season, with the remaining 25% applied evenly throughout the rest of the growing
213 season. This assumption results in a significant amount of fertilizer being applied from April to
214 August (Fig. 3a). In contrast, anthropogenic NO_x emissions display weaker monthly variations
215 (Zheng et al., 2021). Consequently, the ratio of soil NO emissions to anthropogenic NO_x
216 (SN/AN) is much higher during the summer months. In regions such as Central China and
217 Northwest China, where soil NO emissions are high and anthropogenic NO_x emissions are
218 relatively low, SN/AN reaches 74.0% and 67.5% during the summer months (Fig. 1 and Table
219 S5). In East China and North China, where anthropogenic NO_x emissions are high, SN/AN
220 ranges from 26.8% to 36.5% during the summer months. These findings are align with Chen et
221 al. (2022), who reported that soil NO emissions made up 28% of total NO_x (soil NO +
222 anthropogenic NO_x) emissions in summer and could reach 50–90% in isolated areas and
223 suburbs. The substantial contribution of soil NO emissions during the ozone pollution season
224 implies a potentially significant impact on surface ozone concentration. In terms of diurnal
225 variations, soil NO emissions peak in the afternoon due to diurnal temperature fluctuations. As
226 illustrated by Fig. 3b, the average hourly soil NO emissions over NCP for June 2018 closely
227 follow the WRF simulated temperature changes.

228 The BDSNP algorithm identifies three sources of soil nitrogen: background, atmospheric
 229 nitrogen deposition, and fertilizer application, with the latter being the primary contributor. A
 230 decomposition analysis of soil NO emissions for NCP reveals that fertilizer application
 231 accounts for 83.4% of total NO soil emissions (Fig. 3b), while background and atmospheric
 232 nitrogen deposition only contribute for 11.2% and 5.4%, respectively. Thus, although soil NO
 233 emissions are generally considered a “natural” source (Galbally et al., 2008) and are not
 234 currently targeted in NOx emission mitigation strategies, human fertilizer activities render soil
 235 NO emissions an anthropogenic source.

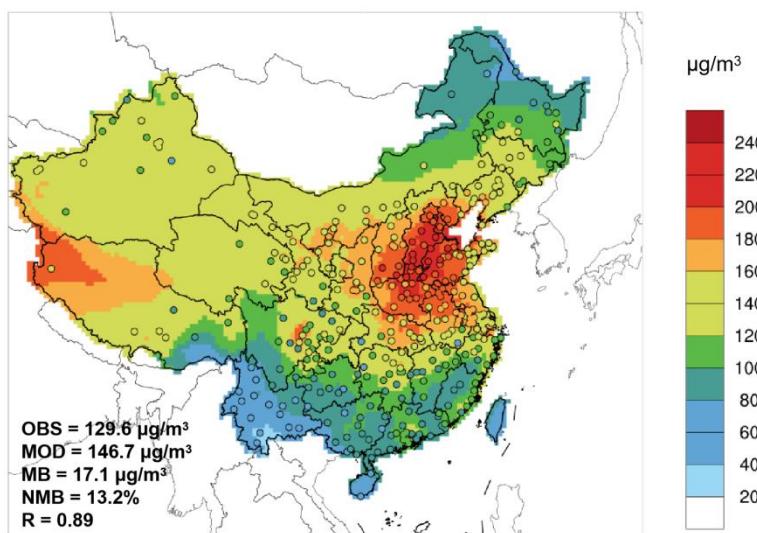
236 **Figure 3.** (a) Monthly fertilizer (N + compound) applied and soil NO emissions in China and
 237 (b) hourly soil NO emissions for 2018 June in NCP and domain-averaged hourly 2-m
 238 temperature simulated by WRF.

239 3.1.2. Limitations and Uncertainties associated with soil NO emission estimation

240 Although the current BDSNP algorithm is considered more sophisticated than the old YL95
 241 algorithm, it still suffers certain limitations. For example, the current BDSNP parameterization
 242 employs a static classification of “arid” versus “non-arid” soils, upon which the relationship
 243 between soil NO emissions and soil moisture relies (Hudman et al., 2012). However, recent
 244 studies (Sha et al., 2021; Huber et al., 2023) have shown more dynamic representation of this
 245 classification is needed to capture the emission characteristics as observed by many chamber
 246 and atmospheric studies (e.g., Oikawa et al. 2015; Huang et al. 2022a). Huber et al. (2023) also
 247 showed that the emission estimated based on the static classification are very sensitive to the
 248 soil moisture and thus could not produce self-consistent results when using different soil
 249 moisture products.

250 In addition to the aforementioned limitation, the estimated soil NO emissions are also subjected
 251 to certain limitations and large uncertainties. The first uncertainty comes from the amount of
 252 fertilizer application, which has been identified as the dominant contributor to soil NO
 253 emissions, as mentioned above. According to the global dataset (Potter et al., 2010), the amount
 254 of fertilizer applied is 19.6 Tg, which is comparable to the sum of nitrogen fertilizer for 2018

255 (20.7 Tg) obtained from provincial statistical yearbooks. However, compound fertilizer, usually
256 with a nitrogen, phosphorus, and potassium ratio of 15: 15: 15, has been used more in China.
257 Since 2016, the amount of nitrogen fertilizer has been decreasing annually at an average rate of
258 4.6%, while the amount of compound fertilizer has been increasing since 2010 at an average
259 rate of 3.3%. The ratio of compound fertilizer to nitrogen fertilizer has increased from 76.4%
260 in 2010 to 109.8% in 2018. Consequently, soil NO emissions may be largely underestimated if
261 the compound fertilizer is not taken into account. Our calculation shows that if only nitrogen
262 fertilizer is considered, the estimated total soil NO emissions are 805.2 Gg N/a for 2018, which
263 is comparable to the value (770 Gg N/a averaged during 2008-2017) reported by Lu et al. (2021),
264 but 30.5% lower than that based on both nitrogen fertilizer and compound fertilizer. Regionally,
265 this underestimation ranges from 11.1%~41.5%, with a larger underestimation in Central China
266 and East China (Fig. S3).

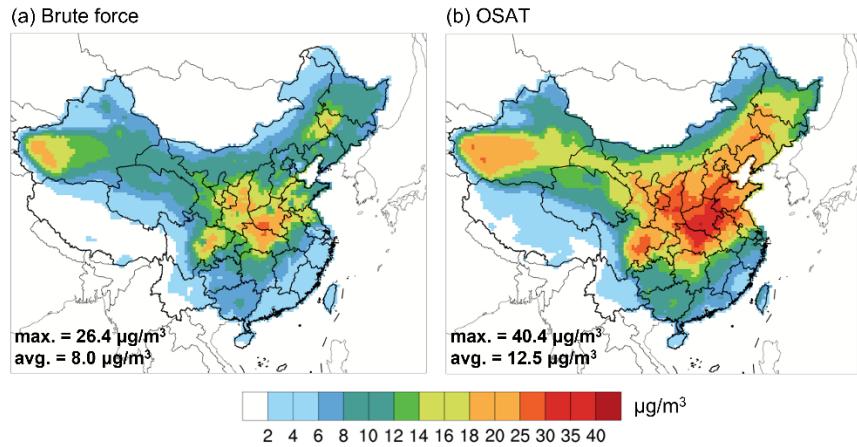

267 Another major uncertainty in estimating soil NO emissions is the temperature dependence
268 factor $f(T)$ in Eq.1. According to the BDSNP scheme, soil NO emissions increase exponentially
269 with temperature between 0 and 30°C and reach a maximum when the temperature exceeds
270 30°C. The default temperature dependence coefficient (i.e., k in Eq. S2) follows the value used
271 in the YL95 scheme, which is 0.103 ± 0.04 . However, as shown by Table 3 in Yienger and Levy
272 (1995), this value is the weighted average of values reported for different land types, which
273 shows a wide range from 0.040 to 0.189. Even for the same crop type (e.g., corn), the value of
274 k could be quite different (0.130 vs. 0.066). We conducted a sensitivity analysis to examine the
275 impact of varying the k value on estimated soil NO emissions. When the k value decreases or
276 increases by 20%, the estimated total soil NO emissions change from 715.7 to 1902.6 Gg N/a,
277 representing a relative difference of -38.2~64.3% deviation from the default value (1157.9 Gg
278 N/a). Using the default k value would result in a large overestimation of simulated NO₂
279 concentrations over NCP and YRD and underestimation over Northeast China (Fig. S4).
280 According to the total sown areas of farm crops reported in the provincial statistical yearbook,
281 the primary crops grown in these regions are wheat and corn, which have a relatively low k
282 value (0.066~0.073). Therefore, we adjusted k for NCP (reduced by 20%), YRD (reduced by
283 10%), and Northeast China (increased by 10%). CAMx simulation results show that this
284 adjustment would not significantly affect the simulated MDA8 O₃ concentration but could
285 reduce the NO₂ gap between observation and simulation (Fig. S4-S5). Therefore, we applied
286 this adjustment to soil NO emissions in the following CAMx simulations.

287 3.2. Contribution of soil NO emissions to ground-level ozone

288 3.2.1. Base case model evaluation

289 Fig. 4 shows the monthly averaged MDA8 ozone concentration simulated for June 2018 with
290 observed values presented on top. Overall the model well captured the spatial distribution of

291 MDA8 with a spatial correlation $R = 0.89$. Over the 365 cities in China, the simulated monthly
 292 averaged MDA8 ozone concentration is $146.7 \pm 36.1 \mu\text{g}/\text{m}^3$, which is slightly higher than the
 293 observed value of $129.6 \pm 37.6 \mu\text{g}/\text{m}^3$ (NMB = 13.2%). Regionally, model shows better
 294 performance in Northeast China (MB = $2.4 \mu\text{g}/\text{m}^3$, NMB = 1.9%) and NCP (MB = $13.3 \mu\text{g}/\text{m}^3$,
 295 NMB = 7.7%). Over-prediction is observed for Sichuan Basin and YRD (Table S6). Simulated
 296 ozone concentration over the northwest Qinghai-Tibet Plateau was also much higher than
 297 observed values. Our OSAT results (shown later) show that the high ozone concentration over
 298 the Qinghai-Tibet Plateau is mostly contributed by the transport of boundary ozone, which
 299 includes both horizontal and vertical (i.e., stratosphere) directions. For regions with high
 300 altitude (e.g., the Qinghai-Tibet Plateau), vertical ozone intrusion from the stratosphere is most
 301 substantial, which is consistent with the finding by Chen et al. (2023) that the boundary layer
 302 height was identified as the most important feature for ozone over the Qinghai-Tibet Plateau.


303
 304 **Figure 4.** Comparison of simulated (base colors) and observed (scatter points) values of
 305 MDA8 ozone in China in June 2018.

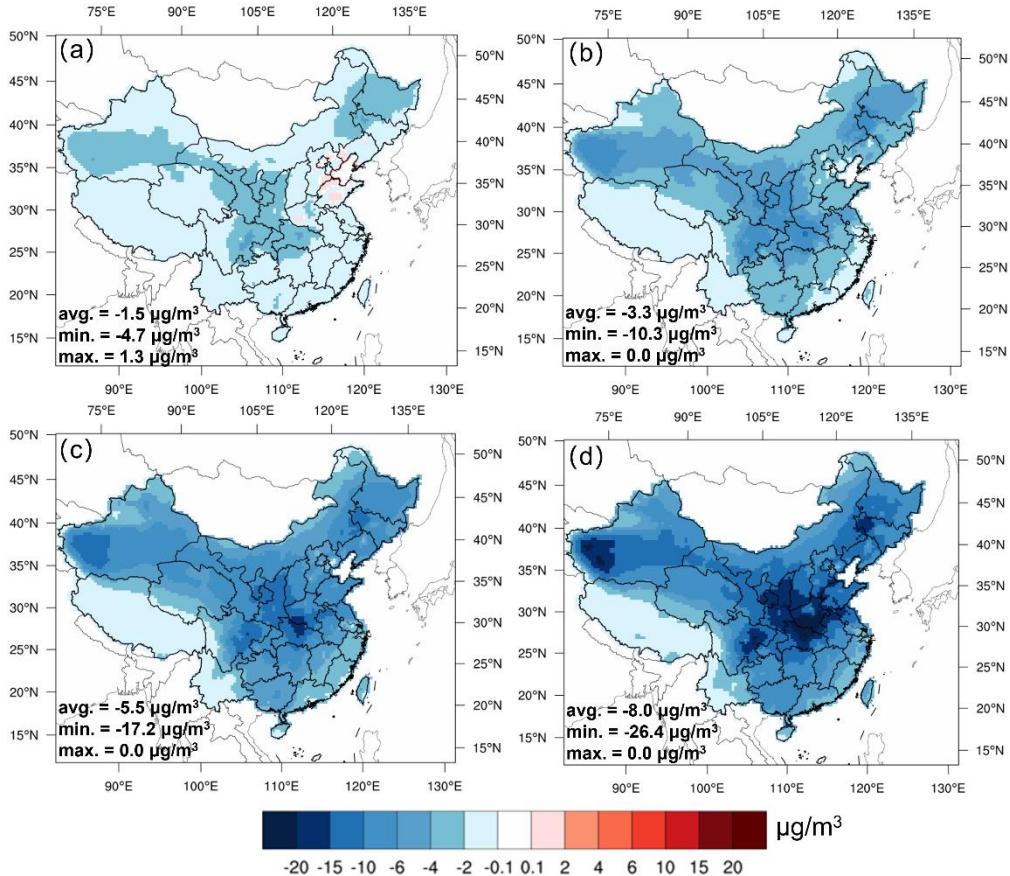
306 3.2.2. Impacts on regional ozone

307 To assess the contribution of soil NO emissions to surface ozone, both the brute-force method
 308 (BFM) and the OSAT method were applied, and the results are shown in Fig. 5. Generally, the
 309 two methods show consistent ozone contribution from soil NO emissions but with different
 310 magnitudes. The BFM method shows widespread ozone enhancement due to soil NO emissions
 311 with a spatial pattern that aligns with the distribution of soil NO emissions. Substantial ozone
 312 enhancement is found over Central China, Sichuan Basin, northern YRD, and eastern Northeast
 313 China. Maximum ozone enhancement (ΔMDA8) due to soil NO emissions is $26.4 \mu\text{g}/\text{m}^3$ with
 314 a domain-average value of $8.0 \mu\text{g}/\text{m}^3$. For selected key regions, the ozone contribution ranges
 315 from low to high: PRD ($3.8 \pm 1.1 \mu\text{g}/\text{m}^3$), YRD ($8.7 \pm 4.7 \mu\text{g}/\text{m}^3$), Sichuan Basin (9.1 ± 0.9

316 $\mu\text{g}/\text{m}^3$), Northeast ($9.3 \pm 3.0 \mu\text{g}/\text{m}^3$), and NCP ($13.9 \pm 4.4 \mu\text{g}/\text{m}^3$), respectively. A similar spatial
317 pattern is observed with the OSAT results, but the magnitudes are much higher. Maximum
318 ozone contribution by soil NO emissions reaches $40.4 \mu\text{g}/\text{m}^3$ according to OSAT results, which
319 is 53.0% higher than the brute force method. The corresponding ozone contribution for each
320 selected region is $6.7 \pm 1.2 \mu\text{g}/\text{m}^3$ (PRD), $13.5 \pm 7.4 \mu\text{g}/\text{m}^3$ (Sichuan Basin), $14.5 \pm 4.9 \mu\text{g}/\text{m}^3$
321 (Northeast China), $16.2 \pm 7.8 \mu\text{g}/\text{m}^3$ (YRD) and $25.7 \pm 5.3 \mu\text{g}/\text{m}^3$ (NCP). The scatter plots
322 between BFM and OSAT results show good correlations (Fig. S6, $R^2 = 0.78\text{--}0.97$), with OSAT
323 results higher by 10%~61%. For YRD, Sichuan Basin, and Northeast, the difference between
324 the OSAT method and BFM increases with the absolute ozone concentration (Fig. S7), while
325 NCP shows the opposite trend. The difference between the two methods reflects the nonlinear
326 ozone response to NO_x emissions. This nonlinearity becomes stronger in regions with larger
327 NO_x concentrations, especially where O₃ production is characterized as NO_x-saturated (or
328 VOC-limited), such as the NCP. In such cases, removing a portion of the NO emissions (e.g.,
329 zeroing out soil NO for the BFM simulation) makes O₃ production from the remaining NO
330 emissions more efficient, which lessens the O₃ response. As shown later in Figure 7a, the O₃
331 response for NCP is more curved (nonlinear) than other regions, consistent with NCP tending
332 to have more NO_x-saturated O₃ production. This nonlinear effect also explains smaller O₃
333 attribution to soil NO by the BFM than OSAT, especially over the NCP. Attributing a secondary
334 pollutant to a primary emission (e.g., O₃ to NO) is inherently tricky with nonlinear chemistry,
335 as Koo et al. (2009) discussed. Therefore, it is useful to present estimates from different
336 methods. The Path Integral Method (PIM) is a source apportionment method that explicitly
337 treats nonlinear responses with mathematical rigor (Dunker et al., 2015). However, applying
338 the PIM is more costly than the BFM or OSAT.

339 In addition to soil NO contribution, OSAT also gives ozone contributions from other source
340 groups, including anthropogenic emissions within China, boundary contribution, natural
341 emissions (e.g., biogenic emissions, open biomass burning, lightning NO_x), and emissions
342 outside China. The spatial distribution for each source category is presented in Fig. S8, and the
343 relative contribution for each selected region is shown in Fig. S9. Overall, boundary transport
344 (56.5%) and anthropogenic emissions (24.0%) contribute most to MDA8 ozone for June 2018.
345 Boundary contribution is high over the western and northern parts of China, while the
346 contribution from anthropogenic emissions is substantial over eastern China, where
347 anthropogenic emissions are extensive. On a national scale, soil NO emissions exhibit a relative
348 ozone contribution of 9.1%, and regionally this value ranges from 6.1% in PRD to 13.8% in
349 NCP.

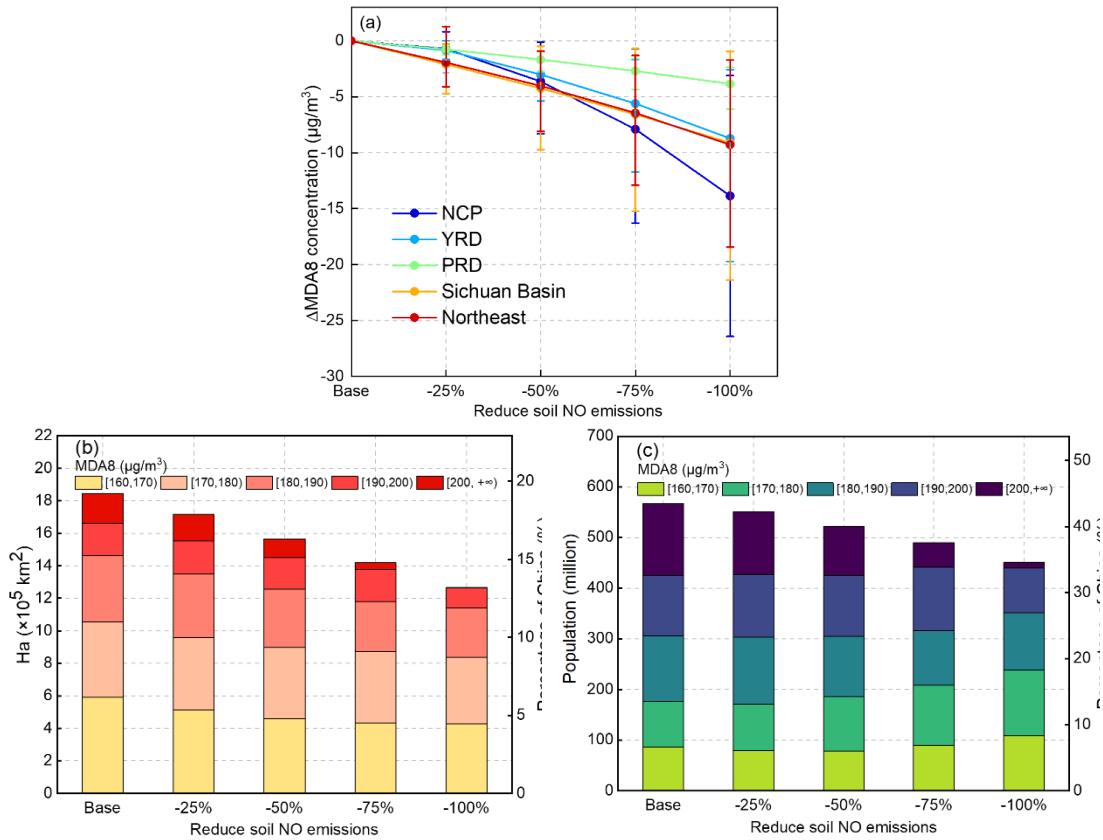
350
351 **Figure 5.** Ozone contribution from soil NO emissions based on (a) brute force method and (b)
352 OSAT method.


353 We further evaluated the impact of soil NO emissions on the number of ozone exceedances
354 days (i.e., days with MDA8 O_3 higher than 160 $\mu\text{g}/\text{m}^3$) during June 2018 based on the relative
355 response factor (RRF) method and results from the brute force method. The total number of
356 ozone exceedances days during June 2018 for the five selected regions ranged from 50 days in
357 PRD to 985 days in NCP (Table 1). The number of ozone exceedance days per city ranged from
358 3.1 days in Sichuan Basin to 18.2 days in NCP, suggesting the severe ozone pollution in June
359 2018 over NCP. RRF was first calculated for each city as the ratio of simulated ozone
360 concentration between the base case and the case with soil NO emissions excluded and applied
361 to the observed ozone concentrations to obtain adjusted ozone concentrations without soil NO
362 emissions. Soil NO emissions are estimated to lead to 121 ozone exceedance days in NCP,
363 followed by 84 days in the Northeast and 70 days in YRD, corresponding to a percent change
364 of 12.3%, 32.8%, and 10.5%, respectively. In Sichuan Basin, where soil NO emissions are also
365 substantial, soil NO emissions contribute 30 ozone exceedances days, which accounts for 43.5%
366 of the total ozone exceedances days. These results suggest the substantial contribution of soil
367 NO emissions to the number of ozone pollution days over regions with high soil NO emissions.

368 **Table 1.** Number of ozone exceedances over selected regions during June 2018.

Region (No. of cities)	Number of ozone exceedance days (% of total days)	Δozone exceedances days when soil NO emissions are removed	% of total ozone exceedances days
NCP (54)	985 (60.8%)	-121	-12.3%
YRD (55)	666 (41.1%)	-70	-10.5%
PRD (9)	50 (18.5%)	-6	-12.0%
Sichuan Basin (22)	69 (10.5%)	-30	-43.5%
Northeast (37)	256 (23.1%)	-84	-32.8%

369 3.3. Ozone responses to reductions in soil NO emissions


370 Current NO_x emission control policies primarily target combustion sources, such as power
371 plants (Du et al., 2021) and on-road vehicles (Park et al., 2021). Nitrification inhibitors, such
372 as dicyandiamide (DCD, C₂H₄N₄), have been found to be effective in reducing nitrogen loss,
373 thereby reducing NO emissions from soil (Abalos et al., 2014). Studies have shown that using
374 5% DCD with nitrogen fertilizer can reduce NO emissions by up to 70% (Xue et al., 2022). In
375 light of this, it is important to evaluate the impact of reduced soil NO emissions on ozone
376 concentration. To address this question, four sensitivity simulations were carried out for June
377 2018, with soil NO emissions reduced by 25%, 50%, 75%, and 100% relative to the base case.
378 As shown by Fig. 6, reducing soil NO emissions led to a general decrease in monthly MDA8
379 ozone concentration (Δ MDA8), with the magnitude of Δ MDA8 becoming more significant
380 with the reduction ratio. With a 25% reduction in soil NO emissions, there was a widespread
381 small decrease in monthly average MDA8 ozone concentration (Δ MDA8: -1.5±0.9 μ g/m³),
382 except over NCP where ozone showed a slight increase (up to 1.3 μ g/m³) in Shandong and
383 Henan province. When soil NO emissions were cut by 50%, Δ MDA8 showed a ubiquitous
384 decrease across entire China with an average Δ MDA8 of -5.5 μ g/m³. When soil NO emissions
385 were removed entirely, the maximum Δ MDA8 could exceed 25 μ g/m³ over central China, part
386 of the Sichuan Basin, Northeast China, and Northeast China. Regions with strong ozone
387 responses generally aligned with regions that also had high soil NO emissions. However, it
388 should be noted that the ozone response to soil NO reductions not only depends on the
389 magnitude of soil NO emissions but is also affected by (1) the local ozone formation regime
390 that is further determined by the relative abundance of NO_x and VOCs, and (2) changes in
391 transport of upwind ozone.

392

393 **Figure 6.** Spatial distribution of ΔMDA8 under (a) 25%, (b) 50%, (c) 75%, and (d) 100%
 394 reductions of soil NO emissions in June 2018.

395 Fig. 7a provides further details on the domain-averaged ΔMDA8 under different reduction scenarios
 396 for the five key regions. As expected, the ozone response in each region increased as the reduction
 397 in the soil NO emissions increased. NCP exhibited the strongest ozone responses to changes in soil
 398 NO emissions, with ΔMDA8 increasing from $-0.7 \pm 0.8 \mu\text{g}/\text{m}^3$ with 25% reductions to -13.9 ± 4.4
 399 $\mu\text{g}/\text{m}^3$ when all soil NO emissions were removed. YRD, Sichuan Basin, and Northeast China exhibit
 400 similar ozone responses when soil NO emissions are reduced. Under the 25% scenario, ΔMDA8
 401 ranged from -4.7 to $1.3 \mu\text{g}/\text{m}^3$ for these three regions; with 100% soil NO reductions, ΔMDA8
 402 ranged from -21.4 to $-0.9 \mu\text{g}/\text{m}^3$. ΔMDA8 in PRD was relatively small. Even with a 100% reduction,
 403 the average ΔMDA8 in PRD was less than $5 \mu\text{g}/\text{m}^3$, which is associated with the small soil NO
 404 emissions in PRD. It is interesting to note that all regions except NCP exhibited an approximate
 405 linear ozone response to changes in soil NO emission reductions. NCP showed more significant
 406 ozone reductions as the reduction ratio increased, suggesting that NCP would gain more benefits
 407 with more aggressive reductions in soil NO emissions compared to other regions.

408 **Figure 7.** (a) ΔMDA8 concentrations in five key regions under different emission reduction
409 scenarios (b) Area and (c) population exposed to different ozone levels under different soil
410 NO emission reduction scenarios.

411 We evaluated the impact of different soil NO emission reduction scenarios on the area and
412 population exposed to varying ozone levels. The results, presented in Fig. 7b and 7c, revealed
413 a decrease in coverage and exposed population under high ozone concentrations as soil NO
414 emissions decrease. The data presented in the plots are for grid cells with monthly MDA8 ozone
415 concentrations exceeding $160 \mu\text{g}/\text{m}^3$. In the Base scenario, the estimated coverage of MDA8
416 ozone exceeding $160 \mu\text{g}/\text{m}^3$ was $1.84 \times 10^6 \text{ km}^2$, equivalent to 19.2% of the national land area.
417 The population exposed to ozone concentrations exceeding $160 \mu\text{g}/\text{m}^3$ amounts to 566.6 million,
418 representing 43.4% of the entire population. The areas with extremely high ozone
419 concentrations ($\text{MDA8} > 200 \mu\text{g}/\text{m}^3$) account for 1.9% of the national land area, with a
420 corresponding exposed population of 10.9%, indicating that densely populated areas experience
421 higher ozone concentrations. When soil NO emissions are halved, there is a 15.2% reduction in
422 the coverage of non-attainment areas and an 8.0% reduction in the total exposed population. If
423 soil NO emissions are eliminated, the total area coverage and population exposed to MDA8
424 ozone concentrations exceeding $160 \mu\text{g}/\text{m}^3$ would be $1.27 \times 10^6 \text{ km}^2$ and 450.3 million,
425 respectively, representing 13.2% and 34.5% of the total. Compared to the Base scenario, a 100%
426 theoretical reduction in soil NO emissions leads to a 31.3% and 20.5% reduction in the exposed

427 area and population under high ozone concentration, respectively, indicating substantial health
428 benefits gained when soil NO emissions are mitigated.

429 Fig. S10-S11 displays similar area and population plots for selected key regions. The overall
430 trends for each sub-region are consistent. With 100% reductions in soil NO emissions, the area
431 with high ozone concentration decreased by 17.8%, 22.3%, 65.4%, and 100% for NCP, YRD,
432 Sichuan Basin, and Northeast. The corresponding values for the exposed population are 91.4%,
433 60.3%, 9.8%, and 0.0%. While the relative change is more significant in Sichuan Basin and
434 Northeast China, NCP and YRD gain more health benefits due to the significantly higher total
435 population for these two regions. However, it is worth noting that even with the complete
436 elimination of soil NO emissions, a total of 450.3 million people are still exposed to ozone
437 levels exceeding the national standard, necessitating multiple control policies at the same time,
438 such as synergistic control of anthropogenic VOC emissions (Chen et al., 2022; Ding et al.,
439 2021).

440 3.4 Comparison with existing studies

441 The soil NO emissions estimated in this study were also compared with values reported by
442 existing studies based on either field measurement or model estimation (Table S7). Previous
443 studies report a wide range of soil NO emissions from 480 to 1375 Gg N and soil NO flux
444 ranging from 10 to 47.5 $\text{ng N m}^{-2} \text{ s}^{-1}$. The soil NO emissions estimated in our study are 1157.9
445 Gg N with the default k value and 951.9 Gg N with region-adjusted k value, which falls within
446 the upper range of previously reported values. The averaged soil NO flux over NCP in June
447 2018 estimated in our study is 35.4 $\text{ng N m}^{-2} \text{ s}^{-1}$, which is within the range reported by previous
448 studies (12.9~40.0 $\text{ng N m}^{-2} \text{ s}^{-1}$).

449 The simulated ozone contribution by soil NO emissions is compared with other studies. In
450 California, soil NO was estimated to cause a 23.0% increase in surface O_3 concentrations (Sha
451 et al., 2021). Constrained by satellite measured NO_2 column densities, Wang et al. (2022b)
452 reported MDA8 ozone contribution of 9.0 $\mu\text{g/m}^3$ (relative contribution of 5.4%) from cropland
453 NO_x emissions over NCP during a growing season in 2020. Lu et al. (2021) showed an
454 interactional effect of domestic anthropogenic emissions with soil NO emissions of 9.5 ppb in
455 the NCP during July 2017. In addition, soil NO_x emissions strongly affect the sensitivity of
456 ozone concentrations to anthropogenic sources in the NCP. In a most recent study by Shen et
457 al. (2023), addition of the soil NO_x emissions was shown to result in up to 15 ppb increase of
458 ozone concentration over Xinjiang, Tibet, Inner Mongolia, and Heilongjiang, although a minor
459 reduction was evident over the Yangtze River basin. When soil NO_x emissions were reduced
460 by 30%, ozone concentrations increased by 3-5 ppb over Inner Mongolia, Heilongjiang,
461 Xinjiang, and Tibet, while decreased by 0-2 ppb over the Yangtze River basin. Surprisingly,
462 when soil NO_x emissions were increased by 30%, nearly identical ozone responses were

463 observed.

464 **4. Conclusions**

465 Soil NO emissions are non-negligible NO_x sources, particularly during summer. The
466 importance of soil NO emissions to ground-level ozone concentration in China is much less
467 evaluated than combustion NO_x emissions. In this study, the total national soil NO emissions
468 were estimated to be 1157.9 Gg N in 2018, with a spatial distribution closely following that of
469 fertilizer application. High soil NO emissions were mainly concentrated over Henan, Shandong,
470 and Hebei provinces, which differs from anthropogenic NO_x emissions. Distinct diurnal and
471 seasonal variations in soil NO emissions were simulated, mainly driven by the changes in
472 temperature as well as the timing of fertilizer application. Uncertainty analysis reveals a range
473 of 715.7~1902.6 Gg N of soil NO emissions that warrant further constraints from observations.
474 Using two methods (BFM and OSAT), we evaluated the contribution of soil NO emissions to
475 ground-level ozone concentration for June 2018. Both methods suggest a substantial
476 contribution of soil NO emissions to MDA8 ozone concentrations by 8~12.5 $\mu\text{g}/\text{m}^3$ on average
477 for June 2018, with the OSAT results consistently higher than BFM. Soil NO emissions were
478 shown to lead to a relative increase of ozone exceedances days by 10.0%~43.5% for selected
479 regions. Reducing soil NO emissions could generally reduce the ground-level ozone
480 concentrations and populations exposed to unhealthy ozone levels (MDA8 > 160 $\mu\text{g}/\text{m}^3$),
481 especially over NCP and YRD. With a 50% reduction in soil NO emissions, the coverage of
482 non-attainment areas and the population exposed to unhealthy ozone levels decreased by 15.2%
483 and 8.0%, respectively. However, even with the complete removal of soil NO emissions,
484 approximately 450.3 million populations are still exposed to unhealthy ozone levels,
485 necessitating multiple control policies at the same time, such as synergistic control of
486 anthropogenic VOC emissions.

487 **Data availability.** Data will be made available on request.

488 **Author contributions.** **Ling Huang:** Conceptualization, Formal analysis, Writing – original
489 draft. **Jiong Fang:** Data curation, Formal analysis, Visualization. **Jiaqiang Liao:** Data
490 curation, Formal analysis, Visualization. **Greg Yarwood:** Writing – review & editing. **Hui
491 Chen:** Writing – review & editing. **Yangjun Wang:** Writing – review & editing. **Li Li:**
492 Conceptualization, Supervision, Funding acquisition, Writing – review & editing.

493 **Competing interests.** The authors declare that they have no known competing financial
494 interests or personal relationships that could have appeared to influence the work reported in
495 this paper.

496 **Acknowledgments.** This study was financially sponsored by the National Natural Science
497 Foundation of China (grant No. 42005112, 42075144), the Open Funding of Zhejiang Key
498 Laboratory of Ecological and Environmental Big Data (No. EEBD-2022-06), the Shanghai

499 International Science and Technology Cooperation Fund (No.19230742500). This work is
500 supported by Shanghai Technical Service Center of Science and Engineering Computing,
501 Shanghai University.

502 **References**

503 Abalos, D., Jeffery, S., Sanz-Cobena, A., Guardia, G., and Vallejo, A.: Meta-analysis of the effect of
504 urease and nitrification inhibitors on crop productivity and nitrogen use efficiency, *Agriculture,
505 Ecosystems & Environment*, 189, 136-144, 2014.

506 Almaraz, M., Bai, E., Wang, C., Trousdale, J., Conley, S., Faloona, I., and Houlton, B. Z.: Agriculture is
507 a major source of NO x pollution in California, *Science advances*, 4, eaao3477, 2018.

508 Cakaj, A., Qorri, E., Coulibaly, F., De Marco, A., Agathokleous, E., Leca, S., and Sicard, P.: Assessing
509 surface ozone risk to human health and forests over time in Poland, *Atmospheric Environment*, 119926,
510 2023.

511 Chang, J., Brost, R., Isaksen, I., Madronich, S., Middleton, P., Stockwell, W., and Walcek, C.: A three -
512 dimensional Eulerian acid deposition model: Physical concepts and formulation, *Journal of Geophysical
513 Research: Atmospheres*, 92, 14681-14700, 1987.

514 Chen, B., Wang, Y., Huang, J., Zhao, L., Chen, R., Song, Z., and Hu, J.: Estimation of near-surface ozone
515 concentration and analysis of main weather situation in China based on machine learning model and
516 Himawari-8 TOAR data, *Science of The Total Environment*, 864, 160928, 2023.

517 Chen, W., Guenther, A. B., Jia, S., Mao, J., Yan, F., Wang, X., and Shao, M.: Synergistic effects of
518 biogenic volatile organic compounds and soil nitric oxide emissions on summertime ozone formation in
519 China, *Science of The Total Environment*, 828, 154218, 2022.

520 Clappier, A., Belis, C. A., Pernigotti, D., and Thunis, P.: Source apportionment and sensitivity analysis:
521 two methodologies with two different purposes, *Geoscientific Model Development*, 10, 4245-4256, 2017.

522 Diao, B., Ding, L., Su, P., and Cheng, J.: The spatial-temporal characteristics and influential factors of
523 NOx emissions in China: A spatial econometric analysis, *International journal of environmental research
524 and Public Health*, 15, 1405, 2018.

525 Ding, D., Xing, J., Wang, S., Dong, Z., Zhang, F., Liu, S., and Hao, J.: Optimization of a NO x and VOC
526 cooperative control strategy based on clean air benefits, *Environmental Science & Technology*, 56, 739-
527 749, 2021.

528 Ding, L., Liu, C., Chen, K., Huang, Y., and Diao, B.: Atmospheric pollution reduction effect and regional
529 predicament: An empirical analysis based on the Chinese provincial NOx emissions, *Journal of
530 environmental management*, 196, 178-187, 2017.

531 Drury, C. F., Reynolds, W. D., Yang, X., McLaughlin, N. B., Calder, W., and Phillips, L. A.: Diverse
532 rotations impact microbial processes, seasonality and overall nitrous oxide emissions from soils, *Soil
533 Science Society of America Journal*, 85, 1448-1464, 2021.

534 Du, L., Zhao, H., Tang, H., Jiang, P., and Ma, W.: Analysis of the synergistic effects of air pollutant
535 emission reduction and carbon emissions at coal - fired power plants in China, *Environmental Progress
536 & Sustainable Energy*, 40, e13630, 2021.

537 Dunker, A. M., Koo, B., and Yarwood, G.: Source apportionment of the anthropogenic increment to
538 ozone, formaldehyde, and nitrogen dioxide by the path-integral method in a 3D model, *Environmental
539 science & technology*, 49, 6751-6759, 2015.

540 The volatile organic compound management attack program in 2020 (in Chinese): (available
541 at:www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202006/t20200624_785827.html), last

542 Feng, Z., De Marco, A., Anav, A., Gualtieri, M., Sicard, P., Tian, H., Fornasier, F., Tao, F., Guo, A., and
543 Paoletti, E.: Economic losses due to ozone impacts on human health, forest productivity and crop yield
544 across China, *Environment international*, 131, 104966, 2019.

545 Galbally, I. E., Kirstine, W. V., Meyer, C., and Wang, Y. P.: Soil–atmosphere trace gas exchange in
546 semiarid and arid zones, *Journal of Environmental Quality*, 37, 599-607, 2008.

547 Guo, L., Chen, J., Luo, D., Liu, S., Lee, H. J., Motallebi, N., Fong, A., Deng, J., Rasool, Q. Z., and Avise,
548 J. C.: Assessment of nitrogen oxide emissions and San Joaquin Valley PM2. 5 impacts from soils in
549 California, *Journal of Geophysical Research: Atmospheres*, 125, e2020JD033304, 2020.

550 Heffer, P. and Prud'homme, M.: Global nitrogen fertilizer demand and supply: Trend, current level and
551 outlook, *International Nitrogen Initiative Conference*. Melbourne, Australia,

552 Huang, K., Su, C., Liu, D., Duan, Y., Kang, R., Yu, H., Liu, Y., Li, X., Gurmesa, G. A., and Quan, Z.: A
553 strong temperature dependence of soil nitric oxide emission from a temperate forest in Northeast China,
554 *Agricultural and Forest Meteorology*, 323, 109035, 2022a.

555 Huang, L., Kimura, Y., and Allen, D. T.: Assessing the impact of episodic flare emissions on ozone
556 formation in the Houston-Galveston-Brazoria area of Texas, *Science of The Total Environment*, 828,
557 154276, 2022b.

558 Huang, L., Wang, Q., Wang, Y., Emery, C., Zhu, A., Zhu, Y., Yin, S., Yarwood, G., Zhang, K., and Li, L.:
559 Simulation of secondary organic aerosol over the Yangtze River Delta region: The impacts from the
560 emissions of intermediate volatility organic compounds and the SOA modeling framework, *Atmospheric
561 Environment*, 246, 118079, 2021.

562 Huber, D. E., Steiner, A. L., and Kort, E. A.: Sensitivity of Modeled Soil NO_x Emissions to Soil Moisture,
563 *Journal of Geophysical Research: Atmospheres*, 128, e2022JD037611, 2023.

564 Hudman, R. C., Moore, N. E., Mebust, A. K., Martin, R. V., Russell, A. R., Valin, L. C., and Cohen, R.
565 C.: Steps towards a mechanistic model of global soil nitric oxide emissions: implementation and space
566 based-constraints, *Atmospheric Chemistry and Physics*, 12, 7779-7795, 10.5194/acp-12-7779-2012,
567 2012.

568 Jiang, Y., Wang, S., Xing, J., Zhao, B., Li, S., Chang, X., Zhang, S., and Dong, Z.: Ambient fine
569 particulate matter and ozone pollution in China: synergy in anthropogenic emissions and atmospheric
570 processes, *Environmental Research Letters*, 17, 123001, 2022.

571 Koo, B., Wilson, G. M., Morris, R. E., Dunker, A. M., and Yarwood, G.: Comparison of source
572 apportionment and sensitivity analysis in a particulate matter air quality model, *Environmental science
573 & technology*, 43, 6669-6675, 2009.

574 Lin, Y., Jiang, F., Zhao, J., Zhu, G., He, X., Ma, X., Li, S., Sabel, C. E., and Wang, H.: Impacts of O₃ on
575 premature mortality and crop yield loss across China, *Atmospheric Environment*, 194, 41-47, 2018.

576 Liu, H. Z., Qingqing Liu: Distribution of Fertilizer Application and Its Environmental Risk in Different
577 Provinces of China, *Chemical Management*, 174-174, 2016.

578 Liu, P., Song, H., Wang, T., Wang, F., Li, X., Miao, C., and Zhao, H.: Effects of meteorological conditions
579 and anthropogenic precursors on ground-level ozone concentrations in Chinese cities, *Environmental
580 Pollution*, 262, 114366, 2020.

581 Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., Vitousek, P., Erisman, J. W., Goulding, K., and
582 Christie, P.: Enhanced nitrogen deposition over China, *Nature*, 494, 459-462, 2013.

583 Lü, C. and Tian, H.: Spatial and temporal patterns of nitrogen deposition in China: synthesis of
584 observational data, *Journal of Geophysical Research: Atmospheres*, 112, 2007.

585 Lu, X., Zhang, L., Wang, X., Gao, M., Li, K., Zhang, Y., Yue, X., and Zhang, Y.: Rapid increases in
586 warm-season surface ozone and resulting health impact in China since 2013, *Environmental Science &*
587 *Technology Letters*, 7, 240-247, 2020.

588 Lu, X., Ye, X., Zhou, M., Zhao, Y., Weng, H., Kong, H., Li, K., Gao, M., Zheng, B., and Lin, J.: The
589 underappreciated role of agricultural soil nitrogen oxide emissions in ozone pollution regulation in North
590 China, *Nature communications*, 12, 5021, 2021.

591 Maji, K. J.: Substantial changes in PM2. 5 pollution and corresponding premature deaths across China
592 during 2015–2019: A model prospective, *Science of the Total Environment*, 729, 138838, 2020.

593 Malley, C. S., Henze, D. K., Kuylenstierna, J. C., Vallack, H. W., Davila, Y., Anenberg, S. C., Turner, M.
594 C., and Ashmore, M. R.: Updated global estimates of respiratory mortality in adults ≥ 30 years of age
595 attributable to long-term ozone exposure, *Environmental health perspectives*, 125, 087021, 2017.

596 Mao, J., Wang, L., Lu, C., Liu, J., Li, M., Tang, G., Ji, D., Zhang, N., and Wang, Y.: Meteorological
597 mechanism for a large-scale persistent severe ozone pollution event over eastern China in 2017, *Journal*
598 *of Environmental Sciences*, 92, 187-199, 2020.

599 Montes, C. M., Demler, H. J., Li, S., Martin, D. G., and Ainsworth, E. A.: Approaches to investigate crop
600 responses to ozone pollution: from O₃ - FACE to satellite - enabled modeling, *The Plant Journal*, 109,
601 432-446, 2022.

602 Mukherjee, A., Yadav, D. S., Agrawal, S. B., and Agrawal, M.: Ozone a persistent challenge to food
603 security in India: current status and policy implications, *Current Opinion in Environmental Science &*
604 *Health*, 19, 100220, 2021.

605 Oikawa, P., Ge, C., Wang, J., Eberwein, J., Liang, L., Allsman, L., Grantz, D., and Jenerette, G.:
606 Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural
607 region, *Nature communications*, 6, 8753, 2015.

608 Park, J., Shin, M., Lee, J., and Lee, J.: Estimating the effectiveness of vehicle emission regulations for
609 reducing NO_x from light-duty vehicles in Korea using on-road measurements, *Science of The Total*
610 *Environment*, 767, 144250, 2021.

611 Potter, P., Ramankutty, N., Bennett, E. M., and Donner, S. D.: Characterizing the spatial patterns of global
612 fertilizer application and manure production, *Earth interactions*, 14, 1-22, 2010.

613 Ramboll: User's Guide: Comprehensive Air quality Model with extensions, Version 7.1., 2021.

614 Rasool, Q. Z., Zhang, R., Lash, B., Cohan, D. S., Cooter, E. J., Bash, J. O., and Lamsal, L. N.: Enhanced
615 representation of soil NO emissions in the Community Multiscale Air Quality (CMAQ) model version
616 5.0. 2, *Geoscientific Model Development*, 9, 3177-3197, 2016.

617 Romer, P. S., Duffey, K. C., Wooldridge, P. J., Edgerton, E., Baumann, K., Feiner, P. A., Miller, D. O.,
618 Brune, W. H., Koss, A. R., and De Gouw, J. A.: Effects of temperature-dependent NO x emissions on
619 continental ozone production, *Atmospheric Chemistry and Physics*, 18, 2601-2614, 2018.

620 Sha, T., Ma, X., Zhang, H., Janechek, N., Wang, Y., Wang, Y., Castro García, L., Jenerette, G. D., and
621 Wang, J.: Impacts of Soil NO x Emission on O₃ Air Quality in Rural California, *Environmental science*
622 *& technology*, 55, 7113-7122, 2021.

623 Shen, L., Liu, J., Zhao, T., Xu, X., Han, H., Wang, H., and Shu, Z.: Atmospheric transport drives regional
624 interactions of ozone pollution in China, *Science of The Total Environment*, 830, 154634, 2022.

625 Shen, Y., Xiao, Z., Wang, Y., Xiao, W., Yao, L., and Zhou, C.: Impacts of agricultural soil NO_x emissions
626 on O₃ over Mainland China, *Journal of Geophysical Research: Atmospheres*, e2022JD037986, 2023.

627 Skiba, U., Medinets, S., Cardenas, L. M., Carnell, E. J., Hutchings, N., and Amon, B.: Assessing the
628 contribution of soil NO_x emissions to European atmospheric pollution, *Environmental Research Letters*,
629 16, 025009, 2021.

630 State Council: The 14th Five-Year Plan for National Economic and Social Development of the People's
631 Republic of China and the Outline of Long-Term Objectives for 2035, 2021.

632 Sun, W., Shao, M., Granier, C., Liu, Y., Ye, C., and Zheng, J.: Long - term trends of Anthropogenic SO₂,
633 NO_x, CO, and NMVOCs emissions in China, *Earth's Future*, 6, 1112-1133, 2018.

634 Sun, Y., Yin, H., Lu, X., Notholt, J., Palm, M., Liu, C., Tian, Y., and Zheng, B.: The drivers and health
635 risks of unexpected surface ozone enhancements over the Sichuan Basin, China, in 2020, *Atmospheric
636 Chemistry and Physics*, 21, 18589-18608, 2021.

637 Thunis, P., Clappier, A., Tarrasón, L., Cuvelier, C., Monteiro, A., Pisoni, E., Wesseling, J., Belis, C.,
638 Pirovano, G., and Janssen, S.: Source apportionment to support air quality planning: Strengths and
639 weaknesses of existing approaches, *Environment International*, 130, 104825, 2019.

640 Vinken, G., Boersma, K., Maasakkers, J., Adon, M., and Martin, R.: Worldwide biogenic soil NO_x
641 emissions inferred from OMI NO₂ observations, *Atmospheric Chemistry and Physics*, 14, 10363-10381,
642 2014.

643 Wang, J., Wang, D., Ge, B., Lin, W., Ji, D., Pan, X., Li, J., and Wang, Z.: Increase in daytime ozone
644 exposure due to nighttime accumulation in a typical city in eastern China during 2014–2020,
645 *Atmospheric Pollution Research*, 13, 101387, 2022a.

646 Wang, P., Wang, T., and Ying, Q.: Regional source apportionment of summertime ozone and its
647 precursors in the megacities of Beijing and Shanghai using a source-oriented chemical transport model,
648 *Atmospheric Environment*, 224, 117337, 2020.

649 Wang, Q. g., Han, Z., Wang, T., and Zhang, R.: Impacts of biogenic emissions of VOC and NO_x on
650 tropospheric ozone during summertime in eastern China, *Science of the total environment*, 395, 41-49,
651 2008.

652 Wang, R., Bei, N., Wu, J., Li, X., Liu, S., Yu, J., Jiang, Q., Tie, X., and Li, G.: Cropland nitrogen dioxide
653 emissions and effects on the ozone pollution in the North China plain, *Environ Pollut*, 294, 118617,
654 10.1016/j.envpol.2021.118617, 2022b.

655 Wang, Y., Ge, C., Garcia, L. C., Jenerette, G. D., Oikawa, P. Y., and Wang, J.: Improved modelling of soil
656 NO_x emissions in a high temperature agricultural region: role of background emissions on NO₂ trend
657 over the US, *Environmental research letters*, 16, 084061, 2021.

658 Xiao, Q., Geng, G., Liang, F., Wang, X., Lv, Z., Lei, Y., Huang, X., Zhang, Q., Liu, Y., and He, K.:
659 Changes in spatial patterns of PM_{2.5} pollution in China 2000–2018: Impact of clean air policies,
660 *Environment international*, 141, 105776, 2020.

661 Xue, C., Ye, C., Liu, P., Zhang, C., Su, H., Bao, F., Cheng, Y., Catoire, V., Ma, Z., and Zhao, X.: Strong
662 HONO Emissions from Fertilized Soil in the North China Plain 4 Driven by Nitrification and Water
663 Evaporation, 2022.

664 Yan, X., Ohara, T., and Akimoto, H.: Statistical modeling of global soil NO_x emissions, *Global
665 Biogeochemical Cycles*, 19, 2005.

666 Yang, X., Wu, K., Lu, Y., Wang, S., Qiao, Y., Zhang, X., Wang, Y., Wang, H., Liu, Z., and Liu, Y.: Origin
667 of regional springtime ozone episodes in the Sichuan Basin, China: role of synoptic forcing and regional
668 transport, *Environmental Pollution*, 278, 116845, 2021.

669 Yarwood, G., Morris, R., Yocke, M., Hogo, H., and Chico, T.: Development of a methodology for source
670 apportionment of ozone concentration estimates from a photochemical grid model, AIR & WASTE
671 MANAGEMENT ASSOCIATION, PITTSBURGH, PA 15222(USA).[np]. 1996.

672 Yarwood, G., Jung, J., Whitten, G. Z., Heo, G., Mellberg, J., and Estes, M.: Updates to the Carbon Bond
673 mechanism for version 6 (CB6), 9th Annual CMAS Conference, Chapel Hill, NC, 11-13,

674 Yienger, J. and Levy, H.: Empirical model of global soil - biogenic NO_x emissions, *Journal of*
675 *Geophysical Research: Atmospheres*, 100, 11447-11464, 1995.

676 Yin, H., Lu, X., Sun, Y., Li, K., Gao, M., Zheng, B., and Liu, C.: Unprecedented decline in summertime
677 surface ozone over eastern China in 2020 comparably attributable to anthropogenic emission reductions
678 and meteorology, *Environmental Research Letters*, 16, 124069, 2021.

679 Zhai, S., Jacob, D. J., Wang, X., Shen, L., Li, K., Zhang, Y., Gui, K., Zhao, T., and Liao, H.: Fine
680 particulate matter (PM2.5) trends in China, 2013–2018: separating contributions from anthropogenic
681 emissions and meteorology, *Atmospheric Chemistry and Physics*, 19, 11031-11041, 2019.

682 Zheng, B., Zhang, Q., Geng, G., Chen, C., Shi, Q., Cui, M., Lei, Y., and He, K.: Changes in China's
683 anthropogenic emissions and air quality during the COVID-19 pandemic in 2020, *Earth System Science*
684 *Data*, 13, 2895-2907, 2021.

685