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Abstract. We evaluate the potential of using a previously developed remote calibration framework we name MOMA (MOment 14 

MAtching) to improve the data quality in PM sensors deployed in hierarchical networks. MOMA assumes that a network of 15 

reference instruments can be used as ‘proxies’ to calibrate the sensors given that the probability distribution over time of the 16 

data at the proxy site is similar to that at a sensor site. We use the reference network to test the suitability of proxies selected 17 

based on distance versus proxies selected based on land use similarity. The performance of MOMA for PM sensors is tested 18 

with sensors co-located with reference instruments across three Southern California regions, representing a range of land uses, 19 

topography, and meteorology, and calibrated against a distant proxy reference. We compare two calibration approaches, one 20 

where calibration parameters get calculated and applied at monthly intervals and one which uses a drift detection framework 21 

for calibration. We demonstrate that MOMA improves the accuracy of the data when compared against the co-located reference 22 

data. The improvement was more visible for PM10 and when using the drift detection approach. We also highlight that sensor 23 

drift was associated with variations in particle composition rather than instrumental factors explaining the better performance 24 

of the drift detection approach if wind conditions and associated PM sources varied within a month. 25 

 26 

1 Introduction 27 

Particulate matter (PM) is a major air pollutant with negative impacts on both the environment and human health (Kim et al., 28 

2015; Anderson et al., 2012; Pope Iii, 2002; Rai, 2016). Smaller particles, known as PM2.5 (particles with an aerodynamic 29 

diameter < 2.5µm) have the ability to penetrate deep into the lung and to cross into the blood stream, and trigger inflammatory 30 

and mutagenic responses linked amongst other effects to cardio-pulmonary disorders, diabetes and adverse birth outcomes 31 

(Feng et al., 2016). Coarse PM (PM10 – 2.5) tend to impact the upper respiratory tract and induce respiratory symptoms such as 32 

cough (Pope and Dockery, 1992). Short-term exposures to PM10 have been associated primarily with worsening of respiratory 33 

diseases, including asthma and chronic obstructive pulmonary disease (COPD) (California Air Resources Board, 2023). The 34 
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spatial and temporal variability of PM is driven by multiple factors including anthropogenic emissions PM from traffic, 35 

construction, and residential heating which are main contributors to PM2.5 as well as natural sources such as mineral dust 36 

consisting mainly of particles in the coarse fraction (PM10-2.5) (Anderson et al., 2012; Atkinson et al., 2010). PM2.5 and PM10 37 

are routinely measured by government and research organisations using reference-grade equipment that is either filter-based 38 

Federal Reference Method (FRM) or continuous Federal Equivalence Method (FEM). However, reference monitoring 39 

networks are designed to measure regional air pollution to determine attainment of national ambient air quality standards and 40 

are often sparsely sited across a region due to high instrument and operational costs (Morawska et al., 2018; Snyder et al., 41 

2013). The last decade has seen a rapid increase in the availability of PM sensors offering opportunities to measure PM with 42 

much denser networks and making them popular choices for citizen projects and community monitoring (Giordano et al., 2021; 43 

Liang, 2021; Snyder et al., 2013; Zimmerman, 2022). 44 

Most PM sensors are optical sensors that utilize the light scattered by particles to determine the particle size and count which 45 

are then converted to particle mass based on assumptions about particle density, shape and refractive index. This poses a major 46 

challenge for calibrating PM sensors as calibration factors may change with particulate type and composition as well as 47 

meteorological conditions such as temperature or relative humidity (RH) which cause the particles to swell or shrink and 48 

change their light scattering (Badura et al., 2018; Morawska et al., 2018; Ouimette et al., 2022).  49 

Thus, frequent field calibrations may be required if aerosol properties vary significantly over time (Liang, 2021; Johnson et 50 

al., 2018; Badura et al., 2018). While calibrations by co-location using regression analysis remain a popular choice the costs 51 

and feasibility related to individual site visits and calibrations make them not a viable option for large and/or long-term sensor 52 

networks (Liang, 2021). Another approach is to apply a RH correction factor to account for the bias introduced due to high 53 

RH (Crilley et al., 2020; Liang, 2021). While this method has the advantage of being independent from the availability of 54 

reference data it is not suitable for locations with consistently high RH and does not improve the accuracy as much as other 55 

calibration methods (Liang, 2021). Similarly, Barkjohn et al. (2021) developed a US nation-wide correction for PurpleAir 56 

Sensors which is implemented in the Airnow Fire and Smoke Map (https://fire.airnow.gov/). While the approach has 57 

intensively been tested for PurpleAir sensors, further research is required to evaluate its transferability to other sensor models 58 

(Barkjohn et al., 2021). Other studies have used Machine learning (ML) approaches to train calibration models with enough 59 

co-location data to cover various meteorological and environmental conditions and make them more robust for long-term 60 

sensor deployments (Liang, 2021; De Vito et al., 2020; Loh and Choi, 2019). However, if conditions (e.g., different traffic 61 

conditions, different PM sources) at the co-location site are different from the conditions at the site of the final deployment the 62 

model may no longer be suitable (De Vito et al., 2020; Liang, 2021). In addition, while being more robust and effective, ML 63 

may still suffer from challenges related to sensor degradation when sensors are deployed in a long-term fashion (Liang, 2021).  64 

In previous publications, we demonstrated that a hierarchical network, consisting of well-maintained reference-grade 65 

instruments (referred to as ‘proxies’) and gas-phase (O3, NO2) sensors can be used to correct sensors remotely (Miskell et al., 66 
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2018, 2019; Weissert et al., 2020). The correction framework, that we named MOMA for MOment MAtching, is based on the 67 

assumption that the probability distribution over time of measurements at a proxy site is similar to that of the sensor site 68 

(Miskell et al., 2018, 2019; Weissert et al., 2020). We have demonstrated that this approach is able to successfully correct for 69 

sensor drift without the need of co-location.  70 

In this paper, we examine how this remote calibration methodology performs for PM sensors deployed in Southern California. 71 

The network was established between 2020 and 2022 to supplement the reference network and supports California Assembly 72 

Bill 617 community monitoring.  The network is maintained by South Coast AQMD and covers three main regions, including 73 

the City of Los Angeles (LA), the Inland Empire (IE), and a desert region of Riverside County (RC Desert). These three regions 74 

differ in terms of land use, terrain and meteorology offering an opportunity to test MOMA under different seasonal conditions 75 

and PM sources.  76 

The network consists of over 60 sensors, for which the overhead for manual calibration would be prohibitive. Thus, using the 77 

MOMA approach, the sensors are calibrated at monthly intervals and new calibration gains and offsets are uploaded to a cloud 78 

to provide real-time calibrated data which is displayed on the South Coast AQMD AQPortal (https://aqportal.aqmd.gov/).  In 79 

order to validate the MOMA procedure applied across the network, the focus of this paper is on six sensors that are co-located 80 

with a reference instrument at Air Monitoring Sites (AMS). Here, we compare the monthly calibration approach to an 81 

automated drift detection approach to apply the calibration when drift between a sensor and the proxy site was detected using 82 

data from January to December 2021 (Miskell et al., 2018, 2019; Weissert et al., 2020). 83 

A key part of MOMA is the identification of a suitable proxy site for each sensor in the sensor network. Previous work has 84 

shown that the nearest reference site is a suitable proxy to calibrate O3 concentrations, which are regionally well correlated 85 

(Miskell et al., 2018, 2019). For NO2, which is spatially and temporally more variable, land use similarity proved to be good 86 

criteria to select appropriate proxy sites (Weissert et al., 2020). PM2.5 levels tend to be relatively homogeneous across an urban 87 

region suggesting that the closest reference site could be a suitable proxy. However, PM10 can be spatially more variable due 88 

to the shorter lifetime and more variable sources, and a proxy selected based on distance may not be suitable (Pinto et al., 89 

2004; Sardar, 2005). Thus, we also determine suitable proxies for calibrating PM2.5 and PM10.  90 

2 Materials and Methods 91 

2.1 Data 92 

This study uses data from a network of AQY v1.0 (AQY) sensor systems from Aeroqual Ltd, Auckland, New Zealand. The 93 

AQY measures O3, NO2, PM2.5, PM10, Temperature, and Relative Humidity. Detailed description about the AQY sensor system 94 

is available in Weissert et al. (2020) and Miskell et al. (2019). The focus of this paper is the PM sensor (model SDS011, Nova 95 

Fitness Co., Ltd, Jinan City/China) inside the AQY sensor system. The SDS011 is an optical light scattering device which 96 

outputs PM2.5 and PM10 mass concentration (µg m-3) measurements. Previous studies of this sensor have shown high PM2.5 97 

https://aqportal.aqmd.gov/


4 
 

correlation with reference instruments (Badura et al., 2018; Liu et al., 2019) but PM10 values may be underestimated (Budde 98 

et al., 2018; Kuula et al., 2020). Nevertheless, we use both PM2.5 and PM10 measurements to evaluate the performance of our 99 

network calibration technique applied to PM data. The SDS011 sensor was factory calibrated against a Met One 9722 8 channel 100 

optical particle counter (Met One Instruments, Inc., Grants Pass, Oregon, US) using 1 µm latex microspheres. The AQY 101 

performs a humidity correction using an algorithm based on the ĸ-Köhler theory with an empirically derived scalar (Crilley et 102 

al., 2018). The AQY PM measurements were field and laboratory evaluated by South Coast AQMD’s Air Quality Sensor 103 

Performance Evaluation Centre (AQ-SPEC) (http://www.aqmd.gov/aq-spec/sensordetail/aeroqual-aqy-v1.0) showing strong 104 

correlations with the co-located FEM GRIMM data (0.77 < R2 < 0.85) and low to moderate intra-model variability.  105 

 106 

We used data from six AQYs co-located at AMS sites, referred to as ‘co-location sites’ in this paper, equipped with a reference-107 

grade instrument., which allowed us to test the performance of the remote calibration framework (Table 1). Reference data 108 

from the co-location AMS were obtained either from AirNow (https://www.airnow.gov/) or directly from South Coast AQMD. 109 

Refer to Table S1 for instrumentation at each site.  The six AQYs were deployed between April 2020 and January 2021 (Table 110 

1). While PM2.5 data were available since the start of the deployment, PM10 sensors were only activated at the start of January 111 

thus we focus on data from January to December 2021 for the following analysis. Fog can frequently be present between 112 

October and February in the study area, driven by lower inversion levels (Qin et al., 2012; Witiw and LaDochy, 2008) and 113 

lead to overestimates in PM2.5 and PM10 (Budde et al., 2018) (Fig. S1). We developed a fog alert and data impacted by fog 114 

were removed for this analysis. This affected around 1% of the data at each site and was mostly observed in November, 115 

December and February.  116 

 117 

To get a better understanding about the composition of measured particles and how this impacts the performance of MOMA 118 

we used speciation data collected at the Riverside-Rubidoux (RIVR) AMS. All speciation data were obtained using the 119 

RAQSAPI package (Mccrowey et al., 2022), which enables downloading monitoring data from the US Environmental 120 

Protection Agency's Air Quality System service. We focused on parameters representing crustal material, trace ions, secondary 121 

ions, elemental carbon (EC) and organic carbon (OC) and followed the classification described in Daher et al. (2013) (Table 122 

S2).  123 

 124 

Surface meteorological data from Riverside Municipal airport, situated ~ 6km south of the Riverside-Rubidoux AMS, were 125 

downloaded from the NOAA Integrated Surface Database (ISD) via the worldmet Package in R (Carslaw, 2022).  126 

 127 

Table 1. Information about AQY sensors and their co-location sites as well as deployment dates and data completeness 128 

(excluding fog data). 129 

AQY ID AQY Label Co-located AMS Region  Deployment 

date  

Data 

completeness 

http://www.aqmd.gov/aq-spec/sensordetail/aeroqual-aqy-v1.0
https://www.airnow.gov/


5 
 

(mm/dd/yyyy) (Jan - Dec 

2021) 

AQY BD-1146 RIVR coloc Riverside-Rubidoux (RIVR) IE  4/03/2020 85% 

AQY BD-1129 MLVB coloc Mira Loma - Van Buren (MLVB) IE  4/03/2020 86% 

AQY BD-1110 CMPT coloc Compton (CMPT) LA  1/08/2021 71% 

AQY BD-1069 CELA coloc Los Angeles - N. Main Street 

(CELA) 

LA  6/19/2020 98% 

AQY BD-1071 INDIO coloc Indio-29 Palms (INDIO) RC Desert  11/03/2020 82% 

AQY BD-1081  PALM coloc Palm Springs (PALM) RC Desert  1/08/2021 91% 

 130 

The statistical analysis was performed in R (v.4.1.3) using tidyverse (Wickham and RStudio, 2022), lubridate (Spinu et al., 131 

2022), zoo (Zeileis et al., 2022), ggrepel (Slowikowski et al., 2022), openair (Carslaw and Ropkins, 2022), RAQSAPI 132 

(Mccrowey et al., 2022), ggplot2 (Wickham et al., 2022b), dplyr (Wickham et al., 2022a), ggmap (Kahle and Wickham, 2013) 133 

and ggpmisc (Aphalo et al., 2022). 134 

 135 

2.2 Study area 136 

This study was performed in Southern California in a region that is under the jurisdiction of the South Coast Air Quality 137 

Management District (South Coast AQMD). AQY sensors measuring PM were co-located at two AMS in the City of LA 138 

(CELA, CMPT), two AMS in the IE (RIVR, MLVB), and two AMS in the RC Desert (INDIO, PALM) (Table 1). The LA 139 

region is representative of downtown LA and PM levels are likely dominated by emissions from transport and other combustion 140 

processes (Oroumiyeh et al., 2022). The IE is situated in a predominantly rural and agricultural area about 80 km inland from 141 

downtown LA. It is situated downwind from LA for the majority of the year, which means that PM levels in the area will be 142 

influenced by the particulate matter coming from LA (Daher et al., 2013). North-easterly Santa Ana Winds (SAW) become 143 

more frequent during the fall and winter months impacting PM levels in the IE. SAW are associated with very dry air and good 144 

visibility in the absence of wildfires as urban pollutants are blown offshore. However, they are also key drivers of large 145 

wildfires enabling them to spread faster and transporting smoke PM from inland areas to the more populated regions (Aguilera 146 

et al., 2020). The RC Desert region is located north of Salton Sea and surrounded by mountains. The region is drier and hotter 147 

compared to LA and the IE. The RC Desert experiences high levels of PM10, dominated by the coarse fraction, driven by 148 

erosion and increasing emissions from the drying Salton Sea (Ostro et al., 2000; Miao et al., 2022) 149 

 150 

2.3 Remote Network Calibration 151 

MOMA was developed for hierarchical air monitoring networks that consist of well-calibrated reference grade instruments 152 

acting as “proxies” which are used to calibrate the sensors deployed in the field. The technique is described in detail in Miskell 153 

et al. (2016, 2018, 2019). Here, we calibrated sensors co-located at the AMS against a remote reference proxy. The performance 154 

of the calibration against the proxy was then evaluated by comparing the calibrated data against the co-located reference data 155 
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using the metrics Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and coefficient of determination (R2). We 156 

tested two approaches to calibrate the PM2.5 and PM10 sensors in this study. 157 

The first approach was a monthly MOMA calibration using the last two weeks of each month to select a consecutive seven-158 

day calibration window to calculate the calibration parameters which were then applied from the first to the last calendar day 159 

of the subsequent month. The last two weeks of the month were selected to ensure most recent data were used to determine 160 

calibration gains and offsets. The calibration gains, 𝑎̂1, and offsets, 𝑎̂0, were calculated by matching the mean, 𝐸{} , and 161 

variance, 𝑣𝑎𝑟{} , of the sensor data, Y, at location i, and proxy data, Z, at location k over the time interval 𝑡 −  𝑡𝑑 : 𝑡 as described 162 

in Miskell et al. (2018, 2019) and summarised in eq. 1 and 2: 163 

  164 

𝑎̂1 =  √𝑣𝑎𝑟{𝑍𝑘,𝑡−𝑡𝑑:𝑡}/𝑣𝑎𝑟{𝑌𝑖,𝑡−𝑡𝑑:𝑡}                                     (1) 165 

𝑎̂0 = 𝐸{𝑍𝑘,𝑡−𝑡𝑑:𝑡} −  𝑎̂1𝐸{𝑌𝑖,𝑡−𝑡𝑑:𝑡}            (2) 166 

 167 

A calibration window was considered suitable if the data completeness for both proxy and sensor was greater than 85% and 168 

the temporal variation of the sensor and proxy reference data was similar (ie there was no evidence of local effects that were 169 

only present at the sensor site or proxy site). We also avoided periods when we detected fog using Aeroqual’s fog detection 170 

algorithm.  171 

The second approach used a previously described drift detection framework (Miskell et al., 2016) to trigger a MOMA 172 

calibration. The drift detection framework uses three statistical tests to detect sensor drift, a two-sample Kolmogorov-Smirnov 173 

(K-S) test (K-S test: p-value) , the Mean-Variance (MV) moment-matching test for the slope, 𝒂̂𝟏 and the intercept, 𝒂̂𝟎. The 174 

statistical tests were calculated over a 3-day running averaging-window, td, and an alarm was triggered when any of the tests 175 

exceeded the predetermined threshold, tf, for a period of consecutive 5 days. These periods were selected to limit short-term 176 

fluctuations due to local effects but to capture the regional effects, that is, to ensure that diurnal and regional variations 177 

dominate (Miskell et al. 2018, 2019). The following thresholds were used to determine if a sensor drifted: K-S test p-value < 178 

0.05 (the two distributions are significantly different); 0.75 > 𝒂̂𝟏> 1.25; -5 µg m-3 >  𝒂̂𝟎 > 5 µg m-3. These thresholds may be 179 

adjusted to be more or less sensitive to differences between the sensor and the proxy data. While adjusting all parameters and 180 

alarm triggers exceeded the scope of this study preliminary analysis using data from ‘RIVR coloc’, ‘MLVB coloc’ and ‘CELA 181 

coloc’ showed that a shorter 4-day window, tf, may be more suitable for the AQYs located in the IE but not the City of LA. 182 

This framework was applied to the six AQYs co-located at the AMS (Table 1) using data from January to December 2021.  183 

 184 

2.4 Proxy selection  185 

We compare proxies selected based on distance to proxies with similar land use. Land use variables used for the analysis were 186 

a) road length (motorway, primary roads) within a 1 km buffer around the site, b) distance of the site from a motorway and c) 187 

elevation. These are simple and widely available variables and have also been identified as good predictors for PM in land use 188 
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regression studies in the US (Kloog et al., 2012; Lee et al., 2016) and Europe (Eeftens et al., 2012). To select proxy sites with 189 

most similar land use we used the supervised classification technique, k-Nearest Neighbour classification (kNN) as described 190 

in more detail in Weissert et al. (2020).  191 

Data from the reference network were used to identify suitable proxies, which had two main advantages over using sensor 192 

data. First, the availability of long-term reference data allowed testing and developing suitable criteria for proxy selection 193 

without relying on sensor data, which are often not available until deployed in the field. Second, we eliminated any 194 

uncertainties associated with sensor performance, such as sensor drift. 195 

Figure 1 shows the network of reference PM2.5 and PM10 monitors managed by SCAQMD. Sites with co-located AQYs, 196 

including Los Angeles, N. Main Street (CELA), Compton (CMPT), Mira Loma – Van Buren (MLVB) and Rubidoux (RIVR) 197 

were used as test locations for which a suitable PM2.5 proxy is found. As SLMZ was the only available PM2.5 proxy site for 198 

Indio-29 Palms (INDIO) this site was not included in the proxy selection analysis for PM2.5. CELA, MLVB, RIVR, Palm 199 

Springs (PALM) and INDIO were used as test locations to identify suitable for PM10 proxies (Fig. 1).  200 

To evaluate the similarity between data at a proxy site and data at a test location we calculated the MAE, R2, and the two-201 

sample K-S test statistic for each possible proxy and co-located test location based on daily averaged reference data. The K-S 202 

test statistic is a measure of the maximum distance between two cumulative distributions and was used to compare the 203 

cumulative distribution of the proxy reference data to that of the reference at the co-located test location. An ideal proxy should 204 

exhibit a low MAE and K-S test statistic, as well as a high R2 value. 205 

 206 

Figure 1: a) PM2.5 and b) PM10 South Coast AQMD reference Air Monitoring Network coloured by different regions. The map was 207 
created using ggmap (Kahle and Wickham, 2013). Co-location sites are highlighted by black squares.  208 

 209 

Table 2. Table of the site names associated with the AMS IDs used in Fig. 1.  210 
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AMS ID Name Region 

MLVB Mira Loma - Van Buren IE 

RIVR Riverside - Rubidoux IE 

SNBO San Bernadino IE 

CRES Crestline - Lake Gregory  IE 

UPL Upland IE 

CELA Los Angeles - N. Main Street LA 

CMPT Compton LA 

NHOL North Hollywood LA 

ANA Anaheim LA 

SLB South Long Beach LA 

GLEN Glendora - Laurel LA 

PALM Palm Springs RC Desert 

INDIO Indio-29 Palms RC Desert 

SLMZ Saul Martinez RC Desert 

 211 

3 Results and Discussion 212 

3.1 General characteristics of the data 213 

PM2.5 levels seem to be comparable across the sites and regions in LA and the IE, but lower levels were observed in the RC 214 

Desert (Fig. S2). There are also distinct differences in the PM10 concentrations with higher levels observed in the IE (RIVR, 215 

MLVB). PM2.5 concentrations were highest in autumn and generally more variable over the autumn/winter period. The 216 

timeseries shown in Fig. 2 show that while short-term local effects are visible (particularly for PM10 in the IE and RC Desert), 217 

overall diurnal PM2.5 and PM10 variations across sites within the same region were similar. This suggests that MOMA could 218 

be an effective calibration framework for PM since the underlying requirement, that the diurnal patterns of pollutants at the 219 

proxy site and at the site to be calibrated are similar, seems to be met, particularly for PM2.5. For PM10, a more careful selection 220 

of a suitable calibration window may be required, given the short-term local differences.  221 

 222 
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 223 

Figure 2: PM2.5 and PM10 reference timeseries for a 7-day period grouped by regions (i.e., IE, LA, RC Desert). Co-location test sites 224 
are the solid lines. Sites with dashed lines are proxy sites only.  225 

 226 

3.2 Proxy selection criteria 227 

Figure 3 shows the MAE, R2 and K-S test statistic for proxies located at various distances away from the four (PM2.5) and five 228 

(PM10) co-located AMS test locations. The figure demonstrates whether data obtained from the nearest site or the site with the 229 

most similar land use closely resemble the data at the respective test location. The figure illustrates that in most cases the 230 

nearest proxy site rather than the site with the most similar land proves to be the most appropriate proxy resulting in the lowest 231 

MAE and the highest R2 throughout the entire year. Using the K-S test statistic as a measure of similarity across probability 232 

distributions reveals a slightly different pattern suggesting that PM2.5 CMPT or SLB may be more suitable proxies for CELA 233 

and that PM2.5 CELA could be a suitable proxy for MLVB or RIVR when upwind from MLVB or RIVR.  234 

However, there are exceptions to this observation suggesting that other factors, such as PM sources associated with the 235 

surrounding land use, terrain, or prevailing wind direction, likely also contribute to the suitability of a proxy. For example, a 236 

proxy further away (CELA) seems to perform similarly to a nearby proxy (UPL) for PM2.5 at Mira Loma (MLVB). Mira  237 

Loma is downwind from CELA for most of the year, possibly explaining the low MAE against MLVB. The CRES site also 238 

seems to be a poorer PM2.5 proxy for MLVB and RIVR, which may be due to its location at higher altitudes as well as being 239 

separated from MLVB and RIVR by the San Bernardino mountains (1200+ meters high). Nevertheless, the nearest proxy 240 
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generally resulted in the most similar distribution with the lowest K-S test statistic, as well the lowest MAE and highest R2. 241 

Thus, we suggest selecting PM proxies based on distance for the following analysis as well as future deployments as long as 242 

the nearest proxy is within the same airshed (e.g. not separated by mountains).  243 

 244 

 245 

Figure 3: a) MAE, b) R2 and c) K-S test statistic coloured by Region (LA: orange, IE: blue, RC Desert: red) for different proxies 246 
against distance to the co-located test location for PM2.5: CELA, CMPT, MLVB, RIVR, and PM10: CELA, MLVB, RIVR, INDIO, 247 
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PALM. The site with the most similar land use to the test site is labelled with a ‘*’. The proxy site is labelled in each panel. The full 248 
site names are shown in Table 2. An ideal proxy would have a low MAE and K-S test statistic, as well as a high R2 value. Proxies on 249 
the left hand side are closest to the co-located test location and therefore representative of the nearest proxies. 250 

 251 

3.3 MOMA Calibration performance 252 

The performance of MOMA was evaluated using sensors that were co-located at an AMS.  Each sensor was mapped to its 253 

nearest proxy (Table 3), calibrated using the MOMA technique and compared to its co-located South Coast AQMD AMS 254 

using the metrics MAE, RMSE and R2.  255 

 256 

Table 3. List of AQYs co-located at South Coast AQMD AMS sites with their proxy reference sites.  257 

AMS ID AQY Label Region PM2.5 

Proxy 

PM10 

Proxy 

Distance to PM2.5 

Proxy (km) 

Distance to PM10 

Proxy (km) 

RIVR RIVR coloc IE MLVB MLVB 7 7 

MLVB MLVB coloc IE RIVR RIVR 7 7 

CELA CELA coloc LA NHOL GLEN 12 36 

CMPT CMPT coloc LA SLB * 18 
 

PALM PALM coloc RC Desert * INDIO 
 

36 

INDIO INDIO coloc RC Desert SLMZ SLMZ 21 21 

* There is no PM10 data available from CMPT and no PM2.5 measurement available from PALM 258 
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 259 

Table 4. 24-hour averaged PM2.5 and PM10 summary statistics for the AQYs against the co-located reference before the calibration (U), 260 

after the monthly calibration (M) and the drift calibration (D) over the 12-month period from Jan 2021 to Dec 2021. 261 

 262 
 

AMS Region Mean Ref (SD) 

(µg m-3) 

Regression 

Slope 

Regression 

Offset 

R2 MAE (µg m-3) RMSE (µg m-3) 

 
   U M D  U M D  U M D  U M D  U M D  

PM2.5 MLVB IE 17 (8) 1.0 1.1 0.8 -4 -4 -1 0.7 0.5 0.7 6 7 6 7 9 6 

 RIVR IE 12 (8) 1.2 1.3 1.2 -4 2 2 0.9 0.6 0.8 4 5 6 5 10 8 

 CELA LA 15 (7) 0.3 0.8 0.8 0 4 3 0.4 0.4 0.7 9 11 4 11 6 4 

 CMPT LA 14 (7) 0.9 1.8 1.1 -4 -8 -1 0.7 0.6 0.8 6 7 6 7 11 4 

 INDIO RC Desert 9 (4) 0.4 
  

0.9 
  

1.2 0 3 0 0.6 0.5 0.5 6 6 3 6 4 5 

                   
 

   U M D  U M D  U M D  U M D  U M D  

PM10 MLVB IE 51 (25) 0.3 0.4 0.5 7 23 17 0.2 0.2 0.4 28 20 14 34 30 22 

 RIVR IE 40 (18) 0.6 1.4 1.1 -4 2 7 0.4 0.3 0.6 21 22 12 25 44 18 

 CELA LA 31 (12) 0.4 0.7 0.7 1 6 6 0.4 0.4 0.4 19 9 8 21 12 12 

 INDIO RC Desert 48 (38) 0.1 0.5 0.6 7 28 23 0.5 0.4 0.4 36 18 18 49 31 31 

 PALM RC Desert 23 (11) 0.3 1.4 1.3 1 7 5 0.6 0.2 0.4 16 21 14 18 39 21 



13 
 

3.3.1 PM2.5 263 

Table 4 shows the 24-hour averaged PM2.5 and PM10 summary statistics for the AQYs against the co-located reference before 264 

the calibration (gain = 1, offset = 0 + RH correction) (U), after the monthly calibration (M) and the drift calibration (D) over 265 

the 12-month period from Jan 2021 to Dec 2021. The monthly MAE are shown in Figure 4.  266 

The sensors in the LA and the RC Desert Region were under-reading PM2.5 concentrations prior to calibration, this was 267 

particularly evident for the AQY co-located at the INDIO AMS (slope: 0.4). These sensors show a clear improvement with 268 

both the monthly and drift calibration applied as indicated by a slope closer to 1 and an up to 60% reduction in the MAE and 269 

RMSE, although the improvement varies across the sensors (Table 4). The monthly and drift calibrations did not improve the 270 

R2 or slope for the sensors in the IE at MLVB and RIVR. Unlike the AQYs in the LA Region or the RC Desert the uncalibrated 271 

data showed a strong correlation with the co-located reference R2 (0.7/0.9) and the slope (1.0/1.2) and MAE (4 - 6 µg m-3) were 272 

already within the range of calibrated slopes and MAE. This suggests that the standard factory sensor calibration transferred 273 

well to the field at MLVB and RIVR. Calibrating the sensor data against the proxy however, seemed to have introduced errors. 274 

There are several reasons for this. Firstly, Fig. 4 shows that the MAE between the co-located reference data and the proxy data 275 

is larger at RIVR then the MAE for the uncalibrated data against the co-located reference data indicating that the MLVB proxy 276 

was not always suitable for MOMA calibration of the RIVR sensor. This is also supported by the differing probability 277 

distributions from the two sites (Fig. S3) which suggests the sites were exposed to different PM levels. On the other hand, the 278 

probability distributions for CELA and NHOL PM2.5 data and that for CMPT and SLB were very similar (Fig. S3) and hence 279 

the MOMA calibration process produced improved accuracy. 280 

Secondly, monthly variability in particle source and composition will impact the reliability of the MOMA calibration 281 

particularly for those performed at monthly intervals. For example, the very high monthly MOMA MAE for February at CELA, 282 

MLVB and RIVR suggests the January particle composition was not representative of that observed in February at these sites. 283 

Particle composition is known to vary with different wind directions (desert vs. marine/urban particles) and impact the sensor 284 

reading as observed in previous studies (Castell et al., 2017; Gao et al., 2015; Giordano et al., 2021; Kelly et al., 2017). The 285 

effect of this phenomenon is particularly visible between November and February when wind was more variable. This is 286 

supported by Fig. 4, which shows that for both the LA and IE regions the MAE tended to be higher in November/December 287 

and January for uncalibrated as well as calibrated data. The difference between the proxy and the co-located reference data 288 

also tended to be larger during these months.  289 

A similar month-to-month variability in the MAE can be observed when comparing the reference monitor (BAM 1020, Met 290 

One Instruments, Inc., Grants Pass, Oregon, US) at RIVR against the reference grade optical instruments T640 (Teledyne API, 291 

San Diego, US) and the GRIMM optical particle counter (EDM 180, GRIMM Aerosol Technik GmbH & Co., Airing, 292 

Germany), also located at the RIVR site. The T640 and GRIMM are both optical particle counter instruments that determine 293 

the aerosol particle size distribution from which they estimate the PM concentration. The BAM-1020 samples aerosols  through 294 

a PM10 inlet and uses a Very Sharp Cut Cyclone (VSCC) to classify it into PM2.5  before collecting it on a filter tape and 295 

determining the PM2.5 concentration by the aerosol’s attenuation of a C14 beta radiation source (Hagler et al., 2022). Due to the 296 
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differences in the measurement principles, the instruments can give different results depending on the properties of the 297 

measured particles.  298 

The T640 and GRIMM match each other consistently across the year (similar technologies) but the BAM/T640 and 299 

BAM/GRIMM MAE were higher in general and highest during the November/December months. This further shows how 300 

differences between measurement technologies will be exacerbated when particle composition is variable. This is discussed in 301 

more detail in sect. 3.5. 302 

Thirdly, measurement noise in the hourly reference data from the beta attenuation monitors deployed at the sites may be too 303 

high to reliably calibrate low-cost sensors when concentrations are low (< 40 µg m-3) as often was the case in the RC Desert 304 

(Hagler et al., 2022; Johnson et al., 2018; Zheng et al., 2018). The calibration improved the data most during the summer 305 

months with the MAE equal or below 5 µg m-3.   306 

 307 

 308 
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 309 

Figure 4: Bar charts showing the uncalibrated (gain = 1, offset = 0 + RH correction, monthly calibrated and drift calibrated MAE 310 
between the AQY 24-hour averaged PM2.5 (a) / PM10 (b) and the co-located reference. For comparison it also shows the MAE between 311 
the proxy reference and the co-located reference in black. (c) and (d) show the MAE between the 24-hour averaged BAM and co-312 
located T640, the GRIMM and the co-located T640 and the BAM and the co-located GRIMM.  313 

3.3.2 PM10 314 

As expected, the PM10 data from the sensors generally showed a poorer agreement with the co-located reference with a high 315 

MAE (16 – 36 µg m-3) and RMSE (18 - 49 µg m-3) and low R2 (0.2 – 0.6) (Table 4) for uncalibrated data. The uncalibrated 316 
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data were also underestimating PM10 concentrations, particularly in the RC Desert (INDIO, PALM) as shown by the low slope 317 

(0.1 – 0.3). This is in agreement with previous work which showed that the SDS011 underestimates PM10, particularly for 318 

particles greater than 5 µm which dominate in the RC Desert (Budde et al., 2018; Kuula et al., 2020; Ostro et al., 2000).  319 

The monthly and drift triggered MOMA calibrations had a clear positive impact on PM10 and improved the accuracy as 320 

indicated by a nearly 60% decrease in the MAE and a 40% decrease in the RMSE in the LA Region (CELA) (Table 4). 321 

However, the scatter remained and resulted in no improvement in the R2. The drift detection framework also improved the 322 

accuracy of the data at the two AQYs located in the IE. The monthly calibrations, on the other hand, decreased the accuracy 323 

at RIVR where the MAE and RMSE were higher after the calibration compared to uncalibrated data (Table 4).  324 

The Proxy/REF MAE (Fig. 4) was highest in the RC Desert suggesting that the SLMZ is not a suitable proxy for PM10 at 325 

INDIO. To some extent this is expected since the PM coarse fraction (PM10 – PM2.5) is more dominated by local sources than 326 

PM2.5 (Pinto et al., 2004).  327 

However, similar to PM2.5, there was month-to-month variability in the calibration performance, with better improvements 328 

during summer and poor performance in November, particularly in the IE and RC Desert (Fig. 4). Potential factors that 329 

contribute to the high MAE in November are further discussed in sect. 3.5.  330 

A comparison of the PM10 data from the reference instruments at RIVR (BAM, GRIMM, T640) shows that the MAE across 331 

different instrument types can be as high as ~15 µg m-3 and the GRIMM and T640 PM10 MAE is the highest – the opposite of 332 

the PM2.5 result. This observation illustrates the importance of the assumptions used to relate signal to aerodynamic radius and 333 

mass, which are different for different instrument types.  334 

 335 

3.4 Drift detection triggers 336 

The results from the drift detection framework tests are shown in Fig. 5 (K-S test p-value, MV-slope test, 𝒂̂𝟏 ,and the MV-337 

intercept test, 𝒂̂𝟎) for PM2.5 and PM10 measured by a PM sensor deployed in the LA region and one in the IE region. The black 338 

points indicate when the framework triggered a drift alarm and calibration. It is evident that most alarms were raised due to 339 

significant differences in the probability distributions (K-S test p-value < 0.05), followed by a change in the slope between the 340 

proxy and sensor (MV-slope test). Alarms triggered by the K-S test are spread across the whole year but generally more 341 

common during the summer months, possibly concentrations are lower then, so instrument noise becomes important and is 342 

determining the signal distribution across the observed range.  In the IE (RIVR) alarms related to changes in the MV-slope 343 

were clustered around February, May, and September/October suggesting more frequent changes in environmental conditions 344 

(e.g., RH) or particle composition and size during these months (discussed in sect. 3.5). The AQY sensor installed at the CELA 345 

AMS sent off alarms that were more spread across the whole year suggesting that sensor drift at this site was not related to 346 

seasons. The figure also shows that there are frequent calibrations within a month at both sites likely due to within month 347 

changes in meteorological and environmental conditions (discussed in sect. 3.5). This partly explains the better performance 348 

of the drift calibrated data compared to the monthly calibrated data.  349 

 350 
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 351 

Figure 5: Test statistics from drift detection framework for a site in the IE (a) / (c) and one in the City of LA region (b) / (d) for PM2.5 352 
and PM10, respectively. The black points show when the drift detection framework resulted in an alarm and triggered a calibration.  353 
The dotted lines represent the thresholds used to trigger a drift alarm: K-S test p-value < 0.05; -5 µg m-3 >  𝒂̂𝟎 > 5 µg m-3, 0.75 > 𝒂̂𝟏> 354 
1.25. A drift alarm (black dot) was triggered when thresholds were exceeded for consecutive 5 days.  355 

Figure 6 shows the temporal variability of monthly and drift calculated gains for sensors in the IE, LA and RC Desert Region. 356 

The temporal variation of the PM2.5 and PM10 gains calculated by the monthly calibrations (Fig. 6. (b)/(d)) show a distinct 357 

seasonal pattern with higher gains (~2-3) during autumn and winter and lower gains (~1) during the summer months, 358 

particularly in the IE region. An opposite pattern is visible in the RC Desert where gains were not only reaching a maximum 359 

over the summer months but were also around six times higher than those in the IE or LA region. The gains from the drift 360 
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detection framework were more variable as visible from the more frequent step changes but also showed some seasonal 361 

dependence. These results suggest that unlike calibrating for sensor drift (which would be shown as a continuous increase in 362 

the slope over time as observed when calibrating O3 Sensors (Miskell et al., 2019)) PM sensors are calibrated for different 363 

conditions, which can vary frequently as shown by the step changes of the drift gains.  364 

 365 

Figure 6: Temporal variation of the gains as calculated from the drift detection framework (a) and the monthly calibrations (b) for 366 
PM2.5 and PM10 (c) and (d), respectively. Step changes refer to a change in the calibration gain and a smooth curve was fitted through 367 
the data points to visualise the overall temporal trend of the gains.  368 
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 369 

3.5 Particle composition variability 370 

As observed in the previous sections, calibrating PM sensors can be challenging in complex areas where particle composition, 371 

size and physical properties (i.e., shape and refractive index) vary spatially and temporally (Kuula et al., 2020). In this section, 372 

we discuss some of the origins for the variations in particle composition with a specific focus on the Riverside area (RIVR 373 

AMS). 374 

The wind data from Riverside Municipal airport wind data shown in Fig. 7, clearly indicates the seasonal variation in the wind 375 

direction with N/NE winds dominating during the late autumn/winter months and W winds dominating during the rest of the 376 

year. It is also visible that wind is more variable in late fall/winter possibly explaining the more frequent alarms observed for 377 

these months at Riverside (Fig. 5). The N/NE winds correspond to the SAW which are associated with very dry downslope air 378 

flow from the northeast and common between October and April, with a peak in December and January (Aguilera et al., 2020). 379 

Typically, PM concentrations during SAW conditions are dominated by coarse particles of crustal components (Guazzotti et 380 

al., 2001; Qin et al., 2012). 381 

 382 

 383 

 384 

Figure 7: Nr. of hours dominated by different wind direction measured at Riverside Municipal Airport during each month. 385 

 386 

This is in agreement with observations from Fig. 8 which shows higher concentrations of Crustal Material and Elemental 387 

Carbon during N/NE and NW, reaching a maximum in November. Organic Carbon concentrations, likely driven by traffic 388 

emissions are similar across the dominant wind directions with maximum concentrations observed in November. Higher 389 

autumn and winter OC concentrations have previously also been observed by Daher et al. (2012) and were explained by 390 

stronger atmospheric stability which restricted atmospheric mixing. Higher concentrations of OC observed over the summer 391 

months when EC concentrations were low are likely due to increased PM advection and secondary organic aerosol formation 392 

as commonly observed for the inland locations downwind from urban sites (Daher et al., 2013). Trace ions (Chloride, Sodium 393 
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and Potassium ion) and secondary ions (nitrate, sulfate, ammonium), on the other hand, are highest downwind from the City 394 

of LA reaching a maximum in spring/summer due to increased photochemical activity and a larger contribution of sulfate 395 

sources and its precursor (fuel/ship emissions) upwind of the City of LA (Daher et al., 2013).  396 

 397 

Figure 8: Boxplots showing speciation concentrations collected at AMS – Rubidoux (RIVR) grouped into 5 categories (Panels) 398 
plotted against wind direction (wd) (a) and for each month of the year coloured by different seasons (b). Note – there was no data 399 
for SE winds which were not common during the study period. The lower and upper hinges represent the 25th and 75th percentiles 400 
with the median marked inside the box. The lower and upper whiskers extend 1.5*inter-quartile range from the hinge. 401 

 402 
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Figure 9 illustrates the relationship between the BAM and co-located sensor data coloured by wind direction and course 403 

fraction (1 – PM2.5/PM10). The figure reveals a clear slope dependence on the wind direction (<1 when wind was from a 404 

northeast origin and >=1 when wind from a western origin dominated), suggesting that it underestimates PM2.5 levels during 405 

north-eastern wind (SAW conditions). These conditions correspond to a higher proportion of coarse fraction, likely associated 406 

with Crustal Material, further highlighting that the AQY is underestimating larger particles (Fig. 9b). In fact, Budde et al. 407 

(2018) found that the SDS011 used in this study strongly underestimates particles > 2 µm in the PM2.5 measurement.  408 

 409 

 410 

Figure 9: Hourly uncalibrated low-cost sensor data against hourly co-located reference data at AMS - Rubidoux (RIVR) during 411 

2021, a) coloured by wind direction, b) coloured by the AQY PM coarse fraction: 1 – PM2.5/PM10. 412 

4 Conclusions and future work 413 

This work is part of a large study set out to determine if a remote calibration framework (MOMA), previously developed for 414 

the correction of drift in O3 and NO2 sensors (Miskell et al., 2018, 2019; Weissert et al., 2020) can be applied for PM2.5 and 415 

PM10 data from PM sensors. We identified suitable reference proxies based on distance and presented two approaches to 416 

remotely calibrate data from sensor networks, 1) at monthly intervals and 2) using a drift detection framework that triggers a 417 

calibration when drift is detected. Our results show that averaged across all seasons and sites MOMA reduces the PM2.5 RMSE 418 

from 8 to 5 µg m-3 with average PM2.5 concentrations of 13 µg m-3. This is comparable to the improvement achieved from a 419 

global correction applied to PurpleAir sensors where the 24-hour averaged PM2.5 RMSE was reduced from 8 to 3 µg m-3 420 

(average PM2.5 reference concentration: 9 µg m-3) (Barkjohn et al., 2021). While both the monthly and drift calibration 421 

improved the accuracy of the data on average, the drift correction framework performed better. Overall, the improvement due 422 
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to the MOMA calibration was more obvious for PM10 with an overall reduction in the RMSE from 30 to 21 µg m-3 at average 423 

PM10 reference concentrations of 39 µg m-3.  424 

We note that calibrating PM sensors is more challenging than calibrating gas sensors (e.g. O3, Miskell et al. 2019, NO2, 425 

Weissert et al. (2020)) due to the spatial and temporal variations of particle composition and the resulting differences in 426 

response between the reference BAM instruments and the PM sensors. This was visible in the IE where particle composition 427 

varied between desert dust (N/NE) and marine/urban aerosol (W) during the winter months, meaning that the monthly 428 

calibration applied forward may not be correct and data should be interpreted with caution. This also highlights that a more 429 

flexible proxy selection approach depending on dominant wind direction and particle source may be more suitable than using 430 

the same proxy site across all seasons.  431 

Since the optical PM sensor accuracy depends on the atmospheric aerosol composition it is expected that MOMA with the 432 

drift detection framework has an advantage over other methods such as calibration by co-location or using a mobile reference 433 

in that it is continuous whereas the other methods are performed at discrete time periods and do not account for aerosol 434 

composition changes between calibrations. Future work will focus on optimising MOMA and apply it to other PM sensors 435 

(e.g. PurpleAir sensors) (Collier-Oxandale, to be submitted).  436 

 437 
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