
REVIEWER # 2

General Comments:

COMMENT # 1.1

This paper shows how sparse high-resolution snow depth observations can be integrated into
a hyper-resolution model that is by itself producing rather homogenous snow depths over a
small catchment in the Pyrenees. The assimilated observations are a subsample taken from
some drone images during the peak and melt season of snow. Three different prior (spatial,
non-diagonal) error covariance matrices are constructed to use in a 3D EnKF scheme and
to allow the propagation of information in space. The novelty lays in defining such error
covariance matrices, using other measures than the distance between grid cells, i.e. e.g. using
topography or observed (as opposed to similated) snow pack similarity. The strength of this
paper is in its technical innovation and rigor, and the paper is very well written - a pleasure
to read. Some details are not entirely clear and questions for clarification are listed below,
together with minor suggestions to improve the presentation of the paper.

Reply:

We appreciate the reviewer’s positive, insightful, and constructive feedback on our
work. We respond below to the comments and questions raised by the reviewer.

Specific comments

COMMENT # 1.2

The ensemble generation is at the heart of this paper and 3 methodological points are a bit
unclear:

1. The perturbations are applied (as usual) to meteorological input, but not to snow depth
or any snow state variable. Do you maintain enough spread after the assimilation events
this way? Most often, some extra state perturbation is desirable, either to reflect some
parameter uncertainty (if the parameters were not perturbed) or just to do some covari-
ance inflation. In addition, it could actually help to impose the right error structure in
the prior state ensemble in your case – see next comment.

2. The prior state error correlations are technically derived from the ensemble snow depth
members, which in turn were obtained by propagating ensembles of precipitation and
temperature through the FSM2. Right? The newly developed error structures are thus
imprinted in the forcings, not directly in the state (only after propagation through the
model). Yet, the forcings are nonlinearly transformed to snow depth, and on top of that
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the error correlations between the various forcings is assumed to not exist, meaning that
the different forcing error structures will interact and might destroy or amplify each
other locally. Furthermore, I did not see (may have overlooked) any temporal autocor-
relation in the error structures. Therefore, I do not really understand how the resulting
snow depth error correlation would have the same error structure as that of its input.
Have you verified if the diagnosed ensemble state error covariance matrix (truly derived
from the ensembles) effectively has the structure that it was meant to have? (From Fig
7, I get that the snow depth pattern itself (not the errors) indeed was reproduced with
Exp III DA.)

3. Exp I, II or III: the distance, topography or similarity in snow depth are assigned to
error structures in the meteorological input. Could they not equally originate from
error structures in model parameters instead?

Reply:

We would like to thank the reviewer for raising these three intriguing issues. We
provide a point-by-point response below::

1. We do not apply any explicit inflation to the updates. Although we agree that
this heuristic approach may help to improve the results by avoiding an over-
confident ensemble, previous studies have noted that deterministic ensemble
Kalman methods like the DES-MDA already apply an implicit inflation to the
updated ensemble covariance (1; 2). Moreover, a detailed evaluation of the
need for explicit covariance inflation in spatio-temporal snow data assimilation
would introduce another hyper-parameter requiring sensitivity analysis that is
orthogonal to and thus beyond the scope of this work. Inflation is nonethe-
less an important and under-explored topic in the snow data assimilation lit-
erature that warrants future research. As for the direct perturbation of state
variables, this would violate the strong-constraint (perfect model) assumption
that is made both for convenience and consistency as discussed extensively in
(3).

2. Yes, the prior covariances in the state variables are generated by propagating
the spatially correlated parameter ensemble through the forward model which
is FSM2 in this case. So, given our forward model, there is thus a non-linear re-
lationship between the forcing perturbation parameters that we update directly
and the predicted snow depth observations. This non-linearity is the major
reason that we resort to using iterative ensemble Kalman methods. Since the
advantage of iterative methods was not discussed in the original manuscript
we have now added an explanation and relevant references to section 2.2.2.
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For simplicity (see line 209) we do not assume any prior correlation between
the respective types of perturbation parameters. Although it would be possible
and maybe advantageous to do this (e.g. (4)), here we do not have a strong
prior belief that would justify any particular such across parameter correlation.
It is hoped that a good posterior covariance between these parameters can be
inferred from the data, provided that the prior spatial correlation models are
reasonable. Along with assimilating different observations (5), this across pa-
rameter prior correlation is a promising way to help address equifinality related
to the compensating effects in melt and accumulation parameters (e.g. (6)) that
the reviewer is possibly alluding to, but that is beyond the scope of this work.
As for the temporal auto-correlation in the ensemble of states, this is also set
implicitly through the perturbation parameters and their propagation through
the forward model. This temporal auto-correlation is thus likely high given that
the forcing perturbation parameters are time-invariant within each water year.

When it comes to the ensemble covariance matrices having the right structure,
we assume that this question only applies to Exp. III where we used snow
depth observations to design the prior parameter correlation model. In the
other experiments, we do not expect anything a-priori other than there being
some specified geographic distance (Exp. I) and topographic distance-based
(Exp II) correlation (defined by the GC function) in the perturbation parame-
ters that we update. It is important to note that in all experiments we do not try
to define some kind of true or correct prior (in that all priors are subjective (7; 8))
instead we hope to design priors that allow for improved spatio-temporal in-
formation propagation across grid cells so as to obtain better estimates of snow
depth. In Exp. III we inherit some of the spatial correlations in the snow depth
observations when designing the prior parameter correlation model. We do not
expect the spatial correlations between snow depths and perturbation param-
eters to be the same, given the non-linear forward model, but we hope these
correlations can help improve the performance of the spatio-temporal data as-
similation. The encouraging results from Exp. III suggest empirically that this
is indeed the case. Indeed, we did not actually expect Exp III to perform as well
as it did given the aforementioned non-linearity. We apologize if we have mis-
understood this astute technical question from the reviewer, but we hope that
this response has nonetheless addressed some of the reviewer’s concerns.

3. Yes, it is of course a possible option. The way we correct the forcing is by gen-
erating perturbation parameters that we use to correct the meteorological time-
series. It is also possible (and it is supported by MuSA) to include internal
model parameters within the analysis. However, the available literature, such
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as (9), and our own experience implies that forcing is almost always the biggest
source of uncertainty in snow simulations. Furthermore, it is a common prac-
tice in the snow data assimilation literature to include only forcing correction
parameters (see (3) and references therein). For these reasons, and in the interest
of simplicity, we have focused only on the forcing correction.

Changes:
The iterative

::::::::::
ensemble

:::::::::
Kalman methods used herein could nonetheless readily be ex-

tended to filtering (1; 10).
:::::::::::
Although

:::
the

:::::::::::
iterations

::::::
incur

:::
an

::::::::::::
additional

::::::::::::::::
computational

:::::
cost,

:::::
they

:::::::
allow

::::
for

::::::::::::
likelihood

:::::::::::
tempering

::::::
(11)

::::
that

::::::
leads

:::
to

:::::::::::
improved

:::::::::::::::
performance

:::::::::::
compared

:::
to

::::::::::::::
non-iterative

::::::::::
methods

:::::::
when

::::
the

::::::::
model

::::::::::
mapping

::::::
from

:::::::::::::
parameters

:::
to

::::::::::::::
observations

::
is

:::::::::::
non-linear

:::::::::::::
(12; 3; 4; 13)

:
.
::::
The

::::::
snow

::::::
data

:::::::::::::
assimilation

:::::::::
problem

::::::::::::
addressed

:::::::
herein

:::::
falls

:::::::
under

::::
this

::::::::::::
non-linear

::::::::::
category.

:

COMMENT # 1.3

Perturbing precipitation w/ a logit-normal distribution and a mean of -1.6 seems to introduce
a bias in precipitation. Is there a reason for this choice?

Reply:

We would like to thank the reviewer for raising this point which we have now clari-
fied in the text. The prior hyperparamters µ0 and σ0 of the weakly informative logit-
normal prior distributions were selected based on initial prior predictive checks (not
shown) based in part on previous experiments and ensuring a reasonable spread in
the ensemble without having unphysical seasonal snowpacks (e.g. glaciers). It is
worth noting that −1.6 is not the mean of the logit-normal distribution itself, but
the mean of the underlying normal distribution in transformed (unbounded) space.
With bounds (0, 8) for the precipitation perturbation, this corresponds to a right-skew
logit-normal distribution with a median of 1.34 and an interquartile range of approx-
imately (0.74, 2.3) in physical (i.e., model) space. So this prior is thus not strongly
biasing the typical (i.e. central) values of the precipitation perturbation parameter.
We have now clarified this in the text around L200.

Changes:
The mean µ0 and standard deviation σ0 of the underlying normal distributions hyper-
parameters

::
in

:::::::::::::
transformed

:::::::
space, control the shape of our weakly informative prior

probability distributions (8). These hyper-parameters were selected based on
::::::
prior

:::::::::::
predictive

::::::::
checks

::::
and

:
conservative expectations of the range of uncertainty in the

meteorological forcing, which we distilled from experience obtained in previous
studies at Izas. For temperature, the prior additive perturbation parameters were
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drawn from a logit-normal distribution bounded between −8 and 8 K, with hyper-
parameters µ0 = 0 and σ0 = 0.5.

:::
In

:::::::::
physical

:::::::
space

::::
this

::::::::::::::
corresponds

:::
to

::
a

::::::::::::
symmetric

:::::::::::::
logit-normal

:::::::::::::
distribution

::::::
with

::
a

::::::::
median

:::::::::::::::
(interquartile

:::::::
range)

:::
of

:
0
:::::::
(−1.34

:::
to

::::::
1.34).

:
The

prior multiplicative perturbation parameters for precipitation were drawn from a
logit-normal distribution bounded between 0 and 8 with with µ0 = −1.6 and σ0 = 1.

::
In

::::::::::
physical

::::::
space

:::::
this

::::::::::::::
corresponds

:::
to

::
a

::::::::::::
right-skew

::::::::::::::
logit-normal

:::::::::::::
distribution

::::::
with

::
a

::::::::
median

:::::::::::::::
(interquartile

:::::::
range)

:::
of

::::
1.34

::::::
(0.75

::
to

::::::
2.27).

:
The number of ensemble members

was fixed at Ne = 100 for all experiments.

COMMENT # 1.4

FSM2 is run with MicroMet data. Can you explicitly say how much variability you expect at
the scale of this small catchment? I would expect almost none, perhaps truly nothing at all for
precipitation, but I wonder if there is any (other than some radiation variability mentioned in
the results). Is there a reason why the wind distribution is not turned on?

Reply:

As the reviewer correctly points out, since wind redistribution is not considered most
of the snowmelt variability is induced by radiation (even at coarser resolutions),
at least in these kind of high mountain Mediterranean environments (14). This is
enough to induce some variability in the SWE patterns (Fig. 3), although compared
to posterior simulations greatly underestimated (See Animation 1 for an example).
The wind distribution is not enabled as it is not part of MicroMet, it is part of an-
other module (SnowTran) in the Snowmodel package. Thus, it is not implemented in
MuSA which runs FSM2 at its core.

COMMENT # 1.5

The text mentions both ensemble Kalman filter and smoother (e.g. L. 244 and further). The
time dimension (smoothing) is unclear to me, if it is applied. Which exact technique is ap-
plied?

Reply:

We have now clarified this in section 2.2.2 as follows

Changes:

To perform the spatio-temporal data assimilation we employed the deterministic en-
semble smoother with multiple data assimilation (DES-MDA) scheme introduced by
(2). This is

::::
We

::::
use

:::::
this

::::::
batch

:::::::::::
smoother

:::::::::
scheme

::
to

:::::::::
directly

:::::::::
update

::::::::::::
parameters

::::::
(and
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::::::::::
indirectly

::::::::
update

:::::::
states)

::::
by

:::::::::::::::::
simultaneously

:::::::::::::
assimilating

:::
all

::::::::::
available

::::::::::::::
observations

:::
in

:::
the

:::::
data

::::::::::::::
assimilation

:::::::::
window

:::
as

:::::::::
outlined

:::
in

:::::::::::
Algorithm

:::
1.

::::::::
Herein,

::::
the

:::::
data

:::::::::::::
assimilation

:::::::::
window

::
is

:::::
one

:::::::
water

:::::
year

:::::
and

::::
the

:::::::::::::
parameters

::::
are

:::::::::
updated

::::::::::::::::
independently

::::
for

::::::
each

::::::
water

::::::
year.

:::::
This

::::::::::::
DES-MDA

::
is

:
a deterministic version of the original. . .

COMMENT # 1.6

Not sure about the technical details for the computational implementation: could you not use
halos around a good radius of influence to parallelize in space as is done in 3D global DA
systems?

Reply:

MuSA has been designed to run for so-called embarrassingly parallel models without
lateral interactions. That is, the model prediction for each grid cell is simulated inde-
pendently. This is the reason why the implementation is challenging as its possible to
de-synchronise each iteration of the algorithm (as explained in section 2.4 Computa-
tional setup), since each processor generates an ensemble of simulations for each cell.
Once all ensembles are created and stored as individual files, during the analysis of
each individual cell, MuSA searches for non-local ensembles containing observations
to build the matrices involved in the Kalman step. The implementation is therefore
similar to that described by the reviewer using halos (domain localization), but there
is also the need to control the solution of cells at different nodes so as not to de-
synchronise the simulations. One advantage of this is that at the analysis of each
cell, only the non-local cells with observations have to be read, instead of files storing
distributed simulations. Moreover, in principle any embarrassingly parallel model
running at the single cell level, including many LSMs or more complex snow models
(or alternatively simpler and therefore more efficient), will be compatible with our
implementation.

COMMENT # 1.7

Evaluation: it is a pity that there are no in situ data available of any sort, but I agree that your
setup does its job for the application at hand. Would be nice to try to assimilate e.g. lidar (e.g.
ASO?) or radar (Sentinel1?) data and have drone data as reference data.

Reply:

We thank these are great suggestions. We agree that in the future it would be instruc-
tive to explore the use of the drone dataset as ground truth in experiments assimi-
lating other retrievals. In this work our primary goal was to explore how to propa-
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gate information in these hyper-resolution simulations, a technique that we hope will
have broad implications. Continued research and exploration of more generalizable
experiments using emerging snow remote sensing data, such as the ICESat-2 laser
altimiter as mentioned on L519, should be encouraged and is a topic that we aim to
pursue further.

Technical comments:

COMMENT # 1.8

The abstract is long, and the first 7 lines can be removed. This is a rather technical paper, and
there is no need for an extensive introduction in the abstract.

Reply:

Following the reviewer’s suggestion, we have removed the first 7 lines of the abstract.

Changes:

Monitoring the snowpack remains challenging in part due to the limited availability
of observations. On the one hand, the deployment of dense ground-based monitoring
networks is hampered by logistical hurdles. On the other hand, satellite-based remote
sensing products provide only partial information about the snowpack, often limited
to snow-covered area or surface temperature. Numerical models are a valuable tool
to help fill the gaps in snowpack monitoring. Model performance is nonetheless
contingent upon the quality of meteorological forcing, which is often highly uncertain
especially in complex terrain. To address these limitations, data

:::::
Data

:
assimilation

techniques that integrate available. . .

COMMENT # 1.9

L. 119: space before reference

Reply:

Corrected.

COMMENT # 1.10

L. 215: should d be dij in line w/ Eq. 7, and should dij on L.223 be redefined as some D

matrix? I think dij refers to a distance for a single pair of grid cells.

Reply:
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Strictly speaking the distance in the function in Eq. (1) is continuous rather than dis-
crete. The only reason it later becomes discrete is because we are running a spatially
discretized model with a finite-dimensional state space. We nonetheless agree that
our notation here was somewhat sloppy and have rectified it, especially on L223, as
outlined below. In particular, the reviewer is correct that dij refers to the (general-
ized) distance between two grid cells and that this is an element of a larger (square
symmetric) distance matrix D.

Changes:

In DA, the
::::::::::::
continuous distance d in the GC function is typically the

:::::::::::
discretized

:::
to

::
a

Euclidean distance between two spatial grid cells defined in two (easting and nor-
thing) or three (with elevation) dimensional geographic space. The concept can be
generalized, however, to be any measure of distance between two grid cells as de-
tailed in Section 2.3. In our experiments, we have selected two different values of the
hyperparameter c after manual tuning. For Experiment I c = 100, while for Experi-
ments II and III c = 5 (Section 2.3). The difference in the magnitude of the c value in
the different experiments is a consequence of the covariance-based normalization of
the distance matrix (dij) of

::::::::::
D = [dij]):::

in Experiments II and III.

COMMENT # 1.11

L. 296: I agree that it is fine to do this; we also call that the use of statistical “signatures”.

Reply:

We would like to thank the reviewer for endorsing the validity of this methodology.
We were not aware that the term statistical signature was used in this context, but we
will now keep a look out for connections with this approach in the future.

COMMENT # 1.12

Algorithm 1 box - line 13 bis: Y(i) is not defined, should it just be y(i)?

Reply:

Thanks for spotting this, we had indeed forgotten to properly define Y(i). This matrix
is introduced for dimensional consistency and it is simply a N

(i)
o ×Ne matrix contain-

ing Ne copies of the local (i.e. d < 2c) observation vector y(i). We have now included
the definition Y(i) = y(i)1T

Ne
involving an outer product on line 13 in the Algorithm 1.
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COMMENT # 1.13

L. 411: typo “horizontal”

Reply:

Corrected.

COMMENT # 1.14

Fig 8: units of snow volume are right for an area of 55 ha, but I would just write them in
average snow depth [m].

Reply:

We are of the opinion that showing the results in units of volume is more instructive
to show how well we are able to constrain the total amount of snow in the catchment
using just a few sparse observations. Since this is admittedly a subjective decision
and some readers (such as the reviewer) may prefer to think of this in terms of av-
erage snow depth, we have now included the relevant scaling factor to convert to
average snow depth (in meters) in the caption of Figure 8.

Changes:

Time evolution of the total volume of snow in the catchment
::
in

::::::
units

::
of

:::::::
cubic

:::::::::::::
hectometers

::::
(106

:::::
m3)

:
from the different simulations (colored lines) along with the volume esti-

mates obtained from the snow depth drone maps (blue dots).
:::::
Note

:::::
that

::::
the

:::::::
snow

::::::::
volume

::::
can

::::
be

::::::::::::
multiplied

:::
by

::
a

::::::
scale

:::::::
factor

:::
of

::::
1.82

:::
to

:::::::::
recover

::::
the

::::::
mean

:::::::
snow

:::::::
depth

:::
for

::::
the

:::::
Izas

:::::::::::
catchment

::::::
with

:::
an

:::::
area

:::
of

:::
55

::::::::::
hectares.
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