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Abstract. The Arctic is warming at a faster rate compared to the globe on average, commonly referred to as Arctic ampli-

fication. Sea ice has been linked to Arctic amplification and gathered attention recently due to the decline in summer sea

ice extent. Data assimilation (DA) is the act of combining observations with prior forecasts to obtain a more accurate model

state. Sea ice poses a unique challenge for DA because sea ice variables have bounded distributions, leading to non-Gaussian

distributions. The non-Gaussian nature violates Gaussian assumptions built into DA algorithms. This study presents differ-5

ent observing system simulated
:::::::::
simulation experiments (OSSEs)to find ,

::::::
which

:::::::
through

:::::::::::
experimental

::::::::::
observation

::::::::
networks

:::
and

::::::::
synthetic

::::::::::
observations

::::
will

::::::
provide

::
a
::::
data

::::::::::
assimilating

::::::
testing

::::::::::
framework.

:::
The

::::::
OSSEs

::::::::::
framework

:::
will

::::
help

:::::::::
determine the

best data assimilation configuration for assimilating sea ice and snow observationsthat produce the most accurate analyses and

forecasts. Findings indicate that not assimilating sea ice concentration observations while assimilating
::::::::::
assimilating

::::
both

:::
sea

:::
ice

:::::::
thickness

::::
and snow depth observations

::::
while

::::::::
omitting

:::
sea

:::
ice

:::::::::::
concentration

:::::::::::
observations produced the best sea ice and snow10

forecasts
:
,
::
in

:::
our

::::::::
idealized

:::::::::::
experimental

::::
setup. A simplified DA experiment helped demonstrate that the DA solution is biased

when assimilating sea ice concentration observations. The biased DA solution is related to the observation error distribution

being a truncated normal distribution, and the assumed observation likelihood is normal for the DA method. Additional OSSEs

show that using a non-Gaussian DA method does not alleviate the non-Gaussian effects of sea ice concentration observations,

and assimilating sea ice surface temperatures has a positive impact on snow updates. Finally, it is shown that perturbed sea ice15

model parameters, used to create additional ensemble spread in the free forecasts, lead to a year-long negative snow volume

bias.

1 Introduction

Warming over the Arctic region, a phenomenon commonly referred to as Arctic amplification (Serreze and Francis, 2006), has

been identified in both observations (Serreze et al., 2009; England et al., 2021) and climate models (Holland and Bitz, 2003).20

Numerous studies have found this warming rate to be approximately twice as fast as the global average (Walsh, 2014; Jansen

et al., 2020; Yu et al., 2021). A recent study found that Arctic amplification-related warming could be three-to-four times faster

than the global average, more than double the warming rate previously estimated (Rantanen et al., 2022). Projections of Arctic

amplification rely heavily on the ability of coupled numerical models to represent each Earth-system component. One important
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Earth-system component linked to Arctic amplification–the cryosphere–has gathered attention recently due to the declining25

summer sea ice extent over the recent decades (Screen and Simmonds, 2010; Jenkins and Dai, 2021). During wintertime, sea

ice can act as an insulator trapping ocean heat, created from the absorbed shortwave radiation during the summer sea-ice loss

season, within the ocean allowing for cooler winter atmospheric temperatures (Chung et al., 2021). Additionally, snow cover

on top of sea ice can impact seasonal sea ice evolution, growth and melt (Holland et al., 2021). Providing more accurate sea ice

and snow states via data assimilation in our coupled Earth-system modeling frameworks could help improve future projections30

of the climate and the processes related to Arctic amplification.

Data assimilation (DA) is the action of optimally combining information from prior forecasts with observations to improve

the current estimate of the state of any Earth-system component. The statistical methods used to optimally combine this infor-

mation often have Gaussianity assumptions, depending on the choice of the data assimilation method. One data assimilation

method that has commonly been applied in Earth-system problems is the ensemble Kalman filter (EnKF; Evensen 2003;35

Houtekamer and Zhang 2016), which includes Gaussian assumptions in its original Kalman filter formulation (Kalman, 1960).

These Gaussian assumptions can lead to biased solutions when prior forecast distributions are non-Gaussian or errors associ-

ated with the observations are also non-Gaussian. Common sea ice variables have both double and single bounded quantities

(e.g., doubly-bounded: sea ice concentration; singly-bounded: sea ice thickness) that lead to non-Gaussian distributions, which

would violate Gaussian assumptions. Studies have investigated the performance of different EnKF formulations (stochastic40

versus deterministic) under non-Gaussian conditions and found that while the stochastic formulation was more stable, both had

biased solutions (Lawson and Hansen, 2004; Lei et al., 2010). Different ensemble data assimilation methods that remove the

Gaussian assumption have been proposed, however, many have only been tested in low-order models and could be potentially

expensive in high-dimensional geophysical models (Pham, 2001; Anderson, 2010; Sakov et al., 2012b; Metref et al., 2014).

Here, instead of testing a new ensemble data assimilation method, we will conduct experiments to highlight the impacts of45

different non-Gaussian sea ice variables during data assimilation updates.

The application of data assimilation to sea ice problems is not a novel idea since this research topic has been investigated

for more than two decades. Common observation descriptive quantities for sea ice are concentration (e.g., the fraction of a

grid cell covered with sea ice) and thickness (e.g., the sea ice surface extending down into the ocean). Previous studies have

highlighted the importance of initial conditions when trying to predict Arctic sea ice from local to seasonal time scales, es-50

pecially regarding accurate initialization of sea ice thickness (Msadek et al., 2014; Day et al., 2014; Dirkson et al., 2017).

Although different data assimilation techniques have been used to update sea ice state variables (Meier and Maslanik, 2003;

Van Woert et al., 2004; Lindsay and Zhang, 2006; Stark et al., 2008), numerous studies have tested updating sea ice state

variables using the EnKF data assimilation method (Lisæter et al., 2003; Barth et al., 2015). These EnKF studies were tested

both in a synthetic observation framework referred to as observing system simulation experiments (OSSEs; Barth et al. 2015;55

Kimmritz et al. 2018; Zhang et al. 2018) and using real observations from remote sensing platforms (Sakov et al., 2012a;

Massonnet et al., 2015). These studies found improvements in both sea ice analyses and their corresponding forecasts related

to the spatial sea ice concentration field but little improvement in sea ice thickness. Massonnet et al. (2015)
:
In

::::::::
addition,

::::::
studies

::::
have improved the initialization of sea ice cover when updating sea ice thickness via a multivariate framework when assimilat-
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ing only sea ice concentration observations
::::::::::::::::::::::::::::::::::::
(Massonnet et al., 2015; Sakov et al., 2012a). More recent studies have tested the60

assimilation of other sea ice observations (e.g., sea ice thickness )
::
sea

:::
ice

::::::::
thickness

:::::::::::
observations

:
and found further improve-

ments to sea ice states (Mathiot et al., 2012; Chen et al., 2017; Mu et al., 2018; Fiedler et al., 2022)
:::
both

:::
sea

:::
ice

::::::::
thickness

::::
and

:::
sea

:::
ice

:::::::::::
concentration

:::::
states

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Mathiot et al., 2012; Chen et al., 2017; Fritzner et al., 2018; Mu et al., 2018; Fiedler et al., 2022)

. While results from assimilating sea ice thickness observations are positive, they contain large observation uncertainties be-

cause satellite remote sensing retrieval algorithms contain large uncertainties due to input parameters and instrument errors65

(Kwok and Cunningham, 2008; Tilling et al., 2016; Ricker et al., 2017)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kwok and Cunningham, 2008; Zygmuntowska et al., 2014; Tilling et al., 2016; Xie et al., 2016; Ricker et al., 2017)

. Further research is needed to determine how to properly handle these uncertainties when assimilating sea ice observations.

:::::
Lastly,

:::::
there

::::
have

:::::
been

:::::
recent

::::::::
attempts

::
to

::::::
obtain

:::::::
observed

:::::
snow

:::::
depth

:::::
from

::::::::
satellites;

::::::::
however,

:::
the

:::::::::::
uncertainties

:::::::::
associated

::::
with

::::
these

:::::::::::
observations

::::::
remain

::::
high

::::::::::::::::::::::::::::::::::
(Maaß et al., 2013; Rostosky et al., 2018)

:
.
:::::::
Because

:::::
snow

::
is

::::::
closely

:::::::::
connected

::
to

::::::
albedo

:::
and

:::
sea

:::
ice

:::::::
melting,

:::::::
further

::::::::::::
understanding

::
of

:::
the

:::::::
impacts

::
of

:::::::::::
assimilating

:::::
snow

:::::
depth

::::::::::
observations

::
is
:::::::

needed.
::::

For
::::::::
example,70

::::::::::::::::
Fritzner et al. 2019

::::
found

:::::::::::
assimilating

::::
snow

:::::
depth

:::::::::::
observations

:::
had

:::::::
positive

::::::
effects

::
on

:::::::::
short-term

::::::::
forecasts

::
of

::::
snow

:::::
depth

::::
and

:::
sea

::
ice

::::::::::::
concentration.

:

This study uses different OSSEs to investigate how the non-Gaussian nature of different sea ice fields impacts data assimilation-

generated sea ice analyses.
:::::
Using

::::::
OSSEs

::::::::
provides

::
an

:::::::::::
experimental

::::::::::
framework

::
to

:::
test

:::
the

:::::::
impacts

:::
of

::::::::::
synthetically

:::::::::
generated

::::::::::
observations

::
in

:::::::
different

::::
data

::::::::::
assimilation

:::::::::::::
configurations. This study expands on previous research on sea ice data assimilation75

that was laid out by Zhang et al. (2018). The OSSEs presented in this study will test different experimental setups to investigate

their impacts on sea ice and snow states generated by data assimilation. These experiments will investigate the impacts of post-

processing updates for snow on top of sea ice, different assimilated observation combinations, and different data assimilation

methods. This study highlights the impacts of the non-Gaussian nature of certain sea ice variables on the generation of sea ice

analyses when using an EnKF data assimilation method. Section 2 describes the sea ice model and the data assimilation exper-80

imental setup along with the description of the different OSSEs that were completed. Section 3 presents the results obtained

from the different OSSEs. Section 4 discusses the conclusions and future work on this research.

2 Methods and Experimental Setup

2.1 DART-CICE data assimilation system

For this study, the Los Alamos Sea Ice Model version 5 (CICE5; Hunke et al. 2015) is used to integrate the analyses forward in85

time while using an ensemble Kalman filter (EnKF) data assimilation technique to generate analyses. The Data Assimilation

Research Testbed (DART; Anderson et al. 2009) software was used to implement the EnKF. Hereafter, we refer to this modeling

configuration as CICE-DART. The CICE5 model setup closely follows that in Zhang et al. (2018) while the data assimilation

setting will be different in the experiments.
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2.1.1 DART90

The data assimilation technique used in this study is the ensemble adjustment Kalman filter (EAKF; Anderson 2001), which is

a modified version of the ensemble Kalman filter (Burgers et al., 1998) and a variation of the deterministic ensemble square-

root filter (Tippett et al., 2003). The EAKF combines observations with an ensemble of short-term model forecasts over a

specific observation window to produce an ensemble of the best estimate of the sea ice state. One important aspect of the

EAKF is its ability to use the ensemble to estimate a flow-dependent background-error covariance, which differs from a static95

background-error covariance typically employed by variational techniques. Additionally, a non-Gaussian rank histogram filter

(RHF, filter option 8 in DART; Anderson 2010) is tested to compare with EAKF results. To reduce sampling errors due to

limited ensemble member size, covariance localization was applied only in the horizontal direction. A Gaspri-Cohn fifth-order

polynomial was applied in the horizontal directions to limit observation updates within a specified cutoff radius of 0.05 (i.e.,

∼320 km; Gaspari and Cohn 1999). Adaptive prior covariance inflation was applied by “inflating" the ensemble perturbations100

in prior background fields, increasing the variance by pushing ensemble members away from the ensemble mean (Anderson,

2007). Zhang et al. (2018) found a reduction in Arctic sea ice area and volume errors when prior inflation was applied in their

study. Inflation damping is set to 0.9 to help control the growth of the inflation factor for the different state model variables.

Any assimilated observation type is allowed to update all model state variables during the assimilation step unless otherwise

noted. There was no cross-variable localization applied in this study.105

2.1.2 CICE

CICE5 is the sea ice component within the Community Earth System Model (CESM; Danabasoglu et al. 2020) that is used

to make climate projections. CICE5 simulates the evolution of sea ice and snow through the representation of thermodynamic

and dynamical processes using an ice thickness distribution. The evolution of sea ice thickness, which is represented by the

quotient of sea ice volume and sea ice area, is accomplished by partitioning the sea ice pack distribution within a grid cell into110

multiple thickness categories (Lipscomb, 2001). For this study, there are five thickness categories for both sea ice and snow

with lower bounds of 0, 0.64, 1.39, 2.47, 4.57 m. Respecting the category bounds poses a challenge during the data assimilation

step when updating sea ice area and sea ice volume. Snow depth is also partitioned into five categories. Each thickness category

is divided into multiple layers (both sea ice and snow if present) to represent the evolution of sea ice temperature, salinity, and

enthalpys related to sea ice and snow. CICE was coupled to a slab ocean model (SOM) that provides the ocean forcing in the115

form of annually periodic, prescribed ocean forcing data (e.g., sea surface temperatures, ocean heat fluxes). The atmospheric

forcing data comes from the Community Atmosphere Model version 6 (CAM6)/Data Assimilation Research Testbed ensemble

reanalysis (Raeder et al., 2021) for the time period of interest. Default namelist settings were used in this study (Hunke et al.,

2015) except for perturbing several input CICE parameters, which will be discussed in the next section.
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2.2 Perfect model OSSEs120

Given the uncertainties and potential biases of satellite-retrieved sea ice and snow observations, this study applies perfect model

OSSEs to investigate non-Gaussian impacts that could be introduced while assimilating these observations. Each ensemble

consists of 80 CICE5 members because there are 80 different CAM6/DART reanalysis atmospheric forcing files. Each CICE5

ensemble member uses the same SOM forcing. To increase the ensemble spread, three different parameters were perturbed that

impact albedo, heat transfer through snow, and the ability to move sea ice within the ocean. The standard deviation of the dry125

snow grain radius (Rsnw) controls the optical properties of snow and is one of the key parameters that determines snow albedo

in the solar radiation parameterization (Briegleb and Light, 2007). The thermal conductivity of snow (ksnw) directly impacts the

amount of heat that can be transferred through the snow pack, thereby affecting the evolution of sea ice (Sturm and Massom,

2017). The neutral ocean-ice drag coefficient (dragio) controls the horizontal momentum exchange at the ice-ocean interfaces,

which determines the drag forces on the sea ice (Lu et al., 2011). These three parameters were chosen because they are among130

the top parameters that drive variability within CICE5 in both summer and winter (Urrego-Blanco et al., 2016). See the data

availability statement for access to the perturbed parameter values used in this study. To achieve the climatological state of

sea ice and snow, a single member is run for 40 years using periodic atmospheric forcing for the year 2012. To build our 80

member ensemble, we first used only 80 different atmospheric forcings to cycle over 2012 for 10 years to build in variability

related to the atmosphere. Each ensemble member is then run for an additional 15 years, cycling over 2012, using the distinct135

atmospheric forcing and parameter set to generate free forecasts that can be used as a reference case (Fig. 1). One of the free

forecast members is randomly chosen as the simulated “truth." For this study, the free forecast ensemble mean is negatively

biased compared to the truth member for different sea ice and snow characteristics. The free forecasts will provide a reference

for comparison with the different data assimilation experiments.

Since satellites can not retrieve multi-category model quantities, aggregate synthetic observations are generated from the140

truth member to produce sea ice concentration (SIC), sea ice thickness (SIT), snow depth (Dsnow), and sea ice surface tempera-

ture (SIST). The multi-category state model variables that are updated via data assimilation or post-processing are sea ice area

(Aice,n), sea ice volume (Vice,n), and snow volume (Vsnow,n). When those multi-category state model variables are summed over

the different categories, they are referred to as Aice, Vice, and Vsnow. To compute data assimilation updates, it is necessary to

compute an observation’s expected value from the model state, which is called the forward operator. SIC is just the sum of the145

area values in the different thickness categories computed as

SIC =
∑
n=1,5

Aice,n. (1)

The mean SIT of a grid cell is computed by summing the sea ice volumes in the different thickness categories and then dividing

by the aggregated sea ice area as follows

SIT =

∑
n=1,5 Vice,n∑
n=1,5 Aice,n

. (2)150
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The mean Dsnow of a grid cell is computed in the same fashion as SIT except using summed snow volumes

Dsnow =

∑
n=1,5 Vsnow,n∑
n=1,5 Aice,n

. (3)

The mean SIST of a grid cell is the area weighted mean temperature across the different thickness categories on the surface of

the sea ice

SIST =

∑
n=1,5 SISTn ∗Aice,n∑

n=1,5 Aice,n
(4)155

where SISTn is the sea ice surface temperature for the different thickness categories.
:
In

::::
this

::::::
OSSE

::::::::::
framework,

::::::::
synthetic

::::::::::
observations

:::
are

::::::::
generated

:::::
from

:::
the

::::
truth

:::::::
member

:::::
using

:::
the

:::::::
forward

::::::::
operators

:::
and

:::
are

::::::::::
assimilated. Normally, synthetic obser-

vations are created by adding a draw from a normal distribution with a mean of zero and a specified observation error standard

deviation. This method can be used to create
::::
was

::::::
chosen

::
to

::::::
create

:::
the

:
synthetic sea ice surface temperatures

::::::::::
temperature

::::::::::
observations

::::
that

::::
were

:::::::::
assimilated. However, sea ice and snow quantities have single (SIT, Dsnow) and double (SIC) bounds in160

their representations. Because of this, we will use a single (SIT,Dsnow) and double (SIC) truncated normal distribution when

generating the synthetic observations
::
sea

:::
ice

::::
and

:::::
snow

::::::::::
observations

::::
that

:::
are

::::::::::
assimilated

::
in

:::
our

::::::
OSSEs. The observation error

standard deviation for SIC is 15% of the true values of SIC (SICerror = SICtruth*0.15; Zhang et al. 2018) and 0.1 m for SIT

(approximation of future high precision data; Zhang et al. 2018). While studies that use real SIT observations have varied their

uncertainties depending on the thickness value (Xie et al., 2018; Cheng et al., 2023), due to the complexity of computing SIT165

(Zygmuntowska et al., 2014) this study chose to use a single value for SIT uncertainty. The observation error
:::
SIT

::::::::::
observation

::::
error

::
of

:::
0.1

:::
m

::
is

:
a
:::::

goal
:::
for

:::::
future

:::::::
satellite

::::::::
platforms

::::
and

::
is

:::
not

:::
the

::::::::::
observation

:::::
error

:::
for

::::::
current

:::::::::
observing

:::::::::
platforms.

::::
The

:::::::::
observation

:::::
error standard deviation is 10% of the true values of Dsnow (approximation of future high precision data; Rostosky

et al. 2020) and 1.5◦C for SIST (Hall et al., 2015). Due to the SIC observation error method, only
:::::::
synthetic

:
SIC observations

greater than 0.01 (approximately the precision found in passive microwave sea ice concentration observation files, Meier et al.170

2021) are assimilated. Similarly, the observation error for Dsnow has a lower bound of 0.005 m for
::::::::
synthetic observations close

to zero. The locations for all synthetic observation types
:::
that

:::
are

::::::::::
assimilated

:
were based on CryoSat-2 locations (locations

measured every 10 seconds;
:::::
more

::::::
details

:::
on

::::::::
locations

:::
see

:::::::::
CryoSat-2

:::::::
Product

:::::::::
Handbook

::
at

:
https://earth.esa.int/eogateway/

documents/20142/37627/CryoSat-Baseline-D-Product-Handbook.pdf), which provides a realistic
::
the

:
observational network

for testing (Fig. 2). While
:::::::
different

:
sea ice observation networks in the real world usually do not match, the observation net-175

work was chosen for
:::::
chosen

:::
for

::::
this

::::
study

::::
was

::::::
chosen

:::::::
because

::
of

:::
the easy experimental setup and fair comparison between the

:::::::
synthetic

:
observations that were assimilated in this study.

Six different experiments were completed to test different observation combinations, data assimilation techniques, and post-

processing updates (Table 1). EAKF-ConcThick is an extension of the work completed by Zhang et al. (2018) where they only

allowed observation increments to update the sea ice area in the different categories while updating the sea ice and snow volume180

via post-processing. In EAKF-ConcThick, we allow the category-based sea ice area and volume to be updated independently

by
:::::::
synthetic

:
SIC and SIT observations while updating snow volume via post-processing. The equations for post-processing

6
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snow volume updates in the different categories are the following:

hprior
snow,n =

Vprior
snow,n

Aprior
snow,n

, (5)

185

Vposterior
snow,n = Aposterior

ice,n × hprior
snow,n, (6)

where Aprior
ice,n is the prior sea ice area in the different thickness categories,Vprior

snow,n is the prior snow volume in the different thick-

ness categories, Aposterior
ice,n is data assimilation updated sea ice area in the different categories and hprior

snow,n are the prior snow thick-

ness values in the different categories. In EAKF-ConcThickSnow, snow volume is no longer updated by post processing and

assimilation of
::::::::
synthetic Dsnow is included in the

:::::::::
assimilated observation subset. All assimilated

::::
Since

::::
real

:::::
world

:::::
snow

:::::
depth190

::::::::::
observations

::::
still

::::
have

:::::
their

:::::::::
limitations

::::::::::::::::::::::::::::::::::::
(Rostosky et al., 2018; Fritzner et al., 2019),

::::
the

::::::::
synthetic

:::::
snow

:::::
depth

:::::::::::
observations

::::::::
generated

:::
for

:::
this

::::::
OSSE

::::
will

:::
test

::::
the

::::::
impacts

::
if
:::::::::::

high-quality
:::::
snow

:::::::::::
observations

:::
are

::::::::
available

:::::::::
year-round

::
in

:::
the

::::::
future.

::::
All

:::::::::
assimilated

:::::::::
synethetic observations (SIC,SIT,SNWD) update all category-based model state variables (Aice,n,Vice,n,Vsnow,n). To

test the non-Gaussian effects of
:::
the

::::::::
synthetic SIC observations, EAKF-ThickSnow only assimilates

::::::::
synthetic SIT and Dsnow

while allowing the category-based sea ice area, sea ice volume, and snow volume state variables to be updated from the ob-195

servation increments. RHF-ConcThickSnow investigates the impacts of using a non-Gaussian data assimilation method, the

rank histogram filter, when working with the non-Gaussian sea ice and snow variables in the CICE model. EAKF-ModifiedFO

investigates the impacts of having sea ice thickness and snow depth output from CICE instead of having the forward operators

within DART compute these quantities. This arises from the fact that prior inflation is applied, which can push either the sea

ice area or sea ice volume below zero. Since computing sea ice thickness or snow depth is the division of either sea ice or snow200

volume by the sea ice area, this could lead to shuffling of the distribution if values become negative. Finally, EAKF-SIST tests

the impacts of assimilating additional
:::::::
synthetic

:
SIST observations to further improve the updates of sea ice and snow states.

While
:::::::
synthetic SIST observations are assimilated, sea ice surface temperatures in the different thickness categories are not

updated from the data assimilation step.

Due to the bounds related to sea ice and snow state variables, there are different conditions under which special treatment is205

needed to ensure that the respected bounds are met. SIC (summed sea ice area across the categories) must remain between 0

and 1. Similarly, sea ice and snow volumes (summed across the categories) must remain above zero. If negative values occur

for SIC or the volumes, all categories are set to zero. Additionally, category-based sea ice area values are scaled if the SIC

exceeds one after the assimilation updates. In the event SIC exceeds one, the scaling of the category-based sea ice area is as

follow:210

Aice,n = Aice,n ∗
1

SIC
. (7)

In the case where SIC is within the bounds but individual categories become negative, those categories are set to zero and the

remaining nonzero categories are reduced proportionally to compensate for the negative amount. Lastly, special care is taken

to account for the cases where SIC is greater than zero but sea ice volume in all categories is zero. This can occur during data
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assimilation updates to the category-based sea ice volume (updates removes all the sea ice volume) or if the data assimilation215

updates create some amount of sea ice area but the sea ice volume remains zero. A new sea ice volume is computed by

multiplying the average thickness value allowed in the associated category (0.32, 1.01, 1.93, 3.51, 6.95) by the sea ice area for

the category.

The same initial conditions used to generate the free forecasts were used for the experiments listed in Table 1. The free

forecasts provide a reference to the amount of variability that was generated during the spin-up process (Fig. 1). All experiments220

were initialized on 1 January 2013 and the cycling period was for the entire year 2013. In all experiments, observations were

assimilated at a daily interval.

2.3 Model Verification Metrics

Time series of total sea ice area, sea ice volume, and snow volume will be ensemble mean forecast quantities used to evaluate

CICE-DART performance over the cycling period. The equations for computing total sea ice area and volume are as follows:225

Total-Sea-Ice-Area(t) =
∑
n=1,j

(SIC(t)j ∗ grid-cell-areaj), (8)

Total-Sea-Ice-Volume(t) =
∑
n=1,j

(Vice(t)j ∗ grid-cell-areaj), (9)

where t is time, j is the total number of grid points in the Northern Hemisphere and grid-cell-area is the area of the grid cell.

Total snow volume is computed in the same way as total sea ice volume but instead using snow volume. Spatial Probability230

Score (SPS) is computed to investigate potential sea ice edge errors over the cycling period (Goessling and Jung, 2018).

Following Goessling and Jung 2018, the ice edge is defined using the 15% sea ice concentration contour in this study. Due to

data storage issues, SPS could not be calculated for EAKF-SIST. Additionally, ensemble mean spatial biases will be computed

for SIC, sea ice volume, and snow volume over different cycling periods. Welch’s t-test will be applied to test for significant

biases (Welch, 1947). The ensemble mean was chosen because the statistics were nearly identical regardless of whether the235

ensemble mean or ensemble median was used.

Mean absolute bias (MAB) and mean square error (MSE) will be computed over the time series of total sea ice area, sea ice

volume, and snow volume for additional performance evaluation. The equations for MAB and MSE are as follows:

MAB =

N∑
t=1

|Xm
i −Xt

i |, (10)

240

MSE =

N∑
t=1

(Xm
i −Xt

i )
2, (11)

where i is the time index, N is the total number of times (i.e, number of days), Xm
i ensemble mean forecast quantity (e.g., total

sea ice area), and Xm
i is the true value for the forecast quantity. The integrated ice-edge error (IIEE) is another forecast metric
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that is applied to the ensemble mean, which is analogous to SPS when using a single, deterministic forecast (Goessling et al.,

2016). IIEE evaluates potential sea ice edge differences between the ensemble mean and the truth. IIEE is more suitable for user245

forecast evaluation of the sea ice edge compared to the traditional sea ice extent (Tietsche et al., 2014). The IIEE is the sum of

the area grid boxes where the ensemble mean and the truth disagree on whether sea ice is present (over-prediction; SICtruth=0

and SICensemble mean>0) or not (under-prediction, SICtruth>0 and SICensemble mean=0). Similar to previous studies computing

IIEE, a SIC threshold of 15% is used to determine whether a grid cell is identified as having sea ice (Goessling and Jung,

2018; Zampieri et al., 2018). An attractive feature of IIEE is that it can be decomposed into an absolute extent error (AEE) and250

a misplacement error (ME). AEE is the absolute difference (|over-prediction - under-prediction|) between predictions, which

can help determine whether there is a bias for over- or under-predicting sea ice coverage. MEE is the misplacement error (2

× min(over-prediction,under-prediction)) reflecting whether there is too much sea ice in one location and too little in another.

IIEE along with its components AEE and ME will be computed daily. Welch’s t-test was used to determine whether there

were significant differences between MAB, MSE, and IIEE values between experiments. Finally, Spearman correlations are255

computed between the perturbed parameters and different CICE model outputs.

3 Results and discussion

3.1 Optimization of sea ice and snow data assimilation

The first three experiments investigate which assimilated
:::::::
synthetic observation subset produces the most accurate forecasts for

both sea ice and snow. All the experiments have similar skill in predicting the sea ice edge and are better than the free forecast260

(Fig. 3A). However, there is a period during August and September when experiments assimilating SIC, EAKF-ConcThick ,

and EAKF-ConcThickSnow, have smaller errors in predicting the sea ice edge. Daily biases of total sea ice area, sea ice volume,

and snow volume are computed throughout the cycling period to compare the performance of the experiments with the truth

and free forecasts (Fig. 3B,C,D). Compared with the free forecast, EAKF-ConcThick performs better for both total sea ice area

and sea ice volume. However, total sea ice area and sea ice volume were negatively biased from the start of the melt season in265

May until the re-freeze in September. Total snow volume for EAKF-ConcThick is comparable to the free forecasts. This means

that the post-processing updates for the snow state variable are not as accurate compared to the sea ice state variables, which

are updated directly from the multivariate data assimilation step. For EAKF-ConcThickSnow, there is little impact on biases

associated with sea ice quantities. The biases associated with total snow volume are reduced in the EAKF-ConcThickSnow

compared to EAKF-ConcThick and the free forecasts.
::::
This

::::::::
highlights

:::
the

::::::::
potential

:::::::
impacts

:::::
snow

:::::
depth

:::::::::::
observations

:::::
could270

::::
have

::
if

:::::::::
assimilated

:::::::::
year-round

::::::
which

:::
due

:::
to

:::::::::
limitations

::
is

:::
not

:::::::
possible

:::::::::::::::::::
(Rostosky et al., 2018).

:
The negative biases found for

total sea ice and sea ice volume during the summer for the first two experiments are now near zero for EAKF-ThickSnow.

Improvements in total snow volume for EAKF-ThickSnow are isolated to the start of the melt season, however, the biases are

similar to the first two experiments after this period. Regardless of these improvements, total snow volume is negatively biased

throughout the cycling period for experiments where Dsnow observations are assimilated. Additionally, the biases for total snow275

volume are larger during the winter seasons leading up to June and then approach zero thereafter for experiments where Dsnow
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observations are assimilated. This result could mean that it takes a seasonal cycle to pull ensemble snow values closer to the

truth. Removing SIC observations from the assimilated observation subset eliminates an observation that is doubly-bounded

and whose values approach both of the bounds. Since SIC observations are more likely to be affected by their associated bounds

(bulk of SIC observations near 1 unless near marginal ice zone) this could be the driving factor for the poor forecasts in the280

first two experiments.

Temporal forecast metrics are computed over the cycling period to pin-point which experiment is more accurate (Fig. 4).

EAKF-ConcThick and EAKF-ConcThickSnow have the lowest total IIEE and are significantly different from the free forecast

and EAKF-ThickSnow. This means that both EAKF-ConcThick and EAKF-ConcThickSnow produce a more accurate forecast

of sea ice coverage over the cycling period. This might seem inconsistent since the EAKF-ThickSnow daily biases were smaller.285

EAKF-ThickSnow has sea ice area MSE and MAB that is lower and significantly different from the other experiments and the

free forecast. This means that removing the SIC observations provided a more accurate forecast of the sea ice area, however,

this did have a negative impact on predicting the sea ice edge in EAKF-ThickSnow. This indicates that SIC observations play

an important role in maintaining the sea ice edge close to the truth. Additionally, all experiments performed better for sea ice

volume compared with the free forecast, with EAKF-ThickSnow being the most accurate. For snow volume, EAKF-ConcThick290

is not statistically better than the free forecast, indicating that post-processing snow updates is not a favorable method. Once

again, EAKF-ThickSnow performs the best for snow volume even though SIC observations are not assimilated. While not

assimilating SIC observations improves most forecast metrics, these observations are crucial for accurately representing the

sea ice edge.

While EAKF-ThickSnow provided the most accurate forecasts for aggregated quantities, such as total sea ice area, it is295

unclear where those improvements occurred spatially over the Arctic at the start of the melt season. To gain more insight into

the improved results, May-through-June averaged spatial biases of SIC, Vice and Vsnow are computed for the free forecast and

each of the first three experiments (Fig. 5). For SIC, there are significant biases for the free forecast where the SIC values are

too large over the central Arctic and too small near the marginal ice zone. EAKF-ConcThick and EAKF-ConcThickSnow show

predominantly significant negative biases over the sea ice for SIC, whereas EAKF-ThickSnow reduces the spatial biases to near300

zero. The negative SIC spatial bias over the central Arctic explains why the total sea ice area for EAKF-ConcThick and EAKF-

ConcThickSnow performed poorly compared to EAKF-ThickSnow. However, there are areas of larger bias value near the

marginal ice zone for EAKF-ThickSnow, meaning it was less accurate in representing the sea ice edge. While all experiments

reduced the magnitude of the Vice spatial bias, there is still an overall significant negative bias for EAKF-ConcThick and EAKF-

ConcThickSnow. The spatial biases for EAKF-ThickSnow are near zero, and there are essentially no areas of significant bias.305

For Vsnow, there are differences between the spatial biases for EAKF-ConcThick and EAKF-ConcThickSnow, highlighting

the benefits of assimilating Dsnow observation over post-processing Vsnow updates. In EAKF-ThickSnow, there is an overall

reduction in the significant negative biases over the central Arctic compared with EAKF-ConcThickSnow. In EAKF-ConcThick

and EAKF-ConcThickSnow, the SIC observations have a negative impact on both the observed and non-observed model state

variables. Removing SIC observations from the assimilated observation subset reduced the spatial coverage of significant biases310

for all state model variables.
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An analysis increment indicates how the observations are pushing or pulling state model variables. Evaluating analysis

increments will help determine how
::
the

::::::::::
assimilation

:::
of

:::::::
synthetic

:
SIC observations impact the different data assimilation exper-

iments. For EAKF-ThickSnow, there is a reduction in the magnitude of the spatial analysis increments at the start of the melt

season compared with EAKF-ConcThick and EAKF-ConcThickSnow (Fig. 6A). The analysis increment reduction is mainly315

located over the central part of the Arctic, where SIC values for all ensemble members are close to 1. This implies that the

assimilation of SIC observations leads to low biased SIC analyses. The SIC analysis increments become more similar across

the experiments as one moves away from the central Arctic toward the marginal ice zone. The analysis increment patterns and

magnitudes near the marginal ice zone for EAKF-ConcThick are less different than one might expect because of the increase

in IIEE. However, these analysis increments are averaged from May through June; therefore, the IIEE might be picking up320

on sea ice edge errors at different times throughout the cycling period. This is similar for the Vice, where there is a reduc-

tion in the analysis increment magnitude over the central Arctic for EAKF-ThickSnow compared with EAKF-ConcThick and

EAKF-ConcThickSnow (Fig. 6B). For Vsnow analysis increments, there is a flip in the sign between EAKF-ConcThick and

EAKF-ConcThickSnow (Fig. 6). The negative Vsnow analysis increments in EAKF-ConcThick are connected to the SIC analy-

sis increments due to the equation for post-processing (Equations 5 and 6). Since SIC analysis increments are mainly negative325

over the central Arctic, this would also lead to negative Vsnow analysis increments over this region due to the post-processing

method. The differences in Vsnow analysis increments between EAKF-ConcThickSnow and EAKF-ThickSnow are small, in-

dicating that the removal of
::::::::
synthetic SIC observations from the assimilated subset does not have a negative impact on the

adjustments. Overall, EAKF-ThickSnow provides the best setup for sea ice and snow data assimilation. Even with a slightly

higher IIEE, the removal of the
:::::::
synthetic

:
SIC observations from the assimilate observation subset did provide better results.330

Further investigation is needed to understand the reason behind the persistent negatively biased total snow volume compared

to the truth.

3.2 Further discussion on sea ice data assimilation

The removal of SIC as an assimilated
:::::::
synthetic

:
observation improved forecasts of total sea ice, however, forecasts of the sea

ice edge were less accurate according to the total IIEE and SPS. This result indicatess
:::::::
indicates

:
that near the marginal ice335

zone there are benefits to assimilating SIC observations and that SIT observations provide poor multivariate updates for Aice,n.

Three additional experiments were completed to investigate the impacts on sea ice when using a non-Gaussian RHF, modified

forward operators for
:::::::
synthetic thickness observations, and the assimilation of

:::::::
synthetic

:
SISTs. Each additional experiment is

compared with EAKF-ThickSnow. Sea ice edge errors are lower in RHF-ConcThickSnow, and the errors are larger in EAKF-

ModifiedFO compared with EAKF-ThickSnow (Fig. 7A). Once again, this result highlights improvements when assimilating340

SIC observations near the sea ice edge. RHF-ConcThickSNow performs worse than EAKF-ThickSnow during the summer

according to daily biases of total sea ice area, sea ice volume, and snow volume (Fig. 7B,C,D). The use of the non-Gaussian

RHF did not handle the SIC observations better. Compared to EAKF-ThickSnow, EAKF-ModifiedFO and EAKF-SIST have

similar daily biases for total sea ice and snow volume, however, not for total sea ice area. EAKF-ModifiedFO and EAKF-

SIST have persistent, larger daily biases during summer compared to EAKF-ThickSnow. There does appear to be a slight345
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improvement in total snow volume for EAKF-SIST compared with EAKF-ThickSnow during May, however, there are still

negative biases throughout the cycling period.

RHF-ConcThickSnow does the best job representing sea ice coverage since its total IIEE is the lowest and it is significantly

different from the other experiments (Fig. 8). RHF-ConcThickSnow assimilates SIC observations, which is likely why it is

similar to our previous result from EAKF-ConcThickSnow (compare Fig. 4A with Fig. 8A). EAKF-ModifiedFO and EAKF-350

SIST essentially have the same total IIEE, which is statistically worse than EAKF-ThickSnow. The modification of the forward

operator along with assimilating SIST observations does not improve the representation of sea ice coverage. For total sea

ice area and sea ice volume, RHF-ConcThickSnow has the largest aggregated errors that are significantly different from the

other experiments (Fig 8B, C). This result is similar to EAKF-ConcThickSnow, where SIC observations were assimilated.

While EAKF-ThickSnow does the best job representing the total sea ice area and sea ice volume, one thing that needs to355

be mentioned is that EAKF-SIST uses a modified forward operator. Since the sea ice statistics appear very similar between

EAKF-ModifiedFO and EAKF-SIST, the modified forward operator could explain why the results for EAKF-SIST are worse

than those for EAKF-ThickSnow.

Evaluating SIC over the start of the melt season (May-through-June) reveals that RHF-ConcThickSnow mostly has signif-

icant negative biases compared to the truth (Fig. 9A). This result is similar to EAKF-ConcThickSnow, where the EAKF is360

used instead of the RHF. Compared to EAKF-ThickSnow, there are larger, positive SIC biases for EAKF-ModifiedFO and

EAKF-SIST near the marginal ice zone. These biased areas are mainly located in the Baffin Bay, Greenland Sea, and Barents

Sea. The poor representation of the marginal ice zone for EAKF-ModifiedFO and EAKF-SIST could explain the larger total

IIEE compared to EAKF-ThickSnow. RHF-ConcThickSnow has significant negative sea ice volume biases over most of the

sea ice pack (Fig. 9B). Again, this agrees with the spatial biases for EAKF-ConcThickSnow over this period, further showing365

that switching to the RHF over the EAKF did not help alleviate the impacts of the SIC observations. The spatial biases of

sea ice volume for EAKF-ModifiedFO and EAKF-SIST closely resemble those found in EAKF-ThickSnow, except near the

marginal ice zone. The modified forward operator might introduce poor marginal ice zone updates without the constraint of SIC

observations in this region. Overall, switching the data assimilation filter type did not resolve the issues related to assimilating

SIC observations, and there are potential issues with using the modified forward operator near the marginal ice zone. However,370

the spatial biases are similar over most of the central Arctic, indicating that further investigation is needed to determine the

negative impacts of the modified forward operator.

3.3 Simplified Data Assimilation Experiment

To further investigate the poor results obtained when assimilating SIC observations, a simplified data assimilation experiment

was setup. This simplified DA experiment mimics SIC during wintertime over the pole, meaning that the true SIC does not375

change over time. With a constant truth value that does not change,
:::::::
synthetic observations are created that will be assimilated

over the cycling period. The true SIC value is set to 0.99, and its corresponding observation error will vary from 0.1485 (value

if using the same method as the OSSE experiments), 0.07425, and 0.037125. Two different filters, EAKF and RHF, will be

tested using different observation
::::
error specifications. The initial ensemble spread has a standard deviation of 0.0142. No prior
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inflation was applied in these experiments. Six mini experiments were completed using a combination of different filter types380

(EAKF or RHF) and different specified observation errors. The experiments were cycled 5,000 times, assimilating the
:::::::
synthetic

observations generated from the truth using a truncated normal distribution. These experiments will work with SIC directly,

meaning that there are no thickness categories as in CICE. This means that the mapping between observation space to state

space is linear, further simplifying this data assimilation experiment.

For all experiments, the prior ensemble mean drifts away from the true value and moves toward the average observation385

value over the cycling period (Fig. 10). The average observation value depends on the observation error specification; a smaller

error leads to an average observation closer to the truth. For the largest observation error, the EAKF drifts toward the average

observation value at a quicker rate compared with the RHF (Fig. 10A,D). The slower rate exhibited by the RHF could mean that

the filter weights the observations less compared with the EAKF. Even as the observation errors decrease, both the EAKF and

the RHF move away from the truth and drift toward the average observation value (Fig. 10B,C,E,F). These experiments high-390

light that a reduction in the observation error still results in the prior ensemble being negatively biased when using distributions

and observations near a bound.

The fact that the prior ensemble mean moves away from the true value regardless of filter type and observation error value

demonstrates that our data assimilation solution is biased. This is because our observation error distribution is a truncated

normal, whereas the observation likelihood for EAKF and RHF is assumed to be normal. Applying a non-Gaussian distribution395

for observation errors while using a Gaussian observation likelihood can lead to erroneous observation impacts, biasing analysis

estimates (Pires et al., 2010; Fowler and Jan Van Leeuwen, 2013). This negative bias is exacerbated by the effects of prior

inflation in our OSSEs by increasing prior variance, which further weights the observations even more. A better choice might

be a combination of distributions representing the prior state and the observation errors more appropriately, as laid out in

Anderson (2022).400

3.4 Further discussion on snow data assimilation

Regardless of the first three experiments, the daily biases for snow volume are negative throughout much of the entire cycling

period compared to the truth (Figs. 3D). Even the daily biases for the additional experiments are mainly negative throughout

the cycling period (Fig. 7D). Further investigation is needed to fully understand why the snow volume is negatively biased

regardless of the experimental setup. EAKF-ThickSnow will be further evaluated to investigate the reason for the low bias405

in snow volume. Since the ocean forcing is the same across ensemble members, the atmospheric forcing is evaluated for the

ensemble mean. Breaking down the individual atmospheric heat fluxes, the shortwave radiation has the largest bias compared

to the truth (Fig. 11A). The other atmospheric heat fluxes have smaller and near zero biases for most of the cycling period.

The positive shortwave heat flux bias occurs during sunrise over the Arctic, which also corresponds to the period in EAKF-

ThickSnow where the daily biases for snow volume are the largest (Fig. 3C). The spread in the absorbed shortwave heat flux410

grows during the onset into summer, which is during the start of the snow melt season (Fig. 11B). On average, the ensemble

has absorbed too much incoming shortwave radiation compared to the truth. Interestingly, the spread of the absorbed shortwave

heat flux collapses at the start of July, when the snow on top of the sea ice is at its minimum (Fig. 3C). One feature that can
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impact the absorbed shortwave radiation and is connected to snow cover is surface albedo (Fig. 11C). During the same period,

the spread in the absorbed shortwave heat flux increases and the spread in the surface albedo spread increases. The spread in415

the surface albedo then collapses, similar to the incoming shortwave radiation heat flux, near the beginning of July. The surface

albedo is, on average, too small compared to the truth, which could be the reason for the positive bias in the absorbed shortwave

radiation. Lastly, the ensemble members almost appear to be sorted for both absorbed shortwave radiation and mean surface

albedo, hinting that something systematic drives these quantities.

One potential reason that could be driving the negative biases found for the ensemble mean snow volume is that the snowfall420

originating from the atmospheric forcing file for the truth member is an outlier. This does not appear to be the case when

comparing daily biases of snowfall with the ensemble mean (Fig. 11D). The snowfall biases for the ensemble mean are near

zero and fluctuate about the zero line, indicating that there is no clear systematic difference from the truth. One issue that has

not been discussed is the role that the CICE perturbed parameters could play in snow evolution. Perturbed parameters have

been used over the years to create more spread in atmospheric models (Murphy et al., 2004; Stainforth et al., 2005; Christensen425

et al., 2015; Orth et al., 2016), where the system is more chaotic. However, the impact the perturbed parameters would have on

a less-chaotic system such as the cryosphere is unclear. Concerning total snow volume, there are larger and more significant

correlations between the Rsnw parameter compared with the other perturbed parameters throughout the cycling period (Fig.

12A). The positive correlations indicate that larger standard deviations of the dry snow grain radius lead to greater total snow

volume. This connection is a result of the larger standard deviations of dry snow grain radius resulting in a higher albedo,430

reflecting more incoming shortwave radiation (Hunke et al., 2015). Looking at snow melt, there are negative and significant

correlations during the melt season for the Rsnw parameter, while the other parameters have little significant correlations (Fig.

12B). This means there is more snow melt for lower standard deviations of dry snow grain radius, resulting in more absorbed

shortwave radiation due to a lower surface albedo. The Rsnw parameter for the truth member is located above the 75th percentile

compared with the rest of the perturbed Rsnw parameters (Fig. 12C). Even with snow assimilation updates, the impact of the435

perturbed Rsnw parameter might play a larger role in snow evolution. Due to this fact, it is not surprising to find that the

ensemble mean is negatively biased compared to the truth for total snow volume.

4 Conclusions

To advance our understanding of the global climate, it is critical to improve our representation of the different underlying Earth-

system components within our coupled numerical climate models. One important Earth-system component–the cryosphere–has440

gathered recent attention due to declining Arctic summer sea ice and its link back to Arctic amplification. Data assimilation

methods, such as the ensemble Kalman filter (EnKF), are one way to improve the representation of sea ice states by exploiting

information from observations taken from satellites. However, the formulation of the EnKF has Gaussian assumptions and

most state variables representing sea ice have some form of boundedness, which can lead to non-Gaussian distributions near

those bounds. This study investigates the data assimilation impacts of the non-Gaussian nature of sea ice and snow variables on445

the generation of analyses within different observing system simulation experiments (OSSEs). The different OSSEs presented
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in this study will investigate which data assimilation setup provides the most accurate representation of sea ice and snow when

dealing with non-Gaussian observations and state variables.

In this study, a sea ice model called CICE is coupled to the ensemble data assimilation software provided by DART to

obtain a sea ice modeling system called CICE-DART. CICE-DART is used to conduct OSSEs to test different data assimilation450

configurations
:::
and

:::
the

:::::::::::
assimilation

::
of

::::::::
different

:::
sea

:::
ice

::::
and

:::::
snow

::::::::::
observation

::::::
subsets

:::::::::::
synthetically

:::::::::
generated

:::::
from

:
a
:::::
truth

:::::::
member. Six different experiments were completed to test different observation combinations, data assimilation techniques,

and post-processing updates (Table 1).

The first three experiments explore the impacts different assimilated observation subsets have on generating the
:::::
impact

:::
of

:::::::
different

:::::::::
assimilated

::::::::
synthetic

::::::::::
observation

::::::
subsets

:::
on

:::
the

:::::::::
generation

::
of

:::
the

:
most accurate forecasts for both sea ice and snow455

states. According to the daily biases and aggregated statistics, EAKF-ThickSnow is more accurate, when compared to the

truth, for sea ice area, sea ice volume, and snow volume. This highlights the negative impacts that SIC observations have

on forecasts when they are assimilated in EAKF-ConcThick and EAKF-ConcThickSnow. Doubly-bounded SIC observations

can impose non-Gaussian effects both during the summer and winter. Early
::::
This

:::::
result

::::::::::
contradicts

::::::::
previous

::::::
studies

::::
that

:::::
found

:::::::
positive

:::::::
impacts

::::
from

:::::::::::
assimilating

::::
SIC

:::::::::::
observations

:::::::::::::::::::::::::::::::::::::::::::::::::::
(Sakov et al., 2012a; Massonnet et al., 2015; Posey et al., 2015)

:
.460

::::::::
However,

:::
this

:::::
result

:::::
could

:::
be

::::::
linked

::
to

:::::::::
differences

::
in
::::

the
:::::::::
observation

:::::
error

:::::::::::
specification

::::::
chosen

:::
for

::::
SIC

::::::::::
observations

:::
in

:::
the

:::::::
different

::::::
studies.

:::
In

:::
our

:::::
study,

::::
early

:
springtime SIC truth values are still close to one, maximizing their observation error (15%

of the truth value), which leads to
::::::::
synthetic

:::
SIC

:
observations being drawn further below the truth due to the bound at one.

Additionally,
::
In

:::::::
addition,

:::
the prior spread increases due to both the start

:::::::
because

::
of

:::
the

::::
onset

:
of springtime melt and prior infla-

tion. Combining the low-bias observations with the increase in the prior spread leads to an enhancement of the non-Gaussian465

effects during early springtime.
::
A

::::::
similar

:::
but

:::::::
opposite

:::::
effect

:::::::::::
(high-biased

:::
SIC

:::::::::::
observations)

::::::
would

::
be

::::::::::::::
observed during

::::::
winter;

:::::::
however,

:::::
prior

::::::::
ensemble

::::::
spread

::
in
::::

the
:::::::
modeled

::::
SIC

:::::
fields

::
is
:::::::

smaller,
::::::::

resulting
::
in
::

a
:::::
lower

:::::::::
weighting

:::
of

:::
SIC

::::::::::::
observations.

:::::
While

:::::::::
potentially

::::::::
different

::::
from

:::::
other

:::::::
studies,

:::
our

:::::::
chosen

:::
SIC

::::::::::
observation

:::::
error

:::::::::::
specification

:::::::::
intensified

:::
the

::::::::::::
non-Gaussian

:::::
effects

:::
of

::::::::::
assimilating

::::
SIC

::::::::::
observations

:::::
while

::::
also

::::::::
showing

:::
the

:::::::
potential

::::::
impact

::::::::
accurate

:::
SIT

:::::::::::
observations

::::
can

::::
have

::::::
during

:::
data

:::::::::::
assimilation

::::::::::
multivariate

::::::::
updating. Interestingly, SIC observations do provide positive updates in the marginal ice zone,470

as shown by SPS and total IIEE being lower in EAKF-ConcThick and EAKF-ConcThickSnow. Due to
:::::::
Because

::
of positive

updates in the marginal ice zone, it would be optimal to assimilate SIC observations within the data assimilation system.

Additional OSSEs are performed to further investigate potential data assimilation improvements for sea ice (Table 1). A

non-Gaussian RHF was tested since it was developed for non-Gaussian situations. The results showed little improvement over

the EAKF when assimilating SIC observations. This is likely linked back to the RHF making some non-Gaussian assumptions475

on the tails and assumed normal likelihood when the distribution is not bounded. The modification to the forward operators did

not improve sea ice data assimilation, especially regarding sea ice edge errors. This could mean that there are few instances of

shuffling the sea ice thickness distribution due to prior inflation. Additionally, the multivariate update between sea ice thickness

observations and sea ice area might be the reason for the increase in sea ice edge errors. Lastly, assimilating SISTs did not lead

to increased skill for sea ice variables. The correction between the SISTs and sea ice model variables might not be significant,480

leading to little improvement.
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To better understand the assimilation impacts due to the SIC observations, a simplified data assimilation experiment is

completed. This simplified experiment mimics central Arctic SIC during the winter time, meaning the truth does not change.

Regardless of the filter type or observation error value, the prior ensemble mean moves away from the truth and closer to

the average observation value during the cycling period. These experiments verified that near a bound, the performance of485

the EAKF and the RHF is suboptimal. We believe the suboptimal performance is linked back to using a truncated normal

distribution as the observation error distribution while the observation likelihood for the EAKF and RHF is assumed to be

normal. Future projects focusing on sea ice data assimilation might want to consider a different choice for the observation

likelihood specification, similar to those laid out in Anderson (2022). This would include using distributions for the prior PDF

and the observation likelihood that are similar to the observation error distribution and consider the bounds more appropriately490

(e.g., a truncated Gaussian distribution).

The evaluation of the additional OSSEs is performed to investigate their impact on snow updates. The improvements associ-

ated with using the non-Gaussian RHF over the EAKF were small for snow volume. This means that the non-Gaussian impacts

from the SIC observations were negative for snow volume updates. Additionally, the modified forward operators have little

impact on snow volume updates. However, there is a slight improvement in the snow volume when SISTs are assimilated. This495

improvement occurred during May and not over a specific area of sea ice. This could mean that the connections between SISTs

and snow are more significant than those between sea ice, where the impacts were less impactful. Regardless, all additional

experiments still experienced a negative bias throughout the entire cycling period. Further investigation revealed that one of

the perturbed parameters could be driving the negative bias for snow volume. Correlations were larger and significant between

snow variables and the representation of the dry snow grain radius size (Rsnw) within our ensemble. Due to the random choice500

of the Rsnw parameter for the truth member, it is likely that the ensemble mean is negatively biased for snow volume.

Future work will further investigate how to properly assimilate SIC observations. Because of their positive impact on the

marginal ice zone, an experiment could be proposed in which only SIC observations are assimilated in that remote location.

Additionally, further investigation is needed to test the use of more sophisticated data assimilation methods that accurately

handle non-Gaussian distributions. The RHF can represent non-Gaussian priors and arbitrary likelihoods for the observed505

variables. The RHF can be modified to work with bounded quantities (Anderson, 2020, 2022), which should be investigated in

future studies. Lastly, supplementary OSSE experiments could be completed with a different ensemble member chosen as the

truth to further understand the impacts of the perturbed parameters on representing snow volume. These additional experiments

will further help us understand the correct data assimilation setup for representing sea ice and snow in climate analyses.

Code availability. CICE version 5 used for the experiments described here is part of the CESM2 framework which is publicly available for510
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Table 1. List of CICE-DART OSSEs with the different configurations.

Experiments
Assimilated

Observations

Modified Forward

Operator

Postprocessed

States

Assimilation

Algorithm

Data Assimilation

Updated State Vector

EAKF-ConcThick
SIC

SIT
No

Category

Snow Volume
EAKF

Category Sea Ice Area

Category Sea Ice Volume

EAKF-ConcThickSnow

SIC

SIT

Dsnow

No No EAKF

Category Sea Ice Area

Category Sea Ice Volume

Category Snow Volume

EAKF-ThickSnow
SIT

Dsnow

No No EAKF

Category Sea Ice Area

Category Sea Ice Volume

Category Snow Volume

RHF-ConcThickSnow

SIC

SIT

Dsnow

No No RHF

Category Sea Ice Area

Category Sea Ice Volume

Category Snow Volume

EAKF-ModifiedFO
SIT

Dsnow

Yes No EAKF

Category Sea Ice Area

Category Sea Ice Volume

Category Snow Volume

EAKF-SIST

SIT

Dsnow

SIST

No No EAKF

Category Sea Ice Area

Category Sea Ice Volume

Category Snow Volume
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Figure 1. Daily total Arctic (A) sea ice area, (B) sea ice volume, and (C) snow volume from CICE5 free forecast simulations. Each gray line

represents an individual ensemble member, black line represents the ensemble mean, and the red line represents the truth member. The truth

member is a randomly selected ensemble member. Daily biases of the total Arctic (A) sea ice area, (B) sea ice volume, and (C) snow volume

where the black line represents the ensemble mean difference compared to the truth. The black dashed line is the zero reference line. The

free forecast period is for the year 2013.
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Figure 2. An
:

A
:::::::
snapshot example of the spatial locations of assimilated

:::
the

:::::
OSSE

:::::::::
synthetically

::::::::
generated

:
(A) sea ice area, (B) sea ice

thickness, (C) snow depth and (D) sea ice surface temperature observations
::
that

:::
are

:::::::::
assimilated.

:::
The

:::::::::
observation

:::::::
locations

::
are

::::
from

::::::::
Cryosat-2

:::::
latitude

:::
and

::::::::
longitude

:::::
ground

:::::
tracks. Colorfill is the ensemble mean of the sea ice area and the dots are the observation locations along with

their associated value.
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Figure 3. (A) Daily Arctic spatial probability score for the free forecasts, Control-EAKF, Add-SnowD, and EAKF-ConcThick. Daily biases

of the Arctic total (B) sea ice area, (C) sea ice volume, and (D) snow volume from the free forecasts, Control-EAKF, Add-SnowD, and

EAKF-ConcThick. Gray dashed lines are the zero reference line.
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Figure 4. The (A) IIEE, (B) MAB, and (C) RMSE of sea ice area, sea ice volume and snow volume from the free forecast, Control-EAKF,

Add-SnowD, and EAKF-ConcThick. Each index is computed using the ensemble mean and over the entire cycling period. Dots represents

any pairs of experiments that are significantly different from a different experiment using a student t-test. Dot colors correspond to the

different experiments.
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Figure 5. Ensemble mean spatial biases of (A) SIC, (B) Vice, and (C) Vsnow averaged over May–June for the free forecast, Control-EAKF,

Add-SnowD, and EAKF-ConcThick. Stippling represents significant biases at the 95% confidence interval using a Welch’s t-test. The black

dashed line is the sea ice edge (0.15 SIC).

.

27



Figure 6. Normalized spatial analysis increments of (A) SIC, (B) Vice, and (C) Vsnow averaged over May–June for Control-EAKF, Add-

SnowD, and EAKF-ConcThick. Analysis increments of SIC, Vice, and Vsnow were normalized using the largest absolute value from across

the three experiments. The black dashed line is the sea ice edge (0.15 SIC).
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Figure 7. Same as Figure 3 but for EAKF-ConcThick, RHF-ConcThickSnow, Modified-FO and EAKF-SIST.
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Figure 8. Same as Figure 4 but for EAKF-ConcThick, RHF-ConcThickSnow, Modified-FO and EAKF-SIST
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Figure 9. Same as Figure 5 but for EAKF-ConcThick, RHF-ConcThickSnow, Modified-FO and EAKF-SIST.
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Figure 10. Prior ensemble mean (blue line) time series of SIC for experiments using (A,B,C) EAKF and (D,E,F) RHF. Each experiment was

completed with observation error set to (A,D) 0.1485, (B,E) 0.07425, and (C,F) 0.037125. The red line represents the average observation

value over the cycling period. The black line represents the true value over the cycling period.
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Figure 11. Panel (A): Ensemble mean daily biases of sea ice accumulated atmospheric heat fluxes for EAKF-ConcThick compared to the

truth. The plotted atmospheric heat flux components include: shortwave heat flux (black line), sensible heat flux (blue line), net longwave

heat flux (orange line), and latent heat flux (green line). Gray dashed line represents the zero reference line. Panel (B): Time series of sea ice

accumulated shortwave heat flux for EAKF-ConcThick. The gray lines are the individual ensemble members, the black line is the ensemble

mean, and the blue line is the truth. Gray dashed line represents the zero reference line. Panel (C): Same as Panel (B) but for mean surface

albedo over sea ice. Panel (D): Daily biases of sea ice accumulated snowfall for EAKF-ConcThick compared to the truth. The gray lines are

the individual ensemble members, and the black line is the ensemble mean.
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Figure 12. Panel (A): Daily correlations between perturbed CICE parameters and total snow volume over the Arctic. Correlations are

computed using a Spearman’s rank correlation method where both the raw correlations (Raw) and significant correlations with confidence at

99% (Sig.) are shown. Panel (B): Same as Panel (A) but for total snow melt over the sea ice in the Arctic. Panel (C): Sorted perturbed Rsnw

parameter values for each ensemble member. Red bar indicates the truth member. Black line is the median and the two dash lines represent

the interquartile range.
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