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Abstract. The present work proposes a prediction model of significant wave height (SWH) and average wave period (APD) 

based on variational mode decomposition (VMD), temporal convolutional networks (TCN), and long short-term memory 

(LSTM) networks. The wave sequence features were obtained using VMD technology based on the wave data from the 10 

National Data Buoy Center. Then the SWH and APD prediction models were established using TCN, LSTM, and Bayesian 

hyperparameter optimization. The VMD-TCN-LSTM model was compared with the VMD-LSTM (without TCN cells) and 

LSTM (without VMD and TCN cells) models. The VMD-TCN-LSTM model has significant superiority and shows 

robustness and generality in different buoy prediction experiments. In the 3-hour wave forecasts, VMD primarily improved 

the model performance, while the TCN had less influence. In the 12-, 24-, and 48-hour wave forecasts, both VMD and TCN 15 

improved the model performance. The contribution of the TCN to the improvement of the prediction result determination 

coefficient gradually increased as the forecasting length increased. In the 48-hour SWH forecasts, the VMD and TCN 

improved the determination coefficient by 132.5 % and 36.8 %, respectively. In the 48-hour APD forecasts, the VMD and 

TCN improved the determination coefficient by 119.7 % and 40.9 %, respectively. 

1 Introduction 20 

Ocean waves are crucial ocean physical parameters, and wave forecasts can significantly improve the safety of marine 

projects such as fisheries, power generation, and marine transportation (Jain et al., 2011; Jain and Deo, 2006). The earlier 

wave forecasting methods that emerged were semi-analytical and semi-empirical, including the Sverdroup-Munk-

Bretscheider (SMB) (Bretschneider, 1957; Sverdrup and Munk, 1947) and Pierson-Neumann-James (PNJ) methods 

(Neumann and Pierson, 1957). However, empirical methods cannot describe sea surface wave conditions in detail. The most 25 

widely used methods for wave forecasts are those of the third-generation wave models, including WAM (Wamdi, 1988), 

SWAN (Booij et al., 1999; Rogers et al., 2003), and WAVEWATCH III (Tolman, 2009). Nevertheless, numerical modelling 

methods must consume much computational resources and time (Wang et al., 2018). 

Neural network methods achieve higher-quality forecasting results that are less time and computationally cost-consuming. 

Several neural network methods have been widely used for wave forecasts, e.g., artificial neural networks (ANN) (Deo and 30 
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Naidu, 1998; Mafi and Amirinia, 2017; Kamranzad et al., 2011; Malekmohamadi et al., 2008; Makarynskyy, 2004), 

recurrent neural networks (RNN) (P. et al., 2020), and long short-term memory (LSTM) networks (Gao et al., 2021; 

Ni and Ma, 2020; Fan et al.,  2020). The prediction model designed using neural network algorithms individually has 

poor generalization ability due to the strong non-stationarity and non-linear physical relationship of waves. 

Signal decomposition methods are effective in extracting original data features. To further improve the prediction model 35 

performance, some researchers have developed hybrid models of signal decomposition and neural networks to forecast wave 

parameters. For example, empirical wavelet transform (EWT) (Karbasi et al.,  2022), empirical mode decomposition 

(EMD) (Zhou et al., 2021; Hao et al., 2022), and singular spectrum analysis (SSA) (Rao et al., 2013). However, 

EMD and its extended algorithms suffer from mode confounding and sensitivity to noise (Bisoi et al., 2019), and wavelet 

transforms methods lack adaptivity (Li et al., 2017). Variational mode decomposition (VMD) (Dragomiretskiy and 40 

Zosso, 2014) has overcome the disadvantages of EMD and is currently the most effective decomposition technique (Duan 

et al.,  2022). Models combining VMD and neural networks are applied in forecasting various time series data. For 

example, stock price prediction (Bisoi et al., 2019), air quality index prediction (Wu and Lin, 2019), wind power 

prediction (Duan et al., 2022), runoff prediction (Zuo et al., 2020), and wave energy prediction (Neshat et al., 

2022; Jamei et al.,  2022). 45 

Recent studies have shown that temporal convolutional networks (TCN) outperform ordinary network models in handling 

time-series data in several domains, such as flood prediction (Xu et al., 2021), traffic flow prediction(Zhao et al., 2019), and 

dissolved oxygen prediction (Li et al., 2022a). The TCN cells can significantly capture the short-term local feature 

information of the sequence data, while the LSTM cells are adept at capturing the long-term dependence of the sequence 

data. The wave data observed by the buoy contains both short-term features and long-term patterns of wave variability and is 50 

very well-suited for forecasting using a hybrid prediction model that includes the advantages of TCN and LSTM cells. 

Hyperparameter optimization (HPO) for neural networks is commonly regarded as a black-box problem that avoids neural 

network problems such as overfitting, underfitting or incorrect learning rate values, which tend to occur in constructing deep 

learning models. The latest HPO techniques are grid search, stochastic search, and Bayesian optimization (BO), etc. BO 

provides a better hyperparameter combination in a shorter time compared to traditional grid search methods (Rasmussen, 55 

2004). It is more robust and less probable to be trapped in a local optima problem. Therefore, BO is the most widely used 

HPO algorithm, which has been applied to wave prediction models based on neural network algorithms (Zhou et al., 2022; 

Cornejo-Bueno et al., 2018). 

Significant wave height (SWH) and average wave period (APD) are essential parameters in calculating wave power (De 

Assis Tavares et al., 2020; Bento et al., 2021). Their forecasts need to consider the original characteristics of waves, short-60 

term variability, and long-term dependence. Therefore, in the study, we used wave data from the National Data Buoy Center 

(NDBC) around the Hawaiian Islands to design a hybrid VMD-TCN-LSTM model to forecast SWH and APD, and the BO 

algorithm was used to obtain the most optimal hyperparameters for the network model. 
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The remaining sections of this paper are organized as follows. In Section 2, the data and pre-processing are described, and in 

Section 3, the methodologies employed in the study are presented. In Section 4, the decomposition process of the wave series 65 

data, the overall structure of the prediction model and the hyperparameter optimization results are presented. Section 5 

discusses the performance differences between the VMD-TCN-LSTM, VMD-LSTM, and LSTM models at various 

forecasting periods. Finally, Section 6 provides our conclusions. 

2 Materials 

2.1 Data source 70 

Buoy measurements are the most common data source for wave parameter forecasts (Cuadra et al., 2016). The research used 

buoy data from the NDBC of the National Oceanic and Atmospheric Administration (NOAA) (https://www.ndbc.noaa.gov/). 

Each buoy provides measurements of SWH, mean wave direction (MWD), wind speed (WSPD), wind direction (WDIR), 

APD, dominant wave period (DPD), sea level pressure (PRES), gust speed (GST), air temperature (ATMP), and water 

temperature (WTMP) at a resolution of 10 minutes to 1 hour. The dataset uses 99.00 to replace the missing values, but the 75 

resolution is still 1 hour for wave parameters data. Four NDBC buoys located in different directions around the Hawaiian 

Islands (Fig. 1) were used in the research, The statistics of the geographic location and the water depth parameters of the 

buoys are shown in Table 1. 

 
Figure 1. The geographical locations of the 51000, 51003, 51004 and 51101 NDBC buoys. 80 

Table 1. Statistics of the geographical locations and water depth parameters of the selected NDBC buoys. 

Buoy ID Latitude (°N) Longitude (°W) Depth (m) 
51000 23.528 153.792 4762 
51003 19.196 160.639 1987 
51004 17.538 152.230 5278 
51101 24.359 162.081 4860 
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2.2 Dataset partitioning and feature selection 

Waves depend on previous wave height, sea surface temperature, sea temperature, wind direction, wind speed, and pressure 

(Kamranzad et al., 2011; Nitsure et al., 2012; Fan et al., 2020). Because the buoy data have missing values, after data 

filtering, the research selected data longer than two years at each buoy as the training datasets to capture the year-round 85 

characteristics of wave parameters. The divisions and statistical characteristics of the training and testing datasets for the four 

buoys are shown in Table 2 and Fig. 2. 
Table 2. NDBC datasets division and statistical information. 

Buoy ID Dataset Date (YYYY/MM/DD HH) Data volume SWH range (m) ADP range (s) 

51000 
Training 2015/08/20 22~2020/04/20 15 40594 [0.89, 11.03] [4.60, 14.89] 
Testing 2020/07/29 01~2020/10/19 08 1976 [0.89, 3.49] [5.12, 11.43] 

51003 
Training 2015/08/25 03~2018/08/07/13 25494 [0.85, 6.83] [4.75, 13.85] 
Testing 2018/11/10 00~2018/12/31 08 1214 [1.41, 4.70] [5.48, 12.79] 

51004 
Training 2014/07/06 14~2017/10/08 16 28400 [0.86, 5.80] [4.78, 14.03] 
Testing 2017/12/08 11~2018/02/14 09 1631 [1.29, 5.30] [5.46, 12.99] 

51101 
Training 2014/11/04 22~2018/03/29 07 29548 [0.83, 8.54] [4.46, 14.73] 
Testing 2019/10/25 07~2020/01/04 00 1698 [1.16, 6.04] [5.44, 13.03] 

 

 90 
Figure 2. Statistical analysis of SWH and APD on the training and testing datasets of the four NDBC buoys. 

The research selected SWH and APD, two wave parameters, as forecasting variables. The correlation between various 

environmental parameters with SWH and APD was determined by calculating Pearson correlation coefficients between the 

above parameters before selecting the input features. For the parameters X and Y, the Pearson correlation coefficients are 

calculated as follows. 95 

 r = cov(X, Y)
σXσY

=
1
n∑ (Xi−X�)(Yi−Y�)n

i=1  

�1
n∑ (Xi−X�)2n

i=1 �1
n∑ (Yi−Y�)2n

i=1

 ,         (1) 
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The Pearson correlation coefficients between SWH, MWD, WSPD, GST, WDIR, PRES, WTMP, ATMP, APD, and DPD 

were calculated after neglecting the parameter values at unrecorded moments (Fig. 3). As shown in Fig. 3, SWH has a 

positive correlation with APD, DPD, MWD, WSPD, GST, WDIR, and PRES to different degrees, and SWH has a negative 

correlation with WTMP and ATMP. Among them, WSPD and GST have a strong correlation (r=0.988), WTMP and ATMP 100 

have a strong correlation (r=0.901), and APD is considered to contain the main features of DPD. In order to utilize as many 

features of different physical parameters as possible while minimizing the computational redundancy, seven physical 

parameters, SWH, APD, MWD, WSPD, WDIR, PRES and ATMP, were selected as input and training data for SWH and 

APD forecasting in the study. 

 105 
Figure 3. Pearson correlation coefficients between various physical parameters in NDBC data. 

2.3 Data pre-processing 

Wind and wave directions are continuous in space but discontinuous numerically. For example, the directions 2° and 358° 

are very close, but the magnitude of the values differs significantly. Therefore, the wind and wave directions need to be pre-

processed. The following formula recalculates the wind and wave directions (Nitsure et al., 2012). 110 
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 ψ = �
1 − θ

180
,         if 0° ≤ θ ≤ 180°

θ−180
180

,        if 180° < θ < 360°
 ,         (2) 

where θ is the original wind or wave directions and ψ is the re-encoded value of wind or wave directions. ψ has a range of 

values from [0, 1]. 

Since different NDBC physical variables have different units and magnitudes, this can substantially influence the 

performance of the neural network model. Therefore, each variable must be normalized or standardized before using it as 115 

input data for the model (Li et al., 2022b). The research used a min-max normalization function to scale the input data 

between [0, 1], which is calculated as follows. 

 xn = x−min (x)
max (x)−min (x)

 ,           (3) 

where xn is the normalized feature value and x is the measured feature value. 

3 Methods 120 

3.1 Variational mode decomposition (VMD) 

The VMD is an adaptive, completely nonrecurrent mode variation and signal processing technique that combines the Wiener 

filter, the Hilbert transform, and the Alternating Direction Method of Multipliers (ADMM) technique (Dragomiretskiy and 

Zosso, 2014). VMD can determine the number of mode decompositions for a given sequence according to the situation. It 

has resolved the issues of mode mixing, boundary effects of EMD. The VMD decomposes the original sequence signal into 125 

an Intrinsic Mode Function (IMF) of finite bandwidth, where the frequencies of each mode component uk are concentrated 

around a central frequency ωk. 

The nucleus of VMD is the construction and solution of the variational problem, which is essentially a constrained 

optimization problem. The variational problem is to minimize the sum of the estimated bandwidths of the IMFs, with the 

constraint that the sum of the IMFs is the original signal. The calculation formula is as follows. 130 

 min
{uk},{ωk}

{∑ �∂t[(δ(t) + j
πt

) * uk(t)]e−jωkt�
2

2
k }    s.t.∑ ukk = f ,       (4) 

where "s.t." is the abbreviation of "subject to". {uk} := {u1,u2,…,uk} and {ωk} := {ω1,ω2,…,ωk} denote the set of all modes 

and their corresponding central frequencies, respectively. The f is the original signal, k is the total number of modes, and δ(t) 

represents the Dirac distribution. The j is an imaginary unit and "*" denotes the convolution. 

To simplify the above equations, VMD introduces a quadratic penalty term (α) and Lagrange multipliers (λ) to convert the 135 

constrained problem into a non-constrained problem. α guarantees the reconstruction accuracy of the signal, and λ maintains 

the constraint stringency. 
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 ℒ({uk, ωk}, λ) := α∑ �∂t[(δ(t) + j
πt

) * uk(t)]e−jωkt�
2

2
 + ‖ f(t) −∑ uk(t)k ‖2

2 + ⟨λ(t), f(t)− ∑ uk(t)k ⟩k  ,   (5) 

Finally, the ADMM solves the saddle point of the augmented Lagrange multiplier. Update the iterative formulas for uk, ωk 

and λ as follows. 140 

 u�k
n+1(ω) = 

f̂(ω)−∑ u�i(ω)i≠k +λ�(ω)
2  

1 + 2α(ω−ωk)2  ,          (6) 

 ωk
n+1= ∫ ω|u�k(ω)|2dω∞

0
∫ |u�k(ω)|2dω∞
0

 ,           (7) 

 λ�n+1
(ω)=λ�n

(ω) + τ�f̂(ω) − ∑ u�k
n+1(ω)K

k=1 � ,         (8) 

where f̂(ω), u�k(ω), λ�(ω) and u�k
n+1(ω) are the Fourier transforms of f(ω), uk(ω), λ(ω) and uk

n+1(ω), respectively. The n and τ are 

the number of iterations and update coefficients of Dual ascent. The iterations are stopped when the convergence condition 145 

satisfies the following equation. 

 ∑
�u�k

n+1−u�k
n�

2

2

�u�k
n�2

2  < ϵk  ,           (9) 

The VMD algorithm can be found in more detail in Dragomiretskiy and Zosso (2014). 

3.2 Temporal convolutional networks (TCN) 

The TCN is a variant of the Convolutional Neural Networks (CNN) (Fig. 4). TCN model uses causal convolution, dilated 150 

convolution, and residual block to extract sequence data with a large receptive field and temporality (Yan et al., 2020). TCN 

performs convolution in the time domain (Kok et al., 2020), which has a more lightweight network structure than CNN, 

LSTM, and GRU (Bai et al., 2018). TCN has the following advantages: (1) causal convolution prevents the disclosure of 

future information, (2) dilated convolution extends the receptive field of the structure, and (3) residual block maintains the 

historical information for a longer period. TCN is on the concept of causal convolution, where "causal" indicates that the 155 

output 𝑦𝑦𝑡𝑡  at the time 𝑡𝑡 is only dependent on the input x1,  x2,…,xt and is not influenced by xt+1,xt+2,…,xT. The receptive field 

depends on the filter size and the network depth. However, the increase of filter size and network depth brings the risk of 

gradient disappearance and explosion. To avoid these problems, TCN introduces dilated convolution based on causal 

convolution (Zhang et al., 2019). 
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 160 
Figure 4. Structure of temporal convolutional networks. 

TCN employs dilated convolution based on causal convolution to handle the linear increase in network depth for longer 

inputs. The dilated convolution introduces a dilation factor (d) to adjust the receptive field. The processing capability of long 

sequences depends on the filter size (k), d, and network depth (p). For a one-dimensional time series x∈ℝn and a filter 

f: {0, …, k − 1}→ℝ, the dilated convolution operation 𝐹𝐹 on the sequence element 𝑠𝑠 is defined as: 165 

 F(s) = (x * df )(s) =∑ f(i) ⋅  xs−d ⋅ i
k−1
i=0  ,         (10) 

where d is the dilation factor, k is the filter size, and "s − d ⋅  i" describes the passed direction. In the dilated convolution, the 

dilation factor 𝑑𝑑 grows exponentially (d = 2i) with the hidden layer depth (i), and the receptive field is (k − 1) d. TCN 

effectively increases the receptive field without additional computational cost by increasing the dilation factor. Figure 4 

illustrates the structural components of TCN with the dilation factors d = 1, 2, and 4. 170 

To ensure training efficiency, TCN introduces multiple residual blocks to accelerate the prediction model. Each residual 

block comprises two dilated causal convolution layers with the same dilation factor, normalization layer, ReLU activation 

and dropout layer. The input of each residual block is also added to the output when the input and output channels are 

different (Fig. 4). 

The input of each residual block is also added to the output when the number of channels between the input and output are 175 

different (Fig. 4). The following equation obtains the residual block: 

 o = Activation(x + F(x)) ,           (11) 

where o is the residual block output, Activation is the activation function, x is the previous input information, and F(x) is the 

transformed information. 
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3.3 Long short-term memory (LSTM) networks 180 

The traditional RNN is exposed to gradient explosion and vanishing risk. LSTM network learns to reset itself at the 

appropriate time by adding a forgetting gate in RNN, which releases internal resources. Meanwhile, LSTM learns faster by 

adding the self-looping method to generate a long-term continuous flow path. As a specific RNN, the LSTM network 

structure includes an input layer, a hidden layer, and an output layer. The structure of the LSTM cell is shown in Fig. 5. 

 185 
Figure 5. Structure of long short-term memory networks. 

A LSTM cell consists of four components, the forget gate ft, the input gate it, the storage cell state ct and the output gate ot. 

The ft determines the number of memories that need to be reserved from ct−1 to ct. 

 ft = σ(Wf ⋅ [xt, ht−1] + bf) ,           (12) 

The it determines the information that is input to this cell state. 190 

 it = σ(Wi ⋅ [xt, ht−1] + bi) ,           (13) 

The ot represents the information output from this cell state. 

 ot = σ(Wo ⋅ [xt, ht−1] + bo) ,          (14) 

The cell state is: 

 Ct = ft ⊙ Ct−1 + it ⊙  C� t ,           (15) 195 

 C� t = tanh (Wc ⋅ [xt, ht−1] + bc) ,          (16) 

The next cell with ht is: 

 ht = ot ⊙ tanh (Ct) ,           (17) 

In the above equation, xt denotes the current input vector, and W and b denote the hyperparameters of the weights and biases. 

The ht is the storage cell value at time t. The σ is the sigmoid function, 𝑡𝑡𝑡𝑡𝑡𝑡ℎ denotes the hyperbolic tangent function, "⋅" 200 

denotes the dot product of matrices, and "⊙" denotes the Hadamard matrix product of equidimensional matrices (Yu et al., 

2019; Gers et al., 2000; Hochreiter and Schmidhuber, 1997). The sigmoid function takes values in the range is [0, 1], and in 

the forgetting gate, if the value is 0, the information of the previous state is completely forgotten, and if the value is 1, the 

information is completely retained. tanh function takes the values in the range [-1, 1]. 
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3.4 Bayesian optimization (BO) 205 

The BO aims to find the global maximizer (or minimizer) of the unknown objective function f(x) (Frazier, 2018), as shown 

in follows. 

 x∗ = (arg max
x∈D

f(x)) ,           (18) 

where D denotes the search space of x, where each dimension is a hyperparameter. 

The BO has two critical components, first, build an agency model of the objective function through a regression model (e.g., 210 

Gaussian process regression) and subsequently use the acquisition function to decide where to sample next (Frazier, 2018). 

The Gaussian process (GP) is an extension of multivariate Gaussian distribution into an infinite dimensional stochastic 

process (Frazier, 2018; Brochu et al., 2010), which is the prior distribution of stochastic processes and functions. Any finite 

subset of random variables has a multivariate Gaussian distribution, and a GP is entirely defined by its mean function and 

covariance function (Rasmussen, 2004). BO optimizes the unknown function f(x) by combining the prior distribution of the 215 

function based on the GP with the current sample information to obtain the posterior of the function. 

The BO uses the expected improvement (EI) function as the acquisition function to evaluate the utility of the model posterior 

to determine the next input point. Let 𝑓𝑓𝑛𝑛∗ be the optimal value of the acquisition function at the current iteration. The EI 

acquisition function can be defined by Eq. (19) (Shahriari et al., 2016; Frazier, 2018): 

 EI(x) = �(μ(x) − 𝑓𝑓n*)ϕ(Z) + σ(x)φ(Z)      if σ(x) > 0
0                                               if σ(x) = 0 ,        (19) 220 

where Z = μ−f(x+)
σ(x)

, μ(x) and σ(x) are the expectation and variance of the input value x, respectively, ϕ is the cumulative 

distribution function (CDF) of the standard normal distribution, and φ is the probability density function of the standard 

normal distribution. 

The BO employs GP and EI in the iterations to evaluate and obtain the global optimal hyperparameters (Zhang et al., 2020a). 

The framework of the Bayesian parameter optimization algorithm is shown below. 225 

Algorithm 1 Basic pseudo-code for Bayesian optimization 

1: Initializing the prior distribution of the substitution function based on GP. 

2: for n = 1, 2, … do 

Find xn by optimizing acquisition function. 

xn+1 = arg max
x

αEI (x|Dn)  

Query objective function to obtain yn+1 

Augment data Dn+1 = {Dn,  (xn+1,yn+1)}  

Update the prior distribution of the substitution function. 

end for 

3: Find the global optimal solution for the current GP. 
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4 Wave parameter prediction model framework and parameter settings 

4.1 Data decomposition and parameter setting 

The input to the VMD method requires the original signal f(t) and a predefined parameter K. The K determines the number of 

IMF patterns extracted during the decomposition. If the number of the extracted patterns is too large, it leads to a decrease in 

accuracy and unnecessary computational overhead (Liu et al., 2020). However, if the number of patterns is too small, the 230 

information in the patterns is insufficient to construct a high-precision prediction model. Therefore, it is essential to choose 

an appropriate one for K. 

There is still a lack of general guidelines for the selection of the K parameter (Bisoi et al., 2019). Methods commonly used in 

other fields include the central frequency observation method (Hua et al., 2022; Chen et al., 2022; Fu et al., 2021), sample 

entropy (Zhang et al., 2020b; Niu et al., 2021), genetic algorithm (Huang et al., 2022), effective kurtosis index (Li et al., 235 

2020), signal energy (Liu et al., 2020; Huang and Deng, 2021), etc. The central frequency observation method is convenient 

and effective, and it is used in this research to determine the number of patterns K for sequence decomposition. For various 

K parameter values, when the central frequency of the last mode has no significant changing trend, the number of K currently 

is the optimal number of mode decompositions. The search range of K parameters in the research is [5, 15], and Table 3 

calculates the central frequency of the last mode after the SWH and APD were decomposed with different K parameters. As 240 

shown in Table 3, after VMD decomposes SWH, the central frequency of the last mode from K = 13 does not change 

significantly, so the optimal VMD decomposition mode number for SWH is 13. As shown in Table 3, after VMD 

decomposes APD, the central frequency of the last mode from K = 12 does not change significantly, so the optimal VMD 

decomposition mode number for APD is 12. According to the optimal K parameters of SWH and APD decomposition, the 

SWH and APD data on the training and test sets of each buoy are decomposed by VMD separately. 245 
Table 3. The central frequency of the last mode after SWH and APD decomposition with different K parameters. 

K 5 6 7 8 9 10 11 12 13 14 15 

last mode after 

the SWH were 

decomposed 

(× (1e – 6) Hz) 

395975 419471 447343 449966 452286 452888 453510 453650 476397 477347 477403 

last mode after 

the APD were 

decomposed 

(× (1e – 6) Hz) 

394750 433368 433725 434455 451044 451505 451713 475568 476213 476246 476317 

 

https://doi.org/10.5194/egusphere-2023-960
Preprint. Discussion started: 11 May 2023
c© Author(s) 2023. CC BY 4.0 License.



12 
 

4.2 Wave parameter prediction model framework 

The overall structure of the VMD-TCN-LSTM wave parameter prediction model in the research is shown in Fig. 6, 

including three parts: data pre-processing, VMD data decomposition, and model training and forecasting. TCN cells and 250 

LSTM cells are used in the model to construct an encoder-decoder network with an attention mechanism. To evaluate the 

accuracy of the VMD-TCN-LSTM model. The effect of the VMD technique and TCN cells on the forecasting results was 

also analysed. The results of the VMD-TCN-LSTM model were compared with the VMD-LSTM and LSTM models. The 

VMD-LSTM model used both LSTM cells for encoding and decoding. The LSTM model without the VMD technique for 

data decomposition and was not encoded using TCN cells. 255 

 
Figure 6. The overall structure of VMD-TCN-LSTM wave parameter prediction model. 
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4.3 Neural network hyperparameter optimization based on BO 

In the research, the BO algorithm is used to search for the optimal hyperparameters for the training of the VMD-TCN-LSTM 

model, including batch size, number of TCN hidden layer units, number of LSTM hidden layer units, number of Dense 260 

hidden layer units, learning rate (α), dropout rate, and L2 regularization parameter of LSTM layer. The hyperparameters 

search range and optimal results are shown in Table 4. Meanwhile, the learning rate decay and Early Stopping method are 

used to prevent overfitting of the model and reduce the wasted training time. 
Table 4. Bayesian hyperparameter optimization results. 

Parameter Search interval Final value 
Batch size [8, 512] 256 
TCN hidden unit [16, 256] 64 
LSTM hidden unit [16, 256] 128 
Dense hidden unit [16, 256] 128 
learning rate α [1e-4, 1e-2] 3e-4 
Dropout rate [0.1, 0.5] 0.2 
L2 regularization 
parameter 

[1e-7, 1e-4] 1e-5 

5 Experiment and analysis 265 

5.1 Evaluation metrics 

To quantify the prediction model performance, the mean absolute error (MAE), root mean square error (RMSE), mean 

absolute percentage error (MAPE) and the determination coefficient (R2) are used as evaluation metrics. The equations can 

be written as follows. 

 MAE =  1
N
∑ �yp(i) − yt(i)�

N
i=1  ,          (20) 270 

 RMSE = �1
N
∑ (yp(i) − yt(i))

2N
i=1  ,          (21) 

 MAPE = 1
N
∑

�yp(i)−yt(i)�

yt(i)
 × 100%N

i=1  ,          (22) 

 R2 = 1 −
∑ (yp(i)−yt(i))

2N
i=1

∑ (yt(i)−y�t)
2N

i=1
 ,           (23) 

where N denotes the time length of the series data, yt(i) is the true observation values of NDBC, yp(i) is the predicted value, 

and y�t is the average of the true observation values. 275 

Furthermore, to quantify the improvement of the VMD technique and the TCN unit on the model accuracy, respectively, 

four parameters, IMAE, IRMSE , IMAPE and IR2 (Eqs. (24) to (27)), are introduced to compare the percentage improvement of the 

evaluation metrics of VMD-LSTM and VMD-TCN-LSTM models concerning the LSTM model. 
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 IMAE = MAELSTM−MAEmodel
MAELSTM

 × 100% ,          (24) 

 IRMSE = RMSELSTM−RMSEmodel
RMSELSTM

 × 100% ,         (25) 280 

 IMAPE = MAPELSTM−MAPEmodel
MAPELSTM

 × 100% ,         (26) 

 IR2  = Rmodel
2 −RLSTM

2

RLSTM
2  × 100% ,          (27) 

where the subscript "LSTM" represents the evaluation metrics of the LSTM model, and the subscript "model" represents the 

evaluation metrics of the VMD-LSTM or VMD-TCN-LSTM models. 

5.2 3-hour forecasting performance 285 

The evaluation metrics of SWH and APD for different prediction models on the testing sets of the four buoys for the 3-hour 

forecasts are shown in Table 5, where the best results are shown in bold. As shown in the table, both the VMD-LSTM and 

VMD-TCN-LSTM models significantly outperform the results of the LSTM model. This indicates that the data pre-

processing method of VMD can extract the features of the sequence data well in the 3-hour SWH and APD forecasts, which 

can significantly improve the forecasting performance. Meanwhile, the improvement of the TCN cells on the model 290 

performance is not particularly significant in the 3-hour SWH and APD forecasts. The performance of the VMD-TCN-

LSTM model was slightly better than that of the VMD-LSTM model only in some instances. 
Table 5. Accuracy evaluation of the three models in 3-hour SWH and APD forecasts. 

Buoy ID Algorithm 
SWH APD 

MAE (m) RMSE (m) MAPE (%) R2 MAE (s) RMSE (s) MAPE (%) R2 

51000 VMD+TCN+LSTM 0.083 0.111 4.675 0.924 0.155 0.204 2.353 0.950 

VMD+LSTM 0.085 0.118 4.766 0.918 0.168 0.217 2.536 0.942 

LSTM 0.143 0.177 8.527 0.874 0.219 0.290 3.295 0.897 

51003 VMD+TCN+LSTM 0.066 0.082 2.315 0.978 0.105 0.145 1.438 0.973 

VMD+LSTM 0.067 0.088 2.592 0.976 0.108 0.147 1.479 0.976 

LSTM 0.153 0.204 5.862 0.869 0.252 0.353 3.397 0.859 

51004 VMD+TCN+LSTM 0.080 0.105 2.816 0.973 0.115 0.158 1.323 0.981 

VMD+LSTM 0.081 0.107 2.856 0.970 0.124 0.164 1.372 0.976 

LSTM 0.159 0.217 6.105 0.885 0.279 0.393 3.601 0.884 

51101 VMD+TCN+LSTM 0.093 0.124 4.720 0.952 0.171 0.222 2.526 0.953 

VMD+LSTM 0.096 0.127 4.795 0.957 0.166 0.218 2.527 0.951 

LSTM 0.224 0.302 7.417 0.892 0.326 0.479 4.269 0.848 

 

In the SWH forecasting at four buoys, the buoy with the best performances was buoy 51003 with MAE, RMSE, MAPE and 295 

R2 of 0.066 m, 0.082 m, 2.315 %, and 0.978, respectively. Among the APD forecasting at four buoys, the VMD-TCN-LSTM 
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model had the most petite MAE and RMSE at buoy 51003, with 0.105 s and 0.145 s, respectively, and the smallest MAPE 

and the highest R2 at buoy 51004 with 1.323 % and 0.981, respectively. 

To compare the forecasting results of different models more visually, Figure 7 shows the comparison results of the 3-hour 

SWH and APD forecasting curves of different models with the observed values for the first 24 hours of the testing set for 300 

each buoy. As shown in Fig. 7, the forecasting results of VMD-TCN-LSTM have a good agreement with the observed values 

of NDBC at most moments on all four buoys. The forecasting results of VMD-LSTM are also close to the observed values. 

Meanwhile, the results of both the VMD-TCN-LSTM and VMD-LSTM models are significantly better than those of the 

LSTM model. It shows that both VMD-TCN-LSTM and VMD-LSTM models can better capture the time-varying 

characteristics of wave series data and thus perform well in the SWH and APD forecasts. 305 
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Figure 7. Comparison results of the 3-hour SWH and APD forecasting curves of different models with the observed values for the 
first 24 hours of the testing datasets for each buoy. 
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Figure 8 shows the linear fitting results of the SWH and APD observations with the forecasts of the three models for each 

buoy. According to the linear fitting formula, the fitting curves of both the VMD-LSTM and VMD-TCN-LSTM models 310 

were closer to “y = x” compared to the LSTM model. For the 3-hour SWH forecasts, the fitted formula of the VMD-TCN-

LSTM forecasting results for buoy 51004 was closest to “y = x”, which had a slope of 0.9817 and an intercept of 0.0404 (Fig. 

8(e)). For the 3-hour APD forecasts, the fitted formula of the VMD-TCN-LSTM forecasting results for buoy 51004 was 

closest to “y = x”, which had a slope of 0.9929 and an intercept of 0.0829 (Fig. 8(f)). The results indicate that the forecasting 

performance of these two models is significantly better than that of the LSTM model, which is consistent with the findings in 315 

Fig. 7 and Table 5. 

 
Figure 8. The linear fitting of the 3-hour SWH and APD predictions and observations for the three models. 

Meanwhile, the SWH and APD of the four buoys have different ranges of values and other statistical features, which proves 

that the two models, VMD-LSTM and VMD-TCN-LSTM, have good robustness for SWH and APD forecasting under 320 

different scenarios. The VMD technique can extract the time-varying features of the original data, contributing to the 

accuracy of the prediction model. In addition, using TCN cells instead of LSTM cells for encoding the network model can 

also reduce the error of the prediction model by a small amount. 

5.3 12-hour forecasting performance 

The evaluation metrics of SWH and APD for different prediction models on the testing sets of the four buoys for the 12-hour 325 

forecasts are shown in Table 6, and the best results are shown in bold in the table. As shown in Table 6, both the VMD-
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LSTM and VMD-TCN-LSTM models significantly outperform the performances of the LSTM model. This is like the results 

of the 3-hour SWH and APD forecasts.  

In addition, the performances of the VMD-TCN-LSTM model outperformed the VMD-LSTM for the SWH and APD 

forecasts at all buoys. Compared with the 3-hour forecasts, the TCN cells were more significant for the model performance 330 

improvement in the 12-hour wave forecasts. This is because the residual block structure used in the TCN cells can maintain 

the historical information for a long time. The TCN cells are more significant in the longer time wave parameter forecasts.  

Among the SWH forecasting of the four buoys, the VMD-TCN-LSTM model had the smallest MAE and RMSE at buoy 

51000 with 0.125 m and 0.165 m, respectively. Buoy 51003 had the smallest MAPE of 5.912 %. Buoy 51004 had the largest 

R2 of 0.898. In the APD forecasting at four buoys, the VMD-TCN-LSTM model had the most petite MAE and RMSE at 335 

buoy 51003, with 0.247 s and 0.336 s, respectively, and the smallest MAPE and the highest R2 at buoy 51004 with 3.329 % 

and 0.904, respectively. 

The comparison of the forecasting curves of different models with the observations of NDBC for the first 24 hours of the 

testing set of the four NDBC buoys for the 12-hour SWH and APD forecasts is shown in Fig. 9. As shown in the figure, the 

forecasts of the VMD-TCN-LSTM model were in excellent agreement with the NDBC observations for most moments at all 340 

four buoys. And it is significantly outperforming the forecasting curves of VMD-LSTM and LSTM models. The results 

show that the VMD-TCN-LSTM model can better capture the time-varying characteristics of wave series data and thus 

performs well in forecasting SWH and APD. 
Table 6. Accuracy evaluation of the three models in 12-hour SWH and APD forecasts. 

Buoy ID Algorithm 
SWH APD 

MAE (m) RMSE (m) MAPE (%) R2 MAE (s) RMSE (s) MAPE (%) R2 

51000 VMD+TCN+LSTM 0.125 0.165 7.128 0.817 0.282 0.382 4.212 0.834 

VMD+LSTM 0.136 0.182 7.706 0.772 0.302 0.406 4.520 0.801 

LSTM 0.195 0.248 11.62 0.639 0.353 0.485 5.210 0.710 

51003 VMD+TCN+LSTM 0.152 0.203 5.912 0.872 0.247 0.336 3.355 0.871 

VMD+LSTM 0.177 0.233 6.910 0.830 0.293 0.398 3.948 0.819 

LSTM 0.271 0.371 10.39 0.581 0.439 0.629 5.862 0.550 

51004 VMD+TCN+LSTM 0.157 0.206 6.167 0.898 0.259 0.361 3.329 0.904 

VMD+LSTM 0.169 0.222 6.575 0.882 0.291 0.395 3.799 0.884 

LSTM 0.277 0.398 10.65 0.619 0.506 0.743 6.457 0.581 

51101 VMD+TCN+LSTM 0.283 0.369 9.575 0.839 0.419 0.555 5.262 0.811 

VMD+LSTM 0.274 0.361 9.270 0.840 0.441 0.585 5.526 0.787 

LSTM 0.384 0.522 12.98 0.673 0.638 0.918 7.876 0.450 

 345 
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Figure 9. Comparison results of the 12-hour SWH and APD forecasting curves of different models with the observed values for the 
first 24 hours of the testing datasets for each buoy. 
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Figure 10 shows the linear fitting results for the 12-hour SWH and APD forecasts data and observations at each buoy for the 

three models. As shown in Fig. 10, it was evident that the forecasting results of the VMD-TCN-LSTM model have the 350 

closest fitting formula to “y = x” compared with the LSTM model, and the VMD-TCN-LSTM model is better than the 

VMD-LSTM model. In the 12-hour SWH forecasts, the fitted formula of the VMD-TCN-LSTM forecasting results for buoy 

51000 was closest to “y = x”, which had a slope of 0.9256 and an intercept of 0.1252 (Fig. 10(a)). Among the 12-hour APD 

forecasts, the fitted formula of the VMD-TCN-LSTM forecasting results for buoy 51004 was closest to “y = x”, which had a 

slope of 0.9664 and an intercept of 0.2500 (Fig. 10(f)). Both VMD-TCN-LSTM and VMD-LSTM models have significantly 355 

better forecasting performance than the LSTM model. This is consistent with the conclusions of Fig. 9 and Table 6.  

 
Figure 10. The linear fitting of the 12-hour SWH and APD predictions and observations for the three models. 

Moreover, the variability of the numerical ranges of SWH and APD for the four buoys also demonstrates the excellent 

robustness of the VMD-TCN-LSTM model for SWH and APD forecasts in different scenarios. The pre-processing of wave 360 

sequence data using VMD can extract the time-varying features of the original data well, and the expansion convolution 

module of TCN increases the perceptual field of the model. At the same time, the residual block enables the preservation of 

the long-term information of the original data. Therefore, the hybrid model of VMD, TCN, and LSTM can significantly 

improve the accuracy of the forecasting results. 
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5.4 24-, and 48-hour forecasting performance 365 

To further compare the performance of the VMD-TCN-LSTM model for the longer time wave forecasts, the error indices of 

the prediction models at 24 and 48 hours are presented in Table 7 and Table 8, respectively, where the best results are shown 

in bold in the table.  
Table 7. Accuracy evaluation of the three models in 24-hour SWH and APD forecasts. 

Buoy ID Algorithm 
SWH APD 

MAE (m) RMSE (m) MAPE (%) R2 MAE (s) RMSE (s) MAPE (%) R2 

51000 VMD+TCN+LSTM 0.119 0.173 8.203 0.733 0.302 0.412 4.287 0.775 

VMD+LSTM 0.149 0.206 8.406 0.693 0.336 0.459 4.976 0.739 

LSTM 0.249 0.313 14.87 0.294 0.464 0.648 6.841 0.478 

51003 VMD+TCN+LSTM 0.194 0.247 7.604 0.808 0.312 0.420 4.268 0.810 

VMD+LSTM 0.233 0.290 9.152 0.734 0.342 0.457 4.705 0.764 

LSTM 0.381 0.503 14.44 0.302 0.585 0.842 7.777 0.298 

51004 VMD+TCN+LSTM 0.191 0.253 7.408 0.845 0.337 0.467 4.266 0.833 

VMD+LSTM 0.213 0.282 8.302 0.808 0.405 0.555 5.297 0.764 

LSTM 0.362 0.519 14.29 0.349 0.693 0.959 8.941 0.295 

51101 VMD+TCN+LSTM 0.309 0.400 10.75 0.803 0.496 0.671 6.258 0.688 

VMD+LSTM 0.325 0.416 11.49 0.787 0.517 0.701 6.497 0.659 

LSTM 0.578 0.780 18.81 0.247 0.847 1.169 10.43 0.257 

 370 
Table 8. Accuracy evaluation of the three models in 48-hour SWH and APD forecasts. 

Buoy ID Algorithm 
SWH APD 

MAE (m) RMSE (m) MAPE (%) R2 MAE (s) RMSE (s) MAPE (%) R2 

51000 VMD+TCN+LSTM 0.187 0.249 10.64 0.551 0.443 0.604 6.676 0.487 

VMD+LSTM 0.197 0.261 10.87 0.505 0.476 0.656 6.899 0.432 

LSTM 0.312 0.390 19.06 0.204 0.602 0.798 8.851 0.160 

51003 VMD+TCN+LSTM 0.315 0.387 12.56 0.536 0.448 0.606 6.174 0.592 

VMD+LSTM 0.335 0.428 13.51 0.434 0.531 0.792 7.110 0.429 

LSTM 0.552 0.720 19.85 0.214 0.772 1.097 10.41 0.214 

51004 VMD+TCN+LSTM 0.255 0.339 9.879 0.723 0.524 0.715 6.714 0.611 

VMD+LSTM 0.299 0.389 11.78 0.635 0.564 0.787 7.247 0.529 

LSTM 0.469 0.644 18.71 0.231 0.859 1.243 11.08 0.276 

51101 VMD+TCN+LSTM 0.456 0.586 16.23 0.580 0.744 0.907 9.474 0.432 

VMD+LSTM 0.497 0.648 16.74 0.487 0.822 1.109 10.31 0.390 

LSTM 0.651 0.805 23.86 0.238 1.127 1.503 13.65 0.180 
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As shown in Table 7,, for the 24-hour forecasts, the MAE and RMSE for the forecasting of SWH and APD at buoy 51000 

are the minimum, with MAE of 0.119 m and 0.302 s, and RMSE of 0.173 m and 0.412 s, respectively. This is because the 

range of data for SWH and APD in the testing datasets at buoy 51000 is the minimum (Fig. 2). Buoy 51004, the forecasting 

of SWH and APD had the minimum MAPE and the maximum R2, with MAPE of 7.408 % and 4.266 %, and R2 of 0.845 and 375 

0.833, respectively. 

As shown in Table 8, for the 48-hour forecasts, the MAE and RMSE for the forecasting of SWH and APD at buoy 51000 are 

the minimum, with MAE of 0.187 m and 0.443 s and RMSE of 0.249 m and 0.604 s, respectively. It showed a similar 

performance as the 24-hour SWH and APD forecasts. Buoy 51004 had the maximum R2 with 0.723 and 0.611 for SWH and 

APD forecasts, respectively. Buoy 51004 also had a minimum MAPE of 9.879 % for the SWH forecasts. Buoy 51003 had a 380 

minimum MAPE of 6.174 % for the APD forecasts. 

5.5 Analysis of improvement of VMD-TCN-LSTM compared with previous models 

To precisely quantify the prediction performance improvement rate of the VMD technique and TCN cells for the LSTM 

model, respectively. The model performance improvement rates for VMD-TCN-LSTM and VMD-LSTM were calculated by 

using Eqs. (24) to (27) (Table 9), and bold in the table represents the highest result of the model performance improvement 385 

rate. As shown in Table 9, VMD-LSTM and VMD-TCN-LSTM models had very similar improvement rates in MAE, RMSE, 

MAPE, and R2 in the 3-hour SWH forecasts, which indicates that the improvement of the VMD-TCN-LSTM model for 

prediction accuracy in the 3-hour SWH forecasts is mainly contributed by the VMD technique. The same conclusion can be 

obtained in the 3-hour APD forecasts. Subsequently, when the length of forecasting increases to 12, 24, and 48 hours, the 

TCN cells is more significant for the decrease of MAE, RMSE, MAPE, and the increase of R2 for the forecasting results. 390 

Table 9. The performance improvement rate of VMD-TCN-LSTM and VMD-LSTM models relative to LSTM model. 

Evaluation 

indicators 
Algorithm 

SWH APD 

3-hour 12-hour 24-hour 48-hour 3-hour 12-hour 24-hour 48-hour 

IMAE (%) 
VMD+TCN+LSTM 51.75 37.36 48.77 39.65 48.47 36.75 43.60 35.34 

VMD+LSTM 50.74 33.14 40.98 34.02 46.27 30.27 37.41 28.39 

IRMSE (%) 
VMD+TCN+LSTM 51.91 39.08 48.90 39.24 50.51 39.69 45.11 37.80 

VMD+LSTM 49.71 34.72 42.22 33.18 49.07 34.03 39.26 27.12 

IMAPE (%) 
VMD+TCN+LSTM 48.98 37.52 45.80 40.02 47.59 35.89 43.69 33.82 

VMD+LSTM 47.12 33.51 40.23 35.45 45.55 29.22 36.31 28.20 

IR2 (%) 
VMD+TCN+LSTM 8.733 36.92 171.0 169.3 10.63 52.91 146.0 160.6 

VMD+LSTM 8.560 32.74 157.2 132.5 10.30 47.19 131.6 119.7 

 

There was no significant rule for the decreased rate of TCN cells on the MAE, RMSE, and MAPE of the model at various 

forecasting time length. However, the contribution of TCN cells to the improvement of R2 for forecasting results gradually 
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increases with the increase of forecasting time length. It reaches the maximum value in the 48-hour SWH and APD forecasts. 395 

As shown in Table 9, in the 48-hour SWH forecasts, the VMD technique increases the R2 of the forecasting performance by 

132.5 %, and the TCN cells for model encoding resulted in a further 36.8 % improvement in the R2 of the model. In the 48-

hour APD forecasts, the VMD technique increases the R2 of the forecasting performance by 119.7 %. The TCN cells 

resulted in a further 40.9 % improvement in the R2 of the model. 

6 Conclusions 400 

This paper proposes a hybrid VMD-TCN-LSTM model for forecasting SWH and APD using buoy data near the Hawaiian 

Islands provided by the NDBC. Seven physical parameters, SWH, APD, MWD, WSPD, WDIR, PRES, and ATMP, were 

chosen for training the prediction model in the research. Specifically, the original features of the non-smooth wave series 

data were extracted by decomposing the original SWH and APD series data using the VMD technique. Subsequently, a 

prediction model is constructed using a network structure encoded by TCN cells and decoded by LSTM cells, where the 405 

TCN cells can capture the local feature information of the original series and can maintain the historical information for a 

long time. Simultaneously, the BO algorithm is used to obtain the optimal hyperparameters of the model to prevent 

overfitting or underfitting problems of the model. Ultimately, the 3-, 12-, 24-, and 48-hour forecasts of SWH and APD were 

implemented based on the VMD-TCN-LSTM model. In addition, eight evaluation metrics, MAE, RMSE, MAPE, R2, IMAE, 

IRMSE, IMAPE, and IR2, were used to evaluate and test the model performance. 410 

The VMD-TCN-LSTM model proposed in this research outperforms the LSTM and the VMD-LSTM models for all 

forecasting time lengths at all four NDBC buoys. It demonstrates that the VMD-TCN-LSTM model has good robustness and 

generalization ability. In the 3-hour SWH and APD forecasts, the improvement of the hybrid model for forecasting accuracy 

is mainly contributed by the VMD technique, and the contribution of the TCN cells to the advancement of the model 

accuracy is relatively tiny. Subsequently, the contribution of TCN cells to improve model forecasting accuracy was gradually 415 

significant when the forecasting time length increased to 12, 24, and 48 hours. 

There was no significant rule for the decreased rate of TCN cells on the MAE, RMSE, and MAPE of the model at various 

forecasting time lengths. The contribution of TCN cells to improving R2 for forecasting results gradually increases with the 

increase of forecasting time length. The VMD technique and the TCN cells improved the R2 of the model by 132.5 % and 

36.8 %, respectively, in the 48-hour SWH forecasts. In the 48-hour APD forecasts, the VMD technique and the TCN cells 420 

improved the R2 of the model by 119.7 % and 40.9 %, respectively. 
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