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Abstract. Ice mélange, a composite of sea ice and icebergs, can have a major influence on sea-ice-ocean interactions. However,

ice mélange has not been represented in climate models because numerically efficient realizations do not exist. This motivates

the development of a prototype dynamic hybrid ice-mélange model that we present in this paper. In our approach, icebergs

are included as particles while sea ice is treated as a continuum. To derive a joint continuum for the ice mélange, we integrate

particle properties into the sea-ice continuum. Thus, icebergs are viewed as thick, compact pieces of sea ice. The ice-mélange5

formulation is derived based on the viscous-plastic sea-ice rheology, which is currently the most widely used material law for

sea ice in climate models. Starting from the continuum mechanical formulation, we modify the rheology such that icebergs are

held together by a modified tensile strength in the material law. Due to the particle approach, we do not need high resolved

spatial meshes to represent the typical size of icebergs in ice mélange (< 300 m). Instead, icebergs can be tracked on a subgrid

level while the typical resolution of the sea-ice model can be maintained (≥10 km). This is an appealing property for com-10

putational efficiency and for an inclusion within large-scale models. In idealized test cases, we demonstrate that the proposed

changes in the material law allow for a realistic representation of icebergs within the viscous-plastic sea-ice rheology. Further-

more, we show that subgrid dynamics, such as polynya formation due to grounded icebergs, can be modelled with the hybrid

approach. Overall, this suggested extension of the viscous-plastic sea-ice model is a promising path towards the integration of

ice mélange into climate models.15

1 Introduction

Fjords with marine terminating glaciers are commonly found in the polar regions, for example around Greenland. These fjord

systems can be filled with sea ice into which icebergs calve, so that a mixture of sea ice, bergy bits and icebergs is formed: ice

mélange. The ice mélange consists of many interacting small icebergs (< 300 m) (Dowdeswell et al., 1992; Sulak et al., 2017).

Observations based on field campaigns and remote sensing data indicate that ice mélange affects the glacier-fjord system20

either by releasing fresh water into the fjord (Enderlin et al., 2018; Mortensen et al., 2020; Moon et al., 2018) or by creating a

force at the glacier termini (Cassotto et al., 2015; Bevan et al., 2019; Xie et al., 2019). This force might be strong enough that it

prevents calving events (e.g. Amundson et al., 2010; Krug et al., 2015; Bassis et al., 2021), whereas the release of fresh water

through icebergs influences the fjord circulation and melting at the glacier termini (Davison et al., 2020).
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Observing ice mélange is difficult, due to the sparsity of remote sensing data and due to the challenges of taking in-situ25

measurements in dense ice conditions. To obtain insights into the potential impact of ice mélange on glacier calving and the

underlying ocean circulation, numerical models are therefore necessary. The existing approaches used to include ice mélange

into models vary in their complexity. They range from the full description of the ice-mélange dynamics (Robel, 2017; Burton

et al., 2018) to the parameterization of specific interactions such as the load which the ice mélange creates at the glacier

termini (Schlemm and Levermann, 2021).30

There are two distinct approaches in the scientific literature to model the dynamics of ice-mélange: in particle methods the

ice mélange is expressed using discrete interacting particles, with single particles representing icebergs or sea-ice floes (e.g.

Robel, 2017; Burton et al., 2018). As discussed by Vaňková and Holland (2017) implementing a full particle approach into

climate models would be extremely challenging due to the enormous numerical costs. In contrast, in the continuum approach,

the ice mélange is prescribed as a single continuum (e.g. Pollard et al., 2018; Amundson et al., 2024).35

To provide a simple coupling between ice-mélange and sea-ice modules used in climate models, Vaňková and Holland (2017)

introduced a continuum ice-mélange model, where sea ice and icebergs build a joint continuum. Icebergs are represented via

thick compact pieces of sea ice, which are tracked with a Lagrangian advection using moving meshes. In their model the

icebergs are held together via a large tensile and shear strength, which is introduced by a modification of the underlying

cavitating fluid sea-ice rheology (Flato and Hibler, 1992). The approach of Vaňková and Holland (2017) requires a high spatial40

resolution to resolve icebergs in the ice mélange. It is challenging to efficiently solve the nonlinear momentum equation of the

underlying sea-ice model with existing solvers (Koldunov et al., 2019; Mehlmann and Richter, 2017b). So far, efficient solvers

for the ice-mélange model of Vaňková and Holland (2017) are currently missing.

To overcome these difficulties, we here introduce a hybrid ice-mélange model. In this approach, the ice mélange is described

as a joint continuum consisting of sea ice (continuum) and icebergs (particles). The use of particles in the hybrid approach45

allows us to track the icebergs on a subgrid level. This has the advantage that icebergs do not need to be explicitly resolved by

the spatial mesh. Thus, the typical grid size of several kilometres for a sea-ice model can be used to simulate ice mélange. We

derive the momentum equation of the ice mélange by selectively modifying the tensile strength of the sea-ice rheology. This

concept is similar to the approach of Vaňková and Holland (2017), but instead of applying the cavitating fluid sea-ice rheology,

we consider the viscous-plastic (Hibler, 1979) material law, which has been shown to be more realistic than the cavitating fluid50

model (Kreyscher et al., 2000).

So far, most climate models treat sea ice as a viscous-plastic material using the viscous-plastic (Hibler, 1979) or elastic-

viscous-plastic (Hunke and Dukowicz, 1997) sea-ice rheology. These rheologies are used in 30 out of the 33 global climate

models of the Climate Model Intercomparison Project 5 (CMIP5) (Stroeve et al., 2014). Furthermore, the study of Amundson

and Burton (2018) indicates that ice mélange exhibits viscous-plastic deformations. Thus, an inclusion of ice mélange into55

climate models via a modification of the viscous-plastic material law is a promising approach.

The paper is structured as follows: Section 2 presents the ice-mélange model and Section 3 outlines the used numerical dis-

cretization. The model is numerically evaluated in Section 4. We discuss our results in Section 5 and summarize our conclusions

in Section 6.
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2 Viscous-plastic ice-mélange model60

Based on the representation of the sea-ice dynamics with a viscous-plastic rheology, we develop a model for ice mélange. As

in the underlying sea-ice model (Hibler, 1979), the ice-mélange model consists of three prognostic variables: the ice-mélange’s

thickness H , its concentration A within a specific grid cell, and horizontal velocity v. Ice mélange is considered as a joint

continuum of sea ice and an iceberg distribution, integrated from a set of iceberg particles {p}. On the continuum level the

icebergs are interpreted as thick and compact pieces of sea ice. Every iceberg is represented by a disk shaped particle p, which65

is equipped with a radius rp and a height hp, which can vary between the icebergs. We assume that icebergs are represented by

a finite number of small disk shaped particles. Thus, the continuum thickness and concentration of ice mélange are described

as

H(x,y, t) =

Hsea-ice(x,y, t) if p(x,y, t) ̸∈ (x,y) ∈ Ω,

hp if p(x,y, t) ∈ (x,y) ∈ Ω.
(1)

A(x,y, t) =

Asea-ice(x,y, t) if p(x,y, t) ̸∈ (x,y) ∈ Ω,

1 if p(x,y, t) ∈ (x,y) ∈ Ω.
(2)70

Here, Ω is the two dimensional domain of interest, x and y are the horizontal spatial coordinates, t the time. In order to

model the ice-mélange velocity we formulate an expansion of the viscous-plastic rheology that accounts for icebergs. To keep

icebergs (thick and concentrated pieces of ice) in the ice-mélange formulation together, we modify the tensile strength of the

viscous-plastic law.

In the following, we first generally review the formulation of the governing equations (Section 2.1) and the viscous-plastic75

rheology (Section 2.2), before we modify its strength parameterization (Section 2.3) to represent icebergs. The iceberg particle

interaction and the coupling to the continuum ice-mélange formulation is outlined in Section 2.4.

2.1 Momentum and conservation equation

The drift of the ice mélange is described by the two-dimensional momentum equation

ρH∂tv =∇·σ+Fb, (3)80

where ρ= 900 kgm−3 is the ice density and ∇·σ describes the divergence of the two-dimensional symmetric stress tensor.

The internal stresses are given by the material law described in Section 2.3. The remaining terms collected in Fb,

Fb =−ρHfk×v−ρHg∇Hd + τatm − τocean(v), (4)

model the body forces acting on the ice mélange: the Coriolis parameter f with upward pointing unit vector k, the gravity con-

stant g, the surface height Hd, and the atmospheric and oceanic stresses given by τatm and τocean. These two drag terms (Coon,85
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1980) are expressed as

τatm = Catmρatm ∥vatm∥2 (vatm) , (5)

τocean(v) = Coceanρocean ∥v−vocean∥2 (v−vocean) , (6)

where vatm describes the wind velocity and vocean the ocean current. The corresponding densities are given by ρatm =

1.3 kgm−3 and ρocean = 1026 kgm−3. The drag coefficients are Catm = 1.2 × 10−3 and Cocean = 5.5× 10−3. Note that90

∥·∥2 is the Euclidean norm. The advection of the sea-ice thickness Hsea-ice and concentration Asea-ice are calculated as

∂tHsea-ice +div(Hsea-icev) = 0,

∂tAsea-ice +div(Asea-icev) = 0,
(7)

with Hsea-ice ∈ [0,∞) and Asea-ice ∈ [0,1] . The icebergs are advected based on the continuum ice-mélange velocity v:

xp(t+∆t) = xp(t)+

t+∆t∫
t

v(xp(t̃), t̃)dt̃, (8)

where xp = (xp,yp) is the position of the center of particle p.95

2.2 Viscous-plastic rheology

Let σ̃ be the principle components of the stress tensor σ given by

σ̃1 =
σ11 +σ22

2
+

√(
σ11 −σ22

2

)2

+σ2
12,

σ̃2 =
σ11 +σ22

2
−

√(
σ11 −σ22

2

)2

+σ2
12.

(9)

In the viscous-plastic model (Hibler, 1979), the states of the stress σ are described by an elliptic yield curve of the form

F (σ̃1, σ̃2) =

(
σ̃1 + σ̃2 +P

P

)2

+

(
σ̃1 − σ̃2

P
e

)2

− 1 = 0, (10)100

where e= 2 is the minor axis of the ellipse and P is the ice strength modelled as

P = P ⋆H exp(−C(1−A)), (11)

with strength parameter P ⋆ = 27.5×103 Nm−2 and C = 20. The yield curve is expressed in terms of the principal components

of the stress tensor σ

σ̃1 =
σ11 +σ22

2
+

√(
σ11 −σ22

2

)2

+σ2
12,

σ̃2 =
σ11 +σ22

2
−

√(
σ11 −σ22

2

)2

+σ2
12.

(12)105
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A visualization of the yield curve is given in Figure 1 (blue line). As there are no stress states on the yield curve with

(σ̃1, σ̃2)> 0, sea ice has no tensile strength (no resistance to divergence) (Leppäranta, 2011). The stress states are related to

the strain rates

ϵ̇ij =
1

2

{
∂xj

vi + ∂xi
vj

}
, (13)

by the constitutive law (Hibler, 1979)110

σij = 2ηϵ̇ij +(ζ − η)(ϵ̇11 + ϵ̇22)δij −
P

2
δij , (14)

where δij is the Kronecker symbol. The nonlinear shear ζ and bulk viscosity η are chosen as

η = e−2ζ, ζ =
P

2∆(ϵ̇)
. (15)

To guarantee a smooth transition between the viscous and the plastic regime, we follow Kreyscher et al. (2000) and choose

∆(ϵ̇) =
√
∆P (ϵ̇)2 +∆2

min. (16)115

In case of the plastic regime, ∆P (ϵ̇) is defined as

∆P (ϵ̇) =
√
(ϵ̇211 + ϵ̇222)(1+ e−2)+ 4e−2ϵ̇212 +2ϵ̇11ϵ̇22 (1− e−2). (17)

The viscous regime is given as

∆min(ϵ̇) = 2× 10−9. (18)

2.3 Strength parameterization120

The absence of tensile strength in the original model is apparent from the fact that the yield curve of the viscous-plastic

rheology does not contain combinations of (σ̃1, σ̃2)> 0 (see blue curve in Figure 1). A tensile strength has been introduced

into this model for example by König and Holland (2010) to model landfast sea ice, or in the ice-mélange model based on a

cavitating-fluid rheology (Vaňková and Holland, 2017). Similar to Vaňková and Holland (2017), we introduce a tensile strength

into the standard viscous-plastic sea-ice rheology to model icebergs. This tensile strength leads to a resistance to divergence in125

the presence of icebergs.

By including the tensile strength, the elliptic yield curve is shifted into the first quadrant (red curve in Figure 1). The new

center of the ellipse is given by
(
− P−T

2 ,−P−T
2

)
, with the maximum tensile strength T . Both P and T are positive numbers.

Thus, the modified elliptic yield curve is given by

F (σ̃1, σ̃2) =

(
σ̃1 + σ̃2 +P −T

P +T

)2

+

(
σ̃1 − σ̃2

P +T
e

)2

− 1 = 0, (19)130

with the elliptic ratio e. For T = 0 (no tensile strength), the elliptic yield curve is equivalent to the ellipse of the viscous-

plastic sea-ice rheology (see Eq. (10)). It is assumed that ∂F and the strain rates are perpendicular to the surface of the yield
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σ̃1

σ̃2

c

d

Figure 1. Two-dimensional yield curve in principal stress space without (blue) and with (red) tensile strength. Pure divergence d is in the

origin of the graph, pure convergence is obtained in c. σ̃1 and σ̃2 are the principal components of the stress tensor σ (see Eq. (14)).

curve (Leppäranta, 2011). Thus, the relation between the stress tensor and the strain rates for the shifted yield curve is derived

by a normal flow rule

ϵ̇ij = γ
∂F (σ11,σ22,σ12,σ21)

∂σij
, (20)135

with γ > 0. This leads to the modified rheology

σij = 2ηϵ̇ij +(ζ − η)(ϵ̇11 + ϵ̇22)δij −
P −T

2
δij , (21)

with the bulk and shear viscosities

ζ =
P +T

2∆
, η =

ζ

e2
=

P +T

2∆e2
. (22)

Following König and Holland (2010), we define the tensile strength T relative to the compressive strength140

T = P ⋆HΦ. (23)

The indicator function Φ is given as

Φ(x,y) =

1 if (x−xp)
2 +(y− yp)

2 < r2

0 if (x−xp)
2 +(y− yp)

2 ≥ r2.
(24)

2.4 Iceberg interaction

An interaction of two distinct particles pi,pj , is modelled by a hard disk model (Herman, 2011) if the particles overlap:145

||xpi(t)−xpj (t)|| ≤ ri + rj , (25)

where ri, rj are the radii, and xpi(t) = (xpi ,ypi) and xpj (t) = (xpj ,ypj ) are the positions of the interacting particles pi and

pj , respectively. The position of the overlapping particles is corrected by assuming an inelastic collision (Herman, 2011). For

6



this we use the last particle position in which the particles had not collided and update the location of the particles based on the

ice-mélange velocity corrected for the collision. The latter is calculated as follows:150

ṽi = vi −
αij

mi
, ṽj = vj +

αij

mj
, (26)

where vi = v(xpi
,ypi

, t) and vj = v(xpj
,ypj

, t) are the current velocities of the ice mélange, and mi,mj are the mass of

particle pi,pj , respectively. The coefficient αij is given by

αij =
mimj

mi +mj
(1+ ϵ) ·nij(vi −vj)nij , (27)

with the relative unit position nij =
xpi

−xpj

∥xpi
−xpj

∥ . The coefficient of restitution ϵ is set to 0.9, as this value has been used in the155

past for sea ice (Shen et al. (1987)). Since we assume, that icebergs are thick pieces of sea ice, this choice is appropriate.

3 Numerical discretization

The ice-mélange model is implemented in the open-source academic software library Gascoigne (Braack et al., 2021), which

uses quadrilateral grids. On the mesh, the velocity unknowns are placed at the vertices, whereas the tracers are staggered at the

cell centers. This placement corresponds to an A-grid and a B-grid type staggering for the velocity and tracers, respectively.160

The velocity is approximated in space with piecewise linear finite elements, whereas the tracers are discretized as a piecewise

constant per cell.

For the time discretization of the ice-mélange model we split the coupled system of equations in time. First, we approximate

the solution of the momentum equation (Eq. (3)). Then, the solution of the transport (Eq. (7) and Eq. (8)) with the updated

velocity is computed. This choice of the implicit Euler is motivated by the fact that an explicit discretization of the viscous-165

plastic sea-ice model requires a time step of 1 s on a grid with size 100 km × 100 km (Ip et al., 1991). We expect similar

constraints for the ice-mélange model, because its rheology is based on the viscous-plastic sea-ice model.

For our choice of an implicit temporal discretization, a nonlinear system of differential equations needs to be solved in

every time step. We use a modified Newton method for this solution as it shows improved convergence compared to a standard

Newton method and Picard solver (Mehlmann and Richter, 2017a).170

3.1 Coupling between particle and continuum method

In order to derive the continuum thickness and concentration of the ice mélange, the icebergs in form of particles need to be

numerically coupled into the continuum sea-ice formulation. We realize this by calculating a continuum iceberg thickness and

iceberg concentration in each cell K:

Aiceberg|K =
∑
p∈K

ap
|K|

, (28)175

Hiceberg|K =
∑
p∈K

hpap
|K|

, (29)
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with the particle area ap = πr2|K and the area of a grid cell |K|. We use the iceberg concentration to determine the tensile

strength in the presence of icebergs. Thus, the discretized version of the tensile strength is given by

T =

0 if Aiceberg|K <
π(0.5

√
|K|)2

|K| ,

P ⋆HctensileAsea-ice else.
(30)

In the discretized version we account for the sea-ice concentration weighted by a constant ctensile. For the sake of simplicity180

we choose ctensile = 1. The inclusion of the sea-ice concentration allows us, for example, to model no tensile strength between

icebergs if there is no sea ice present. The threshold is selected such that the tensile strength becomes active as soon as an area

of the grid cell is filled with icebergs that cover an area at least as large as a disk shaped iceberg with radius
√

|K|
2 . This choice

is discussed in Section 5.

The ice-mélange concentration and thickness in each grid cell are given by185

A|K =min(Aiceberg|K +Asea-ice|K ,1), (31)

H|K =Hiceberg|K +Hsea-ice|K . (32)

In the presence of icebergs sea ice is more compressed and thicker compared to areas without icebergs. The effective sea-ice

thickness and sea-ice concentration is given by Ãsea-ice := min
(
Asea-ice/(1−Aiceberg),1

)
and H̃sea-ice :=Hsea-ice/(1−Aiceberg),

respectively. In the context of this ice-mélange formulation, we assume that icebergs are represented by a finite number of190

small particles with rp ≤
√
K
2 .

We summarize the time discretization of the ice-mélange dynamics in Algorithm 1. The time loop starts with the calculation

of the iceberg distribution (Eq. (28)) and the computation of the ice-mélange tracers (Eq. (31), Eq. (32)), which corresponds to

step 1 and step 2 of Algorithm 1. Then, the updated ice-mélange tracers are coupled to the momentum equation to solve for the

ice-mélange veclocity (step 3 of Algorithm 1). To calculate the advection of ice mélange in Eq. (7) and Eq. (8), we separately195

transport the continuum sea-ice tracers and the iceberg particles, (step 4 and step 5 of Algorithm 1, respectively). Sea ice in

Eq. (7) is advected via an upwind scheme, while the particles are transported according to Eq. (8) in a substepping procedure.

With this approach, each particle is advected with the corresponding ice-mélange velocity. The latter is given by evaluating

the piecewise linear finite element interpolation at the particle location. During the substepping procedure, the icebergs are

checked for collision with other icebergs or with the boundary of the domain and then replaced accordingly to Eq. (26).200

4 Numerical validation

The proposed hybrid ice-mélange model is tested in six idealized test cases. The first three test cases (Section 4.1) highlight

the need of introducing a tensile strength for icebergs into the viscous-plastic sea-ice rheology. Based on the verification of the

modified tensile strength, we numerically analyze the combination of particle and continuum methods to represent ice mélange

in the last three test cases (Section 4.2).205
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Algorithm 1 Partitioned time stepping loop

Let I = [0,T ] be the time span of interest and v(t0),{xp(t0)},Asea-ice(t0),Hsea-ice(t0) the initial solutions of the ice-mélange velocity, the

position of the set of particles, the sea-ice concentration and sea-ice thickness at time t0 = 0. The time period is discretized into equidistant

steps 0 = t0 < t1, · · ·< tN = T. The following time iteration is performed for n= 1,2, . . . ,N :

1. Derive an average iceberg concentration Aiceberg(tn) and iceberg thickness Hiceberg(tn) (Eq. (28)) based on the set of corresponding

particle positions {xp(tn − 1)}.

2. Calculate the ice-mélange concentration A(tn) (Eq. (31)) and ice-mélange thickness H(tn) (Eq. (32)) based on the concentration and

thickness of the continuum sea-ice and iceberg distribution, Asea-ice(tn−1),Hsea-ice(tn−1),Aiceberg(tn−1),Hiceberg(tn−1), respectively.

3. Solve the momentum equation (Eq. (3)) based on A(tn),H(tn)

v(tn−1)→ v(tn).

4. Solve the advection Eq. (7) based on the velocity v(tn)

Asea-ice(tn−1)→Asea-ice(tn).

5. Based on a partitioning into equidistant sup-steps tn−1 = tm−1 < · · ·< tm = tn, calculate for m= 1,2, . . . ,M the particle position

(Eq. (8)) based on v(tn) and account for particle interaction in case of collision between particles (Eq. (26))

xp(tm−1)→ xp(tm).

4.1 Tensile strength

The first three test cases are designed such that the behaviour of the ice mélange is tested under compressive (Section 4.1.1),

tensile (Section 4.1.2) and shear (Section 4.1.3) forces. For the sake of simplicity we use vocean = 0 ms−1. In order to reduce

the complexity of the analysis of the modified tensile strength, we neglect the particle coupling in these first three test cases.

Instead of simulating the iceberg motion via particles and integrating it into the sea-ice continuum, we track the icebergs (thick210

and compact pieces of sea ice) in the sea ice via an indicator function ϕ that is transported in time:

∂tϕ+div(ϕv) = 0, ϕ(x,y,0) = δxy, (33)

where δxy is the Kronecker symbol that equals to 1 in the presence of icebergs. According to the volume-in-fluid method (Hirt

and Nichols, 1982) the indicator function Φ of Eq. (23) is modified to

Φ=

0 if ϕ≤ c for sea ice,

1 if ϕ > c for icebergs.
(34)215

We haven chosen c= 0.3 by experimental tuning.
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fjord wall

5km

glacier
terminus

5km ocean

fjord wall

(a) standard VP rheology (b) VP rheology with tensile strength

Figure 2. Visualization of the ice-mélange thickness for a test case in which an iceberg (thick red contour line) is pushed against the glacier

terminus (left boundary) by a constant wind (vatm = 20 ms−1). The panels denote the results for (a) the standard viscous-plastic rheology

and (b) for the viscous-plastic rheology with tensile strengths. Both snapshots show the simulation result after 3 h.

4.1.1 Iceberg pushed against a wall

The first test case is similar to the one used by Vaňková and Holland (2017). The domain is given by an area of the size

5 km × 5 km, see left plot in Figure 2. All boundaries except the exit to the ocean (right boundary) use Dirichlet boundary

conditions (v = 0). The upper and lower boundaries represent the coast lines, while the boundary on the left represents the220

glacier terminus. We place a 1 km × 2 km large iceberg in front of the glacier wall. A grid cell size of 110 m is used. The

iceberg is a 10 m thick compact block of sea ice with a concentration of 1. The left half (< 2.5 km) of the domain is filled with

0.1 m thick sea ice with a concentration of 0.1. The iceberg is pushed against the glacier terminus through a constant wind

vatm = 20 ms−1.

The simulation is run for 3 h. When comparing the standard viscous-plastic rheology and the modified material law (Fig-225

ure 2), we find that for the standard viscous-plastic rheology, the thick and compact piece of sea ice, which models the iceberg,

deform towards the glacier and accumulates in front of the glacier terminus. This is visible by the thick red line shown in Fig-

ure 2 (a), which visualizes the iceberg’s contour. The sea ice along the glacier terminus (outside of the contour line) piles up.

With the proposed modification, the iceberg is able to keep its rectangular shape throughout the simulation (see Figure 2 (b)).

This test case shows that in our modified viscous-plastic rheology, the iceberg can withstand the compression, initiated by the230

wind forcing.
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(a) standard VP rheology (b) VP rheology with tensile strength

Figure 3. The iceberg (thick red contour line) is placed under a divergent wind field. The panels denote the results for (a) the standard

viscous-plastic rheology and (b) for the viscous-plastic rheology with tensile strength. Both snapshots show the ice-mélange thickness after

3 h.

4.1.2 Iceberg under a divergent wind field

We consider a 5 km × 5 km large domain with a divergent wind field

vatm =

15 ms−1 x > 2.5 km,

−15 ms−1 x < 2.5 km.
(35)

The 10 m thick iceberg with a concentration of 1 is placed in the middle of the domain. The whole domain is filled with sea ice235

whose concentration is 0.1 and whose thickness is 0.1 m. Using the standard viscous-plastic rheology, the iceberg is torn apart

after 3 h (see Figure 3 (a)). With additional tensile strength the iceberg keeps its form (see Figure 3 (b)). The surrounding sea

ice is still transported in wind direction. This test case shows in particular that the iceberg maintains its shape under diverging

wind conditions at the location of the iceberg.

4.1.3 Iceberg under shear240

In the third test case, the same initial setup as in Section 4.1.2 is used. But instead of using a divergent wind field we apply a

shearing wind field:

vatm =

15 ms−1 y > 2.5 km,

−15 ms−1 y < 2.5 km.
(36)

The domain of size 5 km × 5 km is filled with 0.1 m thick sea ice with a concentration of 0.1. In both cases the iceberg rotates

clockwise (see Figure 4) as expected. Using the standard viscous-plastic rheology the iceberg deforms. Figure 4 (a) shows245
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(a) standard VP rheology (b) VP rheology with tensile strength

Figure 4. The iceberg is placed under a shearing wind field (vatm = ± 15 ms−1). Figure 4 (a) visualizes the result for the standard viscous-

plastic rheology and Figure 4 (b) for the viscous-plastic rheology with tensile strength. Both snapshots show the ice-mélange thickness after

3 h. The thick red line indicates the iceberg contour.

that the iceberg contour is slightly s-shaped and parts from the iceberg already detach. This is in contrast to the behaviour of

the iceberg using the additional tensile strength (see Figure 4 (b)). Here, the iceberg contour stays rectangular and the iceberg

rotates as one sea-ice block.

4.2 A hybrid ice-mélange representation

The advantage of using a particle method on the joint continuum of sea ice and icebergs is given by the fact that the icebergs250

and their interactions can be modelled on a subgrid-scale. We consider a domain of size 512 km × 512 km covered with

a quadrilateral mesh of size 16 km. In this setup icebergs are represented by particles with a radius of 125 m. Using this

configuration, we study an iceberg-iceberg interaction under shear forcing (Section 4.2.1), iceberg separation under divergent

forcing (Section 4.2.2) and the formation of a polynya due to subgrid iceberg grounding (Section 4.2.3). All test cases use a

time step size of 2000 s.255

4.2.1 Iceberg-iceberg interaction

An explicit iceberg-iceberg collision is forced in order to test the behaviour of icebergs under contact. Two icebergs with a

height of 20 m are placed into a 2 m thick sea-ice field with a concentration of 0.7. The icebergs approach each other due to

the following wind field:
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(a) (b) (c)

Figure 5. Visualization of the first component, vx, of the ice-mélange velocity for a test case in which two icebergs are transported towards

each other by a constant wind (vatm = ± 10 ms−1). Figure 5 (a) shows the whole domain with the initial velocity field. The last two panels

show a closeup of the iceberg interaction after (b) 100 time steps and after (c) 200 time steps with a time step of 2000 s.

vatm =

10 ms−1 y < 256 km,

−10 ms−1 y > 256 km.
(37)260

The velocity field of the ice mélange after the first time step is shown in Figure 5 (a). At first, the icebergs approach each other

until they collide (Figure 5 (b)). Due to collision iceberg 1 moves further up and iceberg 2 further down. After the collision

event both icebergs drift past each other and separate again, see Figure 5 (c).

4.2.2 Iceberg field under diverging winds

We analyse the response of an iceberg field to diverging winds and consider the following wind field:265

vatm =

−20 ms−1 x < 256 km,

20 ms−1 x > 256 km.
(38)

The icebergs used in the setup are 20 m thick. The sea ice, if present, has a concentration of 0.7 and a thickness of 2 m. To

highlight the influence of the tensile strength (Eq. (30)) on the motion of the iceberg field, we compare different setups in

Figure 6.

In Figure 6 (a) and Figure 6 (b) sea ice is presented between and around the iceberg field. In contrast to Figure 6 (b),270

the tensile strength parameterization is not active in Figure 6 (a). Thus, the surrounding sea ice and the icebergs disperse in

Figure 6 (a). We use the same setup in Figure 6 (b), but with activated tensile strength. The surrounding sea ice moves according

to the wind field apart, but the iceberg particles stay in their initial grid cell. Without sea ice between and around the icebergs
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(a) no tensile strength, (b) with tensile strength, (c) no tensile strength,
with sea ice with sea ice no sea ice

Figure 6. Iceberg field under a diverging wind field. The icebergs have a height of 20 m. In Figure 6 (a) and Figure 6(b) sea ice is 2 m

thick with a concentration of 0.7, while in Figure 6 (c) the icebergs have no surrounding sea ice. All three Figures show the simulation after

300 time steps.

the tensile strength in Eq. (30) equals to zero. Therefore the icebergs disperse in Figure 6 (c). The setup shows that the modified

rheology allows for icebergs to disperse if no sea ice is present. At the same time we see that in the case of an iceberg field with275

sea ice in between, the tensile strength is necessary to prevent the field from moving. The amount of active tensile strength can

be controlled by the parameter ctensile (Eq. (30)) and is further discussed in Section 5.

4.2.3 Iceberg grounding

Icebergs can impact sea ice in different ways. For example, mechanically by colliding and breaking up the sea-ice cover,

by creating openings and by altering the structure of the sea-ice cover. To simulate such an interaction, we simulate iceberg280

grounding in the final test case. Those grounding events occur in shallow waters and have profound implications for sea-ice

dynamics. As icebergs come into contact with the seafloor, they become immobilized, transforming into obstacles that influence

the surrounding sea ice. This affects the natural flow and movement of sea ice, and thereby the local circulation patterns and

the distribution of sea ice.

In this test case we simulate iceberg grounding and analyze the resulting dynamic of the ice mélange with respect to the285

formation of a polynya. The domain consists of a 2 m thick sea-ice layer with a concentration of 0.7. Three grid cells, each of

the size of 16 km×16 km, are filled with 4096 icebergs per cell (see Figure 7). Each iceberg has a radius of 125 m and is 20 m

thick. We use such a large number of icebergs to show that we can work with many icebergs per cell that are much smaller than

the cell size. These icebergs represent the effects of multiple grounded icebergs in the area with different sizes.
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(a) initial setup (b) closeup

Figure 7. Figure 7 (a) shows the initial ice-mélange concentration of the grounded iceberg setup (lower 2 grid cells). Figure 7 (b) presents a

closeup of the upper grid cell so that individual iceberg-particles are visible.

(a) standard VP rheology (b) VP rheology with tensile strength

Figure 8. Closeup of the ice-mélange velocity after 5 time steps of the grounded iceberg setup. The area of low velocity in the center of the

domain indicates the presence of the icebergs. The ice-mélange is forced by a constant ocean current (vocean = 0.2 ms−1).

The icebergs in the two lower grid cells closer to the boundary are marked as grounded (viceberg = 0 ms−1). As a forcing290

we use an ocean current of vocean = 0.2 ms−1 and neglect any atmospheric forcing (vatm = 0 ms−1). Figure 9 (a) shows the

grounding event using the standard viscous-plastic rheology. The not grounded icebergs in the upper third cell are transported

as one block of icebergs towards the right boundary. The square shape is slightly deformed and rotated. The surrounding sea

ice is accumulated in the domain’s right half and builds a straight ice edge. This is a nonphysical behaviour as grounded
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(a) standard VP rheology (b) VP rheology with tensile strength (c) closeup

Figure 9. Three grid cells are each filled with 4096 icebergs. The lower two grid cells consists only of grounded icebergs. The snapshots

in Figure 9 (a) and (b) show the ice-mélange concentration after 600 time steps with an ocean forcing of vocean = 0.2 ms−1. Figure 9 (c)

shows a closeup of the ungrounded icebergs in Figure 9 (b).

icebergs should cause a pile-up of sea ice in front of the icebergs. Due to the missing tensile strength in this configuration the295

ice-mélange velocity is not zero in the dense iceberg field, see Figure 8 (a). Thus, the sea ice flows through the icebergs.

This is in contrast to the results conducted with the modified rheology (see Figure 9 (b)). Here, the additional tensile strength

leads to nearly zero velocity in the dense iceberg field (Figure 8 (b)) and prevents the sea ice from passing through the icebergs.

Therefore, sea ice accumulates in front of the icebergs. Compared to the setup with the standard viscous-plastic rheology the

icebergs move only slightly to the right in the configuration with the modified tensile strength. This is visible in the close up300

shown in Figure 9 (c). The active tensile strength in the upper third cell leads to a reduction of the ice-mélange velocity, which

results in a smaller displacement of the iceberg particles

5 Discussion

The results from Section 4 show that the combined approach of subgrid iceberg particle dynamics and continuum formulation

is able to simulate ice-mélange dynamics with respect to different wind and ocean forcing. The usage of particle icebergs in305

the setup allows a representation of ice mélange on coarse horizontal meshes, which have the same resolution as the meshes

applied for simulating large-scale sea-ice dynamics in climate models.

In line with prior findings, the test cases presented in Section 4 demonstrate that a modification of the original sea-ice

rheology is crucial to represent icebergs in the viscous-plastic model. In areas with high iceberg coverage, the ice mélange

behaves almost like a rigid body due to the modification of the strength parameter.310

The ice-mélange model is developed from the sea-ice perspective with the aim to include the dynamical effect of small

icebergs on evolution of the sea-ice dynamics. Therefore, the prescription of the iceberg dynamics in the absence of sea ice is

very limited. Icebergs move either due to collision or with an averaged ice-mélange velocity calculated from the ice-mélange

16



momentum equation. One perspective to allow for a more complex motion of icebergs, especially in the absence of sea ice, is

to use a particle model with higher fidelity to represent the iceberg motion, e.g the approach used in Robel (2017).315

In order to ensure numerical efficiency, we have represented icebergs on the particle level as round disks. This simplification

of the icebergs’ geometry effects the simulated iceberg interactions. The use of geometric objects with other shapes can lead

to a motion with different direction after the collision. But calculating the collision of more complex geometric objects such as

polygons is numerically more expensive compared to the usage of disk shape particles (Damsgaard et al. (2021)). In addition,

the representation via disks requires an uniform iceberg thickness, which may lead to a coarse approximation of the forces320

in the ice mélange. Since we model the iceberg interaction on a subgrid-scale and integrate the icebergs into the large-scale

sea-ice model, the impact of these simplifications is of second order.

In the test cases in which we consider iceberg particles the relative speed between ice mélange and iceberg particles is almost

zero. For the sake of simplicity, we neglected the feedback from the modified iceberg velocity to the ice-mélange velocity. We

plan to adjust the ice-mélange velocity to account for this feedback. One possibility is to derive an average velocity of the325

icebergs per cell and include a drag term in the ice-mélange momentum equation that accounts for the difference of the iceberg

and the ice-mélange velocity.

Concerning the response of the ice mélange due to subgrid iceberg grounding, we note that polynyas, which can be simulated

in the ice mélange, cannot be smaller than the size of a grid cell, as in any standard sea-ice model. Furthermore, the presence of

tensile strength in a grid cell depends on a certain coverage of a grid cell with icebergs and the present sea-ice concentration in330

this cell. The used threshold Aicebergs < π
(0.5

√
|K|)2

|K| is motivated by the grounded iceberg test case and should be evaluated in

more realistic setups. This holds also true for the the linear dependency of the tensile strength on the sea-ice concentration. The

functional relation as well as the choice of the parameter ctensile need to be further investigated in the context of observations.

Another assumption that could be relaxed in our ice-mélange model is the usage of uniform drag coefficients for ocean and

air. Instead, different values for sea ice and icebergs could be applied. So far, the applied particle realization also does not335

represent mechanical break off of an iceberg or mechanical bonding of two icebergs. Implementing these processes is subject

to future work.

The ice-mélange model is able to represent the formation of a polynya and the pile-up of sea ice in front of iceberg parti-

cles which are grounded on a subgrid-scale. This mechanism is central for the formation of landfast sea-ice in the Southern

Ocean (Fraser et al. (2023)). So far, the Antarctic landfast sea-ice is only poorly represented in current coupled climate models340

as the "fastening" mechanism due to grounded icebergs is not taken into account. Therefore, the proposed integration of small

iceberg particles into the continuum sea-ice formulation used in climate models is a promising perspective for a more realistic

representation of landfast sea-ice in the Southern Ocean.

6 Conclusions

We present a prototype of a dynamic hybrid ice-mélange model, which can be straight forwardly coupled to existing sea-345

ice components in climate models. The ice mélange is described as a joint continuum of sea ice and icebergs. While sea
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ice is represented as a continuum, the icebergs are modelled by particles. In order to derive a joint continuum for the ice-

mélange’s thickness and concentration, we integrate the particles into the sea-ice thickness and sea-ice concentration. By doing

so, icebergs in the ice mélange are considered as thick and compact pieces of sea ice.

Due to the use of particles in the joint continuum, we do not need to use meshes that resolve icebergs which are normally350

several hundred meters in size. Instead, the ice-mélange model can be simulated on the mesh resolution used for sea-ice

components in climate models. This is an appealing feature with respect to the numerical efficiency.

In the context of the hybrid ice-mélange model, sea ice is modelled based on a modification of the continuum viscous-

plastic sea-ice rheology, which is currently the most used material law for sea ice in climate models. Icebergs are introduced

into the viscous-plastic rheology by a strength parameterization, which is used in order to prevent icebergs from diffusing.355

The hybrid model is validated through a series of idealized setups that represent situations observed in nature. The setups

demonstrate that the integrated icebergs, represented as thick and compact pieces of sea ice, maintain their shape under high

pressure or difficult wind conditions due to the strength modification. Furthermore, we show that the hybrid ice-mélange model

is capable of simulating a polynya due to subgrid iceberg grounding. These examples highlight situations where this modelling

framework is beneficial. These are setups where the sea-ice cover is dense and the geometry of the fjord is complex such that360

sea-ice-iceberg interactions are important.

In conclusion, the use of particles and the simple extension of the viscous-plastic sea-ice material law makes the hybrid

model a promising approach to efficiently integrate ice-mélange into climate models.
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