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Abstract. We quantify 2019 methane emissions in the contiguous U.S. (CONUS) at 0.25° × 0.3125° resolution by inverse 

analysis of atmospheric methane columns measured by the Tropospheric Monitoring Instrument (TROPOMI). A gridded 

version of the U.S. Environmental Protection Agency (EPA) Greenhouse Gas Emissions Inventory (GHGI) serves as the 

basis for the prior estimate for the inversion. We optimize emissions and quantify observing system information content for 20 

an eight-member inversion ensemble through analytical minimization of a Bayesian cost function. We achieve high 

resolution with a reduced-rank characterization of the observing system that optimally preserves information content. Our 

optimal (posterior) estimate of anthropogenic emissions in CONUS is 30.9 (30.0 - 31.8) Tg a-1, where the values in 

parentheses give the spread of the ensemble. This is a 13% increase from the 2023 GHGI estimate for CONUS in 2019. We 

find livestock emissions of 10.4 (10.0 - 10.7) Tg a-1, oil and gas of 10.4 (10.1 - 10.7) Tg a-1, coal of 1.5 (1.2 - 1.9) Tg a-1, 25 

landfills of 6.9 (6.4 - 7.5) Tg a-1, wastewater of 0.6 (0.5 - 0.7), and other anthropogenic sources of 1.1 (1.0 - 1.2) Tg a-1. The 

largest increase relative to the GHGI occurs for landfills (51%), with smaller increases for oil and gas (12%) and livestock 

(11%). These three sectors are responsible for 89% of posterior anthropogenic emissions in CONUS. The largest decrease 

(28%) is for coal. We exploit the high resolution of our inversion to quantify emissions from 73 individual landfills, where 

we find emissions are on median 77% larger than the values reported to the EPA’s Greenhouse Gas Reporting Program 30 

(GHGRP), a key data source for the GHGI. We attribute this underestimate to overestimated recovery efficiencies at landfill 

gas facilities and to under-accounting of site-specific operational changes and leaks. We also quantify emissions for the 48 

individual states in CONUS, which we compare to the GHGI’s new state-level inventories and to independent state-

produced inventories. Our posterior emissions are on average 34% larger than the 2022 GHGI in the largest 10 methane-

producing states, with the biggest upward adjustments in states with large oil and gas emissions, including Texas, New 35 
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Mexico, Louisiana, and Oklahoma. We also calculate emissions for 95 geographically diverse urban areas in CONUS. 

Emissions for these urban areas total 6.0 (5.4 - 6.7) Tg a-1 and are on average 39 (27 - 52) % larger than a gridded version of 

the 2023 GHGI, which we attribute to underestimated landfill and gas distribution emissions. 

1 Introduction 

All projected pathways that prevent global warming above 1.5°C require methane emissions reductions (IPCC, 2022). The 40 

Global Methane Pledge, launched at a 2021 meeting of the United Nations Framework Convention on Climate Change 

(UNFCCC), aims to achieve a 30% global reduction in methane emissions from 2020 to 2030 (About the Global Methane 

Pledge, 2023). The U.S. government has set goals to decrease methane emissions from landfills by 30% relative to 2015 

levels by 2025 and regulation in development aims to reduce oil and gas methane emissions by 30% from 2020 to 2030 (The 

White House, 2021). The UNFCCC requires member parties to report their anthropogenic methane emissions including 45 

sectoral contributions from oil and gas, coal, livestock, rice, landfills, and wastewater. The bottom-up approaches used to 

generate these emission inventories use information on sectoral activity levels and emission factors, but considerable 

uncertainty can exist in these values. Top-down evaluations of bottom-up inventories use observations of atmospheric 

methane to infer emissions, often through inverse analyses using a chemical transport model. These top-down emission 

estimates are most useful if they achieve high spatial resolution and maximize the information content of the observation-50 

model system. Here we use column methane observations from the Tropospheric Monitoring Instrument (TROPOMI) 

aboard the Sentinel-5 Precursor satellite in a reduced-rank analytical inversion to infer methane emissions and the associated 

information content at 0.25° × 0.3125° (≈25 km × 25 km) resolution over the contiguous U.S. (CONUS) for 2019, allowing 

for detailed analysis of sectoral, state, and urban emissions. 

 55 

Satellite observations of atmospheric methane column concentrations inferred from measurement of backscattered sunlight 

in the shortwave infrared have been used extensively in inverse analyses of methane emissions (Streets et al., 2013; Jacob et 

al., 2022). Previous satellite instruments were limited by large pixel sizes (SCIAMACHY, 2003 - 2012) or sparse 

observations (GOSAT, 2009 - present). TROPOMI provides daily, global observations of atmospheric methane columns at 

5.5 km × 7 km nadir pixel resolution (Hu et al., 2018) with a ~3% success rate limited by cloud cover, optically dark 60 

surfaces, and heterogeneous terrain (Hasekamp et al., 2019). Inversions of TROPOMI data allow for high-resolution 

quantification of methane emissions but require understanding the information content of the observations. 

 

Inverse analyses optimize methane emissions (the state vector) by fitting observations to simulated concentrations from a 

chemical transport model (CTM) that serves as the inversion forward model. The optimization is typically done by 65 

minimizing a Bayesian cost function regularized by a prior emission estimate given by a bottom-up inventory. When a linear 

relationship exists between emissions and concentrations, as in the case of methane, the optimal (posterior) solution and the 
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associated error covariances and information content can be found analytically (Brasseur and Jacob, 2017). However, this 

requires the computationally expensive but embarrassingly parallel construction of the Jacobian matrix that represents the 

relationship between emissions and concentrations in the CTM. This matrix is typically constructed by conducting a CTM 70 

perturbation simulation for each optimized emission element, limiting either the spatial resolution of the optimized emissions 

or the size of the inversion domain. Nesser et al. (2021) demonstrated an alternative method that approximates the Jacobian 

matrix by perturbing emission patterns that are optimally informed by both the prior emissions and the observations. This 

approach optimally exploits the information content of the observations, quantifying emissions at the highest resolution 

possible where the satellite-model observing system provides a constraint and defaulting to the prior estimate elsewhere. 75 

 

Many inverse studies that quantified U.S. methane emissions using surface, aircraft, or satellite observations have found 

large discrepancies with the U.S. Environmental Protection Agency’s (EPA) Greenhouse Gas Emissions Inventory (GHGI), 

which is the bottom-up emission estimate reported by the U.S. to the UNFCCC (EPA, 2022a, 2023). Wecht et al. (2014a) 

found livestock emissions 40% larger than the GHGI for the summer of 2004. Miller et al. (2013) inferred emissions 50% 80 

larger than the GHGI for 2007 and 2008, which they attributed to underestimated oil, gas, and livestock emissions. Turner et 

al. (2015) found similar results for 2009 to 2011. Maasakkers et al. (2021) inferred oil and gas emissions 35% and 22% 

higher than the GHGI, respectively, for 2010 to 2015. Lu et al. (2022) found mean 2010 - 2017 anthropogenic emissions 

42% larger than the GHGI, which they attributed largely to oil and gas emissions. 

 85 

Higher resolution regional studies have targeted specific aspects of U.S. methane emissions, including contributions from 

different sectors, states, and urban areas. Karion et al. (2015) found oil and gas emissions in the Barnett Shale in eastern 

Texas that were consistent with the GHGI when scaled by the region’s relative contribution to national gas production but 

larger than reported by most basin facilities to the EPA’s Greenhouse Gas Reporting Program (GHGRP). A series of studies 

inferred much higher emissions in the Permian Basin than implied by a spatially allocated (gridded) version of the GHGI 90 

(Zhang et al., 2020; Schneising et al., 2020; Liu et al., 2021; Y. Chen et al., 2022; Varon et al., 2022). Z. Chen et al. (2018) 

and Yu et al. (2021) found underestimated livestock emissions in the gridded GHGI in the upper Midwest. Jeong et al. 

(2016) inferred California emissions 20% to 80% larger than a state inventory from the California Air Resources Board 

(CARB). Plant et al. (2019) found methane emissions from six East Coast urban areas in 2012 to be more than two times 

larger than the gridded GHGI. 95 

 

Here we use the reduced-rank method of Nesser et al. (2021) in an analytical inversion of 2019 TROPOMI observations to 

quantify emissions at 0.25° × 0.3125° resolution over North America using national emission inventories reported by the 

U.S., Mexico, and Canada to the UNFCCC as prior estimates. The reduced-rank approach decreases computational cost by 

an order of magnitude compared to conventional methods while maximizing information content from TROPOMI. We focus 100 

our analysis on CONUS, with particular attention to emissions from individual landfills, states, and urban areas. We compare 
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our results to the 2023 GHGI (EPA, 2023) and to new emission estimates for individual states published most recently with 

the 2022 GHGI (EPA, 2022b). Our inversion provides the first observational evaluation for these state inventories. We also 

compare our results to inventories prepared by individual states and cities. 

2 Data and methods 105 

We conduct an ensemble of inversions of 2019 TROPOMI methane observations over the North American domain shown in 

Fig. 1 (9.75°N - 60°N, 130°W - 60°W) using the nested GEOS-Chem CTM at 0.25° × 0.3125° resolution as forward model. 

The  𝑚 = 2919358  TROPOMI observations are fit to simulated GEOS-Chem concentrations to optimize mean methane 

emissions for 2019 at the 0.25° × 0.3125° GEOS-Chem resolution. This corresponds to 𝑛 = 23691 emission grid cells with 

prior methane emissions larger than 0.1 Mg km-2 a-1, accounting for over 99% of North American methane emissions. In a 110 

subset of the ensemble, we optimize boundary conditions for the nested GEOS-Chem simulation for each of the four cardinal 

directions (north, south, east, and west). Methane chemical and soil sinks are not optimized because they are relatively 

uniform and slow compared to the ventilation timescale of the domain.  

2.1 Reduced-rank analytical inversion 

The inversion uses 𝑚 observed concentrations arranged in a vector 𝐲 to optimize 𝑛 gridded emissions arranged in the state 115 

vector 𝐱 by minimizing a Bayesian cost function 𝐽 assuming normal errors and regularized by the prior emission estimate 𝐱! 

(Rodgers, 2000): 

 

𝐽(𝐱) = (𝐱 − 𝐱!)"𝐒!#$(𝐱 − 𝐱!) + 𝛾(𝐲 − 𝐊𝐱)"𝐒𝐎#$(𝐲 − 𝐊𝐱). (1) 

 120 

The prior and observing system error covariance matrices 𝐒! and 𝐒&, respectively, are assumed diagonal in the absence of 

better information. The regularization factor 𝛾 corrects for the absence of covariance in 𝐒& (Chevallier, 2007). We generate 

an eight-member inversion ensemble using a range of prior error variances and 𝛾 values to capture the inversion’s sensitivity 

to uncertainty in these parameters (Sect. 2.7). The reduced-rank Jacobian matrix 𝐊 = ∂𝐲 ∂𝐱⁄  represents the sensitivity of 

concentrations to emissions in the CTM. We construct a rank-𝑘 Jacobian matrix for the 0.25° × 0.3125° GEOS-Chem grid 125 

by perturbing in the CTM the 𝑘 emission patterns that best capture the prior emissions and the information content of the 

TROPOMI observations (Sect. 2.6).  

 

Analytical minimization of the cost function following Rodgers (2000) yields the optimal (posterior) state vector estimate 𝐱3, 

error covariance matrix 𝐒4, and information content given by the averaging kernel matrix 𝐀 = 𝜕𝐱3 𝜕𝐱⁄ = 𝐈 − 𝐒4𝐒!#$, which 130 

describes the sensitivity of the posterior estimate to the true state vector. However, this solution requires inverting the cost 

function Hessian, which produces numerical instabilities due to the rank reduction of the Jacobian matrix. Here we use a 
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reduced-rank approximation of the posterior solution following Bousserez and Henze (2018) to solve the inversion on an 

orthonormal basis that optimally spans the information content of the satellite–forward model observing system. The basis is 

given by the eigendecomposition of the prior-preconditioned Hessian of the cost function, 135 

 

𝐇9' = 𝐒!
$ (⁄ 𝐊"𝐒&#$𝐊𝐒!

$ (⁄ = 𝐕𝚲𝐕", (2) 

 

where the columns of 𝐕 are the eigenvectors and 𝚲 is a diagonal matrix with entries equal to the eigenvalues. The calculation 

of 𝐇9'  requires substantial memory for large 𝑚 and 𝑛, for which we use Dask, a Python parallelization package (Dask 140 

Development Team, 2016). The reduced-rank posterior approximation is then generated using the largest 𝑘 eigenvalues 𝚲* 

and the associated eigenvectors 𝐕* (Bousserez and Henze, 2018): 

 

𝐀𝐊 = 𝛾𝐒!𝐕*𝚲*(𝐈* + 𝛾𝚲*)#$𝐕*"𝐒!, (3)
𝐒4𝐊 = (𝐈, − 𝐀𝐊)𝐒!, and (4)
𝐱3-. = 𝐱! + 𝛾𝐒4𝐊𝐊"𝐒&#$C𝐲 − 𝐅(𝐱!)E. (5)

 

 145 

Here, 𝐱3-. approximates the full-rank (FR) posterior 𝐱3 by minimizing the difference between the two, and 𝐒4𝐊 and 𝐀𝐊 are the 

optimal posterior error covariance and averaging kernel matrices, respectively, for an inversion solved with a reduced-rank 

forward model. We set 𝑘 to match the rank of the reduced-rank Jacobian matrix, which is chosen to maximize information 

content within the available computational resources (Sect. 2.6). The diagonal elements of 𝐀*  are often referred to as 

averaging kernel sensitivities and are a measure of the dependence of the optimized emissions on the prior estimate. Their 150 

sum (trace of 𝐀* ) gives the degrees of freedom for signal (DOFS) that represent the number of pieces of information 

independently quantified by the observing system (Rodgers, 2000). The reduced-rank inversion and Jacobian matrix do not 

attempt to optimize emissions in areas with low information content, so we default to the prior estimate for grid cells with 

averaging kernel sensitivities less than 0.05 (Nesser et al., 2021). 

2.2 Prior estimates and errors 155 

Figure 1 shows the prior emission estimates for different sectors. Anthropogenic emissions are given by the spatially 

disaggregated (gridded) versions of the 2016 EPA GHGI for the U.S. for 2012 (Maasakkers et al., 2016), the Instituto 

Nacional de Ecología y Cambio Climático (INECC) inventory for Mexico for 2015 (Scarpelli et al., 2020), and the 

Environment and Climate Change Canada (ECCC) inventory for Canada for 2018 (Scarpelli et al., 2021). We update the 

distribution and magnitude of GHGI oil and gas emissions to the 2020 GHGI for 2018 following Shen et al. (2022) and use 160 

the Environmental Defense Fund’s inventory for the Permian basin for 2019 (Zhang et al., 2020), where GHGI estimates are 

known to be too low (Zhang et al., 2020; Schneising et al., 2020; Liu et al., 2021; Y. Chen et al., 2022; Varon et al., 2022). 
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We treat oil and gas as a single sector in our analysis due to significant source co-location and uncertainty in the partitioning 

of oil and gas wells. The magnitude of GHGI livestock, landfill, and wastewater emissions changed by less than 10% from 

2012 to 2019, while coal emissions decreased by 26%. The distribution of these sources is unlikely to have changed 165 

significantly. Anthropogenic emissions for Central America and the Caribbean islands are from the EDGAR v4.3.2 global 

emission inventory for 2012 (Janssens-Maenhout et al., 2019). Anthropogenic emissions are assumed aseasonal except for 

manure management and rice cultivation, for which we apply monthly scaling factors as described by Maasakkers et al. 

(2016) and Zhang et al. (2018), respectively. 

 170 

Prior emissions for wetlands are given by the high-performance subset of the WetCHARTs ensemble version 1.3.1, which 

includes the nine ensemble members that best match global GOSAT inversion results (Ma et al., 2021). Lu et al. (2022) 

found in an inversion of GOSAT data over North America that this high performance subset overestimated wetland methane 

emissions, particularly at high latitudes. We remove from the ensemble the two members (WetCHARTs models 1923 and 

2913; Bloom et al., 2017) that are most responsible for this overestimate. Other natural methane emission sources are minor 175 

and include open fires, termites, and geological seeps, for which we follow the emissions described in Lu et al. (2022). 

Methane losses from chemical reaction, soil uptake, and stratospheric oxidation are prescribed as in Maasakkers et al. (2019) 

and are not optimized in the inversion. 

 
Figure 1: Bottom-up methane emission inventories used as prior estimates for the inversion. Panels show annual mean methane emissions 180 
for different sectors. Anthropogenic sectors are given by the gridded versions of the national inventories of Canada (ECCC), the U.S. 
(EPA GHGI), and Mexico (INECC) reported to the UNFCCC (Maasakkers et al., 2016; Scarpelli et al., 2020, 2022). U.S. oil and gas 
emissions are updated as described in Sect. 2.2. Wetland emissions are given by the high-performance subset of the WetCHARTs version 
1.3.1 wetlands inventory ensemble (Ma et al., 2021), excluding two ensemble members as described in Sect. 2.2. Emissions are shown on 
the 0.25° × 0.3125° GEOS-Chem grid used for the inversion. 185 

Total Oil and gas Coal Livestock

Landfills Wastewater Wetlands Other

0 1 2 3 4 5
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We assume uniform relative error standard deviations for the prior emissions of between 50% and 100% for the different 

members of our inversion ensemble, with no error covariance between grid cells. Previous inversions that optimized methane 

emissions over North America assumed prior error standard deviations up to 50% . We inflate errors up to 100% in our 

ensemble to account for increased errors at high resolution (Maasakkers et al., 2016). Errors for each ensemble member are 

chosen as described in Sect. 2.7. 190 

2.3 Forward model 

We use the nested version of the GEOS-Chem CTM 12.7.1 (DOI: 10.5281/zenodo.3676008) at 0.25° × 0.3125° resolution 

over North America as the forward model for the inversion. Earlier versions of the methane simulation were described by 

Wecht et al. (2014a) and Turner et al. (2015). The model is driven by GEOS-FP meteorological fields from the NASA 

Global Modeling and Assimilation Office (Lucchesi, 2017). Methane sinks from OH, Cl, soil uptake, and stratospheric 195 

oxidation are as described in Maasakkers et al. (2019). Initial conditions for January 1, 2019 and 3-hourly boundary 

conditions for the year are specified by methane concentration fields from a global GEOS-Chem simulation at 2° × 2.5° 

resolution using optimized emissions from a global inversion of TROPOMI observations (Qu et al., 2021). 

2.4 TROPOMI observations 

TROPOMI has provided daily, global observations of dry column methane mixing ratios at 7 km × 7 km nadir pixel 200 

resolution since May 2018 and at 5.5 km × 7 km nadir pixel resolution since August 2019 (Lorente et al., 2021). TROPOMI 

measures backscattered solar radiation in the 2.3 μm methane absorption band from a sun-synchronous orbit with a local 

overpass time of 13:30 (Veefkind et al., 2012). Methane concentrations are inferred from a full-physics retrieval with a ~3% 

success rate limited by cloud cover, variable topography, low or heterogeneous albedo, and high aerosol loading (Hasekamp 

et al., 2019). We use retrieval v14 as described by Lorente et al. (2021), which has a -3.4 ± 5.6 ppb bias relative to the Total 205 

Carbon Column Observing Network (TCCON). We use only high-quality retrievals as indicated by the quality assessment 

flag. 

 

Previous analyses of TROPOMI data identified surface artifacts (Barré et al., 2021) and spatially variable biases relative to 

the more accurate but sparser GOSAT data (Qu et al., 2021; Z. Chen et al., 2022). We filter the data to remove snow- and 210 

ice-covered scenes using blended albedo, an empirical parameter developed by Wunch et al. (2011) and suggested for the 

TROPOMI data by Lorente et al. (2021). We remove scenes with blended albedo greater than 0.75 in non-summer seasons. 

We also remove scenes with albedo in the shortwave infrared less than 0.05 following de Gouw et al. (2020), which account 

for most of the remaining unphysical TROPOMI observations (methane mixing ratio less than 1700 ppb), and scenes north 

of 50°N in winter.  215 
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Figure 2: TROPOMI methane observations in 2019. The left panel shows the annual average column dry methane mixing ratios for 2019 
averaged on the 0.25° × 0.3125° GEOS-Chem grid. The right panel shows the number of observations for the year on the same grid. The 
observations have been filtered as described in Sect. 2.4. 220 

Figure 2 shows the final 𝑚 = 2919358 observations used for the inversion on the GEOS-Chem 0.25° × 0.3125° grid. The 

filters preserve 69% of the high-quality retrievals of TROPOMI v14 and increase the GOSAT - TROPOMI correlation in all 

seasons, with the largest increases in winter and spring (Fig. S1). Seasonal regional biases decrease by between 7% and 21% 

and are always within the one standard deviation range of both the TROPOMI and GOSAT data. Comparison to a GEOS-

Chem simulation driven by the prior emissions as shown in Fig. S2 shows a mean aseasonal (GEOS-Chem - TROPOMI) 225 

bias of ξ = 9.1 ppb over North America which we attribute to errors in the boundary conditions. This bias can also be fit as a 

linear function of degrees latitude θ as ξ	 = 	−5.40	 + 	0.39θ. We correct the bias in our inversion ensemble members by 

removing either the continental mean bias or the latitude-dependent correction from the GEOS-Chem concentrations. 

2.5 Observing system errors 

The observing system error covariance matrix 𝐒& includes contributions from forward model, instrument, and representation 230 

errors (Brasseur and Jacob, 2017).We calculate the total observing system error variances using the residual error method 

(Heald et al., 2004). This method assumes that the mean difference between the TROPOMI observations and the prior 

GEOS-Chem simulation, calculated here on a seasonal 2° × 2° grid, is caused by errors in emissions that will be corrected by 

the inversion. The standard deviation of the residual errors after subtracting the mean gridded errors then defines the 

standard deviation of the observing system errors. We set a minimum error standard deviation of 10 ppb, which applies to 235 

32% of observations. We find a mean observing system error standard deviation of 11.5 ppb, with the largest errors in winter 

2019 TROPOMI methane observations Observational density

1820 1830 1840 1850 1860 1870 1880
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and at high latitudes. The resulting error variances are the diagonal elements of 𝐒&. Off-diagonal terms are assumed zero in 

the absence of better information, which we account for with the regularization factor 𝛾 (Chevallier, 2007). We describe the 

choice of 𝛾 in Sect. 2.7. 

2.6 Jacobian matrix 240 

Constructing the Jacobian matrix 𝐊 for our inversion would normally require conducting a 1-year perturbation simulation for 

each of the 𝑛  = 23691 grid cells optimized. This is computationally intractable. We construct the Jacobian matrix at 

substantially decreased computational cost using the reduced-rank method introduced by Nesser et al. (2021), which takes 

advantage of the heterogeneous information content of the TROPOMI observations. This method updates an initial, low-cost 

estimate of the Jacobian matrix by perturbing the patterns that best explain the information content of the observing system, 245 

constructing a reduced-rank Jacobian matrix that optimally preserves information content. 

 

We construct the initial, low-cost estimate of the Jacobian matrix 𝐊(0) using the mass-balance approach described by Nesser 

et al. (2021). We assume that a perturbation of methane emissions Δ𝑥2  in grid cell j produces column mixing ratio 

enhancements Δ𝑦3 over grid cell i according to 250 

 

Δ𝑦3 = 𝛼32
𝑀456

𝑀78!

𝐿𝑔
𝑈𝑝 	Δ𝑥2 	

(6) 

 

where 𝛼32 ∈ [0, 1] is a dimensionless coefficient providing a crude representation of turbulent diffusion, 𝑀456 and 𝑀78! are 

the molecular weights of dry air and methane, respectively, 𝐿 is a ventilation length scale equal to the square root of the grid 255 

cell area, 𝑔 is gravitational acceleration, 𝑈 is the wind speed taken here as 5 km h-1, and 𝑝 is the surface pressure taken here 

as 1000 hPa. The use of 𝛼32 produces off-diagonal structure in 𝐊(0), which we found in Nesser et al. (2021) to be necessary 

for an effective first estimate. We apply a simple isotropic turbulent diffusion scheme in which the influence of emissions 

spreads linearly to concentric rings of grid cells. This is represented as 𝛼32 = (8 − ‖𝑖 − 𝑗‖)/36𝑐 , where ‖𝑖 − 𝑗‖ =

{0, 1, … , 7} gives the distance in latitude or longitude grid cell index between 𝑖 and 𝑗, 36 is the sum of ‖𝑖 − 𝑗 + 1‖ values, 260 

and 𝑐 gives the number of grid cells in the corresponding concentric ring. For ‖𝑖 − 𝑗‖ ≥ 8, 𝛼32 = 0. 

 

We use 𝐊(0) together with the error covariance matrices 𝐒! and 𝐒& to calculate the initial patterns of information content that 

are perturbed in the forward model. We calculate the prior pre-conditioned Hessian (Eq. (2)) using 𝐊(0) and perform its 

eigendecomposition. The resulting matrix of eigenvectors 𝐕(0) is related to the patterns of information content via 𝐒!
$ (⁄ 𝐕(0), 265 

which is equivalent to the eigenvector matrix of the averaging kernel matrix calculated with  𝐊(0) (Bousserez and Henze, 

2018). We perturb the 𝑘$ = 434 eigenvectors that capture 50% of the DOFS generated with 𝐊(0). We then apply an optimal 
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operator that restores the original state dimension and minimizes information content loss to yield an updated reduced-rank 

Jacobian matrix estimate 𝐊($). We recompute the eigenvectors, perturb the 𝑘( = 1952 eigenvectors that explain 80% of the 

initial DOFS, and construct the final reduced-rank Jacobian matrix 𝐊(() . This iterative update scheme optimizes the 270 

information content of the posterior solution while reducing the computational cost by an order of magnitude (Nesser et al., 

2021).  

2.7 Inversion ensemble 

The posterior error covariance matrix that results from Bayesian optimization (Eq. (4)) does not account for errors in 

inversion parameters including the prior and observing system error covariance matrices (Houweling et al., 2014). The 275 

analytical solution readily allows for the creation of an ensemble of inversions that reflects the sensitivity of the results to the 

chosen setup including parameters. Table 1 summarizes our quality-controlled ensemble of inversions. We conduct 

inversions that do or do not optimize the boundary conditions and apply either a latitudinal or mean bias correction to the 

prior (model - observation) difference as driven by boundary condition biases. For each inversion, we choose the relative 

prior error (50%, 75%, or 100%) and regularization factor (between 0.175 and 0.5) so that the prior term of the cost function 280 

evaluated at the posterior solution 𝐽!(𝐱3) = (𝐱3 − 𝐱!)"𝐒!#$(𝐱3 − 𝐱!) averages to 1 across all grid cells optimized by the  

 
Table 1: The eight members of the inversion ensemble. 
Optimized 
boundary 
conditions1 

Bias 
correction2 

Prior error 
standard 
deviation3 

Regularization 
factor3 

Yes Latitudinal 
50% 0.2 

75% 0.45 

Yes Mean 

50% 0.175 

75% 0.3 

100% 0.5 

No Latitudinal 
50% 0.175 

75% 0.35 

No Mean 75% 0.175 
1 We conduct inversions that either do or do not optimize the boundary conditions. In inversions with optimized boundary conditions, we 
include in the inversion state vector four boundary condition elements corresponding to the northern, eastern, southern, and western 285 
borders of the North American domain. 
2 We also conduct inversions that apply either a latitudinal or mean bias correction to the prior (model – observation) difference. The 
latitudinal correction fits the bias with a first order polynomial. In inversions with a mean bias correction, we remove the mean prior 
(model – observation) difference as driven by boundary condition biases. 
3 We balance the prior and observing system errors to avoid overfitting the emissions to the observations. The regularization factor 𝜸 is 290 
applied to the inverse observing system error covariance matrix 𝐒𝐎"𝟏 so that values less than one increase the observing system errors. We 
choose the value of the regularization factor and the prior error standard deviation for a given inversion so that the prior term of the 
posterior cost function is approximately one as required by chi-squared statistics (Sect. 2.7). 
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reduced-rank inversion as expected from the chi-square distribution, which 𝐽!(𝐱) definitionally follows (Lu et al., 2021). 

This yields an ensemble of eight quality-controlled inversions with indistinguishable validity. All inversions have few grid 295 

cells with negative emissions, most of which are on the same order of magnitude as the soil sink. We report the mean 

posterior emissions for the ensemble, with uncertainty ranges given by the ensemble range.  

2.7 Source attribution 

The high resolution of the inversion facilitates the attribution of the posterior emission estimates to individual source sectors 

or regions, including states and urban areas. We aggregate the native resolution emission and error estimates to the 300 

corresponding 𝑝 sectors, states, or urban areas using a summation matrix 𝐖 ∈ ℝ'×, . The rows of 𝐖 are given by the 

relative contribution of each grid cell to each source category. For sectoral attribution, the rows are given by the relative 

contribution of each grid cell to a given sector in the prior emission estimate. For state attribution, the rows are given by the 

fraction of each grid cell within a given state. For urban area attribution, the rows have binary values depending on whether 

the grid cell overlaps with a given urban area. If the grid cell contains multiple urban areas, the fractional contribution of the 305 

grid cell to a given urban area is used instead. The reduced-dimension posterior estimate 𝐱3-.,6;<, posterior covariance matrix 

𝐒4𝐊,6;<, and averaging kernel matrix 𝐀𝐊,6;< are then given by 

 

𝐱3-.,6;< = 𝐖𝐱3-., (7)
𝐒4𝐊,6;< = 𝐖𝐒4𝐊𝐖", and (8)
𝐀𝐊,6;< = 𝐖𝐀𝐊𝐖∗, (9)

 

 310 

where 𝐖∗ = 𝐖"(𝐖𝐖")#$ is the Moore-Penrose pseudo inverse (Calisesi et al., 2005). In the case of disaggregating our 

emission estimates to individual landfills, we scale the posterior estimate in the corresponding grid cell by the fraction of 

emissions attributed to landfills in the prior estimate. These approaches to source aggregation and disaggregation assume that 

the prior fractional sectoral contributions are correct in each grid cell and that emission sources are evenly distributed in grid 

cells that cross state lines. The high resolution of our emission estimates decreases the influence of these assumptions 315 

relative to coarser resolution estimates. Newly developed methods use prior and posterior error covariances to improve upon 

these assumptions (Cusworth et al., 2021).  

3 Results and discussion 

Figure 3 shows the ensemble mean posterior scale factors relative to the prior emission estimate as described in Sect. 2.2 

(left) and the corresponding averaging kernel sensitivities (right). Grid cells unoptimized by the inversion (mean averaging 320 

kernel sensitivity less than 0.05) are left blank. We find 772 (421 - 1279) DOFS for the domain, where the values in 

parentheses are the ensemble minimum and maximum, respectively. This represents a large increase in information content  
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Figure 3: Optimization of methane emissions for 2019 by inversion of TROPOMI observations. The left panel shows the scale factors 
relative to the prior estimate for the inversion given by gridded versions of the national anthropogenic emissions inventories for the U.S. 325 
(EPA GHGI), Mexico (INECC), and Canada (ECCC), with U.S. oil and gas emissions updated as described in Sect. 2.2, and by 
WetCHARTs wetland emissions (top left panel of Fig. 1). The right panel shows the observing system information content as measured by 
the averaging kernel sensitivities (the diagonal elements of the averaging kernel matrix). Values of 1 indicate that TROPOMI quantifies 
emissions independently of the prior estimate, while values of 0 indicate that emissions are not optimized by the inversion. The sum of the 
averaging kernel sensitivities gives the degrees of freedom for signal (DOFS), shown inset, which defines the number of independent 330 
pieces of information quantified by the observing system. Grid cells with averaging kernel sensitivities less than 0.05 are left blank. 

relative to past inversions over North America: Lu et al. (2022) found 114 DOFS in a joint inversion of data from GOSAT 

and the National Oceanic and Atmospheric Administration’s (NOAA) GLOBALVIEWplus ObsPack in situ data, while Shen 

et al. (2022) found 201 DOFS in an inversion of TROPOMI observations over 14 oil and gas basins. This increase reflects 

both the improved coverage from TROPOMI and the benefit of achieving 0.25° × 0.3125° resolution on the continental 335 

scale. Of these DOFS, 641 (350 – 1058) are found for CONUS, 86 (53 - 134) for Mexico, and 37 (15 - 69) for Canada. The 

high information content for CONUS reflects both the large emissions (Fig. 1) and the high density of TROPOMI 

observations (Fig. 2). As a result, we focus our discussion on CONUS. We isolate anthropogenic emissions by removing 

contributions from wetlands and other natural sources following Sect. 2.8. We compare our posterior emissions to the 2023 

EPA GHGI inventory for 2019 (henceforth “GHGI23”; EPA, 2023) and to the most recent emission estimates for individual 340 

states as published with the 2022 EPA GHGI inventory for 2019 (henceforth “GHGI22”; EPA, 2022b). We remove 

emissions from Hawaii and Alaska from the GHGI total using the GHGI22 state estimates scaled to match the GHGI23 

sectoral totals. 
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We evaluate the inversion results by comparing simulated observations from GEOS-Chem driven by either the prior or the 345 

mean posterior emissions to TROPOMI observations and to independent in situ surface and tower observations from 

NOAA’s GLOBALVIEWplus CH4 ObsPack v3.0 database (Cooperative Global Atmospheric Data Integration Project, 

2019). We follow Lu et al. (2021) and use only daytime ObsPack observations with outliers excluded. We use monthly 

average ObsPack observations over CONUS to increase consistency with the annual temporal resolution of our inversion and 

its distribution of information content. Compared to TROPOMI, both the prior and posterior GEOS-Chem simulations 350 

produce similar coefficients of determination (R2) and root mean squared errors (RMSEs). Compared to ObsPack, the 

posterior simulation improves upon the prior simulation, increasing R2 from 0.55 to 0.65 and decreasing the RMSE from 80 

ppb to 73 ppb, similar to previous inversions of satellite data (Lu et al., 2021). The broad agreement of both simulations with 

observations reflects the high quality of the prior emission estimate in North America (Maasakkers et al., 2019). We also 

compare the TROPOMI v14 data used here to the most recent data (v19), which has improved bias corrections and 355 

performance compared to GOSAT in North America (Balasus et al., 2023). We find no correlation (R2 = 0.03) between our 

posterior scaling factors and the mean (v14 - v19) difference, suggesting that biases in the v14 data do not influence our 

posterior emissions. 

3.1 CONUS sectoral emissions 

We find posterior anthropogenic methane emissions of 30.9 (30.0 - 31.8) Tg a-1 for CONUS in 2019, a 13% increase from 360 

the GHGI23 estimate of 27.3 (25.1 - 30.6) Tg a-1, where the values in parentheses represent the GHGI23 95% confidence 

interval (EPA, 2023). Lu et al. (2022) found larger anthropogenic emissions of 36.2 (32.1 - 37.6) Tg a-1 over the same 

domain for 2017 by optimizing emissions and trends in a joint inversion of GOSAT and in situ observations for 2010 to 

2017. Worden et al. (2022) found lower anthropogenic emissions of 27.6 (22.6 – 23.9) Tg a-1 over the U.S. for 2019 by 

regridding global inversions of GOSAT data that optimized emissions at 2° × 2.5° resolution using uncertainties for the prior 365 

and posterior estimates. Deng et al. (2022) reviewed an ensemble of global inversions and found median U.S. posterior 

anthropogenic emissions for 2019 of 26.5 (20.8 - 38.7) Tg a-1 with GOSAT data and 31.9 (23.9 - 43.1) Tg a-1 with in situ 

data. 

 

We allocate our national total to individual emission sectors using the attribution method described in Sect. 2.8. From the 370 

off-diagonal structure of 𝐒4𝐊,6;< (Eq. (8)), we find very low posterior error correlation between the sectors (mean error 

correlation coefficients less than 0.2), indicating that we can accurately separate sectoral emissions. Figure 4 and Table 2 

summarize the results compared to the GHGI23. Livestock, oil and gas, and landfills account for 89% of posterior 

anthropogenic emissions and all increase relative to the GHGI23. We find a significant decrease from the GHGI23 only for 

coal. For these four sectors, we find sectoral averaging kernel sensitivities between 0.47 and 0.91, larger than the values 375 

found by Lu et al. (2022) from GOSAT and in situ data. We find a small but significant increase in wetland emissions that is 

consistent with the large range found by Lu et al. (2022). However, the reduced-rank observing system only optimizes about  
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Figure 4: Sectoral methane emissions in the contiguous United States (CONUS) for 2019. The 2023 EPA GHGI emissions for 2019 (top 
bars) and posterior estimates given by inversion of TROPOMI data for 2019 (bottom bars) are shown for different sectors. For wetland 380 
emissions we show the WetCHARTs estimate (top bar). The shading corresponds to emissions in grid cells that are optimized by the 
inversion (grid cells with averaging kernel sensitivities greater than 0.05), while the white represents emissions not optimized by the 
inversion so that the posterior defaults to the prior estimate. Error bars on the GHGI emissions represent the GHGI 95% confidence 
intervals. Error bars on the posterior emissions are given by the spread of the eight-member inversion ensemble. Also shown are 
independent sectoral emission estimates from previous inversions.  385 

half of wetland emissions, with most of the inferred increase limited to the south eastern coast, including South Carolina, 

Georgia, and eastern Florida. 

 

Landfill emissions show the largest relative and absolute increase from the GHGI23 for 2019. We find posterior emissions of 

6.9 (6.4 - 7.5) Tg a-1, a 51% increase relative to the GHGI23 estimate of 4.6 (3.7 - 5.8) Tg a-1. Lu et al. (2022) found similar 390 

posterior landfill emissions of 7.5 (5.9 - 7.7) Tg a-1 for 2017. We attribute the GHGI23 underestimate to two components of 

the GHGRP landfill inventory methodologies that produce key inputs for the GHGI, which we discuss in detail in Sect. 3.2. 

First, for landfills with gas recovery systems, the GHGRP assumes too-high collection efficiencies. Second, the GHGRP 

does not account for site-specific operations that may produce anomalous emissions. 

  395 
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Table 2: 2019 methane emissions for the contiguous United States (CONUS). 

  Inventory 
emissions1 

Posterior 
emissions2 Sensitivity3 

Total sources (Tg a-1) 35.1 39.3 (38.2 - 40.3)   

Anthropogenic sources 27.3 (25.1 - 30.6) 30.9 (30.0 - 31.8)   

Livestock 9.4 (8.5 - 10.7) 10.4 (10.0 - 10.7) 0.66 (0.55 - 0.76) 

Oil and natural gas 9.3 (8.1 - 10.6) 10.4 (10.1 - 10.7) 0.91 (0.88 - 0.95) 

Coal 2.1 (1.9 - 2.5) 1.5 (1.2 - 1.9) 0.60 (0.45 - 0.80) 

Landfills 4.6 (3.7 - 5.8) 6.9 (6.4 - 7.5) 0.47 (0.34 - 0.64) 

Wastewater 0.8 (0.5 - 1.0) 0.6 (0.5 - 0.7) 0.33 (0.16 - 0.60) 

Other anthropogenic 1.2 (0.7 - 1.8) 1.1 (1.0 - 1.2) 0.59 (0.44 - 0.76) 

Natural sources 7.8 8.4 (8.1 - 8.6)   

Wetlands 6.6 7.2 (7.0 - 7.4) 0.35 (0.16 - 0.55) 

Other biogenic 1.1 1.2 (1.2 - 1.2) 0.25 (0.19 - 0.32) 
1Inventory estimates of sectoral methane emissions. Anthropogenic emissions are given by the EPA 2023 GHGI for 2019, with error 
ranges inferred from the sum in quadrature of bottom-up subsector errors given as 95% confidence intervals. Wetland emissions are from a 
subset of the high performance WetCHARTs ensemble version 1.3.1; see Sect. 2.2 for details. 
2Optimized emissions from the inversion of TROPOMI data, with the range from the eight members of the inversion ensemble shown in 400 
parentheses. 
3The sensitivity of the posterior emissions to the observing system as given by the diagonal elements of the sectoral averaging kernel 
matrix calculated as described in Sect. 2.8. The values in parentheses give the range of the inversion ensemble. Values range from 0 (no 
sensitivity) to 1 (full sensitivity). 
 405 

Coal mining emissions of 1.5 (1.2 - 1.9) Tg a-1 exhibit the largest decrease in sectoral emissions relative to the GHGI23 

estimate of 2.1 (1.9 - 2.5) Tg a-1. Lu et al. (2022) found much larger posterior emissions of 2.9 (2.3 - 3.4) Tg a-1 for 2017, and 

Worden et al. (2022) found similar values of 2.8 ± 0.4 Tg a-1 for 2019. Compared to these studies, we achieve a stronger  

constraint on coal emissions as measured by averaging kernel sensitivities, reflecting the increased coverage from 

TROPOMI compared to GOSAT. Our lower estimate better reflects the 30% decrease in CONUS coal production from 2012 410 

to 2019 (EIA, 2021), which is also shown in the 30% decrease in GHGI23 coal emissions over the same period (EPA, 2023). 

As expected, emissions correlate with underground coal mining: Appalachia generated 56% of U.S. coal from underground 

mines in 2019 and 64% of posterior emissions from coal, while the Illinois Basin yielded 30% of U.S. underground coal and 

20% of posterior emissions (EIA, 2021). 

 415 

Livestock emissions show broad agreement with the GHGI23, with posterior emissions of 10.4 (10.0 - 10.7) Tg a-1 

representing an 11% increase from the GHGI23 estimate of 9.4 (8.5 - 10.7) Tg a-1. Lu et al. (2022) found similar mean 

posterior livestock emissions of 10.4 (8.8 - 11.6) Tg a-1 over CONUS for 2017, and Worden et al. (2022) found similar 

values of 9.9 ± 0.4 Tg a-1 for 2019. Yu et al. (2021) conducted a seasonal inversion of aircraft observations over the North 

Central U.S. and South Central Canada for 2017 to 2018 and found mean posterior livestock emissions of 5.5 (5.1 - 6.2) Tg 420 
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a-1, which agrees with our livestock estimate of 5.4 (5.2 - 5.6) Tg a-1 over the same region. Despite agreement with total 

GHGI23 livestock estimates, we find a significant increase in manure management emissions from 2.3 (1.9 - 2.8) Tg a-1 to 

3.1 (2.9 - 3.2) Tg a-1, which would almost entirely explain the observed discrepancy between the mean GHGI23 and 

posterior emissions. The increase in manure management emissions is concentrated over the California Central Valley, 

northern Iowa, and Sampson and Duplin Counties in North Carolina. California is home to more dairy cattle than any other 425 

state, Iowa is the largest pork-producing state, and Sampson and Duplin Counties are the two largest pork-producing 

counties in CONUS (USDA, 2019). We find no correlation between our inferred increase and dairy cattle or hog 

populations, which could reflect variability in manure management practices. 

 

Posterior oil and gas emissions are 10.4 (10.1 - 10.7) Tg a-1, a 12% increase from the GHGI23 estimate of 9.3 (8.1 - 10.6) Tg 430 

a-1. Lu et al. (2022) found much larger posterior emissions of 4.8 (3.1 - 4.9) Tg a-1 for oil and 8.9 (8.0 - 9.8) Tg a-1 for gas in 

2017, and Lu et al. (2023) used the same inversion framework to find even larger total oil and gas emissions of 15.6 (12.8 - 

17.1) Tg a-1 for 2019 driven by increased emissions in the Anadarko, Marcellus, Barnett, and Haynesville Shales. Although 

we find good agreement on average with the basin-level emissions from Lu et al. (2023), we find much smaller emissions in 

the Anadarko and Marcellus Shales, as shown in Fig. S3. This difference likely results in part from the use of lognormal 435 

prior errors in Lu et al. (2023). Compared to Lu et al. (2022, 2023), Worden et al. (2022) found smaller 2019 emissions in 

the United States for oil of 2.4 ± 0.3 Tg a-1 and for gas of 7.9 ± 0.9 Tg a-1, and Shen et al. (2022) found oil and gas emissions 

of 12.6 ± 2.1 Tg a-1 from an inversion of TROPOMI data over 14 North American basins extrapolated to the national scale 

for May 2018 to February 2020. Both these emission estimates are within the uncertainty range of our posterior estimate. We 

also find consistent basin-level results with Shen et al. (2022) as shown in Fig. S3. Emissions for all posterior basins but one 440 

are within 0.25 Tg a-1 of Shen et al. (2022) and all but six are within 0.10 Tg a-1. In particular, we find agreement within 

error bars in the Haynesville, Barnett, and Anadarko Shales. Of the basins where posterior emissions exceed the 0.5 Tg a-1 

threshold defined by Shen et al. (2022) for successful quantification of basin emissions by TROPOMI, we find significant 

differences only in the Permian basin, where we find smaller emissions of 2.8 (2.8 - 2.9) Tg a-1. Our Permian estimate is 

consistent within error bars with Lu et al. (2023) and with other recent studies when basin extent differences are accounted 445 

for (Zhang et al., 2020; Schneising et al., 2020; Liu et al., 2021; Varon et al., 2022; McNorton et al., 2022). 

3.2 Landfill emissions 

We consider in more detail the 51% increase in our posterior landfill emissions relative to the GHGI23. GHGI landfill 

estimates scale up the total emissions reported to the GHGRP to account for non-reporting landfills (EPA, 2023). The 

GHGRP reporting requirements applied to 1297 landfills emitting more than 1 Gg a-1 across the U.S. in 2019 (EPA GHGRP, 450 

2019), over 500 of which had gas recovery systems (EPA LMOP, 2019). The GHGRP requires that landfills use two 

methods to report emissions. Facilities without gas collection use two approaches that rely on landfill attributes and a first-

order decay model based on landfilled mass so that emissions peak the year after waste disposal. However, a survey of 128  
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Figure 5: Methane emissions for 2019 from 73 individual landfills that report methane emissions of 2.5 Gg a-1 or more to the EPA’s 455 
Greenhouse Gas Reporting Program (GHGRP) for 2019 and for which our TROPOMI inversion provides site-specific information. The 
left panel shows the location of the landfills, with insets for parts of California (left) and Illinois and Indiana (right). Posterior emissions 
for each landfill are shown by the size of the marker. The colors show differences (Δ) between the posterior and GHGRP emissions for 
2019, with red colors indicating posterior emissions larger than the reported value. Facilities that collect landfill gas are shown as circles, 
and others are shown as diamonds. The numbers (1 to 10) identify the top 10 methane-producing landfills listed in Table 3, and the letters 460 
(a to i) identify the nine validation sites listed in the right panel and outlined in gold.  Validation sites are landfills with independent 
estimates from aircraft campaigns as listed in the legend. Cambaliza et al. (2015) based their estimates on data from 2011, Duren et al. 
(2019) on data from 2016 to 2018, Smith (2021) on data from 2019 to 2021, and Catena et al. (2022) on data from November 2021. The 
right panel shows GHGRP (top bars) and posterior (bottom bars) emissions for the validation sites, along with values reported from the 
aircraft campaigns. Sites are (a) South Side Landfill, (b) West Miramar Sanitary Landfill, (c) Seneca Meadows Landfill, (d) Kiefer 465 
Landfill, (e) Puente Hills Landfill, (f) Frank R. Bowerman Landfill, (g) Altamont Landfill, (h) Newby Island Landfill, and (i) Keller 
Canyon Landfill. 

California landfills with gas recovery systems found that methane was produced at relatively constant rates over time 

(Spokas et al., 2015). Landfills with gas collection use one of these methods with recovered methane removed from the 

modelled emissions in addition to a back-calculation approach that estimates emissions as a function of recovered methane 470 

given an estimated collection efficiency based on cover and operation methods. A default efficiency of 0.75 is assumed if 
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cover information is unavailable (EPA, 2023). Both the model and back-calculation methods have high uncertainties and 

have not been field validated (NAS, 2018). 

 

We compare our posterior landfill emissions to individual GHGRP facilities that reported more than 2.5 Gg a-1 methane in 475 

2019. Of these 531 landfills, we limit our analysis to the 87 0.25° × 0.3125° grid cells where TROPOMI provides an 

averaging kernel sensitivity greater than 0.20 and where landfills explain more than 50% of prior emissions so that we are 

confident of our ability to separate landfill emissions from other sources. We exclude 33 facilities in grid cells containing 

multiple landfills because we are unable to separate the individual contributions to total emissions. Figure 5 shows the 

posterior emissions and corrections to the GHGRP for the remaining 73 facilities, Table 3 shows GHGRP and posterior 480 

information for the top 10 methane-producing landfills as ranked by posterior emissions, and Table S3 shows GHGRP and 

posterior information for all 73 facilities. 

 

We validate our posterior landfill results by comparison to aircraft-derived estimates for nine facilities as shown in Fig. 5. 

Cambaliza et al. (2015), Smith (2021), and Catena et al. (2022) used mass balance approaches to estimate emissions using 485 

observations from 2011, 2019 to 2021, and November 2021, respectively. Duren et al. (2019) used the integrated methane  

 
Table 3: Top 10 methane-producing landfills in CONUS for 2019. 

Facility1 Location 
Emissions (Gg a-1) Gas capture efficiency 

GHGRP2 Posterior3 GHGRP4 Posterior5 

1. National Serv-All Landfill Fort Wayne, Indiana 3.4 44 (34 - 59) 0.86 0.32 (0.26 - 0.37) 

2. South Shelby Landfill Memphis, Tennessee 4.1 41 (30 - 56) 0.86 0.39 (0.31 - 0.46) 

3. South Side Landfill Inc. Indianapolis, Indiana 4.7 39 (32 - 52) N/A N/A 

4. Rumpke Sanitary Landfill Cincinnati, Ohio 10.1 39 (33 - 43) 0.84 0.58 (0.55 - 0.61) 

5. Quad Cities Landfill Phase IV Milan, Illinois 3.7 35 (28 - 47) N/A N/A 

6. City of Dothan Sanitary Landfill Dothan, Alabama 5.8 35 (28 - 43) N/A N/A 

7. Rochelle Municipal Landfill Rochelle, Illinois 2.7 32 (25 - 39) 0.76 0.22 (0.18 - 0.26) 

8. Seminole Road MSW Landfill Ellenwood, Georgia 12.3 30 (25 - 36) 0.18 0.08 (0.07 - 0.1) 

9. Caterpillar Inc.-Mapleton Mapleton, Illinois 6.4 25 (23 - 29) N/A N/A 

10. Sampson County Disposal, LLC Roseboro, North Carolina 29.2 25 (23 - 29) 0.37 0.41 (0.38 - 0.44) 
1The top 10 landfills with the largest posterior methane emissions from the TROPOMI inversion for 2019. Numbers correspond to the 
labels in Fig. 5. 490 
2Emissions reported by individual landfills to the EPA GHGRP for 2019 in gigagrams per year. 
3Posterior emissions from the inversion of TROPOMI observations in gigagrams per year. Posterior emissions are allocated to individual 
facilities as described in Sects. 2.8 and 3.2. Values in parentheses represent the range from the eight-member inversion ensemble. 
4For facilities that capture landfill gas, the recovery efficiency as calculated from emissions and recovered methane reported by individual 
landfills to the EPA LMOP. Facilities that do not capture landfill gas are listed as N/A. 495 
5The posterior recovery efficiency as calculated from posterior emissions and the recovered methane reported by individual landfills to the 
EPA LMOP. 
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enhancement method with data from 2016 to 2018. We find agreement within error bounds at the Seneca Meadows Landfill 

in New York (landfill c in Fig. 5; Catena et al., 2022) and at the Kiefer (d), Frank R. Bowerman (f), Altamont (g), Newby 

Island (h), and Keller Canyon (i) Landfills in California (Smith, 2021; Duren et al., 2019). We find much larger emissions 500 

than previous studies at the South Side Landfill (a) in Indiana (Cambaliza et al., 2015) and at the West Miramar Sanitary (b) 

and Puente Hills (e) Landfills in California (Smith, 2021; Duren et al., 2019). The discrepancy at the South Side Landfill 

could reflect changed emissions since 2011, including the construction of a large landfill gas recovery facility beginning in 

June 2019 (EPA LMOP, 2019). Methane concentrations of 8662 ppm were recorded at a leak at the West Miramar Sanitary 

Landfill in November 2019 (San Diego Air Pollution Control District, 2019), suggesting that estimates from other years may 505 

not be representative of 2019 emissions. The Puente Hills Landfill closed in 2013 but was previously one of the largest 

landfills in CONUS (EPA GHGRP, 2019). Our landfill attribution approach, which relies on a prior estimate from 2012, may 

therefore misallocate emissions to the Puente Hills Landfill instead of to co-located oil and gas operations. 

 

We find mean facility emissions of 13 Gg a-1 compared to the GHGRP mean of 7.2 Gg a-1 for the 73 landfills considered 510 

here, with a median 77% increase in reported emissions. As reflected in Table 3, we find no correlation (R2 = 0.00) between 

GHGRP emissions and our posterior estimates, which does not improve when we consider only facilities that do or do not 

capture landfill gas. This implies that the bottom-up approaches used for emissions estimation have little predictability. 

 

For the 38 facilities that recover gas, we use captured methane emissions reported to the EPA Landfill Methane Outreach 515 

Program (LMOP) in 2019 together with posterior and GHGRP emissions to calculate a posterior and reported recovery 

efficiency, respectively. We find a low correlation (R2 = 0.17) between the efficiencies that does not depend on facility size 

but improves slightly for facilities constructed within the last decade (R2 = 0.31). The average posterior recovery efficiency 

of 0.50 (0.33 - 0.54) is much smaller than the GHGRP mean of 0.61, and both are much smaller than the 0.75 default (EPA, 

2023). Across the six landfill gas facilities at the top 10 methane-producing landfills, we find a mean posterior recovery 520 

efficiency of 0.33 that is half the GHGRP value of 0.65. Indeed, four of the six facilities report methane emission and 

recovery values consistent with efficiencies larger than the 0.75 default. We find a similar but still lower efficiency at the 

Seminole Road MSW Landfill (landfill 8) and a marginally higher recovery efficiency only at Sampson County Disposal, 

LLC (10). 

 525 

We consider in detail the 34 facilities for which posterior emissions show a significant 50% difference from the GHGRP. We 

find larger emissions for 29 of these facilities, with the largest discrepancies occurring in nine of the top 10 methane-

producing landfills. Three of these nine facilities experienced significant operational changes in the last decade. The South 

Shelby (landfill 2 in Fig. 5) and South Side (3) Landfills constructed large landfill gas facilities in 2019 (EPA LMOP, 2019; 

Russell, 2019), suggesting that emissions from gas infrastructure development may be large. The City of Dothan Sanitary 530 

Landfill (6) has been full since 2014, when it stopped accepting most trash (Wise, 2019). Reported emissions peaked at 7.4 
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Gg a-1 that year (EPA GHGRP, 2019), a value almost five times smaller than our posterior emissions, suggesting that the 

first order decay model is inadequate to reproduce methane emissions over time. We also find a record of air quality and 

landfill standard violations at these 34 facilities. At the West Miramar Sanitary Landfill (b), a leak emitting 8662 ppm 

methane was recorded in November 2019 (San Diego Air Pollution Control District, 2019). The Sussex County Landfill in 535 

Virginia was fined USD 99000 in 2016 for failing to address cracks in the landfill cover (Vera, 2016). Lastly, the Newby 

Island Landfill (h), received 30 violation notices from 2014 to 2020, including for gas collection system shutdowns (Bay 

Area Air Quality Management District, 2022). 

 

There are five facilities for which our posterior emissions are significantly smaller than the 2019 GHGRP by 50%. Three 540 

report large decreases in estimated methane emissions from 2019 to 2020 that result from changed methodology (EPA 

GHGRP, 2019). The updated estimates are consistent with our posterior emissions within error estimates in two cases and 

within 30% of our posterior emissions in the third case. 

3.3 State emissions 

The EPA recently began disaggregating the GHGI by state. The EPA uses the same methods to calculate state emissions as 545 

in the national inventory so that the total emissions are the same in both estimates. We use the most recent state inventories 

available as published with the GHGI22. The GHGI23 national emission estimate for 2019 increases only 2% from the 

GHGI22 value, suggesting that the unreleased GHGI23 state emissions should be similar to the GHGI22 estimates. State 

estimates are developed without reference to greenhouse gas inventories prepared by state governments, which may result in 

discrepancies in sectoral or total values due to different methods or accounting (EPA, 2022b). In addition to the GHGI22 550 

state estimates, the EPA provides references to the independent inventories of 24 states and Washington, D.C. (EPA, 2023). 

Of these, we find that eight produce a methane emission estimate separate from their inventory of total CO2-equivalent 

greenhouse gases. 

 

We partition our anthropogenic gridded posterior emission estimates, excluding offshore emissions, to each of the 48 states 555 

in CONUS as described in Sect. 2.8 and compare the results to the GHGI22 state estimates and to inventories prepared by 

state governments. Figure 6 shows the results for the 29 states responsible for 90% of posterior CONUS anthropogenic 

emissions excluding offshore emissions and ordered by posterior emissions, and Table S1 shows the full results for all 48 

CONUS states. TROPOMI provides a strong constraint at this resolution, with most state averaging kernel sensitivities larger 

than 0.5. Our state emissions are on average 10% larger than the GHGI22 estimates and 34% larger in the top 10 methane-560 

emitting states, which produce 55% of CONUS posterior emissions. Oil and gas emissions on average generate 37% of 

posterior emissions and 46% of the observed increase relative to the GHGI22 in these 10 states. In Texas, New Mexico, 

Louisiana, and Oklahoma, the oil and gas sector explains more than 60% of posterior emissions, with emissions concentrated 

in the Permian Basin, the Haynesville Shale, and the Anadarko Shale. The addition of basin-specific information in the  
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 565 
Figure 6: Anthropogenic methane emissions in 2019 for the 29 states responsible for 90% of U.S. anthropogenic posterior emissions. The 
bottom panel shows 2022 EPA GHGI state estimates for 2019 (left bar) and our posterior estimates from the inversion of TROPOMI data 
(right bar) divided by sector. States are listed from largest to smallest posterior emissions. The information content from the TROPOMI 
data as defined by the reduced-form averaging kernel sensitivities (the diagonal elements of the reduced-form averaging kernel matrix; 
Sect. 2.8) is shown in the top panel. Values of 1 indicate full sensitivity to TROPOMI, while values of 0 indicate no sensitivity. The error 570 
bars give the spread from the eight-member inversion ensemble. Also shown are emissions estimates from independent state inventories 
referenced by EPA (2022). 

GHGI23 may improve the state-level distribution of oil and gas emissions (EPA, 2023). Livestock and landfills also play a 

significant role in these states. Emissions in California and Iowa are dominated by the livestock sector, with much of the 

observed increase relative to the GHGI22 attributed to manure management emissions (Sect. 3.1). Landfills account for 41% 575 

of posterior emissions in Illinois and 62% in Florida. Indeed, three of the ten largest landfills as reported to the GHGRP in 

2019 are in Florida (EPA GHGRP, 2019). Consistent with our sectoral analysis, the largest posterior emission decreases 

relative to the GHGI22 are found in coal-producing states, including West Virginia and Pennsylvania. While we find a large 

decrease compared to the GHGI in Pennsylvania, we cannot confidently attribute the difference to a specific sector due to 

co-location of oil, gas, and coal facilities at the resolution of our inversion. 580 
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We consider in more detail Texas and California, which are responsible for 21% and 7% of posterior CONUS anthropogenic 

emissions, respectively. Our posterior estimate for Texas is 6.3 (6.1 - 6.5) Tg a-1, a 66% increase from the GHGI22 estimate 

of 3.8 Tg a-1. This increase is attributed almost entirely to the oil and gas sector, which accounts for 69% of posterior 

emissions compared to 55% in the GHGI22. The Permian basin alone explains almost 40% of Texas’ posterior emissions. In 585 

California, we find posterior emissions of 2.1 (2.0 - 2.1) Tg a-1, 53% of which occur in the San Joaquin Valley air basin. Our 

posterior emissions increase 21% from the GHGI22 estimate of 1.7 Tg a-1 and 32% from an independent estimate produced 

by CARB of 1.6 Tg a-1 (CARB, 2022). Our posterior estimate is smaller than but consistent within error bars with a value of 

2.4 ± 0.5 Tg a-1 found by an inversion of in situ observations in California from June 2013 to May 2014 (Jeong et al., 2016). 

We find in general good agreement with the sectoral partitioning in the GHGI22, the CARB inventory, and Jeong et al. 590 

(2016). Livestock explain 54% of emissions in our posterior estimate, 45% in the GHGI22, 54% in the CARB inventory, and 

54% in Jeong et al. (2016), while landfills explain 25%, 20%, 21%, and 19% of emissions, respectively. We find slightly 

smaller relative contributions from oil and gas, which accounts for 11% of emissions in our posterior estimate compared to 

18%, 17%, and 18% in the GHGI22, the CARB inventory, and Jeong et al. (2016), respectively. This partitioning differs 

from that found in an inversion of the 2010 CalNex aircraft campaign observations, where 30% of emissions were attributed 595 

to livestock, 38% to landfills, and 22% to oil and gas based on the sectoral distribution of the EDGAR v4.2 methane 

emission inventory (Wecht et al., 2014b). 

 

We also compare our posterior emissions to independent state greenhouse gas inventories from Pennsylvania, Louisiana, 

Iowa, and Colorado referenced by EPA (2023), where we have a strong constraint from the inversion (state averaging kernel 600 

sensitivity greater than 0.5). Our posterior agrees with the Pennsylvania estimate (Pennsylvania DEP, 2022), but we find a 

source shift from fossil fuels (from 76% in the inventory to 63% in our work) to landfills (from 3% in the inventory to 16% 

in our work). We find that Louisiana’s state inventory (Dismukes, 2021) is too low due to underestimated oil and gas 

emissions, while Iowa’s (Iowa DNR, 2020) is too low due to underestimated livestock emissions, particularly from manure 

management (Sect. 3.1). Colorado’s state inventory (Taylor, 2021) is 65% larger than our posterior estimate due to oil and 605 

gas emissions that are more than twice as large. 

3.4 Urban area emissions 

Urban areas are home to 81% of the U.S. population (U.S. Census Bureau, 2010) and are major sources of greenhouse gas 

emissions, including methane (Gurney et al., 2015; Hopkins et al., 2016). As urban populations grow (Seto et al., 2012), 

these emissions are likely to increase. Cities are well positioned to address methane emissions through waste-reduction 610 

initiatives, leak-detection programs, and strategic contracts with landfill operators and gas utilities. Regulation by air 

pollution control districts can also aid urban emissions reduction efforts (Hopkins et al., 2016). C40, a performance-based 

coalition of over 100 mayors dedicated to climate change mitigation, recommends that cities target a 50% reduction in 

methane emissions by 2030 (C40, 2022b). Numerous cities, including New York City, Los Angeles, and Philadelphia, are 
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working toward these reductions through zero-waste programs (C40, 2022a). The U.S. Methane Emissions Reduction Action 615 

Plan intends to work with local governments to set up methane monitoring systems to identify and publicize information 

about municipal gas distribution leaks. The plan also challenges members of the U.S. Climate Mayors to prioritize pipeline 

abandonment or replacement (The White House, 2021). 

 

We calculate posterior emissions for 95 urban areas across CONUS with 2010 populations over 1 million and averaging 620 

kernel sensitivities from our inversion greater than 0.2, providing the first comprehensive national analysis of urban methane 

emissions. Quantification of urban emissions depends significantly on the definition of city extent due to the presence of 

large emitters such as landfills on the urban periphery (e.g., Balashov et al., 2020; Plant et al., 2022). We follow Plant et al. 

(2022) and others in using the U.S. Census Topographically Integrated Geographic Encoding and Referencing system 

(TIGER)/Line Urban Areas to standardize the definition across CONUS (U.S. Census Bureau, 2017). These urban areas are 625 

responsible for almost a quarter of the GHGI23 emissions spatially allocated using the gridded inventory from Maasakkers et 

al. (2016). The gridded inventory does not include post-meter emissions introduced in later versions of the GHGI, which we 

distribute by population for this analysis. In an average city, the gridded GHGI emissions originate from landfills (40%), gas 

distribution (9%, including 4% from post-meter emissions), wastewater (6%), and other sources that are not specific to urban 

areas such as livestock and oil and gas production and transmission (45%).  630 

 

Anthropogenic posterior emissions in these 95 urban areas total 6.0 (5.4 - 6.7) Tg a-1, 38 (24 - 54) % larger than the gridded 

GHGI23 value of 4.3 Tg a-1. Individual urban area emissions, listed in Table S2, increase by an average of 39 (27 - 52) %. 

These increases are much larger than the 13% increase we find in total CONUS anthropogenic emissions relative to the 

GHGI23. We are unable to attribute the increased emissions to individual sectors due to source co-location within urban 635 

areas at the 0.25° × 0.3125° resolution of our inversion. However, given that landfills account for 40% of gridded GHGI23 

emissions in an average urban area and increase 51% relative to the GHGI23, it is likely that they are responsible for a large 

fraction of the observed discrepancy. It is also likely that gas emissions, which represent less than 20% of gridded GHGI23 

emissions in an average urban area but explain between 32% and 100% of methane emissions in many cities based on field 

measurements of methane-ethane ratios (Plant et al., 2019; Floerchinger et al., 2021; Sargent et al., 2021), are significantly 640 

underestimated. Finally, recent studies have shown large underestimates of methane emissions from wastewater treatment in 

the GHGI (Moore et al., 2023; Song et al., 2023) and over urban areas (de Foy et al., 2023), but increasing wastewater 

emissions accordingly only accounts for 2% of our observed discrepancy. City-specific variability prevents further 

attribution of urban emissions. Indeed, we find no correlation between the posterior emission increase and urban area 

population, population change from 2000 to 2010, population density, or surface area. 645 

 

Figure 7 shows results for the top 10 methane-producing urban areas as ranked by posterior emissions from landfills, gas 

distribution, and wastewater. These 10 regions explain 35 (34 - 36) % of anthropogenic posterior emissions across the 95  
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Figure 7: Anthropogenic methane emissions for the largest 10 methane-producing urban areas in the contiguous United States (CONUS) 650 
for 2019 as identified by the inversion of TROPOMI data. Urban area extents are given by the U.S. Census Bureau TIGER/Line files (U.S. 
Census, 2010). The top bars show prior anthropogenic sectoral emissions from the 2023 EPA GHGI for 2019 spatially allocated following 
Maasakkers et al. (2016) with post-meter emissions allocated by population. The bottom bar shows posterior emissions from the 
TROPOMI inversion for 2019. We do not resolve posterior sectoral emissions estimates due to source colocation within urban areas at the 
scale of the inversion. Total emissions (left panel), per capita emissions (center panel), and averaging kernel sensitivities (right panel) are 655 
shown for each urban area. Error bars represent the spread of the eight-member inversion ensemble. Also shown are independent urban 
emissions estimates. 

urban areas considered here. We find a mean increase relative to gridded GHGI23 emissions of 58 (37 - 84) %. We also 

compare our posterior emissions to municipal inventories from New York City and Philadelphia, the only available bottom-

up urban methane emission estimates. Our emissions are more than twice as large as these inventories, but this likely results 660 

from our consideration of broader urban areas.  

 

Figure 7 also compares our results to 12 top-down studies published since 2015. Most of these focused on New York City or 

Los Angeles. Almost all the studies used larger definitions of urban area extent, with only Pitt et al. (2022) and Plant et al. 

(2022) using the U.S. Census designation. Most used aircraft or tower observations to infer emissions by inverting a CTM 665 

(Cui et al., 2015; Jeong et al., 2016; Cusworth et al., 2020; Pitt et al., 2022; Yadav et al., 2019, 2023). Kuwayama et al. 
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(2019) used a mass balance approach, while others used observed methane to CO2 or CO ratios together with bottom-up 

inventories of these gases (Wong et al., 2015; Wunch et al., 2016; Plant et al., 2019). Plant et al. (2022) used the same 

approach with TROPOMI methane to CO emissions.  

 670 

We find in general lower but statistically consistent emissions compared to these studies. Our smaller estimates likely result 

from our restrictive definition of urban area extent. The only study that used aircraft data to estimate emissions within a U.S. 

Census Urban Area found 314 ± 96 Gg a-1 in New York City (Pitt et al., 2022), which is very similar to our estimate of 309 

(241 - 417) Gg a-1. Plant et al. (2022) used U.S. Census Urban Areas but relied on TROPOMI methane to CO ratios. They 

found slightly larger emissions in Atlanta and Philadelphia and much larger emissions in New York City, but their error bars 675 

spanned ranges almost twice as large as the derived emissions, limiting the utility of the comparison. Plant et al. (2019) 

found larger emissions in New York City and Philadelphia but used larger definitions of urban areas and produced similarly 

wide error ranges. 

 

We find much lower emissions than these studies only in Los Angeles, a difference that decreases but remains significant 680 

when we use the same extent as these studies. We attribute much of the discrepancy to decreasing emissions over time. 

Methane emissions from the Puente Hills Landfill, previously one of the largest landfills in CONUS, decreased following its 

closure in 2013 (Yadav et al., 2019). This change is not fully reflected in the estimates of Cui et al. (2015), Wong et al. 

(2015), or Wunch et al. (2016). Yadav et al. (2023) found that Los Angeles emissions decreased an additional 7% from 

January 2015 to May 2020. However, their posterior estimate of 251 ± 5 Gg a-1 for 2019 is still larger than our value of 179 685 

(171 - 193) Gg a-1. 

4 Conclusions 

We used TROPOMI atmospheric methane column observations for 2019 to optimize methane emissions at 0.25° × 0.3125° 

resolution over North America with a focus on the contiguous U.S. (CONUS). The high resolution of our inversion allowed 

us to quantify emissions from individual landfills, states, and urban areas. We compared our results to the 2023 EPA 690 

Greenhouse Gas Emissions Inventory (GHGI) for 2019; to new EPA state-level inventories for 2019 published most recently 

with the 2022 GHGI; to emissions reported by individual landfills to the EPA Greenhouse Gas Reporting Program 

(GHGRP); and to other estimates from states and cities. We find large upward corrections to the GHGI at all scales, which 

may present a challenge for U.S. climate policies and goals, many of which target significant reductions in methane 

emissions. 695 

 

We optimized methane emissions using an analytical inversion of TROPOMI methane observations with the GEOS-Chem 

chemical transport model run at 0.25° × 0.3125° resolution. The inverse solution, or posterior emission estimate, was 
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obtained through a reduced-rank approximation of the analytical minimum of a Bayesian cost function regularized by a prior 

emission estimate from a gridded version of the GHGI. The analytical solution characterizes the error and information 700 

content of the posterior emissions and supported the generation of an eight-member inversion ensemble. We constructed the 

Jacobian matrix required for the high-resolution, continent-scale analytical solution by iterative approximation using the 

emissions patterns best informed by the prior emission estimate and the observations. This approach decreases the 

computational cost of our inversion by an order of magnitude compared to conventional analytical methods while optimally 

preserving its information content. 705 

 

We find posterior anthropogenic methane emissions of 30.9 (30.0 - 31.8) Tg a-1 in CONUS, where the range is given by the 

inversion ensemble. This is a 13% increase from the 2023 GHGI estimate of 27.3 (25.1 - 30.6) Tg a-1, where the range is 

given by the 95% confidence interval. Emissions for landfills, oil and gas, and livestock explain 89% of posterior CONUS 

emissions and each of these sectors’ emissions increase by at least 10% relative to the GHGI. We find a significant decrease 710 

compared to the 2023 GHGI only for coal emissions. These increases present a challenge to goals set by the U.S. 

government to decrease methane emissions from landfills by 30% relative to 2015 levels by 2025 and to regulation in 

development that aims to reduce oil and gas methane emissions by 30% from 2020 to 2030. 

 

Most of the total increase from the 2023 GHGI to the posterior emissions is attributed to a 51% increase in landfill 715 

emissions. We compare our optimized emissions for 73 individual landfills to those reported to the GHGRP and find a 

median 77% increase in emissions relative to reported values. We attribute the underestimated GHGI and GHGRP landfill 

emissions to standard inventory methods that (1) assume too-high recovery efficiencies at facilities that collect landfill gas 

and (2) inadequately account for anomalous operating events such as gas leaks or the construction of new landfill gas 

facilities. 720 

 

We took advantage of the high resolution of our inversion to quantify emissions for each of the 48 states in CONUS and 

compare to the newly available state emission inventories published most recently with the 2022 GHGI. We find a 10% 

average increase with a 34% average increase in the top 10 methane-emitting states. Much of the discrepancy in these 10 

states is attributed to increased oil and gas emissions, though livestock and landfills also play significant roles. Texas and 725 

California, the two largest methane-producing states, respectively emit 21% and 7% of total CONUS anthropogenic 

emissions in our posterior estimate. Emissions in Texas increase by 66% relative to the 2022 GHGI almost entirely due to 

the oil and gas sector. Operations in the Permian basin alone explain almost 40% of all posterior emissions in the state. In 

California, we find a 21% increase from the 2022 GHGI and a 32% increase from an independent inventory prepared by the 

California Air Resources Board (CARB). Our sectoral partitioning for California is consistent with both inventories, 730 

including 54% of emissions from livestock, 25% from landfills, and 11% from oil and gas. 
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We also provide a first national analysis of urban methane emissions by calculating emissions for 95 urban areas across 

CONUS. We find total emissions of 6.0 (5.4 - 6.7) Tg a-1 across these urban areas, representing a fifth of posterior 

anthropogenic emissions in CONUS and a 38 (24 - 54) % increase from the gridded 2023 GHGI value of 4.3 Tg a-1. Urban 735 

emissions increase on average by 39 (27 - 52) % compared to the GHGI. We attribute the observed discrepancy to 

underestimated landfill and gas emissions. Our urban emission estimates are in general consistent with previous top-down 

studies except for Los Angeles. 

Code availability 

The GEOS-Chem code is available at https://doi.org/10.5281/zenodo.3676008, and the description of the model is available 740 

at geos-chem.org. The code to solve and analyze the inversion is at https://github.com/hannahnesser/TROPOMI_inversion.  

Data availability 

The TROPOMI v14 data are available from SRON at https://ftp.sron.nl/open-access-data-

2/TROPOMI/tropomi/ch4/14_14_Lorente_et_al_2020_AMTD/ (last access: 19 March 2021). The GLOBALVIEWplus CH4 

ObsPack v3.0 database is available from NOAA’s Global Monitoring Laboratory at http://dx.doi.org/10.15138/G3CW4Q. 745 

The prior and observational inputs for the inversion and the posterior emissions and averaging kernel sensitivities are 

available at https://github.com/hannahnesser/TROPOMI_inversion. Additional data related to this paper may be requested 

from the authors. 

Author contribution 

HN and DJJ designed the study. HN conducted the inversion with contributions from ZC, ZQ, MPS, and MW. SM and AAB 750 

provided the high-performance ensemble of WetCHARTS v1.3.1 and supported wetland analysis. JDM and AL provided 

guidance on the TROPOMI data. JDM, AL, XL, LS, JW, RNS, and CAR discussed the results. HN and DJJ wrote the paper 

with input from all authors. 

Competing interests 

The contact author has declared that none of the authors has any competing interests. 755 

https://doi.org/10.5194/egusphere-2023-946
Preprint. Discussion started: 13 June 2023
c© Author(s) 2023. CC BY 4.0 License.



28 
 

Acknowledgments 

This work was supported by the NASA Carbon Monitoring System (CMS), ExxonMobil Technology and Engineering 

Company, and the Harvard Climate Change Solutions Fund. Part of this work was carried out at the Jet Propulsion 

Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration 

(NASA). We thank Bryan Mignone, Felipe J. Cardoso-Saldaña, Robert Stowe, Lauren Aepli, and Melissa Weitz for helpful 760 

discussions. 

References 

Balashov, N. V., Davis, K. J., Miles, N. L., Lauvaux, T., Richardson, S. J., Barkley, Z. R., and Bonin, T. A.: Background 
heterogeneity and other uncertainties in estimating urban methane flux: results from the Indianapolis Flux Experiment 
(INFLUX), Atmospheric Chemistry and Physics, 20, 4545–4559, https://doi.org/10.5194/acp-20-4545-2020, 2020. 765 

Balasus, N., Jacob, D. J., Lorente, A., Maasakkers, J. D., Parker, R. J., Boesch, H., Chen, Z., Kelp, M. M., Nesser, H., and 
Varon, D. J.: A blended TROPOMI+GOSAT satellite data product for atmospheric methane using machine learning to 
correct retrieval biases, Atmospheric Measurement Techniques Discussions, 1–40, https://doi.org/10.5194/amt-2023-47, 
2023. 

Barré, J., Aben, I., Agustí-Panareda, A., Balsamo, G., Bousserez, N., Dueben, P., Engelen, R., Inness, A., Lorente, A., 770 
McNorton, J., Peuch, V.-H., Radnoti, G., and Ribas, R.: Systematic detection of local CH4 anomalies by combining satellite 
measurements with high-resolution forecasts, Atmospheric Chemistry and Physics, 21, 5117–5136, 
https://doi.org/10.5194/acp-21-5117-2021, 2021. 

Bay Area Air Quality Management District: Air District settles violations at Newby Island Landfill, 2022. 

Bloom, A. A., Bowman, K. W., Lee, M., Turner, A. J., Schroeder, R., Worden, J. R., Weidner, R., McDonald, K. C., and 775 
Jacob, D. J.: A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models 
(WetCHARTs version 1.0), Geoscientific Model Development, 10, 2141–2156, https://doi.org/10.5194/gmd-10-2141-2017, 
2017. 

Bousserez, N. and Henze, D. K.: Optimal and scalable methods to approximate the solutions of large-scale Bayesian 
problems: theory and application to atmospheric inversion and data assimilation, Quarterly Journal of the Royal 780 
Meteorological Society, 144, 365–390, https://doi.org/10.1002/qj.3209, 2018. 

Brasseur, G. P. and Jacob, D. J.: Inverse Modeling for Atmospheric Chemistry, in: Modeling of Atmospheric Chemistry, 
Cambridge University Press, Cambridge, 487–537, https://doi.org/10.1017/9781316544754.012, 2017. 

C40: C40 Advancing towards zero waste declaration: How cities are creating cleaner, healthier communities and circular 
economies, C40, 2022a. 785 

C40: Methane: Why cities must act now, C40 Knowledge, July, 2022b. 

Calisesi, Y., Soebijanta, V. T., and van Oss, R.: Regridding of remote soundings: Formulation and application to ozone 
profile comparison, Journal of Geophysical Research: Atmospheres, 110, https://doi.org/10.1029/2005JD006122, 2005. 

https://doi.org/10.5194/egusphere-2023-946
Preprint. Discussion started: 13 June 2023
c© Author(s) 2023. CC BY 4.0 License.



29 
 

Cambaliza, M. O. L., Shepson, P. B., Bogner, J., Caulton, D. R., Stirm, B., Sweeney, C., Montzka, S. A., Gurney, K. R., 
Spokas, K., Salmon, O. E., Lavoie, T. N., Hendricks, A., Mays, K., Turnbull, J., Miller, B. R., Lauvaux, T., Davis, K., 790 
Karion, A., Moser, B., Miller, C., Obermeyer, C., Whetstone, J., Prasad, K., Miles, N., and Richardson, S.: Quantification 
and source apportionment of the methane emission flux from the city of Indianapolis, Elementa: Science of the 
Anthropocene, 3, 000037, https://doi.org/10.12952/journal.elementa.000037, 2015. 

CARB: Current California GHG Emission Inventory Data, 2022. 

Catena, A. M., Zhang, J., Commane, R., Murray, L. T., Schwab, M. J., Leibensperger, E. M., Marto, J., Smith, M. L., and 795 
Schwab, J. J.: Hydrogen Sulfide Emission Properties from Two Large Landfills in New York State, Atmosphere, 13, 1251, 
https://doi.org/10.3390/atmos13081251, 2022. 

Chen, Y., Sherwin, E. D., Berman, E. S. F., Jones, B. B., Gordon, M. P., Wetherley, E. B., Kort, E. A., and Brandt, A. R.: 
Quantifying Regional Methane Emissions in the New Mexico Permian Basin with a Comprehensive Aerial Survey, Environ. 
Sci. Technol., 56, 4317–4323, https://doi.org/10.1021/acs.est.1c06458, 2022a. 800 

Chen, Z., Griffis, T. J., Baker, J. M., Millet, D. B., Wood, J. D., Dlugokencky, E. J., Andrews, A. E., Sweeney, C., Hu, C., 
and Kolka, R. K.: Source Partitioning of Methane Emissions and its Seasonality in the U.S. Midwest, Journal of Geophysical 
Research: Biogeosciences, 123, 646–659, https://doi.org/10.1002/2017JG004356, 2018. 

Chen, Z., Jacob, D. J., Nesser, H., Sulprizio, M. P., Lorente, A., Varon, D. J., Lu, X., Shen, L., Qu, Z., Penn, E., and Yu, X.: 
Methane emissions from China: a high-resolution inversion of TROPOMI satellite observations, Atmospheric Chemistry and 805 
Physics, 22, 10809–10826, https://doi.org/10.5194/acp-22-10809-2022, 2022b. 

Chevallier, F.: Impact of correlated observation errors on inverted CO2 surface fluxes from OCO measurements, 
Geophysical Research Letters, 34, https://doi.org/10.1029/2007GL030463, 2007. 

Cooperative Global Atmospheric Data Integration Project: Multi-laboratory compilation of atmospheric methane data for the 
period 1957–2017, NOAA Earth System Research Laboratory, Global Monitoring Laboratory, 2019. 810 

Cui, Y. Y., Brioude, J., McKeen, S. A., Angevine, W. M., Kim, S.-W., Frost, G. J., Ahmadov, R., Peischl, J., Bousserez, N., 
Liu, Z., Ryerson, T. B., Wofsy, S. C., Santoni, G. W., Kort, E. A., Fischer, M. L., and Trainer, M.: Top-down estimate of 
methane emissions in California using a mesoscale inverse modeling technique: The South Coast Air Basin, Journal of 
Geophysical Research: Atmospheres, 120, 6698–6711, https://doi.org/10.1002/2014JD023002, 2015. 

Cusworth, D. H., Duren, R. M., Yadav, V., Thorpe, A. K., Verhulst, K., Sander, S., Hopkins, F., Rafiq, T., and Miller, C. E.: 815 
Synthesis of Methane Observations Across Scales: Strategies for Deploying a Multitiered Observing Network, Geophysical 
Research Letters, 47, e2020GL087869, https://doi.org/10.1029/2020GL087869, 2020. 

Dask Development Team: Dask: Library for dynamic task scheduling, 2016. 

Deng, Z., Ciais, P., Tzompa-Sosa, Z. A., Saunois, M., Qiu, C., Tan, C., Sun, T., Ke, P., Cui, Y., Tanaka, K., Lin, X., 
Thompson, R. L., Tian, H., Yao, Y., Huang, Y., Lauerwald, R., Jain, A. K., Xu, X., Bastos, A., Sitch, S., Palmer, P. I., 820 
Lauvaux, T., d’Aspremont, A., Giron, C., Benoit, A., Poulter, B., Chang, J., Petrescu, A. M. R., Davis, S. J., Liu, Z., Grassi, 
G., Albergel, C., Tubiello, F. N., Perugini, L., Peters, W., and Chevallier, F.: Comparing national greenhouse gas budgets 
reported in UNFCCC inventories against atmospheric inversions, Earth System Science Data, 14, 1639–1675, 
https://doi.org/10.5194/essd-14-1639-2022, 2022. 

Dismukes, D. E.: Louisiana 2021 Greenhouse Gas Inventory, Louisiana Governor’s Office of Coastal Activities, 2021. 825 

https://doi.org/10.5194/egusphere-2023-946
Preprint. Discussion started: 13 June 2023
c© Author(s) 2023. CC BY 4.0 License.



30 
 

Duren, R. M., Thorpe, A. K., Foster, K. T., Rafiq, T., Hopkins, F. M., Yadav, V., Bue, B. D., Thompson, D. R., Conley, S., 
Colombi, N. K., Frankenberg, C., McCubbin, I. B., Eastwood, M. L., Falk, M., Herner, J. D., Croes, B. E., Green, R. O., and 
Miller, C. E.: California’s methane super-emitters, Nature, https://doi.org/10.1038/s41586-019-1720-3, 2019. 

EIA: Annual Coal Report 2020, U.S. Energy Information Administration, 2021. 

EPA: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2020., U.S. Environmental Protection Agency, 2022a. 830 

EPA: Methodology Report for Inventory of U.S. Greenhouse Gas Emissions and Sinks by State: 1990–2020, Environmental 
Protection Agency, 2022b. 

EPA: https://www.epa.gov/ghgemissions/learn-more-about-official-state-greenhouse-gas-inventories, last access: 1 January 
2023. 

EPA: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2021., U.S. Environmental Protection Agency, 2023. 835 

EPA GHGRP: Facility Level Information on GreenHouse Gases Tool (FLIGHT), U.S. Environmental Protection Agency 
Greenhouse Gas Reporting Program, 2019. 

EPA LMOP: Landfill Methane Outreach Program (LMOP) Historical Database, U.S. Environmental Protection Agency 
Landfill Methane Outreach Program, 2019. 

Floerchinger, C., Shepson, P. B., Hajny, K., Daube, B. C., Stirm, B. H., Sweeney, C., and Wofsy, S. C.: Relative flux 840 
measurements of biogenic and natural gas-derived methane for seven U.S. cities, Elementa: Science of the Anthropocene, 9, 
000119, https://doi.org/10.1525/elementa.2021.000119, 2021. 

de Foy, B., Schauer, J. J., Lorente, A., and Borsdorff, T.: Investigating high methane emissions from urban areas detected by 
TROPOMI and their association with untreated wastewater, Environ. Res. Lett., 18, 044004, https://doi.org/10.1088/1748-
9326/acc118, 2023. 845 

About the Global Methane Pledge: https://www.globalmethanepledge.org/, last access: 12 April 2023. 

de Gouw, J. A., Veefkind, J. P., Roosenbrand, E., Dix, B., Lin, J. C., Landgraf, J., and Levelt, P. F.: Daily Satellite 
Observations of Methane from Oil and Gas Production Regions in the United States, Sci Rep, 10, 1379, 
https://doi.org/10.1038/s41598-020-57678-4, 2020. 

Gurney, K. R., Romero-Lankao, P., Seto, K. C., Hutyra, L. R., Duren, R., Kennedy, C., Grimm, N. B., Ehleringer, J. R., 850 
Marcotullio, P., Hughes, S., Pincetl, S., Chester, M. V., Runfola, D. M., Feddema, J. J., and Sperling, J.: Climate change: 
Track urban emissions on a human scale, Nature, 525, 179–181, https://doi.org/10.1038/525179a, 2015. 

Hasekamp, O., Lorente, A., Hu, H., Butz, A., Aan de Brugh, J., and Landgraf, J.: Algorithm Theoretical Baseline Document 
for Sentinel-5 Precursor Methane Retrieval, 1, 1–67, 2019. 

Heald, C. L., Jacob, D. J., Jones, D. B. A., Palmer, P. I., Logan, J. A., Streets, D. G., Sachse, G. W., Gille, J. C., Hoffman, R. 855 
N., and Nehrkorn, T.: Comparative inverse analysis of satellite (MOPITT) and aircraft (TRACE-P) observations to estimate 
Asian sources of carbon monoxide, Journal of Geophysical Research D: Atmospheres, 109, 1–17, 
https://doi.org/10.1029/2004JD005185, 2004. 

https://doi.org/10.5194/egusphere-2023-946
Preprint. Discussion started: 13 June 2023
c© Author(s) 2023. CC BY 4.0 License.



31 
 

Hopkins, F. M., Ehleringer, J. R., Bush, S. E., Duren, R. M., Miller, C. E., Lai, C.-T., Hsu, Y.-K., Carranza, V., and 
Randerson, J. T.: Mitigation of methane emissions in cities: How new measurements and partnerships can contribute to 860 
emissions reduction strategies, Earth’s Future, 4, 408–425, https://doi.org/10.1002/2016EF000381, 2016. 

Houweling, S., Krol, M., Bergamaschi, P., Frankenberg, C., Dlugokencky, E. J., Morino, I., Notholt, J., Sherlock, V., 
Wunch, D., Beck, V., Gerbig, C., Chen, H., Kort, E. A., Röckmann, T., and Aben, I.: A multi-year methane inversion using 
SCIAMACHY, accounting for systematic errors using TCCON measurements, Atmospheric Chemistry and Physics, 14, 
3991–4012, https://doi.org/10.5194/acp-14-3991-2014, 2014. 865 

Hu, H., Landgraf, J., Detmers, R., Borsdorff, T., Aan de Brugh, J., Aben, I., Butz, A., and Hasekamp, O.: Toward Global 
Mapping of Methane With TROPOMI: First Results and Intersatellite Comparison to GOSAT, Geophysical Research 
Letters, 45, 3682–3689, https://doi.org/10.1002/2018gl077259, 2018. 

Iowa DNR: 2019 Iowa Statewide Greenhouse Gas Emissions Inventory Report, Iowa Department of Natural Resources, 
2020. 870 

IPCC: Global Warming of 1.5°C: IPCC Special Report on Impacts of Global Warming of 1.5°C above Pre-industrial Levels 
in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, 1st 
ed., Cambridge University Press, https://doi.org/10.1017/9781009157940, 2022. 

Jacob, D. J., Varon, D. J., Cusworth, D. H., Dennison, P. E., Frankenberg, C., Gautam, R., Guanter, L., Kelley, J., 
McKeever, J., Ott, L. E., Poulter, B., Qu, Z., Thorpe, A. K., Worden, J. R., and Duren, R. M.: Quantifying methane 875 
emissions from the global scale down to point sources using satellite observations of atmospheric methane, Atmospheric 
Chemistry and Physics, 22, 9617–9646, https://doi.org/10.5194/acp-22-9617-2022, 2022. 

Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., Bergamaschi, P., Pagliari, V., 
Olivier, J. G. J., Peters, J. A. H. W., van Aardenne, J. A., Monni, S., Doering, U., Petrescu, A. M. R., Solazzo, E., and 
Oreggioni, G. D.: EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012, Earth 880 
System Science Data, 11, 959–1002, https://doi.org/10.5194/essd-11-959-2019, 2019. 

Jeong, S., Newman, S., Zhang, J., Andrews, A. E., Bianco, L., Bagley, J., Cui, X., Graven, H., Kim, J., Salameh, P., 
LaFranchi, B. W., Priest, C., Campos-Pineda, M., Novakovskaia, E., Sloop, C. D., Michelsen, H. A., Bambha, R. P., Weiss, 
R. F., Keeling, R., and Fischer, M. L.: Estimating methane emissions in California’s urban and rural regions using 
multitower observations, Journal of Geophysical Research: Atmospheres, 121, 13,031-13,049, 885 
https://doi.org/10.1002/2016JD025404, 2016. 

Karion, A., Sweeney, C., Kort, E. A., Shepson, P. B., Brewer, A., Cambaliza, M., Conley, S. A., Davis, K., Deng, A., 
Hardesty, M., Herndon, S. C., Lauvaux, T., Lavoie, T., Lyon, D., Newberger, T., Pétron, G., Rella, C., Smith, M., Wolter, S., 
Yacovitch, T. I., and Tans, P.: Aircraft-Based Estimate of Total Methane Emissions from the Barnett Shale Region, Environ. 
Sci. Technol., 49, 8124–8131, https://doi.org/10.1021/acs.est.5b00217, 2015. 890 

Kuwayama, T., Charrier-Klobas, J. G., Chen, Y., Vizenor, N. M., Blake, D. R., Pongetti, T., Conley, S. A., Sander, S. P., 
Croes, B., and Herner, J. D.: Source Apportionment of Ambient Methane Enhancements in Los Angeles, California, To 
Evaluate Emission Inventory Estimates, Environ Sci Technol, 53, 2961–2970, https://doi.org/10.1021/acs.est.8b02307, 2019. 

Liu, M., van der A, R., van Weele, M., Eskes, H., Lu, X., Veefkind, P., de Laat, J., Kong, H., Wang, J., Sun, J., Ding, J., 
Zhao, Y., and Weng, H.: A New Divergence Method to Quantify Methane Emissions Using Observations of Sentinel-5P 895 
TROPOMI, Geophysical Research Letters, 48, e2021GL094151, https://doi.org/10.1029/2021GL094151, 2021. 

https://doi.org/10.5194/egusphere-2023-946
Preprint. Discussion started: 13 June 2023
c© Author(s) 2023. CC BY 4.0 License.



32 
 

Lorente, A., Borsdorff, T., Butz, A., Hasekamp, O., aan de Brugh, J., Schneider, A., Wu, L., Hase, F., Kivi, R., Wunch, D., 
Pollard, D. F., Shiomi, K., Deutscher, N. M., Velazco, V. A., Roehl, C. M., Wennberg, P. O., Warneke, T., and Landgraf, J.: 
Methane retrieved from TROPOMI: improvement of the data product and validation of the first 2 years of measurements, 
Atmospheric Measurement Techniques, 14, 665–684, https://doi.org/10.5194/amt-14-665-2021, 2021. 900 

Lu, X., Jacob, D. J., Zhang, Y., Maasakkers, J. D., Sulprizio, M. P., Shen, L., Qu, Z., Scarpelli, T. R., Nesser, H., Yantosca, 
R. M., Sheng, J., Andrews, A., Parker, R. J., Boesch, H., Anthony Bloom, A., and Ma, S.: Global methane budget and trend, 
2010-2017: Complementarity of inverse analyses using in situ (globalviewplus ch4 obspack) and satellite (gosat) 
observations, Atmospheric Chemistry and Physics, 21, https://doi.org/10.5194/acp-21-4637-2021, 2021. 

Lu, X., Jacob, D. J., Wang, H., Maasakkers, J. D., Zhang, Y., Scarpelli, T. R., Shen, L., Qu, Z., Sulprizio, M. P., Nesser, H., 905 
Bloom, A. A., Ma, S., Worden, J. R., Fan, S., Parker, R. J., Boesch, H., Gautam, R., Gordon, D., Moran, M. D., Reuland, F., 
Villasana, C. A. O., and Andrews, A.: Methane emissions in the United States, Canada, and Mexico: evaluation of national 
methane emission inventories and 2010–2017 sectoral trends by inverse analysis of in situ (GLOBALVIEWplus 
CH&lt;sub&gt;4&lt;/sub&gt; ObsPack) and satellite (GOSAT) atmospheric observations, Atmos. Chem. Phys., 22, 395–
418, https://doi.org/10.5194/acp-22-395-2022, 2022. 910 

Lu, X., Jacob, D. J., Zhang, Y., Shen, L., Sulprizio, M. P., Maasakkers, J. D., Varon, D. J., Qu, Z., Chen, Z., Hmiel, B., 
Parker, R. J., Boesch, H., Wang, H., He, C., and Fan, S.: Observation-derived 2010-2019 trends in methane emissions and 
intensities from US oil and gas fields tied to activity metrics, Proceedings of the National Academy of Sciences, 120, 
e2217900120, https://doi.org/10.1073/pnas.2217900120, 2023. 

Lucchesi, R.: File Specification for GEOS-5 FP., GMAO Office Note No. 4 (Version 1.1), 61, 2017. 915 

Ma, S., Worden, J. R., Bloom, A. A., Zhang, Y., Poulter, B., Cusworth, D. H., Yin, Y., Pandey, S., Maasakkers, J. D., Lu, 
X., Shen, L., Sheng, J., Frankenberg, C., Miller, C. E., and Jacob, D. J.: Satellite Constraints on the Latitudinal Distribution 
and Temperature Sensitivity of Wetland Methane Emissions, AGU Advances, 2, https://doi.org/10.1029/2021AV000408, 
2021. 

Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Turner, A. J., Weitz, M., Wirth, T., Hight, C., DeFigueiredo, M., Desai, M., 920 
Schmeltz, R., Hockstad, L., Bloom, A. A., Bowman, K. W., Jeong, S., and Fischer, M. L.: Gridded National Inventory of 
U.S. Methane Emissions, Environmental Science and Technology, 50, 13123–13133, 
https://doi.org/10.1021/acs.est.6b02878, 2016. 

Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Scarpelli, T. R., Nesser, H., Sheng, J. X., Zhang, Y., Hersher, M., Anthony 
Bloom, A., Bowman, K. W., Worden, J. R., Janssens-Maenhout, G., and Parker, R. J.: Global distribution of methane 925 
emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010-
2015, Atmospheric Chemistry and Physics, 19, 7859–7881, https://doi.org/10.5194/acp-19-7859-2019, 2019. 

Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Scarpelli, T. R., Nesser, H., Sheng, J., Zhang, Y., Lu, X., Anthony Bloom, 
A., Bowman, K. W., Worden, J. R., and J. Parker, R.: 2010-2015 North American methane emissions, sectoral contributions, 
and trends: A high-resolution inversion of GOSAT observations of atmospheric methane, Atmospheric Chemistry and 930 
Physics, 21, https://doi.org/10.5194/acp-21-4339-2021, 2021. 

McNorton, J., Bousserez, N., Agustí-Panareda, A., Balsamo, G., Cantarello, L., Engelen, R., Huijnen, V., Inness, A., 
Kipling, Z., Parrington, M., and Ribas, R.: Quantification of methane emissions from hotspots and during COVID-19 using a 
global atmospheric inversion, Atmospheric Chemistry and Physics, 22, 5961–5981, https://doi.org/10.5194/acp-22-5961-
2022, 2022. 935 

https://doi.org/10.5194/egusphere-2023-946
Preprint. Discussion started: 13 June 2023
c© Author(s) 2023. CC BY 4.0 License.



33 
 

Miller, S. M., Wofsy, S. C., Michalak, A. M., Kort, E. A., Andrews, A. E., Biraud, S. C., Dlugokencky, E. J., Eluskiewicz, 
J., Fischer, M. L., Janssens-Maenhout, G., Miller, B. R., Miller, J. B., Montzka, S. A., Nehrkorn, T., and Sweeney, C.: 
Anthropogenic emissions of methane in the United States, Proceedings of the National Academy of Sciences, 110, 20018–
20022, https://doi.org/10.1073/pnas.1314392110, 2013. 

Moore, D. P., Li, N. P., Wendt, L. P., Castañeda, S. R., Falinski, M. M., Zhu, J.-J., Song, C., Ren, Z. J., and Zondlo, M. A.: 940 
Underestimation of Sector-Wide Methane Emissions from United States Wastewater Treatment, Environ. Sci. Technol., 57, 
4082–4090, https://doi.org/10.1021/acs.est.2c05373, 2023. 

NAS: Improving Characterization of Anthropogenic Methane Emissions in the United States, The National Academies 
Press, Washington, D.C., 2018. 

Nesser, H., Jacob, D. J., Maasakkers, J. D., Scarpelli, T. R., Sulprizio, M. P., Zhang, Y., and Rycroft, C. H.: Reduced-cost 945 
construction of Jacobian matrices for high-resolution inversions of satellite observations of atmospheric composition, 
Atmospheric Measurement Techniques, 14, https://doi.org/10.5194/amt-14-5521-2021, 2021. 

Pennsylvania DEP: 2022 Pennsylvania Greenhouse Gas Inventory Report, Pennsylvania Department of Environmental 
Protection, 2022. 

Pitt, J. R., Lopez-Coto, I., Hajny, K. D., Tomlin, J., Kaeser, R., Jayarathne, T., Stirm, B. H., Floerchinger, C. R., Loughner, 950 
C. P., Gately, C. K., Hutyra, L. R., Gurney, K. R., Roest, G. S., Liang, J., Gourdji, S., Karion, A., Whetstone, J. R., and 
Shepson, P. B.: New York City greenhouse gas emissions estimated with inverse modeling of aircraft measurements, 
Elementa: Science of the Anthropocene, 10, 00082, https://doi.org/10.1525/elementa.2021.00082, 2022. 

Plant, G., Kort, E. A., Floerchinger, C., Gvakharia, A., Vimont, I., and Sweeney, C.: Large Fugitive Methane Emissions 
From Urban Centers Along the U.S. East Coast, Geophysical Research Letters, 46, 8500–8507, 955 
https://doi.org/10.1029/2019GL082635, 2019. 

Plant, G., Kort, E. A., Murray, L. T., Maasakkers, J. D., and Aben, I.: Evaluating urban methane emissions from space using 
TROPOMI methane and carbon monoxide observations, Remote Sensing of Environment, 268, 112756, 
https://doi.org/10.1016/j.rse.2021.112756, 2022. 

Qu, Z., Jacob, D. J., Shen, L., Lu, X., Zhang, Y., Scarpelli, T. R., Nesser, H., Sulprizio, M. P., Maasakkers, J. D., Bloom, A. 960 
A., Worden, J. R., Parker, R. J., and Delgado, A. L.: Global distribution of methane emissions: a comparative inverse 
analysis of observations from the TROPOMI and GOSAT satellite instruments, Atmospheric Chemistry and Physics, 21, 
14159–14175, https://doi.org/10.5194/acp-21-14159-2021, 2021. 

Rodgers, C. D.: Inverse Methods for Atmospheric Sounding: Theory and Practice, 2000. 

Russell, J.: South Side Landfill planning $25 million methane-conversion project, Indianapolis Business Journal, 19th 965 
March, 2019. 

San Diego Air Pollution Control District: San Diego Air Pollution Control District Inspector’s Narrative, 2019. 

Sargent, M. R., Floerchinger, C., McKain, K., Budney, J., Gottlieb, E. W., Hutyra, L. R., Rudek, J., and Wofsy, S. C.: 
Majority of US urban natural gas emissions unaccounted for in inventories, Proceedings of the National Academy of 
Sciences, 118, e2105804118, https://doi.org/10.1073/pnas.2105804118, 2021. 970 

Scarpelli, T. R., Jacob, D. J., Villasana, C. A. O., Hernández, I. F. R., Moreno, P. R. C., Alfaro, E. A. C., García, M. Á. G., 
and Zavala-Araiza, D.: A gridded inventory of anthropogenic methane emissions from Mexico based on Mexico’s national 

https://doi.org/10.5194/egusphere-2023-946
Preprint. Discussion started: 13 June 2023
c© Author(s) 2023. CC BY 4.0 License.



34 
 

inventory of greenhouse gases and compounds, Environ. Res. Lett., 15, 105015, https://doi.org/10.1088/1748-9326/abb42b, 
2020. 

Scarpelli, T. R., Jacob, D. J., Moran, M., Reuland, F., and Gordon, D.: A gridded inventory of Canada’s anthropogenic 975 
methane emissions, Environ. Res. Lett., 17, 014007, https://doi.org/10.1088/1748-9326/ac40b1, 2021. 

Schneising, O., Buchwitz, M., Reuter, M., Vanselow, S., Bovensmann, H., and Burrows, J. P.: Remote sensing of methane 
leakage from natural gas and petroleum systems revisited, Atmospheric Chemistry and Physics, 20, 9169–9182, 
https://doi.org/10.5194/acp-20-9169-2020, 2020. 

Seto, K. C., Güneralp, B., and Hutyra, L. R.: Global forecasts of urban expansion to 2030 and direct impacts on biodiversity 980 
and carbon pools, Proceedings of the National Academy of Sciences, 109, 16083–16088, 
https://doi.org/10.1073/pnas.1211658109, 2012. 

Shen, L., Gautam, R., Omara, M., Zavala-Araiza, D., Maasakkers, J. D., Scarpelli, T. R., Lorente, A., Lyon, D., Sheng, J., 
Varon, D. J., Nesser, H., Qu, Z., Lu, X., Sulprizio, M. P., Hamburg, S. P., and Jacob, D. J.: Satellite quantification of oil and 
natural gas methane emissions in the US and Canada including contributions from individual basins, Atmospheric Chemistry 985 
and Physics, 22, 11203–11215, https://doi.org/10.5194/acp-22-11203-2022, 2022. 

Smith, M.: Airborne methane emissions measurement survey: Final summary report, California Air Resources Board, 2021. 

Song, C., Zhu, J.-J., Willis, J. L., Moore, D. P., Zondlo, M. A., and Ren, Z. J.: Methane Emissions from Municipal 
Wastewater Collection and Treatment Systems, Environ. Sci. Technol., 57, 2248–2261, 
https://doi.org/10.1021/acs.est.2c04388, 2023. 990 

Spokas, K., Bogner, J., Corcoran, M., and Walker, S.: From California dreaming to California data: Challenging historic 
models for landfill CH4 emissions, Elementa: Science of the Anthropocene, 3, 000051, 
https://doi.org/10.12952/journal.elementa.000051, 2015. 

Streets, D. G., Canty, T., Carmichael, G. R., De Foy, B., Dickerson, R. R., Duncan, B. N., Edwards, D. P., Haynes, J. A., 
Henze, D. K., Houyoux, M. R., Jacob, D. J., Krotkov, N. A., Lamsal, L. N., Liu, Y., Lu, Z., Martin, R. V., Pfister, G. G., 995 
Pinder, R. W., Salawitch, R. J., and Wecht, K. J.: Emissions estimation from satellite retrievals: A review of current 
capability, Atmospheric Environment, 77, 1011–1042, https://doi.org/10.1016/j.atmosenv.2013.05.051, 2013. 

Taylor, T.: Colorado 2021 Greenhouse Gas Inventory Update: With Historical Emissions from 2005 to 2019 and Projections 
to 2050, Colorado Air Pollution Control Division, Department of Public Health & Environment, 2021. 

The White House: U.S. Methane Emissions Reduction Action Plan: Critical and commonsense steps to cut pollution and 1000 
consumer costs, while boosting good-paying jobs and American competitiveness, The White House Office of Domestic 
Climate Policy, 2021. 

Turner, A. J., Jacob, D. J., Wecht, K. J., Maasakkers, J. D., Lundgren, E., Andrews, A. E., Biraud, S. C., Boesch, H., 
Bowman, K. W., Deutscher, N. M., Dubey, M. K., Griffith, D. W. T., Hase, F., Kuze, A., Notholt, J., Ohyama, H., Parker, 
R., Payne, V. H., Sussmann, R., Sweeney, C., Velazco, V. A., Warneke, T., Wennberg, P. O., and Wunch, D.: Estimating 1005 
global and North American methane emissions with high spatial resolution using GOSAT satellite data, Atmospheric 
Chemistry and Physics, 15, 7049–7069, https://doi.org/10.5194/acp-15-7049-2015, 2015. 

U.S. Census Bureau: 2010 Census Urban and Rural Classification and Urban Area Criteria, 2010. 

https://doi.org/10.5194/egusphere-2023-946
Preprint. Discussion started: 13 June 2023
c© Author(s) 2023. CC BY 4.0 License.



35 
 

U.S. Census Bureau: TIGER/Line Shapefile, 2017, 2010 nation, U.S., 2010 Census Urban Area National, U.S. Census 
Bureau, 2017. 1010 

USDA: 2017 Census of Agriculture, U.S. Department of Agriculture, 2019. 

Varon, D. J., Jacob, D. J., Hmiel, B., Gautam, R., Lyon, D. R., Omara, M., Sulprizio, M., Shen, L., Pendergrass, D., Nesser, 
H., Qu, Z., Barkley, Z. R., Miles, N. L., Richardson, S. J., Davis, K. J., Pandey, S., Lu, X., Lorente, A., Borsdorff, T., 
Maasakkers, J. D., and Aben, I.: Continuous weekly monitoring of methane emissions from the Permian Basin by inversion 
of TROPOMI satellite observations, Atmospheric Chemistry and Physics Discussions, 1–26, https://doi.org/10.5194/acp-1015 
2022-749, 2022. 

Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., Claas, J., Eskes, H. J., de Haan, J. F., Kleipool, 
Q., van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B., 
Vink, R., Visser, H., and Levelt, P. F.: TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global 
observations of the atmospheric composition for climate, air quality and ozone layer applications, Remote Sensing of 1020 
Environment, 120, 70–83, https://doi.org/10.1016/j.rse.2011.09.027, 2012. 

Vera, A.: State finds violations at landfill, The Progress Index, 3rd January, 2016. 

Wecht, K. J., Jacob, D. J., Frankenberg, C., Jiang, Z., and Blake, D. R.: Mapping of North American methane emissions with 
high spatial resolution by inversion of SCIAMACHY satellite data, J. Geophys. Res. Atmos. Res., 119, 7741–7756, 
https://doi.org/10.1002/2014JD021551, 2014a. 1025 

Wecht, K. J., Jacob, D. J., Sulprizio, M. P., Santoni, G. W., Wofsy, S. C., Parker, R., Bösch, H., and Worden, J.: Spatially 
resolving methane emissions in California: constraints from the CalNex aircraft campaign and from present (GOSAT, TES) 
and future (TROPOMI, geostationary) satellite observations, Atmospheric Chemistry and Physics, 14, 8173–8184, 
https://doi.org/10.5194/acp-14-8173-2014, 2014b. 

Wise, J.: Government Oversight: A review of Dothan’s attempts to expand its landfill, Dothan Eagle, 27th January, 2019. 1030 

Wong, K. W., Fu, D., Pongetti, T. J., Newman, S., Kort, E. A., Duren, R., Hsu, Y.-K., Miller, C. E., Yung, Y. L., and Sander, 
S. P.: Mapping CH4 : CO2 ratios in Los Angeles with CLARS-FTS from Mount Wilson, California, Atmospheric Chemistry 
and Physics, 15, 241–252, https://doi.org/10.5194/acp-15-241-2015, 2015. 

Worden, J. R., Cusworth, D. H., Qu, Z., Yin, Y., Zhang, Y., Bloom, A. A., Ma, S., Byrne, B. K., Scarpelli, T., Maasakkers, J. 
D., Crisp, D., Duren, R., and Jacob, D. J.: The 2019 methane budget and uncertainties at 1° resolution and each country 1035 
through Bayesian integration Of GOSAT total column methane data and a priori inventory estimates, Atmospheric 
Chemistry and Physics, 22, 6811–6841, https://doi.org/10.5194/acp-22-6811-2022, 2022. 

Wunch, D., Wennberg, P. O., Toon, G. C., Connor, B. J., Fisher, B., Osterman, G. B., Frankenberg, C., Mandrake, L., 
O’Dell, C., Ahonen, P., Biraud, S. C., Castano, R., Cressie, N., Crisp, D., Deutscher, N. M., Eldering, A., Fisher, M. L., 
Griffith, D. W. T., Gunson, M., Heikkinen, P., Keppel-Aleks, G., Kyrö, E., Lindenmaier, R., Macatangay, R., Mendonca, J., 1040 
Messerschmidt, J., Miller, C. E., Morino, I., Notholt, J., Oyafuso, F. A., Rettinger, M., Robinson, J., Roehl, C. M., Salawitch, 
R. J., Sherlock, V., Strong, K., Sussmann, R., Tanaka, T., Thompson, D. R., Uchino, O., Warneke, T., and Wofsy, S. C.: A 
method for evaluating bias in global measurements of CO2 total columns from space, Atmospheric Chemistry and Physics, 
11, 12317–12337, https://doi.org/10.5194/acp-11-12317-2011, 2011. 

Wunch, D., Toon, G. C., Hedelius, J. K., Vizenor, N., Roehl, C. M., Saad, K. M., Blavier, J.-F. L., Blake, D. R., and 1045 
Wennberg, P. O.: Quantifying the loss of processed natural gas within California’s South Coast Air Basin using long-term 

https://doi.org/10.5194/egusphere-2023-946
Preprint. Discussion started: 13 June 2023
c© Author(s) 2023. CC BY 4.0 License.



36 
 

measurements of ethane and methane, Atmos. Chem. Phys., 16, 14091–14105, https://doi.org/10.5194/acp-16-14091-2016, 
2016. 

Yadav, V., Duren, R., Mueller, K., Verhulst, K. R., Nehrkorn, T., Kim, J., Weiss, R. F., Keeling, R., Sander, S., Fischer, M. 
L., Newman, S., Falk, M., Kuwayama, T., Hopkins, F., Rafiq, T., Whetstone, J., and Miller, C.: Spatio-temporally Resolved 1050 
Methane Fluxes From the Los Angeles Megacity, Journal of Geophysical Research: Atmospheres, 124, 5131–5148, 
https://doi.org/10.1029/2018JD030062, 2019. 

Yadav, V., Verhulst, K., Duren, R., Thorpe, A., Kim, J., Keeling, R., Weiss, R., Cusworth, D., Mountain, M., Miller, C., and 
Whetstone, J.: A declining trend of methane emissions in the Los Angeles basin from 2015 to 2020, Environ. Res. Lett., 18, 
034004, https://doi.org/10.1088/1748-9326/acb6a9, 2023. 1055 

Yu, X., Millet, D. B., Wells, K. C., Henze, D. K., Cao, H., Griffis, T. J., Kort, E. A., Plant, G., Deventer, M. J., Kolka, R. K., 
Roman, D. T., Davis, K. J., Desai, A. R., Baier, B. C., McKain, K., Czarnetzki, A. C., and Bloom, A. A.: Aircraft-based 
inversions quantify the importance of wetlands and livestock for Upper Midwest methane emissions, Atmospheric 
Chemistry and Physics, 21, 951–971, https://doi.org/10.5194/acp-21-951-2021, 2021. 

Zhang, Y., Jacob, D. J., Maasakkers, J. D., Sulprizio, M. P., Sheng, J.-X., Gautam, R., and Worden, J.: Monitoring global 1060 
tropospheric OH concentrations using satellite observations of atmospheric methane, Atmospheric Chemistry and Physics, 
18, 15959–15973, https://doi.org/10.5194/acp-18-15959-2018, 2018. 

Zhang, Y., Gautam, R., Pandey, S., Omara, M., Maasakkers, J. D., Sadavarte, P., Lyon, D., Nesser, H., Sulprizio, M. P., 
Varon, D. J., Zhang, R., Houweling, S., Zavala-Araiza, D., Alvarez, R. A., Lorente, A., Hamburg, S. P., Aben, I., and Jacob, 
D. J.: Quantifying methane emissions from the largest oil-producing basin in the United States from space, Science 1065 
Advances, 6, eaaz5120, https://doi.org/10.1126/sciadv.aaz5120, 2020. 

 

https://doi.org/10.5194/egusphere-2023-946
Preprint. Discussion started: 13 June 2023
c© Author(s) 2023. CC BY 4.0 License.


