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1 Summary

We would like to thank both reviewers for their careful consideration of our manuscript. A number
of the points raised are very well-made and we have made significant changes to our revised
manuscript as a result.

Before we turn to the specific comments of each of the reviewers, we should address the concerns
of the two reviewers about the overall message of the paper. Doug Brinkerhoff writes:

I generally find the problem that this paper addresses to be an important one, and
the PDE-constrained optimization community would be well served by adopting some
of the reasoning contained here. I also think that this method is unfortunately muddled
by artificial rigor: my chief complaint about this work is that involves more technical
detail than is required to adequately address the issue at hand, and in some cases
the presentation of that detail contains mistakes, although I do not think that those
mistakes necessarily translate into the implementation of the work.

conversely, Umberto Villa writes:

given the fact that in general the use of point-wise observations is well under-
stood by the inverse problem and data assimilation communities, I am wondering if
the manuscript should be more focused on the true (and remarkable) contribution that
is the implementation of point-wise observation within UFL/Firedrake. As such, a
manuscript focused on the implementation details and algorithms as well as the assess-
ment of its numerical performances may be better suited to a software journal such as
SoftwareX or TOMs.

One reviewer finds the data assimilation approaches presented in the paper valuable but feels
the software aspects are unnecessary detail, while the other reviewer finds the software aspects
“remarkable” but feels the data assimiation aspects are well-known.

What we can take on board is that the manuscript is insufficiently explicit in what the reader
should take away. In short, the core idea of this manuscript is that point evaluation can be fully
integrated as a first class, differentiable operation in a symbolic finite element framework such as
Firedrake, and that doing so makes it straightforward to assimilate point data by interpolation,
as opposed to the (mathematically problematic) extrapolation methods that have frequently been
applied. We have made this explanation much more explicit in the abstract and introduction.

Umberto Villa’s reason for recommending reject is that he feels that the software aspects of
the paper are the key interesting component and that these should be the focus of a performance-
oriented submission to a software journal such as SoftwareX or TOMS. GMD is, of course, itself
a software journal, with a focus on software applicable to geoscientific applications. We therefore
don’t feel that it’s necessary to reorient the paper onto what TOMS or SoftwareX would contain.

Conversely since the representation of point evaluation as a finite element operation in the
UFL abstraction is a core contribution of this manuscript, much of what Doug Brinkerhoff took to
be unnecessary mathematical detail is actually necessary. That said, both reviewers are entirely
correct that there are a number of points at which our exposition could have been significantly
improved, and we will make those changes in the revised manuscript as noted below.

2 Response to Specific Comments by Doug Brinkerhoff

P1 Capitalisation of Partial Differential Equations. This is has been fixed in the revised manuscript.
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P2, Para 2 Which versus that. We have gone through the manuscript and corrected this here
and in a few other places.

P2, Para 2 Differentiation meaning AD. The reviewer is correct and we have amended this ac-
cordingly.

Sec. 2 As suggested, we have removed much of the ”text book” material from chapter 2. We
agree with the reviewer that it is still necessary to restate that at finite element field is a
weighted sum of basis functions, because the typical GMD reader may not have the reviewer’s
intimate acquaintance with finite element methods.

Sec. 3 Here we disagree with the reviewer. It is certainly true that the evaluation operator is a
linear operator between finite dimensional vector spaces with specified bases, and is hence
expressible as a matrix. However, the strength of the finite element method, as exploited by
Firedrake, FEniCS and others, is that a high level mathematical expression of the problem to
be solved can be used to automatically generate the relevant matrices, and can be algorith-
mically differentiated to enable the solution of nonlinear systems and optimisation problems.
To simply jump to the matrix begs the question in this regard. The linear algebra approach
that the reviewer advocates is not simpler if one starts from the position of vector calculus
applied to functions in finite element spaces, which is the basic formalism of the finite element
method. The derivations in this section are therefore not about data structures, they are
about raising the level of mathematical abstraction of point cloud interpolation to that of
the rest of the field. Here we note the kind description by the other reviewer of this extension
of the UFL formalism as “remarkable”. We have rewritten part of the introduction to make
this motivation for the new formalism explicit.

Now we turn to whether our maths is actually correct. Here we think that the comments of
the reviewer are dual to the correct situation. Consider a domain comprised of a cloud of
points (what we call a vertex only mesh):

Ωv = {Xi}N−1
i=0 , (1)

If we restrict ourselves to real scalar-valued functions for brevity of exposition (nothing
important changes in the complex, or vector- or tensor-valued case) then a function defined
on a vertex-only mesh, has the form:

f : Ωv → R. (2)

f associates with each vertex Xi a value. The space of all such functions, V , is clearly
N -dimensional. The natural finite element basis for this is:

ψi(x) =

{
1, x = Xi

0, otherwise
0 <= i < N (3)

Which is exactly the P0DG basis. A Dirac delta, in contrast, is a functional or measure. It
can’t be a basis function for V because it doesn’t lie in the space V . It is, however a member
of V ∗ and the corresponding dual basis in the Ciarlet sense is:

ψ∗
i (g) = δXi(g) = g(Xi) 0 <= i < N (4)

In defence of his position that the basis functions need to be Dirac deltas, the reviewer writes:
“the spatial integral of a finite valued basis function that is only defined at a single point in
Rd (as in Eq. 7) would be zero“. This would be true if the integral were over the spatial
domain Ω and the integral measure were therefore d(> 0)-dimensional. However, in equation
7 and elsewhere where we integrate over the point cloud, the domain of integration is Ωv and
the measure is therefore the finite sum of individual point measures making up the cloud.

Integration is a bounded linear functional, and integration of the functions defined at a
single point must be linear in the single function value. It is therefore equal to the Dirac
delta defined at that point. Once again, the Dirac delta is the functional rather than the
function.

One possible cause of this confusion is that we have adopted the UFL convention of writing
dx for the volume measure of whichever domain is being integrated over, which is a point
measure on a vertex only mesh. We have now disambiguated this by writing dxv to indicate
the point measure when the domain of integration is Ωv.
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Sec. 4 Here we encounter the same disagreement as the previous section, so the response is
essentially the same. The reviewer notes that Firedrake has a pre-existing “at” syntax, and
claims that this is sufficient to abstract away the point evaluation of functions. This provides
an opportune moment to explain why this is not so. The “at” method of a Function in
Firedrake does indeed evaluate the function at the provided coordinates. However, it does
not support the concept of a persistent set of point cloud locations nor of a set of values
associated with them. This matters in the context of algorithmic differentiation and inverse
problems, because in order to define the required Gateaux derivatives, we need to have a
concept of known and unknown variables of a given type. In this case the type is “values
associated with a particular collection of point locations”. A large part of the point of these
sections are the introduction of the required types (FunctionSpaces) and variables of those
types (Functions). This representation of point cloud data in terms of a distinctive type
is also useful for performance reasons in providing a location to cache point searches and
parallel decomposition, but this is secondary to he main point here.

Equation 17 we have prepended the conventional phrase.

On P9, regarding pointwise evaluation of DG functions Users frequently run problems on
regular meshes and then choose evaluation points at round number coordinates that coincide
with element boundaries, so this case is nowhere near as uncommon as the reviewer might
suspect. The challenge to special-casing the result of interpolation in this case, as the reviewer
suggests, is that roundoff error makes it exceptionally difficult, if not impossible, to detect
that the point lies on a cell boundary. The most that could be done is to apply the special
case to a finite width band around the edge of the cell. This would be unlikely to please users.
Of course the strict answer is that point-evaluating a discontinuous finite element space is
not well defined at any point. However this is an interpolatory crime that users frequently
choose to commit, so the current behaviour of Firedrake is the compromise that best matches
user expectations.

P9, last paragraph Yes, interpolation is a linear operator. This doesn’t remove the need to
represent it symbolically in a way that Dolfin-adjoint/pyadjoint can reason about.

Eq. 19 i is an index into the set of evaluation points {Xi}. We have made this explicit.

Just after Eq. 20 The reviewer is correct that “guess” is imprecise. We have reworded in accor-
dance with the suggestion.

Note on nomenclature This has been removed as suggested.

Eq. 21 There are other ways out of the dilemma including, as the reviewer points out, using
Gaussian processes. This would involve estimating the Gaussian random field f that produced
the observations, and then creating a misfit term that penalises the distance to the mean of f,
using the covariance operator as a metric in the norm. Nonetheless, using Gaussian processes
is not yet standard practice at least in the literature on glaciological inverse problems. It
is far more common to interpolate the observational data to an intermediate field in a way
that does not account for the sparsity or density of observational data. Improving on this
common practice is the main point of this paper. Our approach does allow for the possibility
of different weights or variances for each observation point (or indeed covariances) by using
a weighted norm in equation 21 and in fact we do this in the Larsen C demo at the end of
the paper.

Last line of Sec. 6 We thank the reviewer for referring us to Bouziani and Ham (2023), which
one of us coauthored. That paper does not employ point evaluation and so is not directly
relevant to the point being made in the last line of section 6. The line in question specifi-
cally says that automated code generation systems with adjoint capability (or differentiable
programming models for the finite element method, if one chooses to adopt the terminology
in Bouziani & Ham) have not previously handled point data. The reviewer objects that one
could apply a generic AD tool to a finite element model. This is true, but it’s a long way from
an automated process and the arguments about efficiency and robustness of generic AD sys-
tems that we raised in Farrell et al. (2013) still apply. A more relevant alternative would be to
hand-code the adjoint to the point interpolation and to implement a sui generis composition
of that code with Firedrake’s adjoint, as the authors did using Firedrake in Roberts et al.
(2022). However, even that approach lacks the seamlessness, automation and expressiveness
of directly incorporating a differentiable point evaluation operator in Firedrake itself.
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Between Eqs. 24 and 25 As noted above, the definition of the basis functions is correct.

P13 We have fixed the capitalisation of L-curve.

Sec. 7.1.1 We have rewritten this section to avoid reference to posterior consistency. The point
can be made more clearly without reference to Bayesian inversion at all. The point is that if
the observations are first interpolated to the computational grid and then incorporated as a
misfit term penalising deviation between the interpolated data and the solution of the inverse
problem, then the error will saturate as the number of observations is increased, whilst if
the interpolation operator is used and the misfit term is properly defined as a sum over
observation points, the error can continue to decrease with observations below the saturation
point.

Eq. 32 This was a mistake, we have corrected it in the revision.

P18, paragraph 3 We have elaborated on this more in the text. In this example, there are only
3 parameters to infer, so much of the machinery of Bayesian inference is not necessary.

P18, last paragraph We have rewritten this to remove mention of posterior consistency as 7.1.1.

Sec. 7.3.1 We disagree. Although this is not a glaciology paper as such, we feel that it is important
to give some justification for why we used this simplified equation set. If we had submitted
this paper to The Cryosphere then we might assume this knowledge on the part of readers.

Sec. 7.3.2 Corrected in the revised version.

P21, para 3 We have added a statement to the text to this effect. Ideally, we would have con-
ducted this experiment using only the raw chip matches or displacements that are obtained
from repeat-image feature tracking, which are not on a regular grid, rather than the regular
grid of velocity values that are interpolated after the fact. Instead we made do with what is
readily publicly available, i.e. a gridded velocity product.

Fig. 8 This is the units for the regularisation parameter (meters).

P23 L1 This would involve estimating the Gaussian random field f that produced the observations,
and then creating a misfit term that penalises the distance to the mean of f, using the
covariance operator as a metric in the norm. If the observation data are correlated, then
this can be modelled using a covariance matrix in the misfit in equation 21. This would be
a worthwhile exercise for a glaciology / remote sensing paper. However, the purpose of this
exercise to conduct an experiment that is not possible by the conventional approach of first
interpolating the observational data to the finite element mesh and then using the 2-norm
misfit between the computed and interpolated velocity fields.

P23 Para 2 We have clarified the text. Briefly, if you are willing to assume that (1) the model
is correct, and (2) that the error estimates are correct in a relative but not an absolute
sense, then it is possible using cross-validation to estimate the absolute scale that the error
estimates should have been on.

P23 Para 3 and 4 We have cut most of this text and revised what remains. We do not claim to
have taken the most principled approach possible and we agree that a full Bayesian treatment
would be superior. Instead, we argue that (1) accounting for the point-like nature of the
observations, either directly in the formulation of the inference problem or by using Gaussian
process regression, is a substantial improvement over interpolating and then fitting, and (2)
Firedrake is now provides seamless forward and adjoint support for the point-like nature of the
observations, which is relatively uncommon among finite element modelling packages. We do
not need to take the most principled approach imaginable in order to improve upon existing
practice in the glaciological community or in other disciplines. Point data assimilation enables
substantial improvements to current practice.

Sec. 8 We think that the reviewer’s core question about this section reflects the fact that we were
insufficiently clear that the point data abstraction and implementation are core to the paper.
That said, we have revised this section to make it clearer that it is about further work which
is facilitated by a point data abstraction. The section has also been updated to account for
development which has occurred in the extended period that the paper has been in review.
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3 Response to Specific Comments by Umberto Villa

1. The use of unstructured point data in inverse problems and data assimila-
tion is well established. For example, the hIPPYlib software [1,2,3], an inverse
problem Python library based on FEniCS (of which I am a developer), already
implements point-wise observations while automating the computations of first-
and second-order derivatives by use of FEniCS symbolic differentiation of weak
forms. Furthermore, the three examples presented in the paper are related to some
applications of hIPPYlib, including the inversion for a diffusion coefficient in the
Poisson equation [1], poroelasticity [4], and ice sheet flow [5].

We have cited hIPPYlib and explained the difference between that work and the approach
presented here. We are not the first to assimilate point data and we do not claim to be –
oceanographers have assimilated data from drifting buoys into circulation models for years.
The key distinction between this and previous work such as hIPPYlib is that the point data
is included as fully first class objects in the symbolic layer of the finite element system. This
enables data assimilation, which hIPPYlib also supports, but also enables point data to be
used almost anywhere in a calculation where any other finite element function could be used.
For example, this enables the interpolation to point data to be put in the integrand, as shown
in equation 13. The beauty of introducing a fully composable first class operator is that users
will certainly find uses for this functionality that we have not thought of.

2. In the numerical results, the choice of the interpolation methods to map the
discrete observation to the grid is näıve. A better approach would have been
to compare with Gaussian process interpolation (and its 2D/3D counterparts).
Gaussian processes do account for uncertainty in the measurement and provide
a spatially varying estimate of the variance of the interpolator, thus allowing for
more consistent handling of uncertainty measurement and of the fact that the
interpolation is less reliable far away from observation points.

The goal of this experiment is to compare the approach the we propose with what is commonly
done in the literature. Many publications have used naive interpolation methods to map
discrete observations to a finite element mesh without acknowledging the impact that this
arbitrary algorithmic choice can make. We agree that using Gaussian process regression
would be superior to naive interpolation, but relatively few publications (at least in the
glaciology literature) use it.

3. The authors claim that the numerical results demonstrate Bayesian consistency
of the proposed interpolation method. Why this claim is true, the numerical results
do not support such claim as the authors do not solve a Bayesian inverse problem

The reviewer correctly points out several instances where we overstated the statistical rigour
of our experiment. We have walked back some of these claims. The purpose of the demon-
strations here is to show that the new point data assimilation capabilities of Firedrake work
as advertised and that this feature is fully integrated into the rest of the symbolic capabilities
of the library. We claim that this new feature is useful whether one is interested in solving
problems from the viewpoint of both Bayesian statistics or deterministic inverse problems.

1. The authors only compute the MAP point, while the solution of the Bayesian
inverse problem requires the ability to characterize (either by sampling or using
variational inference the posterior distribution.

We agree, we overstated our case here and have altered the text accordingly.

2. The authors use Tikhonov regularization on the spatial gradient of the un-
known parameter as the logarithmic of the prior distribution. However, since
the inverse of the Laplace operator in two or three spatial dimensions is not a
trace-class operator, the Bayesian inverse problem is not well-posed with that
choice of prior [6].

This was an oversight on our part and we thank the reviewer for pointing this out. Using
the square norm of the gradient is an inverse crime and we have updated the text to
reflect this. Nonetheless, the essential point of this exercise is to demonstrate the new
point data assimilation capabilities added to Firedrake and that the resulting estimates
converge in the limit of a large number of observations. Using the square norm of the
second derivative is better practice but does not substantially alter the essential point,
so we have kept the simulations as-is.
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3. The L-curve, Morozov, or cross-validation criterion are commonly used in
the deterministic formulation of inverse problems. In the Bayesian formulation,
hyper-priors are often used to tune the variance and correlation length of the
prior distribution [7].

We have removed discussion of a Bayesian inverse problem.

4. The definition of Bayesian consistency is not interpreted correctly. Below for-
mula (31) the authors claim that as the number of observation points goes to
infinity then qest should converge toward qtrue. This is not what Bayesian consis-
tency is. In fact, there are several cases in which it is impossible to recover the
true parameter exactly no matter how many observation points are used, simply
because there is an intrinsic loss of information in the continuous map from the
parameter to the state variable.

Please see our answer to reviewer Brinkhoff about Sec. 7.1.1.

5. It is not clear what is the solution approach in the second example. Are the
authors employing a Kalman filter or are they solving for a MAP point and then
invoking the Laplace approximation to the posterior to estimate the posterior PDF?

We have expanded on the explanation in the text. We are not using a Kalman filter or the
Laplace approximation. Briefly, there are only three parameters to infer and 18 observations,
so computing a MAP estimator with the improper uniform prior on the transmissivities is
the same as computing the maximum likelihood estimator. We generated 30 independent
realisations of the observation set, computed a MAP/MLE from each one, and then fit a
normal distribution to the resulting 30 estimates for the transmissivities.

6. Given that the main contribution of the paper is the implementation in UFL/Firedrake
of a point-wise observation operator, it would be good to numerically demonstrate
the scalability of the implementation with respect to the number of observation
points and the number of MPI processes for both 2D and 3D geometries.

The reviewer suggests that scaling experiments are desirable. We suggest that this is not
actually valuable in the context of the functionality presented here. The reason is that
point evaluation at static points typically accounts for a vanishing proportion of runtime.
The circumstances where the performance of point evaluation are likely to become a first
order concern are where there are a very large number of particles and these move (hence
necessitating frequent updates of the containing cell and local coordinates). This functionality
is not presented here and is listed in the future work section. A future paper focussed on,
for example, statistics of moving particles would be the appropriate juncture to study the
performance of the system.

7. 1. The reviewer raised concerns about consistency of the notation for the various function-
als. We have standardised the notation to use Jpoint and Jfield

2. Section 2 is a mix between the very basic theory of finite elements and more
advanced concepts like dual basis. However, the section lacks of mathematical
rigor in the notation and there is an imbalance of content. In particular, the
description of the foundation of finite elements is too long and well-known (e.g.
Fig 1 could be removed), while the most advanced most relevevant to this work
(the dual basis and the Charlet triplet) lack of details.

This is a well-made point. We have pared back this section significantly.

3. We have tightened up the formality of the mathematical exposition throughout. We
would like to point that the semicolons are not typos but are an indication that the
operator in question is linear in the arguments after the semicolon. This notation was
introduced at the end of chapter 3 and is an extension of the notation for forms used
in, for example, Alnæs et al. (2014). The use of tilde to indicate quantities in local
coordinates has been made consistent.

The presentation of the paper is very informal (e.g. the use of “our”, to
refer to “our” finite element space, “our” finite element function, “our” inverse
problem) and there are several typos in the mathematical formulas (e.g. there
appear to be an extra semicolon in Eq (11) and (12); or inconsistency between
x̃ in Eq (13) and the text below where x̂ is used.
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