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Abstract. Spatial variation in snow depth is a main driver of heterogeneity in discontinuous permafrost landscapes, exerting a 

strong control on thermal and hydrological processes, vegetation dynamics, and carbon cycling. Topography and vegetation 

are understood to play an important role in driving variation in snow depth, but complex morphology often impedes efforts to 15 

disentangle these drivers. Maps of ground, vegetation and snow surface elevation were collected using an Unmanned Aerial 

Vehicle (UAV) over multiple years across a watershed on the Seward Peninsula in Alaska. Here, we quantify drivers of snow 

depth variation using the inferred maps of snow depth during peak snow accumulation in 2019 and 2022 and collocated ground 

surface elevation and vegetation height. A novel approach to extract microtopographic information from complex landscape 

morphologies is used to classify different features (e.g. drainage paths, risers and terraces, thermokarst patterned ground) and 20 

characterize their relationships with snow depth variation. A simple model developed using topographic information alone is 

shown to correlate strongly with local snow depth variation where vegetation height is low. We build a machine learning model 

to quantify snow trapping by shrub canopies in the watershed and show that snow trapping can be characterized by an 

exponential function of canopy height above snow (RMSE = 0.12 m, R2 = 0.5). Finally, we demonstrate that relationships 

between microtopography, vegetation height, and snow depth hold in years of deep and shallow snowpack. These results can 25 

be applied to improve representation of heterogeneity and vegetation-snow feedbacks in Earth System Models and to increase 

the spatial resolution of pan-arctic estimates of snow depth. 

1 Introduction 

Snow is a key component of high-latitude ecosystem dynamics. Snow warms high-latitude soils by insulating the ground 

surface from frigid winter air temperature, but the level of insulation provided varies strongly with snow depth (Zhang, 30 

2005). In discontinuous permafrost environments, where mean annual air temperatures approach 0 C, snow depth controls 

the ability of permafrost to develop and persist (Smith and Riseborough, 2002). In these environments, local variation in 
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snow depth can lead to coexistence of permafrost and talik (perennially unfrozen) soils in close proximity (Uhlemann et al., 

2021; Zoltai, 1993). Via its impact on soil thermal regimes, spatial variation in snow depth is a primary driver of landscape 

heterogeneity in discontinuous permafrost environments, exerting a strong control on hydrological processes, vegetation 35 

dynamics, and carbon cycling (Shirley et al., 2022). Because of this, understanding of high-latitude biosphere-atmosphere 

interactions would benefit from improved characterization and prediction of snow depth variation, particularly in 

discontinuous permafrost environments.    

 

In high-arctic polygonal tundra, ice-wedges create repeatable and recognizable microtopographic features over largely flat 40 

landscapes. In these relatively simple morphological landscapes, researchers have been able to identify strong associations 

between snow depth and microtopographic position using digital elevation maps (Wainwright et al., 2017). Most high-

latitude environments, however, are more topographically complex and delineation of microtopographic features is more 

challenging. Microtopography created by thermokarst thaw slumps, solifluction lobes, hillslope terraces, and drainage paths 

is irregular, and is typically masked in digital elevation models by sloping or mountainous terrain. In these environments, 45 

associations between microtopography and snow depth have been suggested using fractal dimensionality (Deems et al., 

2006) and topographic indices like curvature (Dvornikov et al., 2015; Revuelto et al., 2020), but these associations have not 

been developed for snow depth prediction. Recent work has leveraged topographic information to predict snow depth 

variation using machine learning algorithms (Bennett et al., 2022; Meloche et al., 2022), but interpretation of machine 

learning models is challenging and their scope may be limited to the spatial domain in which they were trained (Shirley et 50 

al., 2023). More effort is needed, therefore, to identify explicit relationships between terrain morphology and snow depth 

variation that can be used to advance understanding and prediction of snow depth across the high-latitudes. 

 

At high–latitudes, an association between shrubs and deeper than average snow depths has been well established (Frost et al., 

2018; Myers-Smith and Hik, 2013; Sturm et al., 2005). This association has largely been attributed to snow trapping by 55 

shrub canopies, and such physical trapping effects have been demonstrated using snow fences and other experimental 

manipulations (Myers-Smith and Hik, 2013; Wipf and Rixen, 2010; O’Neill and Burn, 2017). However, in these cold 
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environments, shrubs benefit from deeper snowpacks due to increased nitrogen mineralization and uptake (Sturm et al., 

2005; Shirley et al., 2022), so it is also possible that they preferentially grow in landscape positions covered by deeper 

snowpacks. In complex topographical shrublands, therefore, separating the influence of canopy trapping and topographic 60 

position on snow depth presents a challenge.  

 

In this work, we develop tools to separate and quantify drivers of snow depth variation at the landscape scale to test the 

hypothesis that local variation in snow depth is driven by both topography and vegetation in these landscapes. Using an 

Unmanned Aerial Vehicle (UAV), we inferred maps of ground elevation, vegetation height, and snow depth during peak 65 

snow accumulation in 2019 and 2022, across a watershed on the Seward Peninsula in Alaska. Here, we develop a novel 

approach to extract microtopographic features from complex landscape morphologies and use it to characterize relationships 

between microtopography and snow depth across the watershed. In particular, we show that patterns of snow accumulation 

differ between topographic features (e.g. drainage paths, risers and terraces, thermokarst patterned ground). Then we 

leverage the above topographic analysis in conjunction with machine learning algorithms to quantify shrub canopy snow 70 

trapping in the watershed, and examine how this trapping varies with terrain, wind direction, and shrub distribution. Finally, 

we compare the interactions between microtopography, vegetation height, and snow depth in 2019, when the watershed was 

covered by a deep snowpack, and in 2022, when the watershed was covered by a much shallower snowpack.  

2 Data and Methods 

2.1 Study Site 75 

This study is focused on a watershed located about 40 km northwest of Nome on the Seward Peninsula in Alaska (64.72°N, 

165.94°W). This watershed (Teller 27) has been the subject of extensive investigation by the Next-Generation Ecosystem 

Experiment (NGEE) Arctic project (Uhlemann et al., 2021; Bennett et al., 2022; Léger et al., 2019; Shirley et al., 2022). The 

watershed, which covers an area of approximately 2.3 km2, is characterized by a 130 m elevation gradient and is underlain 

by discontinuous permafrost (Uhlemann et al., 2021). Three main types of topographic features are present in the study 80 

domain. A stream that cuts through the center of the watershed is the most prominent topographic feature. The midslope 
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region is characterized by a series of risers and terraces that cut perpendicular to the primary slope direction. The flatter 

regions at the top and bottom of the watershed are characterized by thermokarst patterned ground, with raised patches of 

near-surface permafrost distributed among lower wetland areas with deeper active layers. The watershed is covered by low-

lying tundra vegetation (dwarf shrubs, bryophytes, graminoids, and sedges) interspersed with patches of deciduous willow 85 

shrubs (Salix spp) ranging in height from 0.5 to 3 m (Konduri et al., 2022). 

 

2.2  Maps of snow depth, surface elevation, and vegetation height collected using UAV 

In order to produce maps of snow depth, topography, and vegetation height, UAV photogrammetric surveys were conducted 

across the watershed. This technique has been established as an effective way to map snow depth in high-latitude and 90 

mountainous terrain (Wainwright et al., 2017; Fernandes et al., 2018; Nolan et al., 2015; Goetz and Brenning, 2019). A 

number of studies have performed extensive evaluation of photogrammetric methods for snow depth mapping and have 

demonstrated the effectiveness of this cost-effective and efficient method (Revuelto et al., 2021; Harder et al., 2020, 2016; 

Avanzi et al., 2018; Goetz and Brenning, 2019). The RMSE of photogrammetric snow depth measurements in these studies 

ranges from less than 10 cm to 30 cm across a variety of terrain types and snow conditions.  95 

In this study, multiple photogrammetric surveys involving a UAV-mounted digital camera (Matrice 210 with X5S camera, 

DJI) and Ground Control Points (GCPs) were performed to map the surface elevation at various times of year and infer 

vegetation height and snow depth spatial variability across the studied watershed. The surveys covered ~1.7 km2 of the 2.2 

km2 watershed with missing areas located along the edges of the watershed. Each survey consisted of 7-10 UAV flights at an 

elevation between 70 and 100 m above ground surface, providing imagery with a ground resolution in the order of 2 to 5 cm. 100 

The GCPs involved approximately 50 targets that were surveyed with a Real Time Kinematic (RTK)-GPS. The GCPs were 

used in conjunction with the UAV-based imagery to generate surface elevation models with 10 cm grid cell size using a 

structure-from-motion-based reconstruction software (Agisoft Metashape) (Dafflon et al., 2016; James and Robson, 2012; 

Wainwright et al., 2017). Surface elevation models were inferred for multiple dates representing times of year close to 
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highest plant and leaf density (July 19, 2017), maximum snow depth (April 1, 2019, and April 11, 2022), and low plant and 105 

leaf density after the first bare-ground date (June 9, 2019). 

Several products were created from the surface elevation models. We generated a digital terrain model (DTM) proxy from 

the June 9 2019 surface elevation model by keeping and interpolating only the grid cells with values that were less than 0.5 

m higher than the minimum value in a centered 5 m side window. This approach aimed at removing grid cells that were 

linked to the presence of willow branches and/or early leaves, with the caveat of slightly smoothing the elevation change at 110 

geomorphological features boundaries. Vegetation height and snow depth products were obtained by subtracting the DTM 

from the snow and vegetation surface elevation models (April and July datasets respectively). The comparison of the 

generated products with RTK-GPS measurement along several transects indicate a RMSE of 16 cm for the snow depth 

product and an RMSE of 17 cm for the terrain proxy (Figure 2). Some of this error may be attributed to the accuracy of the 

RTK-GPS and snow probe measurements. We consider the overall quality of the dataset to be high, with the  largest errors 115 

present along the edge of terraces, which are smoothed in the terrain proxy, and a few locations in dense willow patches. 

 

2.3  Stacked directional filtering 

Fine-scale topographic features present in the studied watershed, even if they are easily identified on the ground (such as 

hummocks) are masked in the watershed DTM by coarser-scale topographic variation (Figs. 1,4). Standard metrics to extract 120 

topographic information like topographic position index operate at a single spatial scale, result in strong smoothing of the 

underlying terrain, and are blind to directional dependence of topographic variations. Therefore, these metrics are not well 

suited for use in highly heterogeneous landscapes (Reu et al., 2013). Here, we develop a filtering technique (stacked 

directional filtering) to extract topographic features from complex landscapes that preserves the spatial structure and 

sharpness of the features.  125 
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In the stacked directional filtering approach, an image is iteratively filtered along perpendicular directions at increasingly 

coarse scales. At a given spatial scale i,  the mean value along two perpendicular lines of length i (𝑧𝑖,𝑚−𝑖:𝑚+𝑖,𝑛 

and 𝑧𝑖,𝑚,𝑛−𝑖:𝑛+𝑖)  is subtracted from the value of the central point (𝑧𝑖,𝑚,𝑛) at every location m,n in the image (Eqs. (1),(2)). 

This creates two maps that contain the information content of the image at scale i and in each direction. These maps are 130 

subtracted from the base image to create a new base image for analysis at the next coarsest spatial scale (Eq. (3)). The 

process begins at the finest spatial scale and is iterated until the coarsest spatial scale of interest is reached. These maps can 

be analyzed individually for information at particular scales and directionalities, or summed to produce maps that have 

coarse features removed (Eq. (4)). 

𝑦1,𝑖,𝑚,𝑛   = 𝑧𝑖,𝑚,𝑛 − 𝑧𝑖,𝑚−𝑖:𝑚+𝑖,𝑛 ,          (1) 135 

𝑦2,𝑖,𝑚,𝑛   = 𝑧𝑖,𝑚,𝑛 − 𝑧𝑖,𝑚,𝑛−𝑖:𝑛+𝑖 ,          (2) 

 𝑧𝑖+1,𝑚,𝑛  =  𝑧𝑖,𝑚,𝑛 − (𝑦1,𝑖,𝑚,𝑛  +  𝑦2,𝑖,𝑚,𝑛)                    (3) 

𝑥𝑖,𝑚,𝑛  = ∑𝑖

𝑗 = 𝑖0
(𝑦1,𝑗,𝑚,𝑛  +  𝑦2,𝑗,𝑚,𝑛)                           (4) 

In this work, we filter the DTM at scales that increase by 10 m from 11 m to 221 m. Directions 1 and 2 are chosen to be 

roughly parallel and perpendicular to the dominant hillslope direction (down-slope and cross-slope), respectively.  140 

 

2.4  Extraction of topographic features 

We use topographic maps to locate thermokarst patterned ground, terrace/riser features, and the stream feature in the 

watershed. For simplicity, we take the top part of the watershed as representative of thermokarst patterned ground. Filtered 

topographic images at 21 m scale are used to roughly extract the other features. The standard deviation of a 100 m by 100 m 145 

region centered on each location in the watershed is calculated for both the down-slope and cross-slope directions. The 

stream feature is classified by taking all points with standard deviation greater than 0.1 m in the cross-slope direction at this 

scale. Terrace/riser features are classified by taking points that are not part of the stream feature and have standard deviation 

greater than 0.07 m in the down-slope direction. Terrace/riser features identified in the bottom right quadrant of the 
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watershed are excluded because of their proximity to patches of tall shrubs. The classified regions for each feature are shown 150 

in Fig. S2. 

 

2.5 Simple topographic model of snow depth variation (TM_SV) 

We created a simple model of snow depth variation in the watershed by performing a weighted sum of the stacked 

directional filtered topographic maps, with the weights determined by fitting filtered 2019 snow maps (𝑆𝐷1,𝑖,𝑚,𝑛  and 155 

𝑆𝐷2,𝑖,𝑚,𝑛 ) at a given scale to filtered topography maps (𝑦1,𝑖,𝑚,𝑛  and 𝑦2,𝑖,𝑚,𝑛 ) at that same scale. For each scale i, ranging 

from 11 to 212 m, fit coefficients 𝑤𝑖 are determined by performed a linear fit of (𝑦1,𝑖,𝑚,𝑛  +  𝑦2,𝑖,𝑚,𝑛) to (𝑆𝐷1,𝑖,𝑚,𝑛  and 

𝑆𝐷2,𝑖,𝑚,𝑛 ) with the intercept set to zero (Fig. S3). Snow depth variation (TM_SV) at each location m,n is modeled as the sum 

of these weighted topographic maps (Eq. (5)).  

𝑇𝑀_𝑆𝑉𝑚,𝑛  = ∑𝑖

𝑗 = 𝑖0
[𝑤𝑖 × (𝑦1,𝑗,𝑚,𝑛  +  𝑦2,𝑗,𝑚,𝑛)]                  (5) 160 

2.6  Shrub canopy snow trapping field 

Snow trapping by objects like snow fences and shrub canopies depends on the shape of the object and extends beyond its 

edges. This means that a simple map of vegetation height cannot capture the spatial structure of canopy-intercepted snow. To 

better characterize the relationship between canopy structure and snow trapping, we introduce the shrub canopy snow 

trapping field. The shrub canopy snow trapping fields (𝜙1 and 𝜙2) are defined at each point m,n as the sum of neighboring 165 

vegetation height (ℎ𝑖) weighted by the inverse of the distance (r) to the power 1 and 2 (Eqs. (6), (7)). For computational 

efficiency, only shrubs that lie within a 50 m by 50 m window of each point contribute to 𝜙1 and 𝜙2.  Here, we also limit the 

shrub height such that the maximum value of ℎ𝑖 is 1.5 m and normalize the values of 𝜙1 and 𝜙2 such that they range from 0 

to 1. 

𝜙1   = ∑𝑖 ℎ𝑖𝑟𝑖
−1                                          170 

 (6) 
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𝜙2   = ∑𝑖 ℎ𝑖𝑟𝑖
−2                                          

 (7) 

2.7  Machine-learning estimation of snow trapping by shrub canopies 

To estimate the trapping of snow due to shrub canopies, we create a machine learning model of snow depth across the 175 

watershed using the following predictor variables: filtered maps at each scale and directionality (Section 2.3), the simple 

topographic model (Section 2.5), slope and aspect calculated using maps of  𝑧𝑖 at each scale, elevation, vegetation height, 

shrub canopy snow trapping fields (𝜙1 and 𝜙2; Section 2.6), and the gradients of the shrub canopy snow trapping fields in 

the cross-slope and down-slope directions. We use the boosted regression tree (BRT) algorithm, which excels at capturing 

non-linear response curves and interactions between variables (Elith et al., 2008). The BRT model is implemented in R using 180 

the ‘gbm’ package (Greenwell et al., 2020) with a gaussian error distribution, bag fraction of 0.5, tree complexity of 3, a 

learning rate of 0.03, and a tree number optimized with 10-fold cross-validation. Model performance is strongly dependent 

on the amount of data used for training. The model is trained using 15000 randomly selected data points, or ~2% of the full 

dataset, as this model performs only marginally better than a model trained with 5000 points. The model was used to predict 

snow depth across the watershed twice: first with the measured shrub height and potential, and then with the shrub height 185 

and shrub potential set to zero everywhere. The difference between these two maps is taken to be the amount of snow 

accumulated by shrub canopies throughout the watershed. 

3 Results and Discussion 

 3.1  Topographic variation and snow redistribution 

Using the novel technique of stacked directional filtering, we extracted scale- and direction-dependent information from the 190 

watershed DTM and 2019 snow depth maps (Fig. S1). Taking the standard deviation of each layer of the image stacks as a 

metric of relative importance, we find that topography varies across all scales while variation in snow depth is attenuated at 
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scales larger than ~100 m (Fig. 3). We grouped 100 m by 100 m patches by topographic feature (excluding patches of tall 

shrubs) and compared the scale-dependence of topography and snow variation among the feature types (Fig. 3). 

 195 

The thermokarst patterned ground at the top of the watershed is relatively flat at coarse scales, and the features are not 

characterized by strong directionality. Therefore, topographic variation is similar in both the down-slope and cross-slope 

directions, and peaks at the finest scales. For this type of terrain, snow variation is characterized by almost identical spatial 

trends as the topography.  

 200 

The stream feature, in contrast, cuts across steeper terrain in the down-slope direction. Topographic variability is highest in 

the cross slope direction, peaking at scales of 40 m to 60 m. Cross-slope snow variation is also much higher in the stream 

feature than the rest of the watershed at all scales, although snow variability peaks at finer scales (20 m to 30 m) than 

topographic variability.    

 205 

Terraces and risers run perpendicular to the hillslope direction. These features are characterized by more topographic 

variation in the downslope direction than the rest of the watershed, with a small peak at ~40 m. Snow variation in the down-

slope direction is also higher than the watershed average at scales of 30 m to 60 m. Because the terrace and riser features lie 

near the stream feature (100 m to 200 m), topographic variation is also higher in the cross-slope direction at these scales. The 

peak at 100 to 200 m is completely attenuated in the snow variation, however, demonstrating that at these scales snow 210 

redistribution is insensitive to even the largest topographic features in the watershed. 

 

In spite of the complexity present in the watershed, we find that much of the local variation in snow depth can be explained 

by a very simple model (TM_SV). Developed with the hypothesis that snow depth variation at a given spatial scale is related 

to topographic variation at the same scale, we model snow depth variation as a weighted sum of the filtered topographic 215 

maps, with the weights determined by fitting filtered snow maps at a given scale to filtered topography maps at that same 
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scale . The fitted weights gradually decrease with increasing scale, and topographic information is almost completely 

attenuated at scales coarser than 100 m (Fig. S3).   

 

Across the watershed, the TM_SV model performs consistently well, with R2 values greater than 0.5 for 85% of 100 m x 100 220 

m patches, but there are regions where model performance is low. Subpanels d, e, and g of Fig. 4 demonstrate the ability of 

TM_SV to transform topographic information into a very successful proxy of snow depth at four 100 m x 100 m patches 

across the watershed. Further, the scale- and directional- dependencies of the simple model are similar to those of snow 

depth for each topographic feature described previously (Fig. 3). Regions of low TM_SV performance are sites generally 

located in or near patches of tall shrubs. For example TM_SV model does not work well in the patch presented in subpanels 225 

f of Fig. 4, which is characterized by a transition from tundra vegetation to tall shrubs. The success of the simple model 

across much of the watershed provides strong evidence that snow is redistributed from topographic highs to topographic 

lows at scales less than 100 m. And, its failure near tall shrub patches suggests that shrub canopies also control snow depth 

variation in the watershed.  

 230 

3.2  Snow trapping by shrub canopies 

To better understand the influence of shrubs on snow depth variation, we develop an approach that uses machine learning 

algorithms to quantify shrub canopy snow trapping in complex terrain. The machine learning model performs very well 

across the watershed, with an R2 of 0.95 and an RMSE of 9.5 cm, even though only 2% of the data was included in the 

training set (Fig. S5). The top five most important predictor variables, calculated using the number of times a variable is used 235 

for prediction (Elith et al., 2008), include the TM_SV and both shrub potentials, 𝜙1 and 𝜙2 (Table S1). We then set the shrub 

height and shrub potential to zero everywhere and use the machine learning model to predict snow depth in the absence of 

shrubs. The difference between the two machine learning models is an estimate of the snow accumulated by shrub canopies 

throughout the watershed (Fig. 5). 

 240 
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Previous work in the watershed predicted that, due to nutrient and water requirements, shrubs grow preferentially in soils 

covered by thick snowpacks (Shirley et al., 2022). Indeed, many of the shrubs in the watershed are located in regions that 

have thick snowpacks because of topographic variation (e.g. in the stream bed or next to risers). In these locations, shrub 

canopies have minimal impact on snow depth. However, there are a number of large patches of tall shrubs across the 

watershed that are not located in topographic lows. These patches have a strong impact on local snow redistribution, 245 

increasing snow depth by more than a meter in some places (Fig. 5). This result suggests that shrub growth and snow 

accumulation are connected by a positive feedback mechanism. 

 

To better illustrate how snow trapping by shrub canopies varies across the watershed, we focus on the three large shrub 

patches demarcated in Fig. 6. The impact of each patch on local snow depth is detailed in the subplots of this figure.  In all 250 

three patches, snow trapping is highest where shrub canopies are densest, but the shrubs also have an impact on snow depth 

beyond the canopy edges.  

 

Shrub patches, like snow fences, interrupt laminar wind flow, leading to the deposition of suspended snow particles beneath 

the patches of turbulent air (Pugh and Price, 1954). In Fig. 5, patch A is an isolated patch of shrubs located in a region of 255 

relatively uniform topography, which presents an interesting illustration of how shrubs and wind interact to affect snow 

redistribution. By chance, this patch is shaped like an airfoil positioned at a slight angle to the prevailing wind direction. The 

pattern of snow trapping near this shrub patch bears a striking resemblance to turbulent airflow paths created by airfoils in 

historic wind tunnel experiments (Fig. 6).  Just as the highest density of turbulent flow is located on the inside edge of the 

airfoil, most of the snow that is accumulated outside of the shrub canopy is located on the inside edge of the patch. Also, as 260 

the turbulent flow extends past the upwind edge of the airfoil, snow is accumulated past the upwind edge of this shrub patch. 

 

Patches B and C, which are located lower in the watershed near stronger topographic features, demonstrate that proximity to 

other features can change how snow is intercepted near the patch (Fig. 5). In shrub patch B, the impact of canopy trapping on 

snow depth extends 15-20 m beyond the patch, but rapidly decays. Shrub patch C, however, is ~50 m away from another tall 265 
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shrub patch. In this patch, the additional snow trapping due to canopy trapping is maintained at 30-50 cm across the entire 

distance between these two patches. The width of these patches is larger than the distance between them, which is likely 

important in order to produce this effect. A similar effect can be observed at finer scales within these shrub patches. For 

example, at meter -20 in panel d, canopy trapping of snow is uninterrupted by a ~20 m gap in the shrub canopy.   

 270 

3.3  Interannual comparison of snow depth variation 

In addition to the 2019 snow maps, we also collected snow depth maps across the watershed at peak snow depth in 2022 

(Fig. 1). While there was less snow in 2022 (59 cm on average across the watershed, maximum 439 cm in the stream feature) 

than in 2019 (100 cm on average, maximum 464 cm in the stream feature), the relationships between topography, vegetation, 

and snow remained largely consistent between the two years. As in 2019, snow was thickest in topographic lows and in 275 

shrub patches in 2022 (Fig. 5, Fig. S4). Further, the relationships between snow variability and spatial scale were largely the 

same for the stream, terrace, and patterned ground features in both years (Fig. 3). 

 

There are a number of differences in the distribution of snow across the watershed between the two years, however. In 

particular, there is relatively less snow at the top of the watershed in 2022, and relatively much more snow accumulated in 280 

the stream feature in the middle of the watershed (Fig. S6). These differences could be caused by a number of factors. 

Topography driven snow redistribution could behave differently in low snowpack conditions relative to high snowpack 

conditions. Or, differences in weather conditions (e.g. high wind speeds, rain-on-snow events, spatial variability in 

precipitation) between the two years could drive this change. More data is needed to disentangle these potential causes.  

 285 

We also observe a difference in shrub canopy trapping of snow between the two years. We performed the machine learning 

analysis of canopy snow trapping using the dataset from 2022, and found increased trapping in 2022 compared to 2019 (Fig. 

5, Fig. 7). In many places, snow trapping was ~50 cm greater in the large shrub patches in 2022. We also observe trapping in 

shorter shrub patches and shrub patches located in topographic lows that did not impact snow depth in 2019. We attribute 
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this difference in shrub canopy snow trapping to lower mean snow depth across the watershed. Since the shrubs rise higher 290 

above the snow surface in 2022 than in 2019, more turbulence is created which leads to greater canopy trapping of snow. 

Indeed, we find that shrub height above the predicted snow surface in the absence of shrubs has a similar relationship to 

canopy snow trapping in both years (Fig. 7). This trend can be fit with a simple exponential function (R2 = 0.51, RMSE = 12 

cm).  

 295 

Local (O(~100m)) relationships between topographic variation, vegetation, and snow depth variation are consistent in 2019 

(high snowpack) and 2022 (low snowpack), but differences in patterns of snow accumulation at coarser scales between the 

two years remain unexplained. 

 

4 Conclusions 300 

In this work, we analyze interactions between terrain, vegetation, and snow depth variation using maps of ground, vegetation 

and snow surface elevation that were collected using an Unmanned Aerial Vehicle (UAV) across a watershed on the Seward 

Peninsula in Alaska. The novel stacked directional filtering approach presented here is shown to effectively uncover 

topographic features across scales of interest in complex terrain. We demonstrate that topography controls snow depth 

variation at scales on the order of 100 m, and show that snow redistribution varies among landscape features. The stacked 305 

directional filtering approach could be applied to other research domains in which topography is a strong control, e.g. 

characterization of the controls on soil moisture across a watershed. This approach offers advantages over traditional 

topographic indices and streamflow analyses because it extracts information across scales and directions and preserves the 

shape and sharpness of microtopographic features.   

 310 

By applying machine learning algorithms to the extracted topographic information and metrics of vegetation distribution, we 

disentangle the separate impacts of topography and vegetation on snow depth variation across the watershed. We show that 

canopy trapping in the large shrub patches can increase snow depth by a meter or more. Since shrubs depend on thick 
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snowpacks to warm the soil in this watershed (Shirley et al., 2022), this finding points to the existence of a shrub-snow 

feedback mechanism that likely plays an important role in the creation of the strong landscape heterogeneity observed in 315 

these environments.  

 

To our knowledge, this paper represents the first attempt to quantify snow trapping by natural shrub canopies in 

morphologically complex landscapes. The simple relationship developed here between shrub structure and snow trapping 

may be immediately useful for application in high-latitude earth system modeling, particularly since snow trapping by shrub 320 

canopies is strongly tied to key processes in these ecosystems (e.g. shrub expansion and permafrost degradation). These 

findings can also be used to parameterize and test numerical snow-transport models that incorporate both topographic and 

vegetation information (e.g. SnowModel, (Liston and Sturm, 1998). Future work could leverage these techniques to develop 

more sophisticated relationships between canopy structure and snow trapping that incorporate information related to shrub 

density and spatial distribution. 325 

 

Finally, we compare spatial variation in snow depth across the watershed between two years with very different average 

snowpacks. While the relationships between topography, vegetation, and snow were similar between years, some differences 

in the distribution of snow across the landscape were observed. More data and analysis is needed to understand drivers of 

intra- and inter-annual variability in snow depth distribution across the watershed. Further, similar analyses should be 330 

conducted at more watersheds to better understand the impact of variation in aspect, slope, and precipitation on the 

relationships identified here. This work is needed to develop reliable pan-arctic estimates of snow depth at high spatial 

resolution.  
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 415 
Figure 1. Digital terrain map, vegetation height, and snow depth. Digital terrain map (DTM), vegetation height, and snow depth in 

2019 and 2022 are shown for the studied watershed. Snow depths in the stream feature can be as high as 4.5 m in both 2019 and 2022, but 

we limit the ranges of these figures to show snow depths up to 2 m for clarity. Contour lines are drawn at a 3 m distance from vegetation of 

1 m height or taller.  

 420 
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Figure 2.  Validation of digital terrain map and snow depth. UAV-derived snow depth products were validated using transects of RTK-

GPS measurements. Orthomosaic of the transects and surrounding area is shown on the left. Contour lines are drawn at a 3 m distance 425 

from vegetation of 1 m height or taller. A snow depth map of the transects and surrounding area is shown in the middle. Contour lines are 

drawn at terrain elevation isolines with a spacing of 1m. UAV and RTK-GPS measurements for each transect are shown on the right. The 

terrain surface measured by RTK-GPS (blue, dashed) and extracted from UAV imagery (red), the snow surface measured by RTK-GPS 

(orange, dashed) and extracted from UAV imagery (purple), and the vegetation height extracted from UAV imagery (green) are shown for 

each transect. 430 
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Figure 3.  Scale- and directional-dependence of topography, snow, and topographic model of snow depth variation (TM_SV) for 

each feature. Standard deviation (SD) of 100 m x 100 m patches at each scale is shown for the filtered topographic maps (top row), 435 

filtered snow depth maps in 2019 (second row) and 2022 (third row), and the TM_SV model (bottom row) in both the down-slope (left 

column) and cross-slope (right column) directions. In each panel, the mean (solid lines) and 25th-75th percentile ranges (shaded regions) for 

the 100 m x 100 m patches are shown for the stream feature (blue), terrace and riser features (red), and the patterned ground (green). The 

watershed mean is shown as a black, dashed line. 
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 440 
Figure 4. Topographic model of snow depth variation (TM_SV). The topographic model of snow depth variation (TM_SV) across the 

watershed is shown on the left. R2 values for linear fits of 100 m x 100 m subsets of the TM_SV to 100 m x 100 m subsets of 2019 snow 

depth are shown in the middle. Maps of mean-centered topography, TM_SV, and 2019 snow depth are shown for five example 100 m x 

100 m subsets on the right. Contour lines are drawn at a 3 m distance from vegetation of 1 m height or taller.  
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 445 
 

 

Figure 5. Snow trapping by shrub canopies. Modeled snow trapping by shrubs across the watershed is shown for 2019 (left) and 2022 

(middle). Contour lines are drawn at a 3 m distance from vegetation of 1 m height or taller, large shrub patches A, B, and C are labeled in 

the middle panel, and the locations of five transects that cross the large shrub patches are shown in the left panel. The measured snow 450 

surface (black, dashed), predicted 2019 snow surface (blue), predicted 2019 snow surface in the absence of shrubs (red), terrain elevation 

(black), and vegetation surface (green) are shown for each transect on the right.  
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Figure 6. Turbulent airflow and snow trapping by shrub canopies. Turbulent airflow created by an airfoil in an historic wind tunnel 

experiment is shown on the left (Photo: DLR, CC-BY 3.0). 2019 snow trapping by shrub patch A is shown on the right.  White arrows 

denote the prevailing wind direction in the watershed between December 2018 and March 2019 for wind speeds greater than 5 m/s (small 465 

arrow) and wind speeds greater than 10 m/s (large arrow). Wind speeds and directions are taken from a weather station at the top of the 

watershed (Busey et al. 2017). Contour lines are drawn at a 3 m distance from vegetation of 1 m height or taller. 
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Figure 7. Snow trapping as a function of shrub canopy height. Mean (solid lines) and 25th-75th percentile (shaded regions) snow 

trapping by shrub canopies for 2019 (blue) and 2022 (red) is plotted as a function of 20 m mean shrub height (top) and as a function of 20 480 

m mean shrub height above the modeled snow surface in the absence of shrubs (bottom). An exponential curve fit to the 2019 and 2022 

data is shown in the bottom panel (black, dashed).  
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