Quantification of fossil fuel CO$_2$ from combined CO, δ^{13}CO$_2$ and Δ^{14}CO$_2$ observations

Jinsol Kim1, John B. Miller2, Charles E. Miller3, Scott J. Lehman4, Sylvia E. Michel4, Vineet Yadav3, Nick E. Rollins1, and William M. Berelson1

1Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA
2Oceanic and Atmospheric Administration Global Monitoring Laboratory, Boulder, CO 80305, USA
3Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
4Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309, USA

Correspondence to: Jinsol Kim (jinsolki@usc.edu)

Abstract. We present a new method for partitioning observed CO$_2$ enhancements (CO$_2$xs) into fossil and biospheric fractions (Cff and Cbio) based on measurements of CO and δ^{13}CO$_2$, complemented by flask-based Δ^{14}CO$_2$ measurements. This method additionally partitions the fossil fraction into natural gas and petroleum fractions (when coal combustion is insignificant). Although here we apply the method only to discrete flask air measurements, the advantage of this method (CO and δ^{13}CO$_2$-based method) is that CO$_2$xs partitioning can be applied at high frequency when continuous measurements of CO and δ^{13}CO$_2$ are available. High frequency partitioning of CO$_2$xs into Cff and Cbio has already been demonstrated using continuous measurements of CO (CO-based method) and Δ^{14}CO$_2$ measurements from flask air samples. Relative to calculating CO$_2$ff directly from Δ^{14}CO$_2$, we find that the uncertainty in CO$_2$ff estimated from the CO and δ^{13}CO$_2$-based method averages 3.2 ppm which is significantly less than the CO-based method which has an average uncertainty of 4.8 ppm. Using measurements of CO, δ^{13}CO$_2$ and Δ^{14}CO$_2$ from flask air samples at three sites in the greater Los Angeles region, we find large contributions of biogenic sources that vary by season. On a monthly average, the biogenic signal accounts for -14 to $+25\%$ of CO$_2$xs with larger and positive contributions in winter and smaller and negative contributions in summer due to net respiration and net photosynthesis, respectively. Partitioning CO$_2$ff into petroleum and natural gas combustion fractions reveals that the largest contribution of natural gas combustion generally occurs in summer, which is likely related to increased electricity generation in LA power plants for air-conditioning.
1 Introduction

The world’s cities account for up to 70 % of global greenhouse gas (GHG) emissions, while covering less than 2 % of the Earth’s surface (IPCC, 2014). Cities around the world have started implementing mitigation strategies to reduce carbon dioxide (CO$_2$) emissions and collaborate with each other in organizations such as the C40 Cities Climate Leadership Group (https://www.c40.org/) and the Global Covenant of Mayors for Climate and Energy (https://www.globalcovenantofmayors.org/). To support urban efforts, monitoring systems are necessary to evaluate and verify reductions attributable to specific mitigation strategies.

Current understanding of anthropogenic CO$_2$ emissions mainly derives from methods that estimate aggregate emissions in a domain using economic statistics such as total fuel sales. These “bottom-up” methods provide specific location and process information that rely on mapping the source-specific emission factors and measurements of activities (e.g., McDonald et al. 2014; Gurney et al. 2019; Gately and Hutyra 2017). In contrast, more recently “top-down” methods that quantify emissions from measurements of atmospheric CO$_2$ have been used to estimate emissions. These top-down approaches typically use either a mass balance technique where an initial estimate is not required (e.g., Heimburger et al. 2017; Ahn et al. 2020) or an inverse/data assimilation approach where observations and a priori map of emissions are combined to generate a best estimate (e.g., Sargent et al. 2018; Turner et al. 2020; Lauvaux et al. 2016, 2020).

To estimate anthropogenic CO$_2$ emissions using top-down method, it is crucial to separate the fossil fuel signals from the biogenic signals, which can vary from negative (uptake) to positive (emission) across the annual cycle. Recent analyses of urban CO$_2$ suggest that biogenic emissions and uptake have significant magnitudes relative to fossil fuel fluxes, especially during the growing season (Sargent et al. 2018; Vogel et al. 2019; Miller et al. 2020). Previous top-down studies used biosphere models to estimate biogenic fluxes and then determine the balance of emissions attributable to fossil fuel combustion (Sargent et al. 2018; Turner et al. 2020; Lauvaux et al. 2020). However, even with recent improvements in biosphere models (Wu et al. 2021; Gourdji et al. 2022) the actual magnitude and variability of these fluxes are still not well constrained (Hardiman et al. 2017), potentially leading to unknown observational bias in the associated estimates of fossil fuel derived emissions.

Radiocarbon (14CO$_2$) provides the ability to separate biogenic and anthropogenic CO$_2$ fluxes and mole fractions from an observational point of view (e.g. Levin, 2003; Turnbull 2006).
Observational methods rely on the fact that fossil fuels and the resultant CO₂ produced during combustion are completely devoid of ¹⁴C (i.e., Δ¹⁴C₀ff = -1000‰ on the widely used Delta scale). Measurements of Δ¹⁴CO₂, acquired at time scales of weeks to months, allow quantification of seasonal variations in biogenic and fossil contributions to the atmospheric CO₂ mole fraction (e.g., Djuricin et al. 2010; Miller et al. 2012; Turnbull et al. 2015). ¹⁴C methods typically require air sample collection, preparation and analysis via accelerator mass spectrometry which limits the number of measurements, although a number of promising optical methods for in situ ¹⁴CO₂ measurement at natural abundance are currently being developed (Fleisher et al. 2017; Genoud et al. 2019; McCartt and Jiang 2022).

On the other hand, carbon monoxide (CO) is a widely used tracer that can be measured continuously in situ using high-precision optical analyzers (e.g., Vogel et al. 2010; Newman et al. 2013; Turnbull et al. 2015). CO is often co-emitted with fossil fuel CO₂ (CO₂₀ff) during incomplete combustion. If the COxs:CO₂₀ff ratio (R₀ff, where COxs is the CO enhancement above background) is well constrained, continuous CO measurements combined with R₀ff can provide an estimate of continuous CO₂₀ff. However, this approach is challenging because R₀ff at a site may vary significantly on timescales ranging from hours to years (Levin and Karstens 2007; Vogel et al. 2010). CO:CO₂ emission ratio can vary by sources depending on the carbon content of the fuel and combustion conditions. Due to the impacts of atmospheric transport at a given observation site and the variability in the source combination in time and space, R₀ff also varies in time and space.

Vardag et al. (2015) proposed dividing fossil fuel emissions further into two groups that may display less variability in CO:CO₂ emission ratio. If one group is well constrained by CO and the other by ¹³CO₂, each group can be identified by combining CO and ¹³CO₂ observations. Vardag et al. focused on separating traffic from non-traffic emissions, or biofuel emissions from the other fossil fuel emissions. However, no significant benefit of combining CO and ¹³CO₂ was found because traffic and biofuel CO₂ do not produce distinct CO:CO₂ emission ratio or ¹³CO₂ isotopic signatures compared to the other CO₂₀ff source terms.

Here, we differentiate CO₂ signals from biogenic, petroleum and natural gas sources by combining CO, δ¹³CO₂, and Δ¹⁴CO₂ measurements. The combination of Δ¹⁴CO₂ and δ¹³CO₂ has been used previously to distinguish biogenic, petroleum and natural gas signals for air sampling events (Lopez et al. 2013; Djuricin et al. 2010) and at seasonal scale (Newman et al. 2016). In contrast, the combination of CO and δ¹³CO₂, which can both be measured at high frequency, enables source
partitioning at higher temporal resolution. We demonstrate the agreement between the existing Δ^{14}CO$_2$, δ^{13}CO$_2$ and newly proposed CO, δ^{13}CO$_2$ methods. This establishes the utility of the CO and δ^{13}CO$_2$ in partitioning CO$_2$xs into fossil fuel and biogenic components, with further partitioning of fossil fuel sources into petroleum and natural gas sources, in the Los Angeles megacity.

2 Methods

Here, we describe two methods for separating fossil fuel and biogenic components from atmospheric CO$_2$ measurements in the complex urban environment of the Los Angeles megacity (LA). Section 2.2 describes our application of the method already described by Newman et al. (2016) using Δ^{14}CO$_2$ and δ^{13}CO$_2$ observations. The details of the new method utilizing CO and δ^{13}CO$_2$ measurements are described in section 2.3. Briefly, we take advantage of the fact that the combination of the CO:CO$_2$ emission ratio and the 13CO$_2$ isotopic signature reveal a very distinct pattern for biogenic, petroleum and natural gas sources. However, this approach requires knowledge of the CO:CO$_2$ emission ratio and the isotopic signature of each source. We apply isotopic signatures reported by previous studies, and CO:CO$_2$ emission ratios are determined for LA using measurements of CO, δ^{13}CO$_2$ and Δ^{14}CO$_2$ from flask samples. Flask measurements are described in section 2.1 and the source apportionment from Δ^{14}CO$_2$ and δ^{13}CO$_2$ observations, which is used to derive CO:CO$_2$ emission ratios for each source, is described in section 2.2.

2.1 Measurements

We use measurements from air samples collected at 2 p.m. local standard time at three existing Los Angeles Megacity Carbon Project sites: University of Southern California (USC), California State University, Fullerton (FUL), and Granada Hills (GRA) (Miller et al. 2020). Air samples were collected from November 2014 to March 2016 using National Oceanic and Atmospheric Administration (NOAA) programmable flask packages (PFPs) and programmable compressor packages (Sweeney et al. 2015). The samples were sent back to the NOAA Global Monitoring Laboratory where greenhouse gases including CO$_2$ as well as CO mole fractions were measured using NOAA’s high-precision/high-accuracy greenhouse gas measurement system (Sweeney et al. 2015). After the measurement, residual air is extracted from PFP flasks and CO$_2$ is isolated for 14C
measurement using established cryogenic and mass spectrometric techniques (Lehman et al. 2013). Samples are purified, graphitized and packed into individual targets at the University of Colorado, Boulder, Institute of Arctic and Alpine Research (INSTAAR) and then sent to the University of California, Irvine, Keck Accelerator Mass Spectrometry Facility for high-precision Δ^{14}C measurement. One-sigma measurement uncertainty is ~1.8 ‰, equivalent to ~1.2 parts per million (ppm) of recently added fossil fuel–CO$_2$. δ^{13}CO$_2$ in PFP samples is measured by dual inlet isotope ratio mass spectrometry with a precision of approximately 0.02 ‰ at the INSTAAR Stable Isotope Laboratory (Vaughn et al. 2004; Sweeney et al. 2015)

Enhancement of each species is defined relative to a time-dependent background level, which is based on nighttime (2 AM local standard time) measurements made at Mount Wilson Observatory (MWO; Fig. 1) located at 1,670 m above sea level. Nighttime air at MWO generally represents the relatively clean, well-mixed free troposphere since polluted LA Basin boundary layer air has typically descended back into the basin by this time. After an additional step of filtering obvious outliers corresponding to pollution events indicated by anomalously elevated values were interpolated to the time of observations within the LA Basin by fitting curves to the screened MWO data (Fig. 2). A further analysis of associated CO measurements indicates that background reconstructed using nighttime air samples from MWO is representative of clean background air coming from either on- or off-shore (Miller et al. 2020).

2.2 Partitioning CO$_2$ signals using flask-based Δ^{14}CO$_2$ and δ^{13}CO$_2$ measurements

Our general approach to distinguishing CO$_2$ signals from biogenic, petroleum and natural gas sources using Δ^{14}CO$_2$ and δ^{13}CO$_2$ follows the procedure described by Newman et al. (2016). Following previous derivations (e.g., Turnbull et al, 2006; Miller et al. 2020), we start with the definition for CO$_2$ff which is based on mass balances for the atmospherically conserved quantities Δ^{14}C×CO$_2$ and CO$_2$:

$$C_{ff} = \frac{C_{obs}(\Delta_{obs} - \Delta_{bkg})}{(\Delta_{ff} - \Delta_{bkg})} = \frac{C_{r}(\Delta_{r} - \Delta_{bkg})}{(\Delta_{ff} - \Delta_{bkg})}$$

(1)

Measured CO$_2$ mole fractions and Δ^{14}C values are abbreviated as C and Δ. Subscripts ‘obs’, ‘bkg’, ‘ff’ and ‘r’ represent observations, background, fossil fuel, and respiration, respectively. Δ_{ff} is equal to -1000 ‰. As in the Miller et al. (2020) study focusing on LA, we estimate the value of
the small respiratory term, \(-C_r(\Delta r - \Delta bkg)/(\Delta ff - \Delta bkg)\), as 0.25 ppm. The overall uncertainty of \(C_{ff}\) for LA measurements during 2015 is approximately 1.2 ppm, which includes 100% uncertainty assigned to the respiratory term. \(C_{ff}\) and \(C_{bio}\) (\(C_{bio} = C_{xs} - C_{ff}\)) are calculated for all available flask air samples during the 2014 – 2016 sampling period, a frequency of approximately three times per week at each of the three sites. \(C_{ff}\) is then separated into signals from petroleum and natural gas combustion using \(^{13}\)C:\(^{12}\)C ratios (\(\delta^{13}\)C as defined by standard isotopic definition) measured on the same air samples. First, the flux weighted-mean \(^{13}\)C signature of all sources located in the observation footprints (\(\delta_{src}\)) is determined on a sample-by-sample basis using the combined mass balances for \(^{13}\)C×CO\(_2\) and CO\(_2\):

\[
\delta_{src} = \frac{\delta_{obs} \times C_{obs} - \delta_{bkg} \times C_{bkg}}{C_{obs} - C_{bkg}} \tag{2}
\]

where \(\delta\) is short-hand for \(^{13}\)C. The uncertainties in \(C_{obs}\), \(C_{bkg}\), \(\delta_{obs}\), and \(\delta_{bkg}\) are 0.1 ppm, 1.5 ppm, 0.02 ‰, and 0.08 ‰, respectively. The “obs” uncertainties are measurement uncertainties, while the “bkg” uncertainties are determined as the standard deviation of the difference between the observations and their smoothed curve representation at MWO. The median uncertainty in \(\delta_{src}\) is 3.0 ‰ and is calculated by propagating the uncertainties listed above, including covariance between \(^{13}\)C and \(^{13}\)C×CO\(_2\).

We combine \(C_{ff}\) (eq. 1) and \(\delta_{src}\) (eq. 2) to determine the \(^{13}\)C signature of fossil fuel emissions, \(\delta_{ff}\):

\[
\delta_{src} = \delta_{ff} \times f_{ff} + \delta_{bio} \times (1 - f_{ff}) \tag{3}
\]

Rearranging yields:

\[
\delta_{ff} = \frac{\delta_{src} - \delta_{bio} \times (1 - f_{ff})}{f_{ff}} \tag{4}
\]

where \(f\) is the fraction. Following Newman et al. (2016), we take the isotopic signature of biospheric CO\(_2\) fluxes (\(\delta_{bio}\)) to be \(-26.6 \pm 0.5 \text{ ‰}\) based on the analysis of Northern Hemisphere mid-latitude CO\(_2\) and \(^{13}\)C observations (Bakwin et al. 1998), which reflects the predominance of C\(_3\) photosynthesis. However, because LA turfgrasses, which could account for a significant fraction of urban CO\(_2\) fluxes [Miller, 2020], are often C\(_4\) species (e.g., Bermuda and Buffalo
grass), we also conduct tests using $\delta_{bio} = -20 \, \%$, representing a C3/C4 mix (see Fig. S1). f_{ff} is the fraction of C_{ff} in C_{xs}, i.e., C_{ff}/C_{xs}, and $1 - f_{ff} = f_{bio}$. Lastly, the proportion of C_{ff} emitted by petroleum (pet) and natural gas (ng) combustion, f_{pet} and f_{ng}, are calculated from the values of δ_{ff}:

$$\delta_{ff} = \delta_{pet} \times f_{pet/ff} + \delta_{ng} \times (1 - f_{pet/ff}) \quad (5)$$

$$f_{pet/ff} = \frac{\delta_{ff} - \delta_{ng}}{\delta_{pet} - \delta_{ng}} \quad (6)$$

We use values of $-25.5 \pm 0.5 \, \%$ for δ_{pet} and $-40.2 \pm 0.5 \, \%$ for δ_{ng} (Newman et al. 2008); $f_{pet} = f_{ff} \times f_{pet/ff}$, and $f_{ng} = f_{ff} \times f_{ng/ff}$, where $f_{ng/ff} = 1 - f_{pet/ff}$. We use temporally constant δ^{13}C signatures for petroleum, natural gas and biogenic sources (and sinks), although with additional processed-based information, this assumption could be relaxed in the future. Note that although pet, ng, and bio signatures are fixed, both δ_{src} and δ_{ff} vary with time, meaning that f_{bio}, f_{pet} and f_{ng} all vary at the frequency of the air sampling.

2.3 Partitioning CO_2 signals using CO and δ^{13}CO2 measurements

Although we can determine f_{bio}, f_{pet} and f_{ng} at the frequency of discrete flask sampling events using the method described in Section 2.2, here we describe how comparable CO_2 fractions can in theory be determined at high frequency using continuous measurements of CO and δ^{13}CO2. To evaluate the method, we compute the relative contributions of biogenic, petroleum and natural gas sources to CO_2 using flask air CO and δ^{13}CO2 measurements and compare these to values obtained using the Δ^{14}CO2-guided approach for the same samples by applying the following system of equations:

$$R_{src} = R_{bio} \times f_{bio} + R_{pet} \times f_{pet} + R_{ng} \times f_{ng} \quad (7)$$

$$\delta_{src} = \delta_{bio} \times f_{bio} + \delta_{pet} \times f_{pet} + \delta_{ng} \times f_{ng} \quad (8)$$

$$1 = f_{bio} + f_{pet} + f_{ng} \quad (9)$$

R_{src} represents the CO/CO2 ratio of the total source, which is the observed COxs/CO2xs ratio, and we use R to refer to the CO/CO2 emission ratios of individual CO2xs components (bio, pet, and ng). For now, we assume that R of each source are constant over a year-long period and over the
greater LA region (discussed in Section 3.2); especially with high frequency CO and δ13CO2 measurements, this assumption could easily be relaxed (discussed in Section 3.3).

R values and $\delta^{13}C$ signatures for bio, pet, and ng are needed to solve Eqs. 7-9. $\delta^{13}C$ signatures are specified in section 2.2; R values are obtained via multiple linear regression of Eq. 7 using observed R_{src} and f values determined using $\Delta^{14}C$ and $\delta^{13}C$ of CO2 measurements as described in Section 2.2. Then we solve Eqs. 7-9 for new f values, f'. This new CO2xs partitioning (i.e., f'_{bio}, f'_{pet}, f'_{ng}) based on CO and $\delta^{13}CO_2$ observations is used to calculate new values of C_{ff} and C_{bio} (i.e., C'_{ff} and C'_{bio}).

3 Results and Discussion

3.1 Contribution of biogenic, petroleum and natural gas sources in CO2 excess

We calculated the fractional contribution of petroleum, natural, and biospheric fluxes to total CO2xs each month from April 2015 to March 2016 using $\Delta^{14}CO_2$ and $\delta^{13}CO_2$ observations recorded at FUL, USC and GRA. The results are given in Table S1 and presented in Figure 3. Figure 4 presents the results in terms of the relative CO2xs contribution from each source at each site. We observe seasonal variation in CO2xs from each source. Fossil fuel is the dominant CO2 emissions source at each site which agrees with the findings of Newman et al. (2016) and Miller et al. (2020). Annually averaged across all three sites, biogenic emissions account for 6 % of CO2xs. Biogenic emissions are larger and positive in winter and smaller and negative in summer, indicating winter respiration and uptake in summertime, generally consistent with the results of Miller et al. (2020). Note that in this study, we do not partition C_{bio} into an urban biosphere component and other components related to the oxidation of biogenic carbon including ethanol added to gasoline, and human and other animal food and waste (which can only be positive and are unlikely to vary much seasonally). If, as in Miller et al. (2020), we accounted for the always positive ethanol, food, and waste signals, we would likely observe similarly large seasonal drawdown associated with urban vegetation.

We also observe spatial differences: The USC site exhibits a smaller contribution of the biosphere (3 % of annual average CO2 excess) compared to FUL and GRA (9 % and 5 % of total CO2 excess, respectively). However, these modest annual average biospheric contributions mask significant
seasonal activity. On a monthly basis, maximum positive biogenic contribution is observed in November at 25, 26, and 22 % at USC, FUL, and GRA (percentage of total CO$_2$ excess, respectively). And the maximum negative contribution, driven by net photosynthesis, is observed in July with values of -22, -13, and -12 % at USC, FUL, and GRA (percentage of total CO$_2$ excess, respectively).

Network average C_{ff} is 11.0 ± 14.5 ppm in winter (November-February; median and standard deviation) and 12.2 ± 6.6 ppm in summer (May-August). No significant difference is observed in winter and summer C_{ff}. This corresponds to the seasonality in Hestia-LA emissions, which indicates C_{ff} inputs are only 3 % higher in winter. High variability observed in wintertime C_{ff} agrees with Miller et al. (2020) which is likely caused by increased temperature inversion trapping as the cold ground surface in winter cools the air layer right above the ground. While bottom-up fossil fuel emissions reveal little seasonality, the top-down seasonality of petroleum and natural gas (Fig. 4), which as fractions of C_{ff} should be largely independent of mixing, are clearly evident. The proportion of natural gas in fossil fuel signals are 40 % and 36 % in summer and 34 % and 30 % in winter at FUL and USC (Fig. 3). The increase in the natural gas contribution observed in summer can be explained by the increase in natural gas generated electricity in LA power plants to provide for air conditioning in summer (Newman et al. 2016; He et al. 2019). GRA, located northwest of USC by ~35 km without an electricity generation facility nearby, shows the opposite pattern (24 % in summer and 40 % in winter). This suggests the local influence of increased natural gas usage for heating in the winter.

3.2 R values of biogenic, petroleum and natural gas sources

Monthly, site-based R_{src} varies between 5.5 – 11.4 ppb ppm$^{-1}$ (Fig. 5), with a mean and standard deviation of 8.2 ± 1.6 ppb/ppm (relative s.d. = 19 %). Greater variability is seen in R_{ff} (lower panel): mean and s.d. of 9.6 ± 2.1 ppm (relative s.d. = 22 %). To understand and predict the variation in R_{ff}, we further divide the fossil fuel emissions into petroleum and natural gas emissions. Applying the calculated f values from Δ^{14}CO$_2$ and δ^{13}CO$_2$ observations (Section 2.2., Fig. 3), we solve Eq. 7 for each source’s CO/CO$_2$ emission ratio, R (Table 1). Note that we exclude negative flask-based values of COxs (and corresponding R_{src} values) and CO$_2$ff (and corresponding f_{ff} values) as non-physical. Likewise, positive δ_{src} values and $f_{pet/ff}$ values (and
corresponding f_{pet} and f_{ng} values) outside the range of 0-1 are also excluded. A bootstrapping method is used to calculate the mean and uncertainty of possible CO/CO$_2$ ratios. The CO/CO$_2$ ratios of petroleum (R_{pet}) and natural gas (R_{ng}) combustion emissions are 12.2 ± 0.6 ppb ppm$^{-1}$ and 2.3 ± 1.2 ppb ppm$^{-1}$, respectively. As discussed above, the proportion of natural gas in fossil fuel emissions is bigger in summer resulting in smaller R_{ff} in summer at FUL and USC. We find the value of 1.8 ± 0.8 ppb ppm$^{-1}$ for R_{bio} which is non-zero because biofuel (mainly corn-based ethanol) in the gasoline in California with large CO/CO$_2$ ratio signal is included in the biogenic sources while respiratory CO/CO$_2$ ratios approach 0. A larger contribution of the biosphere with a low CO/CO$_2$ ratio in winter offsets the large R_{ff} lowering the variability in R_{src} at each site.

We compare our model-determined CO/CO$_2$ ratios of each source (Table 2) to bottom-up inventory-based estimates (Table 1). CO/CO$_2$ ratios of each source constrained from our model and observational data approach well with the bottom-up inventory-based estimates. Sources contributing a high percentage of CO$_2$ emissions strongly influence the total CO/CO$_2$ ratio. The CO/CO$_2$ ratio of petroleum combustion is greatly affected by on-road emissions and industrial emissions (contributing 28 % and 60 % of total petroleum CO$_2$ emissions). Natural gas is mostly dominated by non-mobile emissions (Electricity production, residential, commercial, and industrial, sequentially) resulting in low CO/CO$_2$ ratio.

3.3 Estimation of CO$_2$ff based on CO and 13CO$_2$ observations

Table 2 shows the CO/CO$_2$ ratio and δ^{13}C signature of each source. The combination of the R and δ signals reveal a distinct pattern for each source: the biosphere has low near-zero R, petroleum has high R, and natural gas has low R. Petroleum and biosphere CO$_2$ have similar δ values, whereas natural gas has a very low δ. By substituting these values into Eqs. 7-9, f' values are calculated, and then we calculate C'_{ff} by multiplying the sum of f'_{pet} and f'_{ng} by CO$_2$xs measured every few days. We compare f'_{ff} and C'_{ff} to f_{ff} and C_{ff} (determined using 14C observations) in Fig. 6. Assessment for each source is shown in Figure S2 and S3. The R^2 values are 0.63 and 0.90 for f'_{ff} and C'_{ff}, respectively.

If R values are allowed to vary in time, it is likely to improve the precision of the method. We calculate the uncertainty in C'_{ff} for varying temporal resolutions of R (black solid line in Fig. 7). We find that the uncertainty increases when the size of the window increases from 1-week to 10-
week; in other words, allowing temporal variation in R improves the precision of the method. However, the uncertainty slightly decreases beyond the 10-week window. This is likely caused by the reduction in the error of R values (not shown) as the number of observations used to find R (by solving Eq. 7) increases. In summary, the ideal flask sampling frequency for this method would be higher than every 2 weeks. In cases where this is impossible, it is better to assume constant R values.

The uncertainty in C' estimated using the CO-based method is also shown in Figure 7 (black dashed line). The CO-based method also provides improved precision of the method when flask sampling is available at higher frequency. However, the CO and δ^{13}CO$_2$-based method shows greater confidence than the CO-based method for the whole range of adjusted temporal resolution in R. When using constant R values (temporal resolution of 50 weeks), the uncertainty is 3.2 ppm (the 1σ standard deviation of differences between C_{ff} and C'_{ff}) for the CO and δ^{13}CO$_2$-based method, while it is 4.8 ppm for CO-based method. This improvement is likely associated with the additional information provided by δ^{13}CO$_2$ that constrains the effective R_{ff} and further separates fossil fuel sources into sub-categories (petroleum and natural gas sources).

4 Conclusions

We present a CO and δ^{13}CO$_2$-based method to estimate CO$_2$ff which is based on flask-based Δ^{14}CO$_2$ measurements. We have applied the method to measurements from flask samples collected in the LA basin, every few days in the afternoon for more than one year (2015-16). The proposed method was assessed by comparing it to a more traditional Δ^{14}CO$_2$-based method. CO and δ^{13}CO$_2$ approach can be applied to continuous measurements of CO$_2$, CO and δ^{13}CO$_2$ which can provide CO$_2$ff estimates at higher temporal resolution and with greater accuracy than previously applied CO-based methods.

We have analyzed three locations in the Los Angeles megacity, partitioning observed CO$_2$ enhancements (CO$_2$xs) into biogenic, petroleum and natural gas sources. We observed a substantial biogenic signal that varies from -14% to +25% of CO$_2$xs over the course of the year, with positive contributions in winter and negative contributions in summer due to net respiration and net photosynthesis, respectively. Furthermore, partitioning CO$_2$ff into petroleum and natural gas combustion fractions revealed that natural gas combustion has the largest contribution in
summer, potentially due to an increase in electricity generation at LA power plants for air conditioning.

Data availability. The data that support the findings of this study are available from JBM (john.b.miller@noaa.gov) upon request.

Author contributions. JK designed and executed the study. JBM, SJL, and SEM provided the data. JK prepared the manuscript with contributions from all co-authors.

Competing interests. The authors declare that they have no conflict of interest.

References

Genoud, Guillaume, Johannes Lehmuskoski, Steven Bell, Vesa Palonen, Markku Oinonen, Mari Leena Koskinen-Soivi, and Matti Reinikainen. 2019. “Laser Spectroscopy for Monitoring...
of Radiocarbon in Atmospheric Samples.” *Analytical Chemistry* 91 (19).
https://doi.org/10.1021/acs.analchem.9b02496.

https://doi.org/10.1029/2021JG006290.

https://doi.org/10.1016/j.scitotenv.2017.03.028.

https://doi.org/10.1021/acs.est.0c00343.

Lauvaux, Thomas, Natasha L. Miles, Aijun Deng, Scott J. Richardson, Maria O. Cambaliza, Kenneth J. Davis, Brian Gaudet, et al. 2016. “High-Resolution Atmospheric Inversion of

Turner, Alexander J., Jinsol Kim, Helen Fitzmaurice, Catherine Newman, Kevin Worthington, Katherine Chan, Paul Wooldridge, Philipp Köhler, Christian Frankenberg, and Ronald C.

Figure 1. Map of the greater Los Angeles region. The three Los Angeles Megacity Carbon Project sites are marked in red and the Mount Wilson Observatory used to define background values are marked in yellow. Map data © Google Maps 2022.
Figure 2. Timeseries of CO₂, CO, δ¹³C, and Δ¹⁴C. Black line represents background values.
Figure 3. Monthly mean fractional contributions (f) of biosphere (green), petroleum (red), and natural gas (yellow) to CO$_2$xs at each site, as determined from $\Delta ^{14}$C and $\delta ^{13}$C observations (Section 2.2). The sum of the fractions is one in each month.
Figure 4. Monthly mean CO$_2$xs partitioned into biosphere (green), petroleum (red), and natural gas (yellow) signals, as determined from Δ^{14}C and δ^{13}C observations, at each site. The black marker indicates CO$_2$xs.
Figure 5. Monthly variations in COxs/CO$_2$xs (Rsrc) and COxs/CO$_2$ff (Rff) at each site. COxs/CO$_2$ff is calculated using 14C observations.
Figure 6. Comparison of f_{ff} and f'_{ff} (left) and C_{ff} and C'_{ff} (right). Black lines represent 1:1 relationships and different colors indicate different sites.
Figure 7. Uncertainty in \(C'_{ff} \) for varying temporal resolution of \(R \) (N weeks). \(R \) is determined for each data point solving Eq. 7 using CO, \(^{13}\)CO\(_2\) and \(^{14}\)CO\(_2\) observations within a moving window of 2N weeks. For CO-based method, \(R_{ff} \) is smoothed using a 2N weeks moving window.
Table 1. Bottom-up CO₂ emission, CO emission, and R (CO/CO₂ ratio) estimates for each source sector and fuel type for LA basin based on the Vulcan 3.0 and the U.S. Environmental Protection Agency (EPA) National Emission Inventory for 2011 (NEI 2011) product. NEI 2011 is scaled by the emissions with fuel consumption dataset from the U.S. Energy Information Administration (EIA) State Energy Data System (SEDS) to estimate 2015 CO emissions.

<table>
<thead>
<tr>
<th>Source Sector</th>
<th>Petroleum</th>
<th>Natural Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO₂ (MtC)</td>
<td>CO (MtC)</td>
</tr>
<tr>
<td>Residential</td>
<td>0.06</td>
<td><0.001</td>
</tr>
<tr>
<td>Commercial</td>
<td>0.67</td>
<td><0.001</td>
</tr>
<tr>
<td>Industrial</td>
<td>9.79</td>
<td><0.001</td>
</tr>
<tr>
<td>Electricity Production</td>
<td>0.37</td>
<td><0.001</td>
</tr>
<tr>
<td>On-road</td>
<td>20.97</td>
<td>0.296</td>
</tr>
<tr>
<td>Non-road</td>
<td>1.45</td>
<td>0.139</td>
</tr>
<tr>
<td>Airport</td>
<td>0.89</td>
<td>0.008</td>
</tr>
<tr>
<td>Rail</td>
<td>0.47</td>
<td>0.002</td>
</tr>
<tr>
<td>CMV</td>
<td>0.48</td>
<td><0.001</td>
</tr>
<tr>
<td>Total</td>
<td>35.16</td>
<td>0.437</td>
</tr>
</tbody>
</table>
Table 2. CO/CO$_2$ ratios (R) and δ^{13}C signatures used to determine relative contribution of biogenic, petroleum and natural gas sources.

<table>
<thead>
<tr>
<th></th>
<th>Biosphere</th>
<th>Petroleum</th>
<th>Natural Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom-up approach R (ppb ppm$^{-1}$)a</td>
<td></td>
<td>12.4</td>
<td>1.7</td>
</tr>
<tr>
<td>Top-down approach R (ppb ppm$^{-1}$)b</td>
<td>1.8 ± 0.8</td>
<td>12.2 ± 0.6</td>
<td>2.3 ± 1.2</td>
</tr>
<tr>
<td>δ^{13}C (%)c</td>
<td>-26.6 ± 0.5</td>
<td>-25.5 ± 0.5</td>
<td>-40.2 ± 0.5</td>
</tr>
</tbody>
</table>

a R calculated from Table 1. These values are not used for CO$_2$xs partitioning and are for reference only.

b R calculated from CO, δ^{13}CO$_2$ and Δ^{14}CO$_2$ flask observations. These values are used in this study.

c δ^{13}C from previous studies (Newman et al., 2008)