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Abstract. We evaluate the potential of using a previously developed remote calibration framework we name MOMA to 14 

improve the data quality in PM sensors deployed in hierarchical networks. MOMA assumes that a network of reference 15 

instruments can be used as ‘proxies’ to calibrate the sensors given that the probability distribution of the data at the proxy 16 

site is similar to that at a sensor site. We use the reference network to test the suitability of proxies selected based on distance 17 

versus proxies selected based on land use similarity. The performance of MOMA for PM sensors is tested with sensors 18 

collocated with reference instruments across three Southern California regions, representing a range of land uses, 19 

topography, and meteorology, and calibrated against a distant proxy reference. We compare two calibration approaches, one 20 

where calibration parameters get calculated and applied at monthly intervals and one which uses a drift detection framework 21 

for calibration. We demonstrate that MOMA improves the accuracy of the data when compared against the collocated 22 

reference data. The improvement was more visible for PM10 and when using the drift detection approach. We also highlight 23 

that sensor drift was associated with variations in particle composition rather than instrumental factors explaining the better 24 

performance of the drift detection approach if wind conditions and associated PM sources varied within a month. 25 

1 Introduction 26 

Particulate matter (PM) is a major air pollutant with adverse cardiovascular and respiratory health effects. Elevated PM 27 

concentrations are linked to natural (e.g., volcanoes, wild fires, dust storms, sea salt) and anthropogenic emissions (e.g., 28 

transport, industrial, agricultural and household fuel combustion) (Anderson et al., 2012). PM2.5 (particles <2.5 µm in 29 

aerodynamic diameter) and PM10 (particles <10 µm in aerodynamic diameter) are routinely measured by government and 30 

research organisations using reference-grade equipment that is either filter-based Federal Reference Method (FRM) or 31 

continuous Federal Equivalence Method (FEM). Reference monitoring networks are designed to measure regional air 32 

pollution to determine attainment of national ambient air quality standards but are often sparsely sited across a region due to 33 

high instrument and operational costs. The last decade has seen a rapid increase in the availability of PM sensors offering 34 
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opportunities to measure PM with much denser networks and making them popular choices for citizen projects and 35 

community monitoring (Giordano et al., 2021; Liang, 2021; Snyder et al., 2013). 36 

Most PM sensors are optical sensors that utilize the light scattered by particles to derive the particle size and number based 37 

on the Mie theory (Alfano et al., 2020; Liang, 2021). The relationship between scattered light, particle size and number, and 38 

the PM mass is dependent on the properties of the particles, which include size, shape, refractive index, and composition 39 

(Chen et al., 2019; Johnson et al., 2018). This poses a major challenge for calibrating PM sensors as calibration factors may 40 

change with particle type or properties changes over time.  More frequent field calibrations may be required if aerosol 41 

properties vary significantly over time (Liang, 2021; Johnson et al., 2018; Badura et al., 2018). Regular calibration and 42 

maintenance are therefore critical to ensure reliable data from PM sensor networks  (Giordano et al., 2021; Hofman et al., 43 

2022; Williams, 2019). Given the costs and feasibility related to individual site visits and calibrations by collocation, new 44 

approaches are required for large scale sensor networks to be viable. Recent studies (Liang, 2021; De Vito et al., 2020; Loh 45 

and Choi, 2019) have used Machine learning (ML) approaches to train calibration models with enough collocation data to 46 

cover various meteorological and environmental conditions and make them more robust for long-term sensor deployments. 47 

However, if conditions (e.g., different traffic conditions, different PM sources)  at the calibration site are different from the 48 

conditions at the site of interest the model may no longer be suitable (De Vito et al., 2020; Liang, 2021). In addition, while 49 

being more robust and effective, ML may still suffer from challenges related to sensor degradation when sensors are 50 

deployed in a long-term fashion (Liang, 2021). 51 

In previous publications, we demonstrated that a hierarchical network, consisting of well-maintained reference-grade 52 

instruments (referred to as ‘proxies’) and gas-phase (O3, NO2) sensors can be used to correct sensors remotely (Miskell et al., 53 

2018, 2019; Weissert et al., 2020). The correction framework is based on the assumption that the probability distribution at a 54 

proxy site, which can be selected based on proximity for O3 measurements or similar land use for NO2 measurements is 55 

similar to that of the sensor site (Miskell et al., 2018, 2019; Weissert et al., 2020). We have demonstrated that this approach 56 

is able to successfully correct for sensor drift without the need of collocation. 57 

In this paper, we examine how this remote calibration methodology named MOMA (from moment matching) performs for 58 

PM sensors deployed in Southern California, including the City of LA, the Inland Empire (IE), and a desert region of 59 

Riverside County (RC Desert). These three regions differ in terms of land use, terrain and meteorology offering an 60 

opportunity to test MOMA under different seasonal conditions and PM sources. We also test proxy selection strategies by 61 

examining the comparability of reference sites as a function of distance and land use. Two approaches were investigated, the 62 

first one calculated and applied the calibration at monthly intervals while the second approach used a drift detection 63 

approach (Miskell et al., 2018, 2019; Weissert et al., 2020) to apply the calibration when drift between a sensor and the 64 

proxy site was detected.  65 
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2 Materials and Methods 66 

2.1 Study area 67 

This study was performed in Southern California in a region that is under the jurisdiction of the South Coast Air Quality 68 

Management District (South Coast AQMD). South Coast AQMD manages a network of regulatory-grade PM2.5 and PM10 69 

monitors. Non-regulatory air quality sensors measuring PM were collocated at two air monitoring sites (AMS) in the City of 70 

LA, two AMS in the IE, and two AMS in the RC Desert. Each reference site is equipped with a reference-grade instrument 71 

and data was obtained either from AirNow (https://www.airnow.gov/) or directly from South Coast AQMD. Refer to Table 72 

S1 for instrumentation at each site.  73 

Elevated PM levels, mostly driven by vehicular emissions and freight activities, pose a serious health risk in Los Angeles 74 

(Ault et al., 2009; Habre et al., 2021; Kim and Kwan, 2021). While westerly winds dominate in Southern California 75 

meteorology for most of the year, north-easterly Santa Ana Winds (SAW) become more frequent during the fall and winter 76 

months. SAW are associated with very dry air and good visibility in the absence of wildfires as urban pollutants are blown 77 

offshore (Aguilera et al., 2020). However, they are also key drivers of large wildfires enabling them to spread faster and 78 

transporting smoke PM from inland areas to the more populated regions.  79 

2.2 Air Quality Sensors 80 

This study uses a network of AQY v1.0 (AQY) sensor systems from Aeroqual Ltd, Auckland, New Zealand. The AQY 81 

measures O3, NO2, PM2.5, PM10, Temperature, and Relative Humidity. Detailed description about the AQY sensor system is 82 

available in  Weissert et al. (2020) and Miskell et al. (2019). The focus of this paper is the PM sensor (model SDS011, Nova 83 

Fitness Co., Ltd, Jinan City/China) inside the AQY sensor system. The SDS011 is an optical light scattering device which 84 

outputs PM2.5 and PM10 mass concentration (µg m-3) measurements. Previous studies of this sensor have shown high PM2.5 85 

correlation with reference instruments (Badura et al., 2018; Liu et al., 2019) but PM10 values may be underestimated (Budde 86 

et al., 2018; Kuula et al., 2020). Nevertheless, we use both PM2.5 and PM10 measurements to evaluate the performance of our 87 

network calibration technique applied to PM data. The SDS011 sensor was factory calibrated against a Met One 9722 8 88 

channel optical particle counter (Met One Instruments, Inc., Grants Pass, Oregon, US) using 1 µm latex microspheres. The 89 

AQY performs a humidity correction on the PM2.5 and PM10 measurements from the SDS011 using an empirical humidity 90 

algorithm developed by Aeroqual Ltd.  91 

The AQY PM measurements were evaluated by South Coast AQMD’s Air Quality Sensor Performance Evaluation Centre 92 

(AQ-SPEC) (http://www.aqmd.gov/aq-spec/sensordetail/aeroqual-aqy-v1.0). 93 

2.3 Remote Network Calibration 94 
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The remote network calibration technique, called MOMA, was developed for hierarchical networks that consist of a network 95 

of well-calibrated reference grade instruments acting as “proxies” which are used to calibrate the sensors deployed in the 96 

field. The technique is described in detail in Miskell et al. (2016, 2018). We tested two approaches to calibrate the PM2.5 and 97 

PM10 sensors in this study over the period August 2020 to February 2022.  98 

The first approach was a monthly MOMA calibration using the last two weeks of each month to select a suitable seven-day 99 

calibration window to calculate the calibration parameters which were then applied to the following month. The last two 100 

weeks of the month were selected to ensure most recent data were used to determine calibration gains and offsets. A 101 

calibration window was considered suitable if the data completeness for both proxy and sensor was greater than 85%. In 102 

addition, we excluded periods with fog from the calibration (Budde et al., 2018). Fog can frequently be present between 103 

October and February in the regions, drive by lower inversion levels (Qin et al., 2012; Witiw and LaDochy, 2008) (Fig. S1). 104 

Periods when fog was detected were also removed from the analysis in this paper. The MOMA gain and offset were 105 

calculated as described in Miskell et al. (2016, 2018) and the new gains and offsets were uploaded to each AQY instrument. 106 

The second approach used a previously described drift detection framework (Miskell et al., 2016) to trigger a MOMA 107 

calibration. The drift detection framework uses three statistical tests to detect sensor drift, a Kolmogorov-Smirnov (K-S) test, 108 

the MOMA slope, �̂�𝟏  and the MOMA offset, �̂�𝟎 . The statistical tests are run over a three-day period and an alarm is 109 

triggered when any of the tests exceeds the predetermined threshold for a period of 5 days. The following thresholds were 110 

used to determine if a sensor drifted: 𝒑𝑲𝑺 = 0.05, �̂�𝟏 = 1 ± 0.25, �̂�𝟎 = 0 ± 5 µg m-3 These thresholds can be adjusted to 111 

explore test sensitivity to drift detection. This framework was run from August 2020 – January 2021 to compare with the 112 

output from the monthly calibrations.  113 

The statistical analysis was performed in R (v.4.1.3) using tidyverse (Wickham and RStudio, 2022), lubridate (Spinu et al., 114 

2022), zoo (Zeileis et al., 2022), ggrepel (Slowikowski et al., 2022), openair (Carslaw and Ropkins, 2022), RAQSAPI 115 

(Mccrowey et al., 2022), ggplot2 (Wickham et al., 2022b), dplyr (Wickham et al., 2022a), ggmap (Kahle and Wickham, 116 

2013) and ggpmisc (Aphalo et al., 2022). 117 

 118 

2.4 Proxy selection 119 

A key part of MOMA is the identification of a suitable proxy site for each sensor in the sensor network. In previous 120 

publications, we showed that the distance between the sensor and the reference proxy was a suitable selection criterion for 121 

O3 sensors (Miskell et al., 2019). However, land use similarity was a more suitable selection criterion for NO2 sensors due to 122 

the pollutant being more variable spatially and temporally depending on the dominant land use surrounding the site 123 

(Weissert et al., 2020). In the case of PM, its spatial and temporal variability is driven by multiple factors including local 124 

emissions of primary PM such as traffic, construction, and residential heating as well as regional transport and the formation 125 

of secondary PM. There is evidence that while PM2.5 levels tend to be relatively homogeneous across an urban region, PM10 126 

can be spatially more variable due to the shorter lifetime and more variable sources (Pinto et al., 2004; Sardar, 2005). In this 127 

paper, we explore the suitability of a proxy site based on distance versus land use similarity. Land use variables used for the 128 
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analysis were a) road length within a 1 km buffer around the site, b) distance of the site from a motorway and c) elevation. 129 

These are simple and widely available variables and have also been identified as good predictors for PM in land use 130 

regression studies in the US (Kloog et al., 2012; Lee et al., 2016) and Europe (Eeftens et al., 2012). 131 

For the proxy selection test, we use PM2.5 and PM10 data from the South Coast AQMD regulatory monitoring network. Los 132 

Angeles, N. Main Street (CELA), Compton (CMPT), Mira Loma – Van Buren (MLVB) and Rubidoux (RIVR) were used as 133 

test locations for which a suitable PM2.5 proxy is found. CELA, MLVB, RIVR, Palm Springs (PALM) and Indio-29 Palms 134 

(INDIO) are used as test locations to identify suitable for PM10 proxies (Fig. 1). The Mean Absolute Error (MAE) and 135 

coefficient of determination (R2) were calculated from daily averaged reference data for the year 2020 (LA, IE) and 2021 136 

(RC Desert) for different proxies against the distance and land use similarity for each test location. 137 

 138 

 139 

Figure 1: a) PM2.5 and b) PM10 South Coast AQMD reference Air Monitoring Network (Los Angeles Region). Red circles highlight 140 
test locations for which a suitable proxy is found from network options (black circles,) c) Table of the site Names for the IDs shown 141 
in a) and b). The map was created using ggmap (Kahle and Wickham, 2013). 142 
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Given that MOMA is based on matching probability distributions rather than regression models we also compare probability 143 

distributions of hourly PM2.5 and PM10 at the test locations (CELA, CMPT, MLVB, RIVR, INDIO, PALM) to those of 144 

different proxies using the K-S (Kolmogorov-Smirnov) test statistic as a measure of similarity across probability 145 

distributions.  146 

2.5 Evaluating the performance of MOMA 147 

Six AQYs collocated at South Coast AQMD AMS sites were used to test the calibration framework (Table 1, Fig. 1). For 148 

each AQY, a proxy reference (other than the collocated reference) was selected for the monthly and the drift detection 149 

triggered MOMA calibrations. The sensor measurements were then compared to the collocated reference data.  The six 150 

sensors were deployed between April 2020 and January 2021 (SI Table 2). They were used to evaluate the performance of 151 

the proxy selection and the two different network calibration approaches. PM2.5 data from the collocated AQYs were 152 

available from August 2020 – December 2021 (and ongoing) while the majority of the PM10 data were added at the start of 153 

2021. 154 

 155 

2.6 Speciation data 156 

Speciation data were obtained using the RAQSAPI package (Mccrowey et al., 2022), which enables downloading 157 

monitoring data from the US Environmental Protection Agency's Air Quality System service. We focused on parameters 158 

representing crustal material, trace ions, secondary ions, elemental carbon (EC) and organic carbon (OC) and followed the 159 

classification described in Daher et al. (2013) (Table S3). Samples were taken every third day over a 24 -hour period. 160 

Organic carbon (OC) and elemental carbon (EC) were collected via an URG 3000N with a Pall Quartz filter and Cyclone 161 

Inlet and the total amount was used in this analysis. The remaining parameters were collected using a Met One Speciation 162 

Air Sampling System (SASS) (Met One Instruments, Inc., Grants Pass, Oregon, US).  163 

 164 

3 Results and Discussion 165 

3.1 General characteristics of the data 166 

Figure 2 shows the seasonal PM2.5, PM10 variations observed at the reference sites as well as the relative humidity and 167 

temperature recorded at these sites from January – December 2021. While PM2.5 levels seem to be comparable across the 168 

sites and networks in LA and the IE, lower levels were observed in the RC Desert. There are also distinct differences in the 169 

PM10 concentrations with higher levels observed in the IE (RIVR, MLVB). PM2.5 concentrations are highest in autumn and 170 

generally more variable over the autumn/winter period. The RC Desert region (PALM, INDIO, SLMZ) is drier and hotter 171 

compared to LA and the IE. The timeseries shown in Fig. 3 show that while short-term local effects are visible (particularly 172 

for PM10 in the IE and RC Desert), overall diurnal PM2.5 and PM10 variations across sites within the same region are similar. 173 

This suggests that MOMA could be an effective calibration framework for PM since the underlying requirement, that the 174 

diurnal patterns of pollutants at the proxy site and at the site to be calibrated are similar, seems to be met, particularly for 175 
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PM2.5. For PM10, a more careful selection of a suitable calibration window may be required, given the short-term local 176 

differences.  177 

 178 

 179 

Figure 2: Boxplots showing the seasonal PM2.5 and PM10 variations in 2021 at collocated sites and the RH and Temperature 180 
observed at the South Coast AQMD AMS sites with collocated AQY. The boxplots are coloured by season (spring (MAM): March, 181 
April, May, summer (JJA): June, July, August, autumn (SON): September, October, November, winter (DJF): December, 182 
January, February). 183 
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 184 

Figure 3: PM2.5 and PM10 reference timeseries for a 7-day period grouped by Networks (i.e., IE, LA, RC Desert). 185 

 186 

3.2 Proxy selection criteria 187 

To assess the influence of distance versus land use on proxy selection we used three metrics, MAE, R2 and the K-S test 188 

statistic, to evaluate each proxy option at four South Coast AQMD AMS across the regions. By using data from the reference 189 

network any uncertainties related to sensor performance are eliminated. Figure 4 illustrates that in most cases the nearest 190 

proxy site rather than the site with the most similar land use is the most suitable proxy resulting in the lowest and highest R2 191 

across the whole year. Using the K-S test statistic as a measure of similarity across probability distributions reveals a slightly 192 

different pattern suggesting that PM2.5 CMPT or SLB may be more suitable proxies for CELA and that PM2.5 CELA could be 193 

a suitable proxy for MLVB or RIVR when upwind from MLVB or RIVR.  194 

However, there are exceptions to this observation suggesting that other factors, such as particle sources associated with the 195 

surrounding land use, terrain, or prevailing wind direction, likely also contribute to the suitability of a proxy. For example, a 196 

proxy further away (CELA) seems to perform similarly to a nearby proxy (UPL) for PM2.5 at Mira Loma (MLVB). Mira  197 
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Loma is downwind from CELA for most of the year, possibly explaining the low MAE against MLVB. The CRES site also 198 

seems to be a poorer PM2.5 proxy for MVLB and RIVR, which may be due to its location at higher altitudes as well as being 199 

separated from MVLB and RIVR by the San Bernardino mountains (1200+ meters high). 200 

 201 

 202 

Figure 4: a) MAE, b) R2 and c) K-S statistic calculated from daily averaged reference data for the year 2020 for different proxies 203 
against distance to site of interest for PM2.5: CELA, CMPT, MLVB, RIVR, and PM10: CELA, MLVB, RIVR. The site with the 204 
most similar land use is labelled with a ‘*’. The proxy site is labelled in each facet. The full site names are shown in Fig.  1 c). 205 

 206 
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Overall, the nearest proxy generally resulted in the most similar distribution with the smallest MAE and largest R2, and 207 

therefore the nearest proxy was selected to calibrate the sensors in the following sections.  208 

 209 

3.3 MOMA Calibration performance 210 

The performance of MOMA was evaluated using sensors that were collocated at a regulatory site.  Each sensor was mapped 211 

to its nearest proxy (Table 1), calibrated using the MOMA technique and compared to its collocated South Coast AQMD 212 

AMS using the metrics MAE and R2.  213 

 214 

Table 1. List of AQYs collocated at South Coast AQMD AMS sites with their proxy reference sites.  215 

Site Network PM2.5 

Proxy 

PM10 

Proxy 

Distance to PM2.5 

Proxy 

Distance to PM10 

Proxy 

RIVR IE MLVB MLVB 7 7 

MLVB IE RIVR RIVR 7 7 

CELA LA SLB GLEN 12 36 

CMPT LA NHOL * 18 
 

PALM RC Desert * INDIO 
 

36 

INDIO RC Desert SLMZ PALM 21 36 

* There is no PM10 data available from CMPT and no PM2.5 measurement available from PALM 216 

 217 

3.3.1 PM2.5 218 

Figure 5 shows hourly uncalibrated (gain = 1, offset = 0) + RH correction, monthly calibrated and drift calibrated sensor data 219 

and proxy data against the collocated reference data over the 12-month period Jan 2021 to Dec 2021. The sensors at CELA 220 

and CMPT show a clear improvement with both the monthly and drift calibration applied as indicated by a better agreement 221 

with the 1:1 line (Fig. 5) for most of the data and a reduction in the MAE (Fig. 6). However, the monthly and drift 222 

calibrations did not improve the R2 or slope for the sensors in the IE at MLVB and RIVR. The uncalibrated sensors displayed 223 

a good R2, slope and MAE which indicated the standard factory sensor calibration transferred to the field well at MLVB and 224 

RIVR. Also, the PM sensor does not exhibit significant instrumental drift over the 12-month period.  Calibrating the sensor 225 

data against the proxy however, seemed to have introduced errors. There are several reasons for this.  226 

Firstly, Fig. 6 shows that the MAE between the collocated reference data and the proxy data is larger at RIVR then the MAE 227 

for the uncalibrated data against the collocated reference data indicating that the MLVB proxy was not always suitable for 228 

MOMA calibration of the RIVR sensor. This is also supported by the differing probability distributions from the two sites 229 

(Fig. S2) which suggests the sites are exposed to different PM levels. On the other hand, the probability distributions for 230 
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CELA and NHOL PM2.5 data and that for CMPT and SLB are very similar (Fig. S2) and hence the MOMA calibration 231 

process produces improved accuracy.  232 

Secondly, monthly variability in particle source and composition will impact the reliability of the MOMA calibration 233 

particularly for those performed at monthly intervals. For example, the very high monthly MOMA MAE for February at 234 

CELA, MVLB and RIVR suggests the January particle composition was not representative of that observed in February at 235 

these sites. Particle composition is known to vary with different wind directions (desert vs. marine/urban particles) and 236 

impact the sensor reading as observed in previous studies (Castell et al., 2017; Gao et al., 2015; Giordano et al., 2021; Kelly 237 

et al., 2017). The effect of this phenomenon is particularly visible between November and February when wind is more 238 

variable. This is supported by Fig. 6, which shows that for both the LA and IE regions the MAE tended to be higher in 239 

November/December and January for uncalibrated as well as calibrated data. The difference between the proxy and the 240 

collocated reference data also tended to be larger during these months.  241 

A similar month-to-month variability in the MAE can be observed when comparing the regulatory monitor (BAM 1020, Met 242 

One Instruments, Inc., Grants Pass, Oregon, US) at RIVR against the reference grade optical instruments T640 (Teledyne 243 

API, San Diego, US) and the GRIMM optical particle counter (EDM 180, GRIMM Aerosol Technik GmbH & Co., Airing, 244 

Germany), also located at the RIVR site. The T640 and GRIMM are both optical particle counter instruments that determine 245 

the aerosol particle size distribution from which they estimate the PM concentration. The BAM-1020 samples aerosols  246 

through a PM10 inlet and uses a Very Sharp Cut Cyclone (VSCC) to classify it into PM2.5  before collecting it on a filter tape 247 

and determining the PM2.5 concentration by the aerosol’s attenuation of a C14 beta radiation source (Hagler et al., 2022). Due 248 

to the differences in the measurement principles, the instruments can give different results depending on the properties of the 249 

measured particles.  250 

The T640 and GRIMM match each other consistently across the year (similar technologies) but the BAM/T640 and 251 

BAM/GRIMM MAE are higher in general and highest during the November/December months. This further shows how 252 

differences between measurement technologies will be exacerbated when particle composition is variable. This is discussed 253 

in more detail in sect. 3.5. 254 

Thirdly, measurement noise in the hourly reference data from the beta attenuation monitors deployed at the sites may be too 255 

high to reliably calibrate low-cost sensors when concentrations are low (< 40 µg m-3) as often the case in the RC Desert 256 

(Hagler et al., 2022; Johnson et al., 2018; Zheng et al., 2018). The calibration improved the data most during the summer 257 

months with the MAE equal or below 5 µg m-3.  258 

 259 

 260 

 261 

 262 

 263 
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 264 

Figure 5: Hexbin scatterplots showing hourly uncalibrated + RH corrected, monthly calibrated and drift calibrated PM2.5 265 
measured by the AQY and calibrated against the nearest proxy site vs. the collocated South Coast AQMD AMS over 12 months. 266 
The colours refer to the number of points within each bin. 267 

 268 

 269 

 270 

 271 

 272 

 273 
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 274 

Figure 6: a) monthly calibrated and drift calibrated PM2.5 data as well as for the collocated reference data versus the proxy 275 
reference. b) MAE between the BAM and the collocated T640 and GRIMM across different months using hourly averaged data. 276 

3.3.2 PM10 277 

As expected, the PM10 data from the sensors generally showed a poorer agreement with the collocated Reference with 278 

relatively large MAE and low R2 (Fig. 7) for uncalibrated data. The uncalibrated data were also considerably 279 

underestimating, particularly in the RC Desert (INDIO, PALM). This is in agreement with previous work which showed that 280 
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the SDS011 underestimates PM10, particularly for particles greater than 5 µm (Budde et al., 2018; Kuula et al., 2020). The 281 

monthly and drift triggered MOMA calibrations had a clear positive impact on PM10 and improved the accuracy as indicated 282 

by a better fit around the 1:1 line. However, the scatter remained resulted in no improvement in the R2. Examination of the 283 

Proxy/REF scatterplots (Fig. 7) and probability distributions (SI Fig. 2) show there are considerable discrepancies between 284 

sites. To some extent this is expected since the PM coarse fraction (PM10 – PM2.5) is more dominated by local sources than 285 

PM2.5 (Pinto et al., 2004). Similar to PM2.5, there was month-to-month variability in the calibration performance, with better 286 

improvements during summer and poor performance in November, particularly in the IE and RC Desert (Fig. 8). Potential 287 

factors that contribute to the large MAE in November are further discussed in sect. 3.5.  288 

A comparison of the PM10 data from the reference instruments at RIVR (BAM, GRIMM, T640) shows that the MAE across 289 

different instrument types can be as high as ~15 µg/m3 and interestingly the GRIMM and T640 PM10 MAE is the highest – 290 

the opposite of the PM2.5 result.  291 
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 292 

Figure 7: Hexbin scatterplots showing hourly uncalibrated + RH corrected, monthly calibrated and drift calibrated PM10 293 
measured by the AQY and calibrated against the nearest proxy site vs. the collocated Reference. The colours refer to the number 294 
of points within each bin. 295 
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 296 

Figure 8: a) monthly calibrated and drift calibrated PM10 data as well as for the collocated reference data versus the proxy 297 
reference. b) MAE between the BAM and the collocated T640 and GRIMM across different months using hourly averaged data. 298 

 299 

3.4 Drift detection triggers 300 

The results from the drift detection framework tests are shown in Fig. 9 (K-S test, MV-intercept test and MV-slope test) for 301 

PM2.5 and PM10 measured by a PM sensor deployed in the LA region and one in the IE region. The black points indicate 302 

when the framework triggered a drift alarm and calibration. It is evident that most alarms were raised due to significant 303 
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differences in the probability distributions (K-S test), followed by a change in the slope between the proxy and sensor (MV-304 

slope test). In the IE (RIVR: AQY BD-1146) alarms were related to changes in the MV-slope and clustered around February, 305 

May, and September/October indicating more frequent changes in environmental conditions (e.g., RH) or particle 306 

composition and size during these months (discussed in sect. 3.5). The AQY sensor (BD-1069) installed at the CELA AMS 307 

sent off alarms that were more spread across the whole year suggesting that sensor drift at this site was not related to 308 

seasons. The figure also shows that there are more frequent slope adjustments within a month likely due to within month 309 

changes in meteorological and environmental conditions (discussed in sect. 3.5). This partly explains the better performance 310 

of the drift calibrated data compared to the monthly calibrated data, which triggered more frequent calibrations within a 311 

month.  312 

 313 
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 314 

Figure 9: Test statistics from drift detection framework for a site in the IE (a) / (c) and one in the City of LA region (b) / (d) for 315 
PM2.5 and PM10, respectively. The black points show when the drift detection framework resulted in an alarm and triggered a 316 
calibration.   317 

Figure 10 shows the temporal variability of monthly and drift calculated gains for sensors in the LA, IE and RC Desert 318 

Region. Interestingly, the temporal variation of the PM2.5 and PM10 gains calculated the monthly calibrations (Fig. 10. (b)/(d) 319 

show a distinct seasonal pattern with larger gains (~2-3) during autumn and winter and lower gains (~1) during the summer 320 

months, particularly in the IE region. An opposite pattern is visible in the RC Desert. The gains from the drift detection 321 

framework were more variable but also showed some seasonal variability. These results suggest that unlike calibrating for 322 
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sensor drift (which would be shown as an increase in the slope over time) PM sensors are calibrated for different conditions, 323 

which can vary frequently as shown by the drift gains. 324 

 325 

Figure 10: Temporal variation of the gains as calculated from the drift detection framework and the monthly calibrations for 326 
PM2.5 a) and b), respectively and PM10 c) and d), respectively. 327 

 328 

3.5 Particle composition variability 329 

As observed in the previous sections, calibrating PM sensors can be challenging in complex areas where particle 330 

composition, size and physical properties (i.e., shape and refractive index) vary spatially and temporally (Kuula et al., 2020). 331 

In this section, we discuss some of the origins for the variations in particle composition with a specific focus on the 332 

Riverside area (RIVR AMS). 333 

https://doi.org/10.5194/egusphere-2023-969
Preprint. Discussion started: 30 May 2023
c© Author(s) 2023. CC BY 4.0 License.



20 
 

The RIVR AMS wind data shown in Fig. 11, clearly indicates the seasonal variation in the wind direction with N/NE winds 334 

dominating during the late autumn/winter months and W winds dominating during the rest of the year. The N/NE winds 335 

likely correspond to the Santa Ana Winds which are associated with very dry downslope air flow from the northeast and 336 

common between October and April, with a peak in December and January (Aguilera et al., 2020). Typically, PM 337 

concentrations during SAW conditions are dominated by coarse particles of crustal components (Guazzotti et al., 2001; Qin 338 

et al., 2012). 339 

 340 

 341 

Figure 11: Nr. of hours dominated by different wind direction during each month. Surface Meteorological Data was downloaded 342 
from the NOAA Integrated Surface Database (ISD) via the worldmet Package in R (Carslaw, 2022). 343 
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This is in agreement with observations from Fig. 12 which shows higher concentrations of Crustal Material and Elemental 344 

Carbon during N/NE and NW, reaching a maximum in November. Trace ions (Chloride, Sodium and Potassium ion) and 345 

secondary ions (Nitrate, Sulfate, Ammonium), on the other hand, are highest downwind from the City of LA reaching a 346 

maximum in spring/summer due to increased photochemical activity and a larger contribution of sulfate sources and its 347 

precursor (fuel/ship emissions) upwind of the City of LA (Daher et al., 2013). 348 

 349 

Figure 12: Speciation concentrations collected at AMS – Rubidoux (RIVR) grouped into 5 categories (Panels) plotted against wind 350 
direction (wd) (a) and for each month of the year (b).  351 
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 352 

Figure 13 illustrates the relationship between the BAM and collocated sensor data coloured by wind direction and course 353 

fraction (1 – PM2.5/PM10). The figure reveals a clear slope dependence on the wind direction (<1 when wind was from a 354 

northeast origin and >1 when wind from a western origin dominated), suggesting that it underestimates PM2.5 levels during 355 

north-eastern wind (SAW conditions). It is also visible from Fig. 11 that wind is more variable in late fall/winter possibly 356 

explaining the more frequent alarms observed for these months at Riverside (Fig. 9).   357 

 358 

 359 

Figure 13: Hourly uncalibrated low-cost sensor data against hourly collocated reference data at AMS - Rubidoux 360 

(RIVR) during 2021, a) coloured by wind direction, b) coloured by the AQY PM coarse fraction: 1 – PM2.5/PM10. 361 

4 Conclusions 362 

This work is part of a large study set out to determine if a remote calibration framework (MOMA), previously developed for 363 

the correction of drift in O3 and NO2 sensors (Miskell et al., 2018, 2019; Weissert et al., 2020) can be applied for PM2.5 and 364 

PM10 data from PM sensors. We identified suitable reference proxies based on distance and presented two approaches to 365 

remotely calibrate data from sensor networks, 1) at monthly intervals and 2) using a drift detection framework that triggers a 366 

calibration when drift is detected. Our results show that while both approaches were able to improve the data as indicated by 367 

a better fit around the 1:1 line when compared to the collocated reference data, the drift triggered MOMA approach 368 

performed better. Overall, the improvement due to the MOMA calibration was more obvious for PM10 data, which were 369 

considerably underestimating prior to calibration. We note that sensor drift was less associated with monitor operational 370 
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factors and more affected by variations in particle composition which exacerbated differences in response between the 371 

regulatory BAM instruments and the PM sensors.  372 

Calibrating at monthly intervals was not always sufficient, particularly if wind conditions were variable within a month. This 373 

was clearly visible in the IE where particle composition varied from desert dust (N/NE) and marine/urban aerosol (W) during 374 

the winter months. This highlights the need for reference instruments to be deployed at sites representing different land use 375 

and PM source types which would allow a more flexible choice of proxies depending on dominant wind direction and 376 

particle source.  377 
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