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Abstract. The present work proposes a prediction model of significant wave height (SWH) and average wave period (APD) 

based on variational mode decomposition (VMD), temporal convolutional networks (TCN), and long short-term memory 

(LSTM) networks. The wave sequence features were obtained using VMD technology based on the wave data from the 10 

National Data Buoy Center. Then the SWH and APD prediction models were established using TCN, LSTM, and Bayesian 

hyperparameter optimization. The VMD-TCN-LSTM model was compared with the VMD-LSTM (without TCN cells) and 

LSTM (without VMD and TCN cells) models. The VMD-TCN-LSTM model has significant superiority and shows robustness 

and generality in different buoy prediction experiments. In the 3-hour wave forecasts, VMD primarily improved the model 

performance, while the TCN had less influence. In the 12-, 24-, and 48-hour wave forecasts, both VMD and TCN improved 15 

the model performance. The contribution of the TCN to the improvement of the prediction result determination coefficient 

gradually increased as the forecasting length increased. In the 48-hour SWH forecasts, the VMD and TCN improved the 

determination coefficient by 132.5 % and 36.8 %, respectively. In the 48-hour APD forecasts, the VMD and TCN improved 

the determination coefficient by 119.7 % and 40.9 %, respectively. 

1 Introduction 20 

Ocean waves are crucial ocean physical parameters, and wave forecasts can significantly improve the safety of marine projects 

such as fisheries, power generation, and marine transportation (Jain et al., 2011; Jain and Deo, 2006). The earlier wave 

forecasting methods that emerged were semi-analytical and semi-empirical, including the Sverdroup-Munk-Bretscheider 

(SMB) (Bretschneider, 1957; Sverdrup and Munk, 1947) and Pierson-Neumann-James (PNJ) methods (Neumann and Pierson, 

1957). However, empirical methods cannot describe sea surface wave conditions in detail. The most widely used methods for 25 

wave forecasts are those of the third-generation wave models, including WAM (Wamdi, 1988), SWAN (Booij et al., 1999; 

Rogers et al., 2003), and WAVEWATCH III (Tolman, 2009). Nevertheless, numerical modelling methods must consume 

much computational resources and time (Wang et al., 2018). 

Neural network methods achieve higher-quality forecasting results that are less time and computationally cost-consuming. 

Several neural network methods have been widely used for wave forecasts, e.g., artificial neural networks (ANN) (Deo and 30 
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Naidu, 1998; Mafi and Amirinia, 2017; Kamranzad et al., 2011; Malekmohamadi et al., 2008; Makarynskyy, 2004), recurrent 

neural networks (RNN) (Pushpam P. and Enigo V.S.,  2020), and long short-term memory (LSTM) networks (Gao et 

al.,  2021; Ni and Ma, 2020; Fan et  al., 2020). The prediction model designed using neural network algorithms 

individually has poor generalization ability due to the strong non-stationarity and non-linear physical relationship of waves. 

Signal decomposition methods are effective in extracting original data features. To further improve the prediction model 35 

performance, some researchers have developed hybrid models of signal decomposition and neural networks to forecast wave 

parameters. For example, empirical wavelet transform (EWT) (Karbasi et al.,  2022), empirical mode decomposition (EMD) 

(Zhou et al. , 2021; Hao et al. , 2022), and singular spectrum analysis (SSA) (Rao et al.,  2013). However, EMD and 

its extended algorithms suffer from mode confounding and sensitivity to noise (Bisoi et al., 2019), and wavelet transforms 

methods lack adaptivity (Li et al. , 2017). Variational mode decomposition (VMD) (Dragomiretskiy and Zosso, 2014) 40 

has overcome the disadvantages of EMD and is currently the most effective decomposition technique (Duan et al., 2022). 

Models combining VMD and neural networks are applied in forecasting various time series data. For example, stock price 

prediction (Bisoi  et al.,  2019), air quality index prediction (Wu and Lin, 2019), wind power prediction (Duan et al., 

2022), runoff prediction (Zuo et al. , 2020), and wave energy prediction (Neshat et a l.,  2022; Jamei et al.,  2022). 

Recent studies have shown that temporal convolutional networks (TCN) outperform ordinary network models in handling 45 

time-series data in several domains, such as flood prediction (Xu et al., 2021), traffic flow prediction (Zhao et al., 2019), and 

dissolved oxygen prediction (Li et al., 2022a). The TCN cells can significantly capture the short-term local feature information 

of the sequence data, while the LSTM cells are adept at capturing the long-term dependence of the sequence data. The wave 

data observed by the buoy contains both short-term features and long-term patterns of wave variability and is very well-suited 

for forecasting using a hybrid prediction model that includes the advantages of TCN and LSTM cells. 50 

Hyperparameter optimization (HPO) for neural networks is commonly regarded as a black-box problem that avoids neural 

network problems such as overfitting, underfitting or incorrect learning rate values, which tend to occur in constructing deep 

learning models. The latest HPO techniques are grid search, stochastic search, and Bayesian optimization (BO), etc. BO 

provides a better hyperparameter combination in a shorter time compared to traditional grid search methods (Rasmussen, 2004). 

It is more robust and less probable to be trapped in a local optima problem. Therefore, BO is the most widely used HPO 55 

algorithm, which has been applied to wave prediction models based on neural network algorithms (Zhou et al., 2022; Cornejo-

Bueno et al., 2018). 

Significant wave height (SWH) and average wave period (APD) are essential parameters in calculating wave power (De Assis 

Tavares et al., 2020; Bento et al., 2021).  For example, Hu et al. (2021) used XGBoost and LSTM to forecast wave heights 

and periods. Based on multi-layer perceptron and decision tree architecture,  Luo et al. (2023) realized the prediction of 60 

effective wave height, average wave period, and average wave direction. The SWH and APDTheir forecasts need to consider 

the original characteristics of waves, short-term variability, and long-term dependence. Therefore, in the study, we used wave 

data from the National Data Buoy Center (NDBC) around the Hawaiian Islands to design a hybrid VMD-TCN-LSTM model 

to forecast SWH and APD, and the BO algorithm was used to obtain the most optimal hyperparameters for the network model. 
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The remaining sections of this paper are organized as follows. In Section 2, the data and pre-processing are described, and in 65 

Section 3, the methodologies employed in the study are presented. In Section 4, the decomposition process of the wave series 

data, the overall structure of the prediction model and the hyperparameter optimization results are presented. Section 5 

discusses the performance differences between the VMD-TCN-LSTM, VMD-LSTM, and LSTM models at various forecasting 

periods. Finally, Section 6 provides our conclusions. 

2 Materials 70 

2.1 Data source 

Buoy measurements are the most common data source for wave parameter forecasts (Cuadra et al., 2016). The research used 

buoy data from the NDBC of the National Oceanic and Atmospheric Administration (NOAA) (https://www.ndbc.noaa.gov/). 

Each buoy provides measurements of SWH, mean wave direction (MWD), wind speed (WSPD), wind direction (WDIR), APD, 

dominant wave period (DPD), sea level pressure (PRES), gust speed (GST), air temperature (ATMP), and water temperature 75 

(WTMP) at a resolution of 10 minutes to 1 hour. The dataset uses 99.00 to replace the missing values, but the resolution is still 

1 hour for wave parameters data. Four NDBC buoys located in different directions around the Hawaiian Islands (Fig. 1) were 

used in the research, The statistics of the geographic location and the water depth parameters of the buoys are shown in Table 

1. 

 80 

Figure 1. The geographical locations of the 51000, 51003, 51004 and 51101 NDBC buoys. 

Table 1. Statistics of the geographical locations and water depth parameters of the selected NDBC buoys. 

Buoy ID Latitude (°N) Longitude (°W) Depth (m) 

51000 23.528 153.792 4762 

51003 19.196 160.639 1987 

51004 17.538 152.230 5278 

51101 24.359 162.081 4860 
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2.2 Dataset partitioning and feature selection 

Waves depend on previous wave height, sea surface temperature, sea temperature, wind direction, wind speed, and pressure 

(Kamranzad et al., 2011; Nitsure et al., 2012; Fan et al., 2020). Because the buoy data have missing values, after data filtering, 85 

the research selected data longer than two years at each buoy as the training datasets to capture the year-round characteristics 

of wave parameters. The divisions and statistical characteristics of the training and testing datasets for the four buoys are shown 

in Table 2 and Fig. 2. 

Table 2. NDBC datasets division and statistical information. 

Buoy ID Dataset Date (YYYY/MM/DD HH) Data volume SWH range (m) ADP range (s) 

51000 
Training 2015/08/20 22~2020/04/20 15 40594 [0.89, 11.03] [4.60, 14.89] 

Testing 2020/07/29 01~2020/10/19 08 1976 [0.89, 3.49] [5.12, 11.43] 

51003 
Training 2015/08/25 03~2018/08/07/13 25494 [0.85, 6.83] [4.75, 13.85] 

Testing 2018/11/10 00~2018/12/31 08 1214 [1.41, 4.70] [5.48, 12.79] 

51004 
Training 2014/07/06 14~2017/10/08 16 28400 [0.86, 5.80] [4.78, 14.03] 

Testing 2017/12/08 11~2018/02/14 09 1631 [1.29, 5.30] [5.46, 12.99] 

51101 
Training 2014/11/04 22~2018/03/29 07 29548 [0.83, 8.54] [4.46, 14.73] 

Testing 2019/10/25 07~2020/01/04 00 1698 [1.16, 6.04] [5.44, 13.03] 

 90 

 

Figure 2. Statistical analysis of SWH and APD on the training and testing datasets of the four NDBC buoys. 

The research selected SWH and APD, two wave parameters, as forecasting variables. The correlation between various 

environmental parameters with SWH and APD was determined by calculating Pearson correlation coefficients between the 

above parameters before selecting the input features. For the parameters X and Y, the Pearson correlation coefficients are 95 

calculated as follows. 

 r =
cov(X, Y)

σXσY
=

1
n ∑ (Xi X)(Yi Y)n

i=1  

1
n

∑ (Xi X)
2n

i=1
1
n

∑ (Yi Y)
2n

i=1

 ,         (1) 
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The Pearson correlation coefficients between SWH, MWD, WSPD, GST, WDIR, PRES, WTMP, ATMP, APD, and DPD 

were calculated after neglecting the parameter values at unrecorded moments (Fig. 3). As shown in Fig. 3, SWH has a positive 

correlation with APD, DPD, MWD, WSPD, GST, WDIR, and PRES to different degrees, and SWH has a negative correlation 100 

with WTMP and ATMP. Among them, WSPD and GST have a strong correlation (r=0.988), WTMP and ATMP have a strong 

correlation (r=0.901), and APD is considered to contain the main features of DPD. In order to utilize as many features of 

different physical parameters as possible while minimizing the computational redundancy, seven physical parameters, SWH, 

APD, MWD, WSPD, WDIR, PRES and ATMP, were selected as input and training data for SWH and APD forecasting in the 

study. 105 

 

Figure 3. Pearson correlation coefficients between various physical parameters in NDBC data. 

2.3 Data pre-processing 

Wind and wave directions are continuous in space but discontinuous numerically. For example, the directions 2° and 358° are 

very close, but the magnitude of the values differs significantly. Therefore, the wind and wave directions need to be pre-110 

processed. The following formula recalculates the wind and wave directions (Nitsure et al., 2012). 
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 ψ = 
1 −

θ

180
,         if 0° ≤ θ ≤ 180°

θ 180

180
,        if 180° < θ < 360°

 ,         (2) 

where θ is the original wind or wave directions and ψ is the re-encoded value of wind or wave directions. ψ has a range of 

values from [0, 1]. 

Since different NDBC physical variables have different units and magnitudes, this can substantially influence the performance 115 

of the neural network model. Therefore, each variable must be normalized or standardized before using it as input data for the 

model (Li et al., 2022b). The research used a min-max normalization function to scale the input data between [0, 1], which is 

calculated as follows. 

 xn = 
x min (x)

max (x) min (x)
 ,           (3) 

where xn is the normalized feature value and x is the measured feature value. 120 

3 Methods 

3.1 Variational mode decomposition (VMD) 

The VMD is an adaptive, completely nonrecurrent mode variation and signal processing technique that combines the Wiener 

filter, the Hilbert transform, and the Alternating Direction Method of Multipliers (ADMM) technique (Dragomiretskiy and 

Zosso, 2014). VMD can determine the number of mode decompositions for a given sequence according to the situation. It has 125 

resolved the issues of mode mixing, boundary effects of EMD. The VMD decomposes the original sequence signal into an 

Intrinsic Mode Function (IMF) of finite bandwidth, where the frequencies of each mode component uk are concentrated around 

a central frequency ωk. The VMD algorithm can be found in more detail in Appendix A. 

The nucleus of VMD is the construction and solution of the variational problem, which is essentially a constrained optimization 

problem. The variational problem is to minimize the sum of the estimated bandwidths of the IMFs, with the constraint that the 130 

sum of the IMFs is the original signal. The calculation formula is as follows. 

 min
{uk},{ωk}

{ ∑ ∂t[(δ(t) + 
j

πt
) * uk(t)]e

jωkt

2

2

k }    s.t. ∑ ukk = f ,       (4) 

where "s.t." is the abbreviation of "subject to". {uk} := {u1,u2,…,uk} and {ωk} := {ω1,ω2,…,ωk} denote the set of all modes 

and their corresponding central frequencies, respectively. The f is the original signal, k is the total number of modes, and δ(t) 

represents the Dirac distribution. The j is an imaginary unit and "*" denotes the convolution. 135 

To simplify the above equations, VMD introduces a quadratic penalty term (α) and Lagrange multipliers (λ) to convert the 

constrained problem into a non-constrained problem. α guarantees the reconstruction accuracy of the signal, and λ maintains 

the constraint stringency. 
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 ℒ({uk, ωk}, λ) := α ∑ ∂t[(δ(t) + 
j

πt
) * uk(t)]e

jωkt

2

2
 + ‖ f(t) − ∑ uk(t)k ‖2

2 + ⟨λ(t), f(t) − ∑ uk(t)k ⟩k  ,   (5) 

Finally, the ADMM solves the saddle point of the augmented Lagrange multiplier. Update the iterative formulas for uk, ωk and 140 

λ as follows. 

 uk
n+1(ω) = 

f(ω) ∑ ui(ω)i≠k +
λ(ω)

2
 

1 + 2α(ω ωk)2  ,          (6) 

 ωk
n+1= ∫ ω|uk(ω)|2dω

∞
0

∫ |uk(ω)|2dω
∞
0

 ,           (7) 

 λ
n+1

(ω)=λ
n
(ω) + τ f(ω) − ∑ uk

n+1(ω)K
k=1  ,         (8) 

where f(ω), uk(ω), λ(ω) and uk
n+1(ω) are the Fourier transforms of f(ω), uk(ω), λ(ω) and uk

n+1(ω), respectively. The n and τ are 145 

the number of iterations and update coefficients of Dual ascent. The iterations are stopped when the convergence condition 

satisfies the following equation. 

 ∑
uk

n+1 uk
n

2

2

uk
n

2
2  < ϵk  ,           (9) 

The VMD algorithm can be found in more detail in Dragomiretskiy and Zosso (2014). 

3.2 Temporal convolutional networks (TCN) 150 

The TCN is a variant of the Convolutional Neural Networks (CNN) (Fig. 4). TCN model uses causal convolution, dilated 

convolution, and residual block to extract sequence data with a large receptive field and temporality (Yan et al., 2020). TCN 

performs convolution in the time domain (Kok et al., 2020), which has a more lightweight network structure than CNN, LSTM, 

and GRU (Bai et al., 2018). TCN has the following advantages: (1) causal convolution prevents the disclosure of future 

information, (2) dilated convolution extends the receptive field of the structure, and (3) residual block maintains the historical 155 

information for a longer period.  

TCN is on the concept of causal convolution, where "causal" indicates that the output 𝑦  (Fig. 4) at the time 𝑡 is only dependent 

on the input x1,  x2,…,xt and is not influenced by xt+1,xt+2,…,xT. The receptive field depends on the filter size and the network 

depth. However, the increase of filter size and network depth brings the risk of gradient disappearance and explosion. To avoid 

these problems, TCN introduces dilated convolution based on causal convolution (Zhang et al., 2019). The dilated convolution 160 

introduces a dilation factor to adjust the receptive field. The processing capability of long sequences depends on the filter size, 

dilation factor, and network depth. TCN effectively increases the receptive field without additional computational cost by 

increasing the dilation factor. To ensure training efficiency, TCN introduces multiple residual blocks to accelerate the 

prediction model. Each residual block comprises two dilated causal convolution layers with the same dilation factor, 

normalization layer, ReLU activation and dropout layer. The input of each residual block is also added to the output when the 165 

input and output channels are different. 
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Figure 4. Structure of temporal convolutional networks. 

TCN employs dilated convolution based on causal convolution to handle the linear increase in network depth for longer inputs. 

The dilated convolution introduces a dilation factor (d) to adjust the receptive field. The processing capability of long sequences 170 

depends on the filter size (k), d, and network depth (p). For a one-dimensional time series x∈ℝn and a filter f: {0, …, k −

1}→ℝ, the dilated convolution operation 𝐹 on the sequence element 𝑠 is defined as: 

 F(s) = (x * df )(s) = ∑ f(i) ⋅  xs d ⋅ i
k 1
i=0  ,         (10) 

where d is the dilation factor, k is the filter size, and "s − d ⋅  i" describes the passed direction. In the dilated convolution, the 

dilation factor 𝑑  grows exponentially (d = 2i ) with the hidden layer depth (i), and the receptive field is (k − 1) d. TCN 175 

effectively increases the receptive field without additional computational cost by increasing the dilation factor. Figure 4 

illustrates the structural components of TCN with the dilation factors d = 1, 2, and 4. 

To ensure training efficiency, TCN introduces multiple residual blocks to accelerate the prediction model. Each residual block 

comprises two dilated causal convolution layers with the same dilation factor, normalization layer, ReLU activation and 

dropout layer. The input of each residual block is also added to the output when the input and output channels are different 180 

(Fig. 4). 

The input of each residual block is also added to the output when the number of channels between the input and output are 

different (Fig. 4). The following equation obtains the residual block: 

 o = Activation(x + F(x)) ,           (11) 

where o is the residual block output, Activation is the activation function, x is the previous input information, and F(x) is the 185 

transformed information. 
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3.3 Long short-term memory (LSTM) networks 

The traditional RNN is exposed to gradient explosion and vanishing risk. LSTM network learns to reset itself at the appropriate 

time by adding a forgetting gate in RNN, which releases internal resources. Meanwhile, LSTM learns faster by adding the self-

looping method to generate a long-term continuous flow path. As a specific RNN, the LSTM network structure includes an 190 

input layer, a hidden layer, and an output layer. The structure of the LSTM cell is shown in Fig. 5. The LSTM can be found in 

more detail in Appendix B. 

 

 

Figure 5. Structure of long short-term memory networks. The xt denotes the current input vector, ft is the forget gate, 195 

it is the input gate, ct is the storage cell state, ot is the output gate, ht is the storage cell value at time t, σ is the sigmoid 

function, 𝒕𝒂𝒏𝒉 denotes the hyperbolic tangent function, "⊙" denotes the Hadamard matrix product. 

A LSTM cell consists of four components, the forget gate ft, the input gate it, the storage cell state ct and the output gate ot. 

The ft determines the number of memories that need to be reserved from ct 1 to ct. 

 ft = σ(Wf ⋅ [xt, ht 1] + bf) ,           (12) 200 

The it determines the information that is input to this cell state. 

 it = σ(Wi ⋅ [xt, ht 1] + bi) ,           (13) 

The ot represents the information output from this cell state. 

 ot = σ(Wo ⋅ [xt, ht 1] + bo) ,          (14) 

The cell state is: 205 

 Ct = ft ⊙ Ct 1 + it ⊙  Ct ,           (15) 

 Ct = tanh (Wc ⋅ [xt, ht 1] + bc) ,          (16) 

The next cell with ht is: 

 ht = ot ⊙ tanh (Ct) ,           (17) 

In the above equation, xt denotes the current input vector, and W and b denote the hyperparameters of the weights and biases. 210 

The ht is the storage cell value at time t. The σ is the sigmoid function, 𝑡𝑎𝑛ℎ denotes the hyperbolic tangent function, "⋅" 

denotes the dot product of matrices, and "⊙" denotes the Hadamard matrix product of equidimensional matrices (Yu et al., 
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2019; Gers et al., 2000; Hochreiter and Schmidhuber, 1997). The sigmoid function takes values in the range is [0, 1], and in 

the forgetting gate, if the value is 0, the information of the previous state is completely forgotten, and if the value is 1, the 

information is completely retained. tanh function takes the values in the range [-1, 1]. 215 

3.4 Bayesian optimization (BO) 

The BO aims to find the global maximizer (or minimizer) of the unknown objective function f(x) (Frazier, 2018), as shown in 

follows:. 

 x∗ = (arg max
x∈D

f(x)) ,           (184) 

where D denotes the search space of x, where each dimension is a hyperparameter. 220 

The BO has two critical components, first, establishingbuild an agency model of the objective function through a regression 

model (e.g., Gaussian process regression) and subsequently usinguse the acquisition function to decide where to sample next 

(Frazier, 2018). 

The Gaussian process (GP) is an extension of multivariate Gaussian distribution into an infinite dimensional stochastic process 

(Frazier, 2018; Brochu et al., 2010), which is the prior distribution of stochastic processes and functions. Any finite subset of 225 

random variables has a multivariate Gaussian distribution, and a GP is entirely defined by its mean function and covariance 

function (Rasmussen, 2004). BO optimizes the unknown function f(x) by combining the prior distribution of the function based 

on the GP with the current sample information to obtain the posterior of the function.  

The BO uses the expected improvement (EI) function as the acquisition function to evaluate the utility of the model posterior 

to determine the next input point. Let 𝑓∗ be the optimal value of the acquisition function at the current iteration. The EI 230 

acquisition function can be defined by Eq. (19) (Shahriari et al., 2016; Frazier, 2018): 

 EI(x) =
(μ(x) − 𝑓n

*)ϕ(Z) + σ(x)φ(Z)      if σ(x) > 0
0                                               if σ(x) = 0

 ,        (19) 

where Z = 
μ f(x+)

σ(x)
, μ(x) and σ(x) are the expectation and variance of the input value x, respectively, ϕ is the cumulative 

distribution function (CDF) of the standard normal distribution, and φ is the probability density function of the standard normal 

distribution. 235 

The BO employs GP and EI in the iterations to evaluate and obtain the global optimal hyperparameters (Zhang et al., 2020a). 

The framework of the Bayesian parameter optimization algorithm is shown below. 

Algorithm 1 Basic pseudo-code for Bayesian optimization 

1: Initializing the prior distribution of the substitution function based on GP. 

2: for n = 1, 2, … do 

Find xn by optimizing acquisition function. 

xn+1 = arg max
x

𝛼 (x|Dn)  

Query objective function to obtain yn+1 
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Augment data Dn+1 = {Dn,  (xn+1,yn+1)}  

Update the prior distribution of the substitution function. 

end for 

3: Find the global optimal solution for the current GP. 

4 Wave parameter prediction model framework and parameter settings 

4.1 Data decomposition and parameter setting 

The input to the VMD method requires the original signal f(t) and a predefined parameter K. The K determines the number of 240 

IMF patterns extracted during the decomposition. If the number of the extracted patterns is too large, it leads to a decrease in 

accuracy and unnecessary computational overhead (Liu et al., 2020). However, if the number of patterns is too small, the 

information in the patterns is insufficient to construct a high-precision prediction model. Therefore, it is essential to choose an 

appropriate one for K. 

There is still a lack of general guidelines for the selection of the K parameter (Bisoi et al., 2019). Methods commonly used in 245 

other fields include the central frequency observation method (Hua et al., 2022; Chen et al., 2022; Fu et al., 2021), sample 

entropy (Zhang et al., 2020b; Niu et al., 2021), genetic algorithm (Huang et al., 2022), effective kurtosis index (Li et al., 2020), 

signal energy (Liu et al., 2020; Huang and Deng, 2021), etc. The central frequency observation method is convenient and 

effective, and it is used in this research to determine the number of patterns K for sequence decomposition. For various K 

parameter values, when the central frequency of the last mode has no significant changing trend, the number of K currently is 250 

the optimal number of mode decompositions. The search range of K parameters in the research is [5, 15], and Table 3 calculates 

the central frequency of the last mode after the SWH and APD were decomposed with different K parameters. , the optimal 

VMD decomposition mode number for SWH and APD is 13 and 12, respectively, when the variation of the central frequency 

is less than 1e-8 Hz.As shown in Table 3, after VMD decomposes SWH, the central frequency of the last mode from K = 13 

does not change significantly, so the optimal VMD decomposition mode number for SWH is 13. As shown in Table 3, after 255 

VMD decomposes APD, the central frequency of the last mode from K = 12 does not change significantly, so the optimal 

VMD decomposition mode number for APD is 12. According to the optimal K parameters of SWH and APD decomposition, 

the SWH and APD data on the training and test sets of each buoy are decomposed by VMD separately. 

 

Table 3. The central frequency of the last mode after SWH and APD decomposition with different K parameters. 260 

K 5 6 7 8 9 10 11 12 13 14 15 

last mode after 

the SWH were 

decomposed 

(× (1e – 6) Hz) 

395975 419471 447343 449966 452286 452888 453510 453650 476397 477347 477403 
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last mode after 

the APD were 

decomposed 

(× (1e – 6) Hz) 

394750 433368 433725 434455 451044 451505 451713 475568 476213 476246 476317 

 

4.2 Wave parameter prediction model framework 

The overall structure of the VMD-TCN-LSTM wave parameter prediction model in the research is shown in Fig. 6, including 

three parts: data pre-processing, VMD data decomposition, and model training and forecasting. The input parameters to the 

model includes 13 SWH IMFs and residual, 12 APD IMFs and residual, original MWD, WSPD, PRES and ATMP, recoded 265 

WDIR. The lags of each input variable chosen for prediction are 3 hours. The TCN cells and LSTM cells are used in the model 

to construct an encoder-decoder network with an attention mechanism. To evaluate the accuracy of the VMD-TCN-LSTM 

model. The effect of the VMD technique and TCN cells on the forecasting results was also analysed. The results of the VMD-

TCN-LSTM model were compared with the VMD-LSTM and LSTM models. The VMD-LSTM model used both LSTM cells 

for encoding and decoding. The LSTM model without the VMD technique for data decomposition and was not encoded using 270 

TCN cells. 
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Figure 6. The overall structure of VMD-TCN-LSTM wave parameter prediction model. 

4.3 Neural network hyperparameter optimization based on BO 

In the research, the BO algorithm is used to search for the optimal hyperparameters for the training of the VMD-TCN-LSTM 275 

model, including batch size, number of TCN hidden layer units, number of LSTM hidden layer units, number of Dense hidden 

layer units, learning rate (α), dropout rate, and L2 regularization parameter of LSTM layer. The hyperparameters search range 

and optimal results are shown in Table 4. Meanwhile, the learning rate decay and Early Stopping method are used to prevent 

overfitting of the model and reduce the wasted training time. 

 280 

Table 4. Bayesian hyperparameter optimization results. 

带格式的: 正文



14 
 

Parameter Search interval Final value 

Batch size {8, 16, 32, 64, 256, 512}[8, 
512] 

256 

TCN hidden unit [16, 256]{16, 32, 64, 256} 64 

LSTM hidden unit [16, 256]{16, 32, 64, 256} 128 

Dense hidden unit [16, 256]{16, 32, 64, 256} 128 

learning rate α {[1e-4, 3e-4, 5e-4, 1e-3, 1e-
2}] 

3e-4 

Dropout rate {0.1, 0.2, 0.3, 0.4, 0.5}[0.1, 
0.5] 

0.2 

L2 regularization parameter {[1e-7, 1e-6, 1e-5, 1e-4}] 1e-5 

5 Experiment and analysis 

5.1 Evaluation metrics 

To quantify the performance of the prediction model performance, the mean absolute error (MAE), root mean square error 

(RMSE), mean absolute percentage error (MAPE) and the determination coefficient (R2) are used as evaluation metrics. The 285 

equations can be written as follows. 

 MAE =  
1

N
∑ y

p(i)
− y

t(i)
N
i=1  ,          (205) 

 RMSE = 
1

N
∑ (yp(i) − yt(i))

2N
i=1  ,          (216) 

 MAPE = 
1

N
∑

yp(i) yt(i)

yt(i)
 × 100%N

i=1  ,          (227) 

 R2 = 1 −
∑ (yp(i) yt(i))

2N
i=1

∑ (yt(i) yt)
2N

i=1
 ,           (238) 290 

where N denotes the time length of the series data, yt(i) is the true observation values of NDBC, yp(i) is the predicted value, and 

y
t
 is the average of the true observation values. 

Furthermore, to quantify the improvement of the VMD technique and the TCN unit on the model accuracy, respectively, four 

parameters, IMAE, IRMSE , IMAPE and IR2  (Eqs. (9) (24) to (12)(27)), are introduced to compare the percentage improvement of 

the evaluation metrics of VMD-LSTM and VMD-TCN-LSTM models concerning the LSTM model. 295 

 IMAE = 
MAELSTM MAEmodel

MAELSTM
 × 100% ,          (249) 

 IRMSE = 
RMSELSTM RMSEmodel

RMSELSTM
 × 100% ,         (2510) 

 IMAPE = 
MAPELSTM MAPEmodel

MAPELSTM
 × 100% ,         (2611) 

 IR2  = 
Rmodel

2 RLSTM
2

RLSTM
2  × 100% ,          (2712) 
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where the subscript "LSTM" represents the evaluation metrics of the LSTM model, and the subscript "model" represents the 300 

evaluation metrics of the VMD-LSTM or VMD-TCN-LSTM models. 

5.2 3-hour forecasting performance 

The evaluation metrics of SWH and APD for different prediction models on the testing sets of the four buoys for the 3-hour 

forecasts are shown in Table 5, where the best results are shown in bold. As shown in the table, both the VMD-LSTM and 

VMD-TCN-LSTM models significantly outperform the results of the LSTM model. This indicates that the data pre-processing 305 

method of VMD can extract the features of the sequence data well forin the 3-hour SWH and APD forecasts, which can 

significantly improve the forecasting performance. Meanwhile, the improvement of the TCN cells on the model performance 

is not particularly significant in for the 3-hour SWH and APD forecasts. The performance of the VMD-TCN-LSTM model 

was slightly better than that of the VMD-LSTM model only in some instances. 

Table 5. Accuracy evaluation of the three models in 3-hour SWH and APD forecasts. 310 

Buoy ID Algorithm 
SWH APD 

MAE (m) RMSE (m) MAPE (%) R2 MAE (s) RMSE (s) MAPE (%) R2 

51000 VMD+TCN+LSTM 0.083 0.111 4.675 0.924 0.155 0.204 2.353 0.950 

VMD+LSTM 0.085 0.118 4.766 0.918 0.168 0.217 2.536 0.942 

LSTM 0.143 0.177 8.527 0.874 0.219 0.290 3.295 0.897 

51003 VMD+TCN+LSTM 0.066 0.082 2.315 0.978 0.105 0.145 1.438 0.973 

VMD+LSTM 0.067 0.088 2.592 0.976 0.108 0.147 1.479 0.976 

LSTM 0.153 0.204 5.862 0.869 0.252 0.353 3.397 0.859 

51004 VMD+TCN+LSTM 0.080 0.105 2.816 0.973 0.115 0.158 1.323 0.981 

VMD+LSTM 0.081 0.107 2.856 0.970 0.124 0.164 1.372 0.976 

LSTM 0.159 0.217 6.105 0.885 0.279 0.393 3.601 0.884 

51101 VMD+TCN+LSTM 0.093 0.124 4.720 0.952 0.171 0.222 2.526 0.953 

VMD+LSTM 0.096 0.127 4.795 0.957 0.166 0.218 2.527 0.951 

LSTM 0.224 0.302 7.417 0.892 0.326 0.479 4.269 0.848 

 

In the SWH forecasting at four buoys, the buoy with the best performances was buoy 51003 with MAE, RMSE, MAPE and 

R2 of 0.066 m, 0.082 m, 2.315 %, and 0.978, respectively. Among the APD forecasting at four buoys, the VMD-TCN-LSTM 

model had the most petite MAE and RMSE at buoy 51003, with 0.105 s and 0.145 s, respectively, and the smallest MAPE and 

the highest R2 at buoy 51004 with 1.323 % and 0.981, respectively. 315 

To compare the forecasting results of different models more visually, Figure 7 shows the comparison results of the 3-hour 

SWH and APD forecasting curves of different models with the observed values for the first 24 hours of the testing set for each 

buoy. As shown in Fig. 7, the forecasting results of VMD-TCN-LSTM have a good agreement with the observed values of 
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NDBC at most moments on all four buoys. The forecasting results of VMD-LSTM are also close to the observed values. 

Meanwhile, the results of both the VMD-TCN-LSTM and VMD-LSTM models are significantly better than those of the LSTM 320 

model. It shows that both VMD-TCN-LSTM and VMD-LSTM models can better capture the time-varying characteristics of 

wave series data and thus perform well in the SWH and APD forecasts. 
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Figure 7. Comparison results of the 3-hour SWH and APD forecasting curves of different models with the observed values for the 
first 24 hours of the testing datasets for each buoy. 325 
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Figure 8 shows the linear fitting results of the SWH and APD observations with the forecasts of the three models for each 

buoy. According to the linear fitting formula, the fitting curves of both the VMD-LSTM and VMD-TCN-LSTM models were 

closer to “y = x” compared to the LSTM model. For the 3-hour SWH forecasts, the fitted formula of the VMD-TCN-LSTM 

forecasting results for buoy 51004 was closest to “y = x”, which had a slope of 0.9817 and an intercept of 0.0404 (Fig. 8(e)). 

For the 3-hour APD forecasts, the fitted formula of the VMD-TCN-LSTM forecasting results for buoy 51004 was closest to 330 

“y = x”, which had a slope of 0.9929 and an intercept of 0.0829 (Fig. 8(f)). The results indicate that the forecasting performance 

of these two models is significantly better than that of the LSTM model, which is consistent with the findings in Fig. 7 and 

Table 5. 

 

Figure 8. The linear fitting of the 3-hour SWH and APD predictions and observations for the three models. 335 

Meanwhile, the SWH and APD of the four buoys have different ranges of values and other statistical features, which proves 

that the two models, VMD-LSTM and VMD-TCN-LSTM, have good robustness for SWH and APD forecasting under different 

scenarios. The VMD technique can extract the time-varying features of the original data, contributing to the accuracy of the 

prediction model. In addition, using TCN cells instead of LSTM cells for encoding the network model can also reduce the 

error of the prediction model by a small amount. 340 

5.3 12-hour forecasting performance 

The evaluation metrics of SWH and APD for different prediction models on the testing sets of the four buoys for the 12-hour 

forecasts are shown in Table 6, and the best results are shown in bold in the table. As shown in Table 6, both the VMD-LSTM 
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and VMD-TCN-LSTM models significantly outperform the performances of the LSTM model. This is like the results of the 

3-hour SWH and APD forecasts.  345 

In addition, the performances of the VMD-TCN-LSTM model outperformed the VMD-LSTM for the SWH and APD forecasts 

at all buoys. Compared with the 3-hour forecasts, the TCN cells were more significant for the model performance improvement 

in the 12-hour wave forecasts. This is because the residual block structure used in the TCN cells can maintain the historical 

information for a long time. The TCN cells are more significant in the longer time wave parameter forecasts.  

Among the SWH forecasting of the four buoys, the VMD-TCN-LSTM model had the smallest MAE and RMSE at buoy 51000 350 

with 0.125 m and 0.165 m, respectively. Buoy 51003 had the smallest MAPE of 5.912 %. Buoy 51004 had the largest R2 of 

0.898. In the APD forecasting at four buoys, the VMD-TCN-LSTM model had the most petite MAE and RMSE at buoy 51003, 

with 0.247 s and 0.336 s, respectively, and the smallest MAPE and the highest R2 at buoy 51004 with 3.329 % and 0.904, 

respectively. 

The comparison of the forecasting curves of different models with the observations of NDBC for the first 24 hours of the 355 

testing set of the four NDBC buoys for the 12-hour SWH and APD forecasts is shown in Fig. 9. As shown in the figure, the 

forecasts of the VMD-TCN-LSTM model were in excellent agreement with the NDBC observations for most moments at all 

four buoys. And it is significantly outperforming the forecasting curves of VMD-LSTM and LSTM models. The results show 

that the VMD-TCN-LSTM model can better capture the time-varying characteristics of wave series data and thus performs 

well in forecasting SWH and APD. 360 

Table 6. Accuracy evaluation of the three models in 12-hour SWH and APD forecasts. 

Buoy ID Algorithm 
SWH APD 

MAE (m) RMSE (m) MAPE (%) R2 MAE (s) RMSE (s) MAPE (%) R2 

51000 VMD+TCN+LSTM 0.125 0.165 7.128 0.817 0.282 0.382 4.212 0.834 

VMD+LSTM 0.136 0.182 7.706 0.772 0.302 0.406 4.520 0.801 

LSTM 0.195 0.248 11.62 0.639 0.353 0.485 5.210 0.710 

51003 VMD+TCN+LSTM 0.152 0.203 5.912 0.872 0.247 0.336 3.355 0.871 

VMD+LSTM 0.177 0.233 6.910 0.830 0.293 0.398 3.948 0.819 

LSTM 0.271 0.371 10.39 0.581 0.439 0.629 5.862 0.550 

51004 VMD+TCN+LSTM 0.157 0.206 6.167 0.898 0.259 0.361 3.329 0.904 

VMD+LSTM 0.169 0.222 6.575 0.882 0.291 0.395 3.799 0.884 

LSTM 0.277 0.398 10.65 0.619 0.506 0.743 6.457 0.581 

51101 VMD+TCN+LSTM 0.283 0.369 9.575 0.839 0.419 0.555 5.262 0.811 

VMD+LSTM 0.274 0.361 9.270 0.840 0.441 0.585 5.526 0.787 

LSTM 0.384 0.522 12.98 0.673 0.638 0.918 7.876 0.450 
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Figure 9. Comparison results of the 12-hour SWH and APD forecasting curves of different models with the observed values for the 
first 24 hours of the testing datasets for each buoy. 365 
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Figure 10 shows the linear fitting results for the 12-hour SWH and APD forecasts data and observations at each buoy for the 

three models. As shown in Fig. 10, it was evident that the forecasting results of the VMD-TCN-LSTM model have the closest 

fitting formula to “y = x” compared with the LSTM model, and the VMD-TCN-LSTM model is better than the VMD-LSTM 

model. In the 12-hour SWH forecasts, the fitted formula of the VMD-TCN-LSTM forecasting results for buoy 51000 was 

closest to “y = x”, which had a slope of 0.9256 and an intercept of 0.1252 (Fig. 10(a)). Among the 12-hour APD forecasts, the 370 

fitted formula of the VMD-TCN-LSTM forecasting results for buoy 51004 was closest to “y = x”, which had a slope of 0.9664 

and an intercept of 0.2500 (Fig. 10(f)). Both VMD-TCN-LSTM and VMD-LSTM models have significantly better forecasting 

performance than the LSTM model. This is consistent with the conclusions of Fig. 9 and Table 6.  

 

Figure 10. The linear fitting of the 12-hour SWH and APD predictions and observations for the three models. 375 

Moreover, the variability of the numerical ranges of SWH and APD for the four buoys also demonstrates the excellent 

robustness of the VMD-TCN-LSTM model for SWH and APD forecasts in different scenarios. The pre-processing of wave 

sequence data using VMD can extract the time-varying features of the original data well, and the expansion convolution module 

of TCN increases the perceptual field of the model. At the same time, the residual block enables the preservation of the long-

term information of the original data. Therefore, the hybrid model of VMD, TCN, and LSTM can significantly improve the 380 

accuracy of the forecasting results. 
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5.4 24-, and 48-hour forecasting performance 

To further compare the performance of the VMD-TCN-LSTM model for the longer time wave forecasts, the error indices of 

the prediction models at 24 and 48 hours are presented in Table 7 and Table 8, respectively, where the best results are shown 

in bold in the table.  385 

Table 7. Accuracy evaluation of the three models in 24-hour SWH and APD forecasts. 

Buoy ID Algorithm 
SWH APD 

MAE (m) RMSE (m) MAPE (%) R2 MAE (s) RMSE (s) MAPE (%) R2 

51000 VMD+TCN+LSTM 0.119 0.173 8.203 0.733 0.302 0.412 4.287 0.775 

VMD+LSTM 0.149 0.206 8.406 0.693 0.336 0.459 4.976 0.739 

LSTM 0.249 0.313 14.87 0.294 0.464 0.648 6.841 0.478 

51003 VMD+TCN+LSTM 0.194 0.247 7.604 0.808 0.312 0.420 4.268 0.810 

VMD+LSTM 0.233 0.290 9.152 0.734 0.342 0.457 4.705 0.764 

LSTM 0.381 0.503 14.44 0.302 0.585 0.842 7.777 0.298 

51004 VMD+TCN+LSTM 0.191 0.253 7.408 0.845 0.337 0.467 4.266 0.833 

VMD+LSTM 0.213 0.282 8.302 0.808 0.405 0.555 5.297 0.764 

LSTM 0.362 0.519 14.29 0.349 0.693 0.959 8.941 0.295 

51101 VMD+TCN+LSTM 0.309 0.400 10.75 0.803 0.496 0.671 6.258 0.688 

VMD+LSTM 0.325 0.416 11.49 0.787 0.517 0.701 6.497 0.659 

LSTM 0.578 0.780 18.81 0.247 0.847 1.169 10.43 0.257 

 

Table 8. Accuracy evaluation of the three models in 48-hour SWH and APD forecasts. 

Buoy ID Algorithm 
SWH APD 

MAE (m) RMSE (m) MAPE (%) R2 MAE (s) RMSE (s) MAPE (%) R2 

51000 VMD+TCN+LSTM 0.187 0.249 10.64 0.551 0.443 0.604 6.676 0.487 

VMD+LSTM 0.197 0.261 10.87 0.505 0.476 0.656 6.899 0.432 

LSTM 0.312 0.390 19.06 0.204 0.602 0.798 8.851 0.160 

51003 VMD+TCN+LSTM 0.315 0.387 12.56 0.536 0.448 0.606 6.174 0.592 

VMD+LSTM 0.335 0.428 13.51 0.434 0.531 0.792 7.110 0.429 

LSTM 0.552 0.720 19.85 0.214 0.772 1.097 10.41 0.214 

51004 VMD+TCN+LSTM 0.255 0.339 9.879 0.723 0.524 0.715 6.714 0.611 

VMD+LSTM 0.299 0.389 11.78 0.635 0.564 0.787 7.247 0.529 

LSTM 0.469 0.644 18.71 0.231 0.859 1.243 11.08 0.276 

51101 VMD+TCN+LSTM 0.456 0.586 16.23 0.580 0.744 0.907 9.474 0.432 

VMD+LSTM 0.497 0.648 16.74 0.487 0.822 1.109 10.31 0.390 

LSTM 0.651 0.805 23.86 0.238 1.127 1.503 13.65 0.180 
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As shown in Table 7,, for the 24-hour forecasts, the MAE and RMSE for the forecasting of SWH and APD at buoy 51000 are 

the minimum, with MAE of 0.119 m and 0.302 s, and RMSE of 0.173 m and 0.412 s, respectively. This is because the range 390 

of data for SWH and APD in the testing datasets at buoy 51000 is the minimum (Fig. 2). At Bbuoy 51004, the forecasting of 

SWH and APD had the minimum MAPE and the maximum R2, with MAPE of 7.408 % and 4.266 %, and R2 of 0.845 and 

0.833, respectively. 

As shown in Table 8, for the 48-hour forecasts, the MAE and RMSE for the forecasting of SWH and APD at buoy 51000 are 

the minimum, with MAE of 0.187 m and 0.443 s and RMSE of 0.249 m and 0.604 s, respectively. It showed a similar 395 

performance as the 24-hour SWH and APD forecasts. Buoy 51004 had the maximum R2 with 0.723 and 0.611 for SWH and 

APD forecasts, respectively. Buoy 51004 also had a minimum MAPE of 9.879 % for the SWH forecasts. Buoy 51003 had a 

minimum MAPE of 6.174 % for the APD forecasts. 

5.5 Analysis of improvement of VMD-TCN-LSTM compared with previous models 

To precisely quantify the prediction performance improvement rate of the VMD technique and TCN cells for the LSTM model, 400 

respectively. The model performance improvement rates for VMD-TCN-LSTM and VMD-LSTM were calculated by using 

Eqs. (9)(24) to (12) (27) (Table 9), and bold in the table represents the highest result of the model performance improvement 

rate. As shown in Table 9, VMD-LSTM and VMD-TCN-LSTM models had very similar improvement rates in MAE, RMSE, 

MAPE, and R2  in the 3-hour SWH forecasts, which indicates that the improvement of the VMD-TCN-LSTM model for 

prediction accuracy in the 3-hour SWH forecasts is mainly contributed by the VMD technique. The same conclusion can be 405 

obtained in the 3-hour APD forecasts. Subsequently, when the length of forecasting increases to 12, 24, and 48 hours, the TCN 

cells asis more significant for the decrease of MAE, RMSE, MAPE, and the increase of R2 for the forecasting results. 

Table 9. The performance improvement rate of VMD-TCN-LSTM and VMD-LSTM models relative to LSTM model. 

Evaluation 

indicators 
Algorithm 

SWH APD 

3-hour 12-hour 24-hour 48-hour 3-hour 12-hour 24-hour 48-hour 

IMAE (%) 
VMD+TCN+LSTM 51.75 37.36 48.77 39.65 48.47 36.75 43.60 35.34 

VMD+LSTM 50.74 33.14 40.98 34.02 46.27 30.27 37.41 28.39 

IRMSE (%) 
VMD+TCN+LSTM 51.91 39.08 48.90 39.24 50.51 39.69 45.11 37.80 

VMD+LSTM 49.71 34.72 42.22 33.18 49.07 34.03 39.26 27.12 

IMAPE (%) 
VMD+TCN+LSTM 48.98 37.52 45.80 40.02 47.59 35.89 43.69 33.82 

VMD+LSTM 47.12 33.51 40.23 35.45 45.55 29.22 36.31 28.20 

IR2 (%) 
VMD+TCN+LSTM 8.733 36.92 171.0 169.3 10.63 52.91 146.0 160.6 

VMD+LSTM 8.560 32.74 157.2 132.5 10.30 47.19 131.6 119.7 

 

There was no significant rule for the decreased rate of TCN cells on the MAE, RMSE, and MAPE of the model at various 410 

forecasting time length. However, the contribution of TCN cells to the improvement of R2 for forecasting results gradually 
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increases with the increase of forecasting time length. It reaches the maximum value in the 48-hour SWH and APD forecasts. 

As shown in Table 9, in the 48-hour SWH forecasts, the VMD technique increases the R2 of the forecasting performance by 

132.5 %, and the TCN cells for model encoding resulted in a further 36.8 % improvement in the R2 of the model. In the 48-

hour APD forecasts, the VMD technique increases the R2 of the forecasting performance by 119.7 %. The TCN cells resulted 415 

in a further 40.9 % improvement in the R2 of the model. 

LSTM has advantages in solving the prediction problem by using time series data, and has been widely used in many fields. 

However, due to the strong nonlinear effects in the generation and evolution of wave, the wave prediction model that only uses 

LSTM will weak in the ability of generalization. As a result, both the model's ability to adapt to new samples and its prediction 

accuracy will be reduced. The VMD signal decomposition method can effectively extract the features of the original wave 420 

data, which can enhance LSTM's ability to capture the long-term dependence of the time series data and further improve the 

performance of the wave prediction model. This study shows that the VDM can significantly reduce the model's MAE, RMSE 

and MAPE and improve the model's R2. TCN introduces multiple residual blocks to speed up the forecast model and can retain 

historical wave change information over long periods. This study also shows that TCN's impact increases as the forecast period 

lengthens. The proposed hybrid VMD-TCN-LSTM shows its advantage in predicting both the wave height and the wave period. 425 

This method could also be used in other fields which have similar nonlinear features as waves. 

6 Conclusions 

This paper proposes a hybrid VMD-TCN-LSTM model for forecasting SWH and APD using buoy data near the Hawaiian 

Islands provided by the NDBC. Seven physical parameters, SWH, APD, MWD, WSPD, WDIR, PRES, and ATMP, were 

chosen for training the prediction model in the research. Specifically, the original features of the non-smooth wave series data 430 

were extracted by decomposing the original SWH and APD series data using the VMD technique. Subsequently, a prediction 

model is constructed using a network structure encoded by TCN cells and decoded by LSTM cells, where the TCN cells can 

capture the local feature information of the original series and can maintain the historical information for a long time. 

Simultaneously, the BO algorithm is used to obtain the optimal hyperparameters of the model to prevent overfitting or 

underfitting problems of the model. Ultimately, the 3-, 12-, 24-, and 48-hour forecasts of SWH and APD were implemented 435 

based on the VMD-TCN-LSTM model. In addition, eight evaluation metrics, MAE, RMSE, MAPE, R2, IMAE, IRMSE, IMAPE, 

and IR2, were used to evaluate and test the model performance. 

The VMD-TCN-LSTM model proposed in this research outperforms the LSTM and the VMD-LSTM models for all 

forecasting time lengths at all four NDBC buoys. It demonstrates that the VMD-TCN-LSTM model has good robustness and 

generalization ability. ForIn the 3-hour SWH and APD forecasts, the improvement of the hybrid model for forecasting accuracy 440 

is mainly contributed by the VMD technique, and the contribution of the TCN cells to the advancement of the model accuracy 
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is relatively tiny. Subsequently, the contribution of TCN cells to improve model forecasting accuracy was gradually significant 

when the forecasting time length increased to 12, 24, and 48 hours. 

There was no significant rule for the decreased rate of TCN cells on the MAE, RMSE, and MAPE of the model at various 

forecasting time lengths. The contribution of TCN cells to improving R2 for forecasting results gradually increases with the 445 

increase of forecasting time length. The VMD technique and the TCN cells improved the R2 of the model by 132.5 % and 

36.8 %, respectively, in the 48-hour SWH forecasts. In the 48-hour APD forecasts, the VMD technique and the TCN cells 

improved the R2 of the model by 119.7 % and 40.9 %, respectively. 

Now that the short term SWH and APD can be accurately predicted using the hybrid VMD-TCN-LSTM, this method would 

be useful for some marine related activities which are highly dependent on wave height and period predictions, such as ocean 450 

wave energy projects, shipping, fishing, coastal structures, and naval operations. Future work will investigate the effect of 

different driving data on the prediction skill, or the use of VMD-TCN-LSTM to predict other marine environmental parameters 

(e.g., sea level or winds). The combination of numerical wave models and the VMD-TCN-LSTM for large-scale SWH and 

APD simulations will also be developed. 

Appendix A: Detailed description of the VMD algorithm 455 

The nucleus of VMD is the construction and solution of the variational problem, which is essentially a constrained optimization 

problem. The variational problem is to minimize the sum of the estimated bandwidths of the IMFs, with the constraint that the 

sum of the IMFs is the original signal. The calculation formula is as follows: 

 min
{uk},{ωk}

{ ∑ ∂t[(δ(t) + 
j

πt
) * uk(t)]e

jωkt

2

2

k }    s.t. ∑ ukk = f ,       (A1) 

where "s.t." is the abbreviation of "subject to". {uk} := {u1,u2,…,uk} and {ωk} := {ω1,ω2,…,ωk} denote the set of all modes 460 

and their corresponding central frequencies, respectively. The f is the original signal, k is the total number of modes, and δ(t) 

represents the Dirac distribution. The j is an imaginary unit and "*" denotes the convolution. 

To simplify the above equations, VMD introduces a quadratic penalty term (α) and Lagrange multipliers (λ) to convert the 

constrained problem into a non-constrained problem. α guarantees the reconstruction accuracy of the signal, and λ maintains 

the constraint stringency. 465 

 ℒ({uk, ωk}, λ) := α ∑ ∂t[(δ(t) + 
j

πt
) * uk(t)]e

jωkt

2

2
 + ‖ f(t) − ∑ uk(t)k ‖2

2 + ⟨λ(t), f(t) − ∑ uk(t)k ⟩k  ,   (A2) 

Finally, the ADMM solves the saddle point of the augmented Lagrange multiplier. Update the iterative formulas for uk, ωk and 

λ as follows. 

 uk
n+1(ω) = 

f(ω) ∑ ui(ω)i≠k +
λ(ω)

2
 

1 + 2α(ω ωk)2  ,          (A3) 

 ωk
n+1= ∫ ω|uk(ω)|2dω

∞
0

∫ |uk(ω)|2dω
∞
0

 ,           (A4) 470 
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 λ
n+1

(ω)=λ
n
(ω) + τ f(ω) − ∑ uk

n+1(ω)K
k=1  ,         (A5) 

where f(ω), uk(ω), λ(ω) and uk
n+1(ω) are the Fourier transforms of f(ω), uk(ω), λ(ω) and uk

n+1(ω), respectively. The n and τ are 

the number of iterations and update coefficients of Dual ascent. The iterations are stopped when the convergence condition 

satisfies the following equation. 

 ∑
uk

n+1 uk
n

2

2

uk
n

2

2  < ϵk  ,           (A6) 475 

Appendix B: Detailed description of the LSTM 

A LSTM cell consists of four components, the forget gate ft, the input gate it, the storage cell state ct and the output gate ot. 

The ft determines the number of memories that need to be reserved from ct 1 to ct. 

 ft = σ(Wf ⋅ [xt, ht 1] + bf) ,           (B1) 

The it determines the information that is input to this cell state. 480 

 it = σ(Wi ⋅ [xt, ht 1] + bi) ,           (B2) 

The ot represents the information output from this cell state. 

 ot = σ(Wo ⋅ [xt, ht 1] + bo) ,          (B3) 

The cell state is: 

 Ct = ft ⊙ Ct 1 + it ⊙  Ct ,           (B4) 485 

 Ct = tanh (Wc ⋅ [xt, ht 1] + bc) ,          (B5) 

The next cell with ht is: 

 ht = ot ⊙ tanh (Ct) ,           (B6) 

In the above equation, xt denotes the current input vector, and W and b denote the hyperparameters of the weights and biases. 

The ht is the storage cell value at time t. The σ is the sigmoid function, 𝑡𝑎𝑛ℎ denotes the hyperbolic tangent function, "⋅" 490 

denotes the dot product of matrices, and "⊙" denotes the Hadamard matrix product of equidimensional matrices (Yu et al., 

2019; Gers et al., 2000; Hochreiter and Schmidhuber, 1997). The sigmoid function takes values in the range is [0, 1], and in 

the forgetting gate, if the value is 0, the information of the previous state is completely forgotten, and if the value is 1, the 

information is completely retained. tanh function takes the values in the range [-1, 1]. 
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