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Abstract. We investigate how different Convolutional Neural Network (CNN) U-Net models specialised in addressing partial

labelling tasks related to mapping Sea Ice Concentration (SIC) can improve performance. We use Sentinel-1 SAR images and

human-labelled ice charts as the reference to train models that benefit from advantages gained from different model optimisa-

tion objectives by utilising a multistage inference scheme. We find our multistage model inference approach that apply
:::::
applies

:
a

classification (CrossEntropy or Earth Mover’s Distance squared) optimised model to separate open water, intermediate SIC and5

fully covered ice in conjunction with a regression (Mean Square Error or Binary CrossEntropy) optimised model, that assigns

specific intermediate classes, to perform the best. To evaluate the models we introduce several specific metrics illustrating the

performance in key areas, such as the separation of macro classes, intermediate class, and an accuracy metric better encapsu-

lating uncertainties in the reference data. We achieve R2-score of ∼93%, similar to state-of-the-art in the literature (Kucik and

Stokholm, 2023). However, our models exhibit significantly better open water and 100% SIC detections
:::::::::::
segmentations. The10

multistage
:::::::
approach

:
synergises high open water and fully covered sea ice accuracies achieved with classification optimised

objectives with good intermediate class performance obtained by regressional loss functions. In addition, our findings indicate

that the number of classes that the intermediate concentrations are compressed
::::::
merged

:
into does not influence the result sig-
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nificantly but rather it is the loss function used to optimise the model which assigns the specific intermediate class that has the

largest impact.15

1 Introduction

Charting the ever-changing sea ice is important for navigation in the remote and cold Arctic to both circumnavigate and

traverse sea ice
:::
for

::::::::
traversing

:
safely and quickly. Effective navigation thus makes high-resolution

::::::::::::
High-resolution

:
sea ice

charts detailing the local sea ice conditions indispensable. This is particularly relevant for
::
are

::::::::::::
indispensable

:::
for

::::::::
effective

:::::::::
navigation.

::::
Due

::
to

:::::
sparse

::::::::::::
infrastructure, local and indigenous populations , e.g. around

:::::
along the Greenland coast . Livelihoods20

in these regions depend on fishing and infrastructure is sparse, where goods and people are primarily transported by boat
:::
rely

::
on

:::::
goods

::::::::::
transported

::
by

::::
ship

:::::
while

:::::
many

:::::::::
livelihoods

:::::::
depend

::
on

::::::
fishing,

::::::
which

:::::
makes

:::
ice

::::::
charts

::::::::
important

::::::::
economic

:::::::
enablers.

However, with the diminishing Arctic sea ice (Perovich et al., 2020), the Northern trade routes are also becoming increasingly

relevant. This could offer alternative shorter shipping avenues connecting the Atlantic and the Pacific oceans through the Arctic,

promising lucrative time and cost savings (Bekkers et al., 2017). Furthermore, decreasing sea ice cover is believed to result in25

more dynamic ice conditions (Boutin et al., 2020), which could continue to cause
:::::::::
exacerbate hazardous conditions. For these

reasons, the ability to map sea ice could
:::::
should

:
be considered a critical infrastructure component in the Arctic. Furthermore,

high-resolution
:::::::::::::
High-resolution sea ice information could also benefit weather and climate models by incorporating higher

spatial details in the ice cover such as leads that allow for interactions between the ocean and atmosphere otherwise insulated

by the sea ice.30

1.1 Context

For the past 50 years, professional sea ice analysts at the Greenland Ice Service, a part of the Danish Meteorological Institute

(DMI), and other similar institutions, e.g. the Canadian or Norwegian national ice services, have mapped the Arctic sea ice with

a variety of methods ranging from airborne campaigns to satellite measurements. The Arctic is particularly challenging to mon-

itor because of its distant location, sparse infrastructure and vastness of the area
:::::::
vastness,

::::::::::
remoteness

:::
and

::::
lack

::
of

:::::::::::
infrastructure.35

Therefore, satellite observations offer appealing advantages with frequent revisit times and large coverage. However, conven-

tional optical imagery is disproportionately affected by cloud cover, which has an almost indistinguishable albedo reflection

:::::
albedo

::::::::
reflection

::::::
almost

::::::::::::::
indistinguishable

:
from sea ice. In addition, the long Arctic polar night offers little to no sunlight for a

significant portion of the year and incapacitates the use of optical imagery in this recurring period. Instead, ice analysts utilize

microwave measurements from satellites. Here, passive microwave measurements, from e.g. the AMSR2 instrument onboard40

the JAXA GCOM-W1 satellite, are excellent for covering the whole Arctic. On the contrary, the instrument offers insufficient

spatial detail for precise tactical navigation or lead detection with resolutions ranging from 35x62 km to 3x5 km per pixel,

depending on the measurement frequency (6.925 - 89 GHz) (Kasahara et al., 2012). Consequently, Synthetic Aperture Radar

(SAR) images are the backbone for sea ice charting , as they offer versatile measurements in a high spatial resolution (10 - 40

m pixel spacing )
::::
with

::::
pixel

:::::::
spacing

:::::::
typically

::::::::
between

:::::
10-40

::
m independent of sun illumination and clouds. However, passive45
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microwave, optical and thermal-infrared imagery are incorporated in the manual charting process when available and beneficial

((Saldo et al., 2021), manual). The main drawback of SAR is interpretability as radar backscatter is dependent on the surface

properties and roughness, and not on the light emitted from an object. In addition, open-water and sea ice can be ambiguous

in their electromagnetic texture appearance depending on e.g. weather conditions. Therefore, the charts are produced by a

manual in-depth interpretation by experienced ice analysts and drawn using Geographical Information System (GIS) software.50

Naturally, this is a resource- and time-consuming, constraining the number of charts produced on a given day, by the amount

of manpower and the data availability. This motivates the desire to fully or partially automate the charting process. Advan-

tages include increasing the number of produced charts with shorter delays between image acquisition and product availability,

shorter production duration, and the possibility of scaling the mapping coverage at little cost, e.g. to cover the entire Arctic.

1.2 Previous and other works55

Automating sea ice charting has been studied for decades, and contemporary attempts have highlighted Convolutional Neural

Networks (CNNs) as a strong contender to solve this challenge with image segmentation. Such approaches were first publicised

by Wang et al. (2016) followed by additional entries in Wang et al. (2017a, b), which provided compelling proof of the validity

of the approach to map the Sea Ice Concentration (SIC). However, in this early study, network complexity, data quantity and

coverage was limiting factor. In 2020, the Automated Sea Ice Product (ASIP) project launched its first version of an open-source60

deep-learning dataset, the ASIP Sea Ice Dataset (ASID-v1) (Malmgren-Hansen et al., 2020). Initial results using the dataset

were published in Malmgren-Hansen et al. (2021) with a custom-built CNN architecture using data fusion of SAR and AMSR2

and a regression-based optimisation approach. These early results were the first to apply large datasets of multiple 100 GBs for

training and highlighted challenges with correctly classifying open water and ice in the Sentinel-1 SAR subswath transitions

that contain noise and speckle (further introduced in 2.1). Heidler et al. (2021) was able to highlight that a larger receptive65

field could improve performance over Malmgren-Hansen et al. (2021). The ASIP project was continued partly as the European

Space Agency’s (ESA) project: AI4Arctic and produced the second version of the dataset, ASID-v2, in 2021 Saldo et al. (2021),

as one of the ESA AI Ready Earth Observation (AIREO) datasets (information regarding the dataset is presented in Sec. 2).

The dataset has been used to develop and publish new CNN-related works, such as Tamber et al. (2022) and the AI4SeaIce

article series (Stokholm et al., 2022; Kucik and Stokholm, 2022, 2023). Other parallel efforts include the ExtremeEarth project70

described in Koubarakis et al. (2021) with its polar use-case with publications such as Khaleghian et al. (2021) focusing on

the type of sea ice, which has also been investigated in a non-related study in Boulze et al. (2020). Other notable ice mapping

entries in the literature include Radhakrishnan et al. (2021) applying curriculum learning. And finally de Gelis et al. (2021),

which improved previous results and underlined challenges in correctly classifying areas with ambiguous SAR signatures.

Approaches to overcoming these challenges were examined in Stokholm et al. (2022), investigating the effects of increasing75

the receptive field of the CNN models for various ambiguous SAR textures. The newest study on the topic (at the time of

writing) is Kucik and Stokholm (2023), which investigates different loss functions for CNN model optimisation.

This paper is the 4th entry into the series; AI4SeaIce, investigating applying AI to automatically map sea ice based on SAR

imagery (Stokholm et al., 2022; Kucik and Stokholm, 2022, 2023).
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1.3 Objective80

Ice analysts are capable of charting a variety of information regarding sea ice. The two most important aspects are the amount

of sea ice in an area and the type of sea ice, which is a proxy for its thickness. The former is the focus of this study and is

described as the amount of sea ice in relation
::::::
relative to open water and is denoted as the SIC. SIC is defined by the World

Meteorological Organisation
::::::
(WMO)

:
as part of the SIGRID-3 code

:::
Sea

:::
Ice

:::::::::::::
GeoReferenced

::::::::::
Information

::::
and

::::
Data

:::::
code,

::::
also

:::::
known

:::
as

:::::::::
SIGRID-3. In this study, the SIC is given as a percentage from 0-100% in discrete increments of 10%, i.e. 1185

ice concentration classes. The increments exhibit substantial relationships between each class, i.e. 50% is more approximate

to 60% than e.g. 40% or 70%, which will be referred to as interclass relationships in the proceeding. The charting process

involves identifying areas of sea ice in SAR images and drawing polygons of comparable and relatively homogenous sea ice,

which are assigned ice parameters, such as the SIC.

The supervised machine-learning segmentation task may seem straightforward as a regression problem, however, a previous90

AI4SeaIce study in Kucik and Stokholm (2023) indicate that this may not be a prevalent strategy. The study carried out

a comparison of analogies of how to interpret the machine-learning task at hand and the effects of different optimisation

objectives; regression-based Mean Square Error (MSE) and Binary CrossEntropy (BCE), and classification-based categorical

CrossEntropy (CE) and the squared Earth Mover’s Distance (EMD2). A key takeaway of the study was the observation that

models optimised with classification objectives were significantly better at correctly predicting open-water (0% SIC) and sea95

ice polygons of 100% sea ice. On the contrary, the regression objectives produced models superior at assigning the intermediate

(10-90%) SIC, i.e. the classes with the strongest interclass relationships. While the regression-based models achieved higher

scores with respect to numerical similarity, the models produced charts exhibiting high-frequency class transitions not present

in the human-labelled charts, which could be interpreted as a higher resolution but it could also be a potential downside,

depending on the ice chart and user preferences.100

A natural question arises from the Kucik and Stokholm (2023) study — could we combine the advantages from the clas-

sification and regression optimised models? As there is a clear discrepancy in the performance related to the optimisation

objective, we suggest an approach of dissecting the overall SIC assignment problem into two smaller ones, handled by differ-

ent specialised models — in effect creating a multistage model inference.

Therefore, we investigate utilising a model to discriminate whether pixels are open-water, an (any) intermediate class of SIC105

or fully covered sea ice (the IceDisc model) to in effect separate the largest (macro) classes. This is combined with another

model to further identify the intermediate SIC (the IntDisc model). The approach allows the models to be optimised with

different loss objectives, but potentially different architectures could be used. However, questions related to how we compress

:::::
merge

:
the intermediate classes are imminent. Is one class sufficient to encapsulate 9 classes from 10 to 90%, or perhaps no

compression
::::::
merging

:
is needed at all? With such large diversity, we propose to include an examination, of whether the number110

of classes influences the model’s ability to separate the macro classes. This aspect also ties nicely into the debate between

members within the sea ice community and among AI practitioners with regards to whether 11 classes are simply too many
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classes considering the uncertainty associated with the labelling procedure (see Subsec. 2.2). Here, we can provide empirical

evidence of whether the number of intermediate SIC classes impacts the model’s ability to separate the macro classes.

For completeness, we expand the experiment to also include an IceDisc, which only differentiates between open water and115

100% fully covered sea ice. This is coupled with an IntDisc model that assigns both intermediate and 100% SIC. To provide a

perspective of the performance, we naturally compare these approaches with similarly trained models presented in Stokholm

et al. (2022); Kucik and Stokholm (2023) with both classes un- and weighted loss functions.

2 Data - the ASID-v2 dataset

The research is conducted utilising the ASID-v2 (Saldo et al., 2021), compiled by DMI, the Technical University of Denmark120

(DTU), and Nansen Environmental and Remote Sensing Center (NERSC) and released on October 2, 2020. A total of 452 co-

located and georeferenced scenes acquired between March 14 2018 and May 25 2019 are included and distributed across the

Greenland coast with the majority from the mid-East, South and mid-West and sparse appearance in the North. Among others,

the dataset consists of professionally drawn sea ice charts, which we treat as reference data, and Sentinel-1 dual polarised

HH and HV SAR images. We limit our investigation to utilising these data types to further our understanding of how well125

standalone Sentinel-1 SAR-trained CNN models can be used to replicate human-labelled ice charts, despite not having all data

sources available.

In Fig. 1 an example of an HH and HV polarised SAR scene with the corresponding professionally produced SIC chart is

illustrated. The scene is from Northeast Greenland and covers ∼ 400km2. Here, land in the lower-left region of the image

is masked and illustrated as white pixels. Sea ice generally appears brighter than still or calm open water in both HH and130

HV polarised SAR images, which can be contributed
:::::::
attributed

:
to the relatively rougher surface in relation to the C-band

electromagnetic radar wave that scatter back more of the incoming radar wave. Exceptions to this in the HH channel can

occur during dynamic waters excited by strong winds, inducing stronger backscatter values that can be higher than sea ice. In

addition, the incidence angle dependency is more prominent for open water, which can also produce backscatter values higher

than sea ice.135
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SAR HH SAR HV SIC chart

Figure 1. Sample scene – Fram Strait, Northeast Greenland. The scene was acquired on August 22, 2018. a-b) HH and HV SAR images,

respectively, with values, clipped at the 5 and 95% percentiles. c) corresponding human-drawn SIC chart (reference).

The disparity between sea ice and open water is largest in the HV image with a narrower dB dynamic range de Gelis et al.

(2021), though the strongest backscatter signal is in the HH image. Investigating the SAR image in Fig. 1, we see sea ice

extending from the North towards the South surrounding an area of open water. In the far right portion of the SAR image, we

see a region of open water, which appears very bright. Such a phenomenon is caused by a relatively narrow incidence angle

of the SAR for the observational geometry. Examining the SIC chart, we see many polygons highlighting regions of varying140

SICs.

2.1 SAR

The Sentinel-1A and B satellites were formerly operated as a constellation with Sentinel-1B unavailable from December 2021.

The ASID-v2 dataset was compiled before the malfunction, and thus we utilize data from both satellites. The satellites are

instrumented with a C-band SAR operating at 5.410 GHz frequency or a wavelength of 5.5 cm (Torres et al., 2012). The145

utilised data is the level 1 Ground Range Detected Medium resolution product, measured in the Extra-Wide operational mode

with a native pixel spacing of 40 m and a radar resolution of 93× 87 m (range × azimuth). In the ASID-v2 dataset, there

are two different SAR noise corrections available; the ESA Instrument Processing Facilities (IPF) v2.9 and the NERSC noise

correction (Park et al., 2018, 2019). In correspondence with the findings from Stokholm et al. (2022), we utilise the NERSC

noise correction. At the time of writing, both noise corrections have since been updated; the current ESA IPF version is 3.61150

and the newest NERSC version is described in Korosov et al. (2022).

2.2 Sea ice charts

Sea ice charts are based on professional interpretations of SAR images and represent snapshots of the ice condition at the

capture time. The ice information is conveyed using the ’Egg Code’, which follows the World Meteorological Organization

(WMO ) code; Sea Ice GeoReferenced Information and Data (
:::::
WMO

:::::
code; SIGRID3), and is represented graphically as poly-155
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gons of fairly homogeneous areas of sea ice. The process is steered by common guidelines but is fundamentally a creative and

individual interpretation. Studies have suggested that ice analysts assign concentrations that can vary on average by 20% and

in worst cases up to 60% (Karvonen et al., 2015), which disproportionately affect the intermediate SIC classes. Cheng et al.

(2020) also document that low SICs (10-30%) are overestimated while middle SIC classes (50-60%) can exhibit high variabil-

ity with a wide spread. Regions, such as the edge of the sea ice cover, which have the potential for high maritime activity, often160

receive more attention from analysts. Despite these uncertainties, we treat the human-labelled SIC labels as reference data or

ground truth and each pixel is treated as equally valid.

In the ASID-v2 dataset, ice charts are stored as polygons containing IDs for an associated look-up table containing the sea

ice information for the specific polygon. Originally, 14 codes exist for SIC, which we compress into 11 classes from 0-100%

in discrete increments of 10%, i.e. class 0 — class 10.165

2.3 Data preparation

We further process the data using the same setup as in Stokholm et al. (2022). SAR and SIC images are downsampled from

40 m to 80 m pixel spacing by applying a 2× 2 averaging kernel and a 2× 2 max kernel, respectively. Pixels with land or

no information are masked and aligned across the SAR and SIC, and rows and columns only containing masked pixels are

discarded. Masked pixels are given values 0 in the SAR data and a new class 11 is established for the SIC, which is discounted170

during model training. Class 11 is not mentioned explicitly in the proceeding class bundling. The SAR data is normalized to

the [-1, 1] range using maximum and minimum values of the data distribution.

Training batches of 32 patches are prepared with each patch containing 7682 pixels, which are sampled across the training

scenes based on the number of available pixels in each scene, i.e. scenes with more pixels will be sampled more often than

those with fewer, as described in Stokholm et al. (2022). Batches are given with a random set of augmentations — one for175

each patch — and identical across SAR and SIC. We utilise the dihedral group: 0, 90, 180 or 270-degree rotations, as well as

horizontal, vertical and two diagonal flips, i.e. 8 in total. Further, we give each patch a 50% chance of applying between 1-4

affine transforms with a random bounded magnitude; [-44.99, 44.99] degrees of rotation, ±30% scaling, ±30% translation,

and ±10 degrees of shearing.

2.4 Data split and distribution180

From the 452 scenes in the ASID-v2 dataset, we select 306 for training and 23 for testing while discarding the remaining

123 scenes based on containing mainly open water while a few contain errors. Each scene with up to ∼ 5,0002 pixels, con-

stituting roughly a train and test split of 9:1 in terms of pixel count, retaining the SIC class distribution. This distribution is

skewed towards class 0 (open-water), 10 (100% sea ice) and 11 (masked pixels) being represented the most
::
as

::::::::::
highlighted

::
in

::::::::::::::::::
Stokholm et al. (2022). The remaining intermediate classes are relatively equally distributed. The test set was selected in185

collaboration with DMI, and scenes were selected to be particularly difficult by ice analysts to challenge trained models in

tough conditions. The test set mirrors the training class distribution with marginally more intermediate-class pixels. We ensure

that no cross-sampling occurs between the training and test scenes to prevent regional biases. However, some marginal leakage
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may occur between scenes sampled consecutively or between acquisitions from satellite orbits where little sea ice drift has

occurred.190

3 Experimental setup

We train models with the U-Net CNN architecture (Ronneberger et al., 2015) containing 8 encoder-decoder blocks (16 and

32 filters in the first two and 64 filters in the remaining) for 100 epochs, each with 500 batches (training steps),
::::::
similar

:::
to

::::
those

:::::::
utilised

::
in

::::::::::::::::::::::::::::::::::::::::::
Kucik and Stokholm (2023); Stokholm et al. (2022). We utilise the Adam optimiser with a fixed learning rate

of 0.0001 and default PyTorch hyperparameters. As recommended in Huang et al. (2018), testing and inference are performed195

on entire unaugmented scenes. Experiments were performed on two Nvidia TeslaV100 SXM2 32GB GPUs using PyTorch

version 1.8 and cuda 11.6.

Models are optimised with the CE and EMD2 for the IceDisc models, and for the IntDisc models two alternative loss func-

tions are included; MSE and BCE. Pixels containing masked pixels are discounted in both the loss calculation by multiplying

relevant pixel loss values with 0 and during metric computation. In the case of CE, the ignore_index argument is used instead,200

having the same effect. In addition, we scale the loss of each patch in the batch by the ratio of valid pixels to masked pixels,

giving larger weight to patches with more valid pixels. More details are available, including a definition of the EMD2 loss

function in Kucik and Stokholm (2023)
:
In

:::::::::::::::::::::::
Kucik and Stokholm (2023)

:
,
:
a
:::::::
detailed

:::::::
analysis

::
of

::::::
various

::::
loss

::::::::
functions

:::
for

:::
the

:::
sea

::
ice

::::::::::::
concentration

:::::::::::
classification

:::
was

:::::::
carried

:::
out.

::
In

::::
this

:::::
paper,

:::
we

:::::::
perform

::::::
further

::::::::::
experiments

:::
to

::::::
explore

::::::
further

:::
the

::::::::
potential

::
of

:::
the

:::
loss

:::::::::
functions:

:::
CE,

:::::
BCE,

:::::
MSE,

::::
and

::::::
EMD2

::::::::
discussed

::::::
therein.205

At the end of every epoch, models are tested and model parameters are stored. The epoch model parameters, which score

the highest on the test set according to the chosen metrics described in subsections 3.1 and 3.2 are selected as the final model

for that training cycle. To minimize the impact of random model initialisation conditions, we carry out all model experiments

3 times for each class configuration and every loss function. The best model for each class configuration and loss function is

then further selected as a fair representation of a model trained with this approach could accomplish. This is also applied to the210

trained reference models. In total, 78 models are trained. We choose to show only the best-performing models for simplicity.

Furthermore, the combination of the best-performing IceDisc and IntDisc models, and the regularly trained reference models

give rise to 60 final model results.

3.1 Training IceDisc

We investigate how an IceDisc model can best discriminate between open-water, intermediate SICs and 100% sea ice by215

reducing the total number of classes by merging the intermediate ones. An overview of the class combinations is available in

Tab. 1. In total, we attempt training models capable of predicting 6 different combinations of classes from 2 to 7 classes in

addition to the regular 11 class models. In the first attempt, all sea ice classes are bundled together to create 2 classes - water

(0) and ice (1). Afterwards, all intermediate classes are combined to create 3 classes - water (0), intermediate (1) and 100%

(2). The number of classes is then gradually increased by 1 to dilute the number of intermediate SICs in a single class. For the220
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two-class configurations (6 and 7 classes) that are less intuitive; the models trained with 6 classes separate "little" sea ice (class

1) and a lot of sea ice (class 4 or 90%) more distinctively than the middle classes. A standalone class of 90% for the 6 and 7

class configurations were chosen because it is somewhat overrepresented compared to the other intermediate classes but less

than 100%. IceDisc models are trained with classification objectives, i.e. CE and EMD2.

To evaluate the IceDisc models, we define a new metric that we denote
::::::::::
SIC-specific

::::::
metric, "MacroBins", which is an altered225

version of the Mean Producer Accuracy or the Average Class Accuracy. The objective of this metric is to measure how well

the model is capable
:::::
metric

::::::::
measures

:::
the

:::::::
models’

::::::::
capability

:
of separating open water, intermediate classes and 100% sea ice.

We define this metric as:

MacroBins =
1

3

(
water TP

water NP
+

int TP

int NP
+

100 TP

100 NP

)
(1)

where TP is the number of True Positives, NP is the Number of Pixels belonging to the class and int are intermediate class230

pixels. In essence, this
::::::::::
Effectively,

:
it
:
is the average accuracy of water, 100% sea ice and whether true intermediate class pixels

are predicted as any intermediate class. We will onwards refer to the latter as int in int%. As it is an average accuracy, the

metric can illustrate the model’s ability to separate the three macro classes in percentage. The MacroBins metric will be the

main evaluation metric for the IceDisc models. In the case of binary 2-class models, MacroBins are replaced by the overall

accuracy of the model.235

3.2 Training IntDisc

IntDisc models are separated into two distinct discriminators — the ordinary IntDisc, which discriminates between interme-

diate classes (10-90%), and the Int100Disc, which differentiates between all sea ice classes (10-100%). The latter is designed

to be applied with the IceDisc 2-class model. Training the IntDisc models is straightforward. We mask any pixel belonging

to either the open-water or 100% sea ice classes enabling training on purely intermediate sea ice classes. Due to the strong240

interclass relationships, the IntDisc models are primarily evaluated on the R2-score. The R2-metric is also known as the Coef-

Table 1. Class (cls) combinations for the Ice Discriminator

("IceDisc"). The original 11 Sea Ice Concentrations are compressed

to between 2-7 classes. Classes represent the percentage ranges ex-

pressed in the columns for each class configuration.

IceDisc cls 0 cls 1 cls 2 cls 3 cls 4 cls 5 cls 6

2 cls 0% 10-100%

3 cls 0% 10-90% 100%

4 cls 0% 10-40% 50-90% 100%

5 cls 0% 10-30% 40-60% 70-90% 100%

6 cls 0% 10-20% 30-50% 60-80% 90% 100%

7 cls 0% 10-20% 30-40% 50-60% 70-80% 90% 100%

Table 2. Overview of the Flexible Accuracy metric and which SICs

are evaluated as correct.

SIC 0% 10% 20% 30% 40%

Correct 0% 10-20% 10-30% 20-40% 30-50%

SIC 50% 60% 70% 80% 90% 100%

Correct 40-60% 50-70% 60-80% 70-90% 80-90% 100%

9



ficient of Determination. It is often better in capturing the continuity of the distance between predictions and the ground truth.

Accuracy and the Average Class Accuracy (ACA) are also reported. IntDisc models are trained with 4 different loss functions,

2 classification and 2 regression-oriented approaches, CE and EMD2, and MSE and BCE, respectively. The Int100Disc is

trained by masking pixels belonging to the open water class enabling discrimination on only ice classes.245

3.3 Multistage Inference

Inference for the model combinations is performed by first producing the output maps for the IceDisc model on an entire

test scene. If the class configuration contains more than 3 classes, all intermediate classes are compressed into a single class.

Afterwards, the IntDisc performs inference on the same scene but utilises only the pixels determined by the IceDisc model

to contain intermediate classes. Hereby, the two model outputs are combined into a single image. In the case of the IceDisc250

models with only 2 classes, the Int100Disc models produce outputs based on all the ice predictions.

3.4 Final evaluation

The multistage inferences are evaluated primarily on the R2-score. However, a number of sub-metrics are also utilised, which

show specific performance in key areas, such as the R2-score measured on just the intermediate pixels (Int R2). Furthermore,

we define another metric that we denote "Flexible Accuracy" purposed to measure accuracy while accounting for some uncer-255

tainty in the ice charts. As highlighted in Tab. 2, intermediate pixels are evaluated as being correct if the model has produced a

pixel belonging to a neighbouring class, e.g. if the correct SIC is 30%, 20 and 40% will also be deemed as correct. However,

0% and 100% SIC classes are evaluated as usual accuracy while 10% and 90% have extended ranges to 20% and 80%, respec-

tively. Furthermore, the intermediate flexible-class accuracy is added showcasing flexible-class accuracy exempting accuracies

for 0% and 100%.260

To further analyse the performance of the multistage inference, we compare them with regularly trained models identical to

Kucik and Stokholm (2023). These models are identical to the 11 class models used as IceDisc but the model parameters are

instead selected based on the R2-score. We choose to compare with the CE and EMD2 loss functions in both an unweighted

and weighted setting where the latter are trained using the frequency of classes as weights in the loss function, which is further

elaborated in Kucik and Stokholm (2023).265

4 Results

Initially, IceDisc models are investigated followed by the IntDisc models and evaluated quantitatively. Afterwards, the multi-

stage inference combinations are examined quantitatively by applying the metrics characterised in subsection 3.4. Finally, a

subset of multistage inference maps is highlighted and analysed qualitatively.
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4.1 IceDisc results270

The highest achieving IceDisc models for both the CE and EMD2 losses are shown in Tab. 3 showcasing the MacroBins

metric performance, as defined in subsection 3.1, and the open water and fully covered sea ice accuracy performance as well as

the number of produced intermediate pixels belonging to intermediate classes. A row for each loss function with the average

metrics is also included to provide a simple overview. In addition, two 11-class IceDisc models for each loss function are

presented as references,
::::::
similar

::
to

:::::
those

::::::
trained

::
in

:::::::::::::::::::::::
Kucik and Stokholm (2023). One is used as an IceDisc model and selected275

based on MacroBins while the reference 11-class models are chosen with respect to the R2-score. The highest performances

of the IceDisc models are highlighted in bold and underlining represent the best performance across the IceDisc loss functions.

Highest scores

Generally, we see that both CE and EMD2 across all class combinations are quite capable of separating the three macro classes.

Furthermore, both CE and EMD2 optimised models score highest with 7 classes in terms of the MacroBins score, though the280

3 class EMD2 scored the second highest. In comparison, the 11-class IceDisc for both loss functions achieves the highest

open-water accuracy.

2-class IceDisc

Inspecting the 2-class models, the performance for 0% is on par with most of the IceDisc models with additional classes but

lower than the reference
:::::::::
unweighted

:
11-class models. Otherwise, both 2-class models achieve high accuracies on the ice class.285

CE IceDisc

For the CE IceDisc models, the 7-class model outperforms the models
:::::
exceed

:::::
those

:
trained on fewer classes, particularly in

terms of int in int and 100% sea ice while performing the worst at open water. Overall, the performances in the 0% category

are very similar across the CE IceDisc models while there are fluctuations in the int in int and 100% categories. We also see

that IceDisc models with 3-7 classes score much
:::::
4-7% better in terms of int in int compared to the 11-class IceDisc, which290

scores highest in 0% and 100% SIC.

EMD2 IceDisc

With respect to the EMD2 IceDisc models, we see fluctuating performances with the highest macro classes distributed between

different IceDiscs
::::
open

:::::
water,

:::
int

::
in

:::
int

:::
and

:::::
100%

:::::::::
accuracies

:::::::::
distributed

::::::
among

:::::::
models

::::
with

:::::::
different

:::::::
numbers

:::
of

::::::
classes. The

6-class model achieves the highest 100% accuracy but at the expense of the lowest
::
int

:::
int

::
int

:::
and

:
0% and int int int scores295

across all the CE and EMD2 IceDisc models. The 3-class model on the other hand achieves the highest int in int-score. Again,

the 11-class IceDisc model scores well on open-water but on par with respect to both int in int and 100% SIC.

CE vs EMD2 IceDisc

The CE IceDisc models appear to generally score higher in terms of the int in int metric but lower in 0% and 100% compared

with the EMD2 IceDisc models as illustrated by the average metric scores.300

IceDisc comparison to 11-class reference models

In comparison with the reference 11-class models, the unweighted optimised model scores high on both 0% SIC but underper-

forms in terms of int in int. The EMD2 reference also scores high on 100%. In contrast, the 7-class CE model approaches the

11



class weighted reference model on
::::::
exceeds

::::
both

::::::::
11-class

:::
CE

::::::
models

::
by

:::::
6-8%

:::
on

:::
the int in int

::::::::
accuracy. The weighted models

on the other hand scores abysmally on open water and fully covered sea ice.305

Table 3. MacroBins results for the Ice Discriminators ("IceDisc") and the reference models. The best results for each bin are highlighted in

bold separately for both loss functions, and the highest scores are underlined. In addition, mean metric scores are provided for the 3-11 class

combinations. *Average of the 0%, int in int% and 100% performances; int in int% is a measure of the percentage of true intermediate pixels

predicted as such. **Class weighted loss optimised model.

CE Accuracy 0% - ice

2 cls 96.58% 95.60% - 97.42%

MacroBins* 0% int in int% 100%

3 cls 90.55% 95.01% 83.91% 92.73%

4 cls 90.57% 95.25% 85.80% 90.65%

5 cls 90.46% 95.90% 85.39% 90.08%

6 cls 90.44% 95.35% 83.05% 92.93%

7 cls 90.87% 93.23% 86.16% 93.22%

11 cls 90.14% 96.81% 79.48% 94.15%

mean 90.505% 95.26% 83.96% 92.29%

Reference: CE

11 cls 88.40% 97.76% 78.28% 89.15%

w** 11 cls 80.63% 81.58% 97.18% 63.11%

EMD2 Accuracy 0% - ice

2 cls 96.60% 96.34% - 96.83%

MacroBins* 0% int in int% 100%

3 cls 90.89% 95.29% 85.43% 91.96%

4 cls 90.72% 95.88% 82.36% 93.90%

5 cls 90.42% 95.76% 84.53% 90.98%

6 cls 89.46% 93.46% 80.36% 94.55%

7 cls 90.90% 94.72% 84.75% 93.23%

11 cls 90.60% 97.27% 81.76% 92.75%

mean 90.497% 95.40% 83.20% 92.89%

Reference: EMD2

11 cls 89.43% 97.86% 76.11% 94.33%

w** 11 cls 82.99% 76.40% 92.24% 80.33%

4.2 IntDisc results

The results for the IntDisc and Int100Disc models are presented in Tab. 4 highlighting performance on the R2-metric, accuracy

and the Average Class Accuracy (ACA). Again, the highest scores are highlighted in bold. For the IntDisc models, we see that

R2-scores are highest for MSE and BCE, whereas accuracy is highest for CE and EMD2, though poor in comparison with the

IceDisc ability to separate the macro classes. These results are in line with those presented in Kucik and Stokholm (2023) with310

respect to models trained with regression and classification loss functions.

For the Int100Disc models, the pattern is similar to the IntDisc models, where MSE and BCE achieve the highest R2-scores

but are inferior in terms of accuracy compared to CE and EMD2. The
::::::::
However,

:::
the

::::::::::
performance

:
difference between the loss

functions within regression and classification is , however, performing very similarly
:::::::::::
classification

::::
loss

::::::::
functions

:::::
across

:::
the

::
3

::::::
metrics

::
is

:::::
small

:::
and

::::::
similar

:::
for

:::
the

:::::
MSE

:::
and

:::::::::::::
BCE-optimised

::::::
models. The accuracy is a lot higher compared with the IntDisc315

models though expected since the much easier-to-predict 100% macro class is included.
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Table 4. R2, accuracy and **Average Class Accuracy (ACA) scores for the Intermediate Discriminators ("IntDisc") and Intermediate + 100%

Discriminators ("Int100Disc"). The highest performance is marked in bold for the IntDisc and Int100Disc models separately. *Intermediate

Sea Ice Concentration, **Average Class Accuracy.

Only Int* R2 Accuracy ACA**

CE 55.90% 35.64% 30.70%

EMD2 59.55% 36.23% 33.96%

MSE 67.31% 28.76% 24.43%

BCE 66.52% 29.19% 26.47%

Int* + 100% R2 Accuracy ACA*

CE 74.10% 54.17% 31.91%

EMD2 75.02% 55.54% 31.57%

MSE 80.77% 49.66% 27.09%

BCE 80.25% 49.40% 30.29%

4.3 Quantitative multistage inference results

The combined model inference results are displayed in Tab. 5 showcasing performance measured on the R2-score, the in-

termediate class R2-score, multi-class
::::::::::
flexible-class

:
accuracy, intermediate multiclass

:::::::::::
flexible-class

:
accuracy as well as the

MacroBins performance, which is repeated from Tab. 3 for convenience. Notice that the MacroBins are identical for each sub-320

table of IceDisc and IntDisc combinations. To provide an overview, the mean scores have been added for the IceDisc/IntDisc

combinations while omitting the mean MacroBins as these would be identical — note that these means do not include the

2-class information. Bold numbers represent the highest performance within IceDisc and IntDisc combinations, while under-

lined scores highlight the best metric performance across the IceDisc types. Red boxes indicate the models that are used in the

qualitative analysis.325

Highest scores

The highest R2 and int R2 scores are achieved by the EMD2 6-class
::::::
3-class

:
IceDisc and MSE IntDisc combination with

93.01%. In the same inference combination the 6-class version scores best on the multi-accuracy metricwhile the topmost

int multi-accuracy score
:::::::::::
flexible-class

:::::::
accuracy

::::::
metric.

::::
The

:::::::
topmost

:::
int

:::::::::::
flexible-class

::::::::
accuracy is obtained by the CE 7-class

IceDisc and MSE IntDisc combination.330

CE IceDisc

For the CE IceDisc-based models, we see a clear tendency for top-scoring metric performances for models trained with more

classes. On the R2-metric, the 6-class CE IceDisc-based models achieve the highest scores across all the IntDisc versions. The

lowest mean scores are achieved by the CE IceDisc/IntDisc combinations while the best scores are achieved by regression-

based MSE IntDiscs, though closely followed by the BCE IntDisc combinations.335
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Table 5. R2, Intermediate (Int) R2, Flexible Accuracy (FAcc), Int FAcc and MacroBins, and the average combination results for the multi-

stage inferences. The highest scores are in bold for each combination. The best metric performance across combinations is underlined.

IceDisc: CE

classes R2 Int R2 FAcc Int FAcc MacroBins

IntDisc: CE

2 89.43% 43.17% 81.43% 52.40% 79.01%

3 90.15% 44.30% 81.99% 53.69% 90.55%

4 90.46% 47.17% 82.13% 55.41% 90.57%

5 90.08% 46.10% 82.34% 55.54% 90.46%

6 90.82% 45.48% 82.10% 53.37% 90.44%

7 90.16% 46.55% 81.97% 55.92% 90.87%

11 89.53% 35.97% 82.35% 51.01% 90.14%

mean 90.20% 44.26% 82.15% 54.16%

IntDisc: EMD2

2 90.09% 43.05% 82.95% 54.86% 84.24%

3 90.69% 48.05% 82.92% 56.75% 90.55%

4 91.03% 50.85% 83.01% 58.32% 90.57%

5 90.47% 49.51% 83.19% 58.37% 90.46%

6 91.32% 49.16% 82.97% 56.27% 90.44%

7 90.95% 50.35% 82.94% 59.14% 90.87%

11 90.20% 39.99% 83.27% 54.05% 90.14%

mean 90.77% 47.99% 83.05% 57.15%

IntDisc: MSE

2 91.19% 55.44% 80.88% 57.12% 80.29%

3 91.40% 55.15% 83.29% 57.98% 90.55%

4 91.72% 57.81% 83.32% 59.35% 90.57%

5 91.13% 56.21% 83.44% 59.21% 90.46%

6 91.91% 55.82% 83.26% 57.22% 90.44%

7 91.49% 57.01% 83.23% 60.11% 90.87%

11 90.87% 46.12% 83.68% 55.42% 90.14%

mean 91.42% 54.69% 83.371% 58.21%

IntDisc: BCE

2 91.57% 56.73% 79.93% 59.21% 77.52%

3 91.16% 54.43% 83.18% 57.62% 90.55%

4 91.57% 57.04% 83.27% 59.16% 90.57%

5 90.93% 55.63% 83.41% 59.10% 90.46%

6 91.74% 55.09% 83.21% 57.04% 90.44%

7 91.37% 56.30% 83.14% 59.83% 90.87%

11 90.66% 45.38% 83.61% 55.20% 90.14%

mean 91.24% 53.98% 83.30% 57.99%

Reference CE models

11 90.79% 37.39% 81.96% 52.19% 88.40%

11 w 87.63% 52.42% 71.42% 62.40% 80.63%

IceDisc: EMD2

classes R2 Int R2 FAcc Int FAcc MacroBins

IntDisc: CE

2 90.28% 43.13% 81.55% 51.66% 78.68%

3 91.75% 47.56% 82.35% 53.49% 90.89%

4 90.81% 40.79% 82.48% 50.64% 90.72%

5 91.32% 46.80% 82.18% 54.52% 90.42%

6 90.75% 46.49% 80.88% 50.93% 89.46%

7 90.85% 46.94% 82.29% 54.71% 90.90%

11 92.04% 46.51% 82.62% 52.29% 90.60%

mean 91.25% 45.85% 82.13% 52.76%

IntDisc: EMD2

2 91.11% 44.26% 83.10% 54.15% 83.91%

3 92.26% 51.27% 83.27% 58.09% 90.89%

4 91.35% 44.24% 83.35% 55.92% 90.72%

5 91.85% 50.59% 83.04% 57.39% 90.42%

6 91.40% 50.64% 81.83% 54.10% 89.46%

7 91.38% 50.46% 83.17% 57.65% 90.90%

11 92.24% 49.74% 83.43% 54.99% 90.60%

mean 91.75% 49.49% 83.02% 56.36%

IntDisc: MSE

2 91.99% 55.57% 81.07% 56.60% 80.06%

3 93.01% 58.49% 83.57% 59.09% 90.89%

4 92.07% 51.22% 83.66% 56.95% 90.72%

5 92.46% 57.18% 83.28% 58.18% 90.42%

6 92.02% 57.37% 82.35% 55.80% 89.46%

7 92.12% 57.64% 83.55% 58.89% 90.90%

11 92.98% 56.53% 83.84% 56.31% 90.60%

mean 92.44% 56.40% 83.374% 57.54%

IntDisc: BCE

2 91.96% 56.84% 80.20% 58.80% 77.33%

3 92.72% 57.43% 83.40% 58.51% 90.89%

4 91.86% 50.48% 83.56% 56.64% 90.72%

5 92.30% 56.29% 83.25% 58.06% 90.42%

6 91.74% 56.58% 82.20% 55.30% 89.46%

7 91.87% 56.68% 83.45% 58.56% 90.90%

11 92.90% 55.87% 83.80% 56.20% 90.60%

mean 92.23% 55.56% 83.27% 57.21%

Reference EMD2 models

11 91.87% 42.06% 81.56% 46.64% 89.43%

11 w 89.31% 51.84% 72.34% 59.86% 82.99%14



EMD2 IceDisc

Similarly to the CE IceDisc combinations, we see the CE IntDisc scoring lowest on the mean scores and the MSE IntDisc

multistage inferences scoring the best closely followed by the BCE multistages. It is also noticeable that the highest individual

scores are wider distributed among the IceDisc/IntDisc combinations.

2-class IceDisc340

Comparing the 2-class IceDisc/IntDisc multistages to the equivalent means of the multistages with additional classes, it is

apparent that they score worse and with a MacroBins score lower than the reference weighted models, which is also lower than

the other models.

CE vs EMD2 IceDiscs

Generally, it seems that ice discrimination with EMD2 performs better than CE equivalent models in terms of both the ordinary345

R2 and the intermediate version. However, in terms of both the multi-accuracy
:::::::::::
flexible-class

:::::::
accuracy

:
and the intermediate

version, the CE multistage inferences take slight precedence in terms of the average scores. Furthermore, in contrast to the

CE IceDisc model combinations, the equivalent EMD2 models have the highest performances somewhat more spread out in

between IceDisc/IntDisc model combinations, whereas the CE IceDisc versions are exactly the same across the board.

Comparison to reference models350

Inspecting the 11-class reference CE and EMD2 models, we see substantially lower intermediate R2-scores, and both multi-accuracy

:::::::::::
flexible-class

:::::::
accuracy

:
scores compared to the multistage inferences, except for the 11-class CE IceDisc combinations. Both

IceDisc combinations with the regression-based IntDisc models have scores that exceed
:::::::
exceeds the reference weighted opti-

mised models in terms of the intermediate R2-score, though the intermediate multi-class
:::::::::::
flexible-class accuracy is best for the

weighted reference model, though several multistages approach this score.355

General remarks

Overall, we see the largest differences in performances across different IceDisc and IntDisc model combinations rather than

the changing number of classes the IceDisc model is trained on. Despite varying numbers, it is clear that the IceDisc model

shapes what the combined model excels at, e.g. top performances are almost found for the same ice disc models across the int

disc models.360

4.4 Qualitative multistage inference analysis

For the qualitative assessment, 4 scenes are selected from the test scene subset and are illustrated in Fig. 2-5. Each subfigure

includes the HH and HV SAR images, the professionally labelled SIC chart (ground truth), and the associated multistage

and reference model outputs highlighted in Tab. 5 with red boxes. For simplicity, we show only three different multistage

inferences for each IceDisc loss function but with alternating and no overlap between the number of classes. In addition,365

multistage inferences are selected based on high performance. The number of classes for the IceDisc models is repeated for

convenience in addition to the R2-scores for the scene. Scenes in Fig. 3-5 were selected to showcase examples where models

had relatively diverging outputs measured by the standard variation in R2-scores across all multistage inferences.
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Figure 2. Fram Strait, Northeast Greenland. Scene acquired
::
on September 3, 2018. The top row shows the test scene with the SAR HH and

HV images and the corresponding ice charts. Second row: IceDisc Ensemble and reference models using the CrossEntropy
:::
CE loss function,

and the third row with the Earth Mover’s Distance squared
::::::
EMD2 loss function. Columns 1-3 have different loss function optimised IntDisc

models. Column 4 shows the reference model outputs. All model outputs are shown with the number of classes used to train the IceDisc

model and the associated R2-score.

The scene in Fig. 2 was previously presented in Fig. 1. All 8 models produce outputs resembling the ground truth with

clear 0% and 100% ice boundaries. While the 3-class EMD2 with the MSE IntDisc attains the highest R2-scene-score, all370

the multistage combinations score similarly with less than 1% performance difference from best to worst. In addition, the

multistage inferences also all score better than the reference models by 1-5%. Furthermore, there is a clear discrepancy between

the classification and regression-based IntDisc models with frequent transitions among intermediate classes not visible in the

human-labelled ice chart. In addition, the EMD2 IceDisc and BCE IntDisc combination appear with less sharp open water and

ice boundaries compared to the remaining models.375
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Figure 3. Scoresbysund, East Greenland. Scene acquired
:
on

:
March 15, 2018.

The scene in Fig. 3 was acquired in March 2018 from the Scoresbysund fjord in Eastern Greenland. Sea ice is present along

the coast with a high concentration close to the coast and lower concentrations towards the ice edge. There are multiple areas

with fast ice, both in the main fjord — Scoresbysund — but also to the North of it, as indicated by the dark SAR signatures

with some ice breakup textures. All the models capture the large accumulation of ice along the coast accurately as well as the

lower concentrations near the edge. The best-performing multistage inferences are the EMD2 IceDisc with the MSE or BCE380

IntDisc combination (0.04% discrepancy). However, both reference models outperform the multistage inferences due to their

superior performance (up to 16% better) in the Scoresbysund fjord with fast ice. The additional fast ice in the small fjords is,

however, predicted correctly by all models.

In Fig. 4 we present a summer scene during June 2018 from the South of Scoresbysund in the Greenland Strait between

Greenland and Iceland. Here, turbulent waters mix ice and water forming swirling textures. The scene generally has low SICs385

but interesting SAR signatures with a near-range field in the left portion of the image and with some wind in the mid and lower
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Figure 4. Greenland Strait, between Greenland and Iceland. Scene acquired
::
on June 7, 2018.

part. Overall, the models produce outputs that resemble the human-labelled chart well with sharp edges between the ice areas

and open water. The best performance is again achieved by the EMD2 IceDisc and MSE IntDisc combination, although the

performances between the multistage inferences are very close (up to 1.7% discrepancy). On the other hand, both reference

models score significantly lower (11-18%) due to the assignment of higher SIC compared to the human-labelled ice chart in390

the interior of the ice pack. It is also more noticeable that there is a large overlap between the multistage inferences utilising

the same IntDisc as in this scene the majority of the pixels contain intermediate SICs.

Fig. 5 illustrates another summer scene from June 2018 but from Baffin Bay in Northwest Greenland, South of Qaanaaq.

The scene contains a large area with an abundance of mostly small broken floes pushed together with a couple of larger floes

scattered about. The scene consists of a number of low to intermediate ice concentrations and a large area of 90% ice. The395

models illustrate good overlap with the human-labelled ice chart in terms of the intermediate SICs and open-water areas. Again,

the best performance is obtained by the EMD2 IceDisc and MSE IntDisc combination. In addition, the multistage inferences
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Figure 5. Baffin Bay, Northwest Greenland. Scene acquired
:
on

:
June 27, 2018.

again do better than reference models (6-17%), which provide outputs that are much less nuanced. Interestingly, all the trained

models are in disagreement with the human-labelled ice chart with respect to the concentration of the most densely packed ice

area. The models label it as 100% whereas the ice chart was assigned 90% but covers a much larger area. It could be argued400

that this is a case where the SIC depends on how wide or large the polygon is drawn as there is definitely an area that does not

contain much water in between the smaller floes.

5 Discussion

From Tab. 3 we see that IceDisc models with fewer classes (3-7) are slightly better with a maximum improvement of 0.73% for

CE Icediscs and 0.3% for EMD2 IceDisc in separating the macro class categories compared to regularly trained 11 class models405

selected based on the MacroBins metric. However, the superior separability usually stems from an increase in scoring for the
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intermediate pixels and is associated with a decline in open water and 100% SIC performance. It is somewhat surprising

that separating pixels into fewer categories does not lead to greater separability improvements, as logically, it should be an

easier task to predict fewer classes.
::::::
EMD2

:::
has

:::::
some

::::::
degree

::
of

::::::::
inter-class

::::::::::::
understanding

::
as

::
it

::::::::
calculates

:::
the

:::::::::
difference

:::::::
between

::
the

::::::::
assigned

:::::::::
individual

::::
class

:::::::::
probability

::::::::::
distribution

::::
and

:::
the

::::::::
reference

::::::::::
distribution.

::::::::
However,

::
It

::
is

::::::
evident

::::
that

:::
this

:::::::::
additional410

::::::::
inter-class

::::::::::
relationship

:::::::::
capability

::
of

:::
the

::::::
EMD2

::::
over

::::
the

:::
CE

:::
loss

::::::::
function

::::
does

:::
not

:::::
have

:
a
:::::::::
significant

::::::
impact

:::
on

:::
the

:::::::
model’s

:::::
ability

::
to

:::::::
separate

:::
the

::::::
macro

::::::
classes.

:

For the IntDisc models we see a clear difference in the R2-score listed in Tab. 4 between the classification and regression

optimised models with a clear preference for the latter.
:::::
Given

:::
the

::::::
strong

::::::::
inter-class

:::::::::::
relationships

::
of

:::
the

:::::::::::
intermediate

::::::
classes,

::
it

:
is
::::::
natural

::::
that

::::::::::::::
regression-based

::::
loss

:::::::
functions

:::::
excel

::
at

::::::::::::
reconstructing

:::::
these

::::::
classes,

:::
as

::::
MSE

::::
and

::::
BCE

::::::
model

::
the

::::
loss

:::::
based

:::
on415

:
a
::::::::::
geometrical

:::::::
distance

:::
and

::
a
::::::
general

:::
ice

::::::::::
probability,

::::::::::
respectively.

::::
The

:::
CE

::::
and

::::::
EMD2

:::
loss

::::::::
functions

:::
on

:::
the

:::::
other

::::
hand

::::
have

::
a

:::::
lower

::::::::
capability

::
of

:::::::::
modelling

:::
the

::::::::
inter-class

:::::::::::
relationships

::::
with

:::
the

:::
CE

::::::::
assigning

:::::::::
individual

::::
class

:::::::::::
probabilities.

:::::
Here,

::::::::
however,

::
the

:::::::::
additional

:::::::::
inter-class

:::::::::
capability

::
of

:::
the

::::::
EMD2

::::
loss

:::::
does

::::::
appear

::
to

::::
have

::
a
:::::::
superior

::::::::
influence

::::
over

:::
the

::::
CE

::::
loss.

:::::
With

:::
the

:::::
degree

::
of

:::::::::
inter-class

:::::::::::
relationships

::::::
ranging

:::::
from

::::
none

::
to

:::::
most,

::::
CE,

::::::
EMD2,

:::::
BCE

:::
and

:::::
MSE,

:::
are

::
in

:::
the

:::::
same

::::
order

::
of

:::
the

:::::::
IntDisc

::
R2

::::::::::::
performance. In effect, these numbers present the best-case performance for the intermediate pixels, as once it is combined420

with the IceDisc model some true intermediate pixels will be misclassified as either open water or 100% SIC since the int in

int score ranges from 79-86% leaving 14-21% less intermediate pixels to be correctly classified. Therefore, improving macro

class separation will directly benefit the overall intermediate class predictions, and it could therefore be argued that further

developments in this direction should take precedence.

The multistage inferences generally score better than the reference models in Tab. 5 except in relation to 0% and 100% SIC425

as noted earlier and in the case of the mean R2, where the CE/EMD2 IceDisc and CE/EMD2 IntDisc combinations score

poorer or on par with the reference models. Comparing the CE and EMD2 IceDisc combinations, the multistage inferences’

achievements on the intermediate R2-score see an average improvement of 6.87%-20.42% and 3.79%-16.43%, respectively,

for the multi accuracy the range is 0.19%-1.41% and 0.57%-1.81%, respectively, and similarly, the intermediate multi accu-

racy performance difference is 1.97%-6.02% and 6.12-10.9%, respectively. Thus in these terms, there are clear advantages to430

utilising the multistage inference combinations from an overall numerical perspective. In fact, some of the inference combina-

tions are achieving intermediate SIC performances with respect to the intermediate R2-score and the intermediate multi-class

accuracy that resembles and in some cases exceeds the class-weighted optimised model scores. The class-weighted optimised

models are trained with a large emphasis on the intermediate classes, and allowing for a similarly strong performance on the

intermediate classes while retaining high MacroBins scores is promising.435

With respect to the 2-class IceDisc and Int100Disc inference combination, we see that this approach does not lead to im-

provements compared to the other trained models, and thus we cannot advise utilising this strategy as presented here. This is

due to the low separability measured in MacroBins stemming from the low performance in classifying 100% SIC correctly.

Classifying open water and ice can be problematic as the ice polygons utilised as the reference contain both water and ice, and

thus the degree of separation between the binary classes is deficient for a problem defined in this setting.440
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Qualitatively inspecting Figs. 2-5, the multistage inferences perform well and outperform the reference models in 3 out of

4 scenes. The scene where the reference models take precedence is Fig. 3, in which a large area in the Scoresbysund fjord is

covered by fast ice. The fast ice is misclassified by the IceDisc models but correctly classified in the reference models. These

areas are inherently difficult to classify as they represent an evident ambiguity between open water and sea ice. In practice, sea

ice analysts will usually identify these areas of fast ice by using their experience and knowledge of the area, looking at time445

series of image acquisitions or validate their assumptions through other sensors or communicating with people who can verify

the situation in situ. Therefore, it can arguably be optimistic to expect models trained solely on SAR data to reliably correctly

identify such fast ice areas. Nevertheless, 100% SIC pixels in areas of fast ice may explain a significant portion of the 100%

accuracy discrepancy between the multistage inferences and reference models.

Another discrepancy between the multistage inferences and both the reference outputs and the human-labelled ice charts450

is the degree of the transition between classes in the best-performing models, which are using regression-optimised IntDisc

models. These high frequencies of transition are not present in the original ice chart, so despite greater numerical similarity,

visually, it can be less comparable. Though some may argue that this is an improvement in resolution as the human-labelled ice

charts are much coarser with large polygons. However, it is also a matter of usage of the large detail level from a navigational

perspective, as both the ice will move in between SAR image acquisition and the delivery time of the product. Therefore,455

the high level of detail may be less relevant as ice drift will have occurred. The second aspect is the linked to the ability of

providing a quick overview of the different areas in the sea ice, which may add unnecessary complexity. On the other hand, it

could be argued that the output maps from the reference models contain too little information e.g. Fig. 2 and 5.

From inspecting Fig. 5 it could
::
be beneficial to modify the multi-accuracy metric to extend the acceptable range between

90% and 100%. This scene is a classical
::::::
classic example of an area that is fully covered by sea ice but since the drawn polygon460

is much wider and covering
:::::
covers areas with some open water, the result is a lower SIC in the human labelled

:::::::::::::
human-labelled

ice chart. Experimenting with extending the range of which predictions are deemed correct, from 10% to 20%, as this is more

in line with the average uncertainty of 20%.

In Kucik and Stokholm (2023) the highest scoring R2 models were optimised using the MSE loss function with a reported

score of 93.12% and 92.64% for the BCE equivalent. The main downside of these models was the inadequate 0% and 100%465

performances
::::::::
accuracies

:
with scores of 83.6% and 80.41%, respectively. For ,

:::
for

:
the MSE and 90.3% and 83.76% for the

BCE optimised model. These low scores often occurred due to incorrect labelling
::::::::::
segmentation

:
of areas with high SAR noise,

bright near-range fields or wind-roughened open water areas. Multiple variants of the EMD2 IceDisc and MSE or BCE IntDisc

combinations score similar on the R2-score but have a significantly improved 0% and 100% scores making this method a

promising approach to both having a high separability and good intermediate SIC performance.470

However, despite the objective numerical metric improvements it is somewhat disheartening that the multistage inferences

are not able to break the 93% R2-score ceiling in the current setting. As described in 2.2, there is inherent uncertainty in

the SIC ice charts — in particular for the intermediate classes. Thus it may not be realistic to expect those models could

generate numerical results close to 100%. However, it is somewhat evident that there are still misclassifications that could

be resolved such as the mislabelling of dark microwave SAR signatures from fast ice that resemble still or calm open water.475
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Adding additional data types, such as passive microwave radiometers (PMR) should, in theory, be able to better deal with

these obstacles as the passive microwave radiation are less dependent on the surface roughness properties compared to SAR.

Arguably the largest obstacle in using PMR data is the much coarser resolution compared with the SAR data, which may

cause spillover effects where emissions from land areas enter pixels covering parts of the ocean near the shore. This is most

problematic for smaller fjords. Though, it could be possible to circumnavigate this obstacle by either including information480

regarding the distance to land or simply removing PMR pixels that are too close to the shoreline. Another avenue could involve

investigating super resolution

6 Conclusions

This study presents how different CNN models specialised in solving partial tasks in assigning Sea Ice Concentration (SIC)

using Sentinel-1 SAR images can be combined in model inferences while benefiting from advantages achieved through model485

optimisation using either classification or regression-based loss functions. To measure model performance, two new metrics

are defined; the MacroBins-score measures the average separation percentage of open-water, intermediate SIC, and 100% SIC;

and the flexible-class accuracy that measure accuracy while better incorporating the uncertainty associated with the SICs. Two

types of models are defined; the IceDisc models for the macro class category separation, and the IntDisc models to assign

specific intermediate classes. We investigate whether combining classes will improve the separation of the macro classes.490

IceDisc models are trained with 7 different class combinations with either the CrossEntropy (CE), or Earth Mover’s Distance

squared (EMD2) loss functions. IntDisc models are trained with either classification-oriented loss functions: CE, EMD2 or

regression-based: Mean Square Error (MSE), Binary CrossEntropy (BCE).

Overall, we see the IceDisc/IntDisc multistage inferences being capable of producing SIC maps that resemble those produced

by human ice analysts while scoring well on the selected metrics. We note that the best-performing model combinations are495

achieved by the EMD2 IceDisc and either MSE or BCE IntDisc inference combinations reaching an R2-score of ∼ 93%

similar to the best scoring models in a previous study by Kucik and Stokholm (2023). However, the multistage inferences

achieve significantly improved accuracy for open water areas and areas with 100% sea ice concentration. Compared to the

reference models optimised with CE or EMD2 selected to achieve high R2-scores, the multistage inferences outperform both

total R2 and multi-class accuracy scores and the intermediate class equivalents. Also, the multistage inferences are inferior in500

terms of the open water and 100% SIC accuracies, where the latter is negatively impacted in some cases by shortcomings in

correctly distinguishing areas of fully covered fast ice exhibiting dark microwave signatures resembling open water. However,

these obstacles could be solved by including other data sources such as passive microwave radiometry that is less dependent

on the ice surface roughness. Another outcome of this study is the appearance of reducing different numbers of classes from 3

to 7 does not seem to impact the separability of the macro SIC classes. Instead, the largest performance change came from the505

choice of loss function used in the IntDisc model optimisation.
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Thus the conclusion of the study is that combining multiple models specialised in the different tasks presented can lead to

the automatic production of SIC maps that have improved intermediate class performance while retaining good accuracy in

open water and 100% SIC areas compared to the ordinary reference models optimised with the CE or EMD2 loss functions.

7 Future Work510

Further improvements in the assignment of SIC could be achieved by adding more types of data, such as passive microwave

radiometer data, which could better help identify areas of fast ice. Additional data types such as environmental parameters,

geographical information or seasonality could also be beneficial. Another option could be to expand the AI4Arctic Sea Ice

Dataset with more data on particularly the intermediate SIC classes could be beneficial, which are currently the least abundant

classes in the current version (Stokholm et al., 2022). Increasing the distribution of seasonality and regionality could also be515

beneficial. In this connection, expanding the test dataset would also provide more scenarios in which we can validate the model

performance yielding greater confidence in the outputs. Finally, while the U-Net architecture is decent and simple, many new

types of CNN and computer vision architectures have been developed, such as ConvNeXt (Woo et al., 2023). These may be

interesting to investigate.

Code availability. CNN model architecture and loss function code is available at: https://github.com/astokholm/AI4SeaIce.git (Stokholm520

and Kucik)

Data availability. The original dataset is available at https://data.dtu.dk/articles/dataset/AI4Arctic_ASIP_Sea_Ice_Dataset_-_version_2/13011134/

3 (Saldo et al., 2021)
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