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Abstract. We quantify 2019 annual mean methane emissions in the contiguous U.S. (CONUS) at 0.25° × 0.3125° resolution 

by inverse analysis of atmospheric methane columns measured by the Tropospheric Monitoring Instrument (TROPOMI). A 

gridded version of the U.S. Environmental Protection Agency (EPA) Greenhouse Gas Emissions Inventory (GHGI) serves as 

the basis for the prior estimate for the inversion. We optimize emissions and quantify observing system information content 20 

for an eight-member inversion ensemble through analytical minimization of a Bayesian cost function. We achieve high 

resolution with a reduced-rank characterization of the observing system that optimally preserves information content. Our 

optimal (posterior) estimate of anthropogenic emissions in CONUS is 30.9 (30.0 - 31.8) Tg a-1, where the values in parentheses 

give the spread of the ensemble. This is a 13% increase from the 2023 GHGI estimate for CONUS in 2019. We find livestock 

emissions of 10.4 (10.0 - 10.7) Tg a-1, oil and gas of 10.4 (10.1 - 10.7) Tg a-1, coal of 1.5 (1.2 - 1.9) Tg a-1, landfills of 6.9 (6.4 25 

- 7.5) Tg a-1, wastewater of 0.6 (0.5 - 0.7), and other anthropogenic sources of 1.1 (1.0 - 1.2) Tg a-1. The largest increase relative 

to the GHGI occurs for landfills (51%), with smaller increases for oil and gas (12%) and livestock (11%). These three sectors 

are responsible for 89% of posterior anthropogenic emissions in CONUS. The largest decrease (28%) is for coal. We exploit 

the high resolution of our inversion to quantify emissions from 73 70 individual landfills, where we find emissions are on 

median 77% larger than the values reported to the EPA’s Greenhouse Gas Reporting Program (GHGRP), a key data source 30 

for the GHGI. We attribute this underestimate to overestimated recovery efficiencies at landfill gas facilities and to under-

accounting of site-specific operational changes and leaks. We also quantify emissions for the 48 individual states in CONUS, 

which we compare to the GHGI’s new state-level inventories and to independent state-produced inventories. Our posterior 

emissions are on average 3427% larger than the 2022 GHGI in the largest 10 methane-producing states, with the biggest 

upward adjustments in states with large oil and gas emissions, including Texas, New Mexico, Louisiana, and Oklahoma. We 35 
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also calculate emissions for 95 geographically diverse urban areas in CONUS. Emissions for these urban areas total 6.0 (5.4 - 

6.7) Tg a-1 and are on average 39 (27 - 52) % larger than a gridded version of the 2023 GHGI, which we attribute to 

underestimated landfill and gas distribution emissions. 

1 Introduction 

All projected pathways that prevent global warming above 1.5°C require methane emissions reductions (IPCC, 2022). The 40 

Global Methane Pledge, launched at a 2021 meeting of the United Nations Framework Convention on Climate Change 

(UNFCCC), aims to achieve a 30% global reduction in methane emissions from 2020 to 2030 (About the Global Methane 

Pledge, 2023). TheConsistent with that goal, the U.S. government has set goals to decreaseis targeting methane 

emissionsemission decreases from landfills by 30% and from livestock by 25% relative to 2015 levels by 2025 and regulation 

in development aims to reduce oil and gas methane emissions by 30% from 2020 to 2030, livestock, and landfills (The White 45 

House, 2021). The UNFCCC requires member parties to report their anthropogenic methane emissions including sectoral 

contributions from oil and gas, coal, livestock, rice, landfills, and wastewater. The bottom-up approaches used to generate 

these emission inventories use information on sectoral activity levels and emission factors, but considerable uncertainty can 

exist in these values. Top-down evaluations of bottom-up inventories use observations of atmospheric methane to infer 

emissions, often through inverse analyses using a chemical transport model. These top-down emission estimates are most 50 

useful for the evaluation of emission inventories and emission mitigation efforts if they achieve high spatial resolution and 

maximizeconsistent with the information content of the observation-model system. Here we use column methane observations 

from the Tropospheric Monitoring Instrument (TROPOMI) aboard the Sentinel-5 Precursor satellite in a reduced-rank 

analytical inversion to infer methane emissions and the associated information content at 0.25° × 0.3125° (≈25 km × 25 km) 

resolution over the contiguous U.S. (CONUS) for 2019, allowing for detailed analysis of sectoral, state, and urban emissions. 55 

 

Satellite observations of atmospheric methane column concentrations inferred from measurement of backscattered sunlight in 

the shortwave infrared have been used extensively in inverse analyses of methane emissions (Streets et al., 2013; Jacob et al., 

2022). Previous satellite instruments were limited by large pixel sizes (SCIAMACHY, 2003 - 2012) or sparse observations 

(GOSAT, 2009 - present). TROPOMI provides daily, global observations of atmospheric methane columns at 5.5 km × 7 km 60 

nadir pixel resolution (Hu et al., 2018) with a ~3% success rate limited by cloud cover, optically dark surfaces, and 

heterogeneous terrain (Hasekamp et al., 2019). Inversions of TROPOMI data allow for high-resolution quantification of 

methane emissions but require understanding the information content of the observations. 

 

Inverse analyses optimize methane emissions (the state vector) by fitting observations to simulated concentrations from a 65 

chemical transport model (CTM) that serves as the inversion forward model. The optimization is typically done by minimizing 

a Bayesian cost function regularized by a prior emission estimate given by a bottom-up inventory. When a linear relationship 
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exists between emissions and concentrations, as in the case of methane, the optimal (posterior) solution and the associated 

error covariances and information content can be found analytically (Brasseur and Jacob, 2017). However, this requires the 

computationally expensive but embarrassingly parallel construction of the Jacobian matrix that represents the relationship 70 

between emissions and concentrations in the CTM. This matrix is typically constructed by conducting a CTM perturbation 

simulation for each optimized emission element, limiting either the spatial resolution of the optimized emissions or the size of 

the inversion domain. Nesser et al. (2021) demonstrated an alternative method that approximates the Jacobian matrix by 

perturbing emission patterns that are optimally informed by both the prior emissions and the observations. This approach 

optimally exploits the information content of the observations, quantifying emissions at the highest resolution possible where 75 

the satellite-model observing system provides a constraint and defaulting to the prior estimate elsewhere. 

 

Many inverse studies that quantified U.S. methane emissions using surface, aircraft, or satellite observations have found large 

discrepancies with the U.S. Environmental Protection Agency’s (EPA) Greenhouse Gas Emissions Inventory (GHGI), which 

is the bottom-up emission estimate reported by the U.S. to the UNFCCC (EPA, 2023a). Wecht et al. (2014a) found livestock 80 

emissions 40% larger than the GHGI for the summer of 2004. Miller et al. (2013) inferred emissions 50% larger than the GHGI 

for 2007 and 2008, which they attributed to underestimated oil, gas, and livestock emissions. Turner et al. (2015) found similar 

results for 2009 to 2011. Maasakkers et al. (2021) inferred oil and gas emissions 35% and 22% higher than the GHGI, 

respectively, for 2010 to 2015. Lu et al. (2022) found mean 2010 - 2017 anthropogenic emissions 42% larger than the GHGI, 

which they attributed largely to oil and gas emissions. 85 

 

Higher resolution regional studies have targeted specific aspects of U.S. methane emissions, including contributions from 

different sectors, states, and urban areas. Karion et al. (2015) found oil and gas emissions in the Barnett Shale in eastern Texas 

that were consistent with the GHGI when scaled by the region’s relative contribution to national gas production but larger than 

reported by most basin facilities to the EPA’s Greenhouse Gas Reporting Program (GHGRP). A series of studies inferred much 90 

higher emissions in the Permian Basin than implied by a spatially allocated (gridded) version of the GHGI (Zhang et al., 2020; 

Schneising et al., 2020; Liu et al., 2021; Y. Chen et al., 2022; Varon et al., 2022). Z. Chen et al. (2018) and Yu et al. (2021) 

found underestimated livestock emissions in the gridded GHGI in the upper Midwest. Jeong et al. (2016) inferred California 

emissions 20% to 80% larger than a state inventory from the California Air Resources Board (CARB). Plant et al. (2019) found 

methane emissions from six East Coast urban areas in 2012 to be more than two times larger than the gridded GHGI. 95 

 

Here we use the reduced-rank method of Nesser et al. (2021) in an analytical inversion of 2019 TROPOMI observations to 

quantify annual mean emissions at 0.25° × 0.3125° resolution over North America using national emission inventories reported 

by the U.S., Mexico, and Canada to the UNFCCC as prior estimates. The reduced-rank approach decreases computational cost 

by an order of magnitude compared to conventional methods while maximizing information content from TROPOMI. We 100 

focus our analysis on CONUS, with particular attention to emissions from individual landfills, states, and urban areas. We 
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compare our results to the 2023 GHGI, including estimates for individual states (EPA, 2023a, b) and to new emission estimates 

for individual states published most recently with the 2022 GHGI (EPA, 2022b). Our inversion provides the first observational 

evaluation for these state inventories. We also compare our results to inventories prepared by individual states and cities. 

2 Data and methods 105 

We conduct an ensemble of inversions of 2019 TROPOMI methane observations over the North American domain shown in 

Fig. 1 (9.75°N - 60°N, 130°W - 60°W) using the nested GEOS-Chem CTM at 0.25° × 0.3125° resolution as forward model. 

The  𝑚 = 2919358  TROPOMI observations are fit to simulated GEOS-Chem concentrations to optimize annual mean methane 

emissions for 2019 at the 0.25° × 0.3125° GEOS-Chem resolution. This corresponds to 𝑛 = 23691 emission grid cells with 

prior methane emissions larger than 0.1 Mg km-2 a-1, accounting for over 99% of North American methane emissions. In a 110 

subset of the ensemble, we optimize boundary conditions for the nested GEOS-Chem simulation for each of the four cardinal 

directions (north, south, east, and west). Methane chemical and soil sinks are not optimized because they are relatively uniform 

and slow small compared to the ventilation timescale of the domainemissions.  

2.1 Reduced-rank analytical inversion 

The inversion uses 𝑚 observed concentrations arranged in a vector 𝐲 to optimize 𝑛 gridded emissions arranged in the state 115 

vector 𝐱 by minimizing a Bayesian cost function 𝐽 assuming normal errors and regularized by the prior emission estimate 𝐱! 

(Rodgers, 2000): 

 

𝐽(𝐱) = (𝐱 − 𝐱!)"𝐒!#$(𝐱 − 𝐱!) + 𝛾(𝐲 − 𝐊𝐱)"𝐒𝐎#$(𝐲 − 𝐊𝐱). (1) 

 120 

The prior and observing system error covariance matrices 𝐒! and 𝐒&, respectively, are assumed diagonal in the absence of 

better information. The regularization factor 𝛾 corrects for the absence of covariance in 𝐒& (Chevallier, 2007). We generate an 

eight-member inversion ensemble using a range of prior error variances and 𝛾 values to capture the inversion’s sensitivity to 

uncertainty in these parameters (Sect. 2.7). The reduced-rank Jacobian matrix 𝐊 = ∂𝐲 ∂𝐱⁄  represents the sensitivity of 

concentrations to emissions in the CTM. We construct a rank-𝑘 Jacobian matrix for the 0.25° × 0.3125° GEOS-Chem grid by 125 

perturbing in the CTM the 𝑘  emission patterns that best capture the prior emissions and the information content of the 

TROPOMI observations (Sect. 2.6).  

 

Analytical minimization of the cost function following Rodgers (2000) yields the optimal (posterior) state vector estimate 𝐱3, 

error covariance matrix 𝐒4, and information content given by the averaging kernel matrix 𝐀 = 𝜕𝐱3 𝜕𝐱⁄ = 𝐈 − 𝐒4𝐒!#$ , which 130 

describes the sensitivity of the posterior estimate to the true state vector. However, this solution requires inverting the cost 

function Hessian, which produces numerical instabilities due to the rank reduction of the Jacobian matrix. Here we use a 
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reduced-rank approximation of the posterior solution following Bousserez and Henze (2018) to solve the inversion on an 

orthonormal basis that optimally spans the information content of the satellite–forward model observing system. The basis is 

given by the eigendecomposition of the prior-preconditioned Hessian of the cost function, 135 

 

𝐇9' = 𝐒!
$ (⁄ 𝐊"𝐒&#$𝐊𝐒!

$ (⁄ = 𝐕𝚲𝐕", (2) 

 

where the columns of 𝐕 are the eigenvectors and 𝚲 is a diagonal matrix with entries equal to the eigenvalues. The calculation 

of 𝐇9'  requires substantial memory for large 𝑚  and 𝑛 , for which we use Dask, a Python parallelization package (Dask 140 

Development Team, 2016). The reduced-rank posterior approximation is then generated using the largest 𝑘 eigenvalues 𝚲* 

and the associated eigenvectors 𝐕* (Bousserez and Henze, 2018): 

 

𝐀𝐊 = 𝛾𝐒!𝐕*𝚲*(𝐈* + 𝛾𝚲*)#$𝐕*"𝐒!, (3)
𝐒4𝐊 = (𝐈, − 𝐀𝐊)𝐒!, and (4)
𝐱3-. = 𝐱! + 𝛾𝐒4𝐊𝐊"𝐒&#$C𝐲 − 𝐅(𝐱!)E. (5)
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Here, 𝐱3-. approximates the full-rank (FR) posterior 𝐱3 by minimizing the difference between the two, and 𝐒4𝐊 and 𝐀𝐊 are the 

optimal posterior error covariance and averaging kernel matrices, respectively, for an inversion solved with a reduced-rank 

forward model. We set 𝑘 to match the rank of the reduced-rank Jacobian matrix, which is chosen to maximize information 

content within the available computational resources (Sect. 2.6). The diagonal elements of 𝐀* are often referred to as averaging 

kernel sensitivities and are a measure of the dependence of the optimized emissions on the prior estimate. Their sum (trace of 150 

𝐀* ) gives the degrees of freedom for signal (DOFS) that represent the number of pieces of information independently 

quantified by the observing system (Rodgers, 2000). The reduced-rank inversion and Jacobian matrix do not attempt to 

optimize emissions in areas with low information content, so we default to the prior estimate for grid cells with averaging 

kernel sensitivities less than 0.05 (Nesser et al., 2021). 

2.2 Prior estimates and errors 155 

Figure 1 shows the annual-average prior emission estimates for different sectors. Anthropogenic emissions are given by the 

spatially disaggregated (gridded) versions of the 2016 EPA GHGI for the U.S. for 2012 (Maasakkers et al., 2016), the Instituto 

Nacional de Ecología y Cambio Climático (INECC) inventory for Mexico for 2015 (Scarpelli et al., 2020), and the 

Environment and Climate Change Canada (ECCC) inventory for Canada for 2018 (Scarpelli et al., 2021). We update the 

distribution and magnitude of GHGI oil and gas emissions to the 2020 GHGI for 2018 following Shen et al. (2022) and use 160 

the Environmental Defense Fund’s inventory for the Permian basin for 2019 (Zhang et al., 2020), where GHGI estimates are 

known to be too low (Zhang et al., 2020; Schneising et al., 2020; Liu et al., 2021; Y. Chen et al., 2022; Varon et al., 2022). 
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We treat oil and gas as a single sector in our analysis due to significant source co-location and uncertainty in the partitioning 

of oil and gas wells. The magnitude of GHGI livestock, landfill, and wastewater emissions changed by less than 10% from 

2012 to 2019, while coal emissions decreased by 26%. The distribution of these sources is unlikely to have changed 165 

significantly. Anthropogenic emissions for Central America and the Caribbean islands are from the EDGAR v4.3.2 global 

emission inventory for 2012 (Janssens-Maenhout et al., 2019). Anthropogenic emissions are assumed aseasonal except for 

manure management and rice cultivation, for which we apply monthly scaling factors as described by Maasakkers et al. (2016) 

and Zhang et al. (2018), respectively. 

 170 

Prior monthly emissions for wetlands are given by the high-performance subset of the WetCHARTs ensemble version 1.3.1, 

which includes the nine ensemble members that best match global GOSAT inversion results (Ma et al., 2021). Lu et al. (2022) 

found in an inversion of GOSAT data over North America that this high performance subset overestimated wetland methane 

emissions, particularly at high latitudes. We remove from the ensemble the two members (WetCHARTs models 1923 and 

2913; Bloom et al., 2017) that are most responsible for this overestimate. Other natural methane emission sources are minor 175 

and include open fires, termites, and geological seeps, for which we follow the emissions described in Lu et al. (2022). Methane 

losses from chemical reaction,oxidation and soil uptake, and stratospheric oxidation are prescribed as in Maasakkers et al. 

(2019) and are not optimized in the inversion. 

 
Figure 1: Bottom-up methane emission inventories used as prior estimates for the inversion. Panels show annual mean methane emissions 180 
for different sectors. Anthropogenic sectors are given by the gridded versions of the national inventories of Canada (ECCC), the U.S. (EPA 
GHGI), and Mexico (INECC) reported to the UNFCCC (Maasakkers et al., 2016; Scarpelli et al., 2020, 2022). U.S. oil and gas emissions 
are updated as described in Sect. 2.2. Wetland emissions are given by the high-performance subset of the WetCHARTs version 1.3.1 wetlands 
inventory ensemble (Ma et al., 2021), excluding two ensemble members as described in Sect. 2.2. Emissions are shown on the 0.25° × 
0.3125° GEOS-Chem grid used for the inversion. 185 

Total Oil and gas Coal Livestock

Landfills Wastewater Wetlands Other

0 1 2 3 4 5

Methane emissions (Mg km2 a°1)
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We assume uniform relative error standard deviations for the prior emissions of between 50% and 100% for the different 

members of our inversion ensemble, with no error covariance between grid cells. Previous inversions that optimized methane 

emissions over North America assumed prior error standard deviations up to 50% . We inflate errors up to 100% in our 

ensemble to account for increased errors at high resolution (Maasakkers et al., 2016). Errors for each ensemble member are 

chosen as described in Sect. 2.7. 190 

2.3 Forward model 

We use the nested version of the GEOS-Chem CTM 12.7.1 (DOI: 10.5281/zenodo.3676008) at 0.25° × 0.3125° resolution 

over North America as the forward model for the inversion. Earlier versions of the methane simulation were described by 

Wecht et al. (2014a) and Turner et al. (2015). The model is driven by GEOS-FP meteorological fields from the NASA Global 

Modeling and Assimilation Office (Lucchesi, 2017). Methane sinks from OH, Cl, soil uptake, and stratospheric oxidation are 195 

as described in Maasakkers et al. (2019). Initial conditions for January 1, 2019 and 3-hourly boundary conditions for the year 

are specified by methane concentration fields from a global GEOS-Chem simulation at 2° × 2.5° resolution using optimized 

emissions from a global inversion of TROPOMI observations (Qu et al., 2021). 

2.4 TROPOMI observations 

TROPOMI has provided daily, global observations of dry column methane mixing ratios at 7 km × 7 km nadir pixel resolution 200 

since May 2018 and at 5.5 km × 7 km nadir pixel resolution since August 2019 (Lorente et al., 2021). TROPOMI measures 

backscattered solar radiation in the 2.3 μm methane absorption band from a sun-synchronous orbit with a local overpass time 

of 13:30 (Veefkind et al., 2012). Methane concentrations are inferred from a full-physics retrieval with a ~3% success rate 

limited by cloud cover, variable topography, low or heterogeneous albedo, and high aerosol loading (Hasekamp et al., 2019). 

We use retrieval v14 as described by Lorente et al. (2021), which has a -3.4 ± 5.6 ppb bias relative to the Total Carbon Column 205 

Observing Network (TCCON). We use only high-quality retrievals as indicated by thewith quality assessment flag equal to 1.. 

 

Previous analyses of TROPOMI data identified surface artifacts (Barré et al., 2021) and spatially variable biases relative to the 

more accurate but sparser GOSAT data (Jacob et al., 2022). We filter the data to remove snow- and ice-covered scenes using 

blended albedo, an empirical parameter developed by Wunch et al. (2011) and suggested for the TROPOMI data by Lorente 210 

et al. (2021). We remove scenes with blended albedo greater than 0.75 in non-summer seasons. We also remove scenes with 

albedo in the shortwave infrared less than 0.05 following de Gouw et al. (2020), which account for most of the remaining 

unphysical TROPOMI observations (methane mixing ratio less than 1700 ppb), and scenes north of 50°N in winter.  

 

https://doi.org/10.5281/zenodo.3676008
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 215 
Figure 2: TROPOMI methane observations in 2019. The left panel shows the annual average column dry methane mixing ratios for 2019 
averaged on the 0.25° × 0.3125° GEOS-Chem grid. The right panel shows the number of observations for the year on the same grid. The 
observations have been filtered as described in Sect. 2.4. 

Figure 2 shows the final 𝑚 = 2919358 observations used for the inversion on the GEOS-Chem 0.25° × 0.3125° grid. The data 

are dense and seasonally consistent across high-emitting regions of CONUS (Fig. S1). The filters preserve 69% of the high-220 

quality retrievals of TROPOMI v14 and increase the GOSAT - TROPOMI correlation in all seasons, with the largest increases 

in winter and spring (Fig. S21). Seasonal regional biases decrease by between 7% and 21% and are always within the one 

standard deviation range of both the TROPOMI and GOSAT data.  Comparison to a GEOS-Chem simulation driven by the 

prior emissions as shown in Fig. S32 shows a mean aseasonal (GEOS-Chem - TROPOMI) bias of ξ = 9.1 ppb over North 

America which we attribute to errors in the boundary conditions. This bias can also be fit as a linear function of degrees latitude 225 

θ as ξ	 = 	−5.40	 + 	0.39θ. We correct the bias in our inversion ensemble members by removing either the continental mean 

bias or the latitude-dependent correction from the GEOS-Chem concentrations. 

2.5 Observing system errors 

The observing system error covariance matrix 𝐒& includes contributions from forward model, instrument, and representation 

errors (Brasseur and Jacob, 2017). Forward model errors include contributions from transport and from random temporal 230 

variability unresolved by the prior emissions estimate. We calculate the total observing system error variances using the 

residual error method (Heald et al., 2004). This method assumes that the mean difference between the TROPOMI observations 

and the prior GEOS-Chem simulation, calculated here on a seasonal 2° × 2° grid, is caused by errors in emissions that will be 

corrected by the inversion. The standard deviation of the residual errors after subtracting the mean gridded errors then defines 

2019 TROPOMI methane observations Observational density

1820 1830 1840 1850 1860 1870 1880

Methane mixing ratio (ppb)

0 200 400 600 800 1000

Count
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the standard deviation of the observing system errors. We set a minimum error standard deviation of 10 ppb, which applies to 235 

32% of observations. We find a mean observing system error standard deviation of 11.5 ppb, with the largest errors in winter 

and at high latitudes. The resulting error variances are the diagonal elements of 𝐒&. Off-diagonal terms are assumed zero in 

the absence of better information, which we account for with the regularization factor 𝛾 (Chevallier, 2007). We describe the 

choice of 𝛾 in Sect. 2.7. 

2.6 Jacobian matrix 240 

Constructing the Jacobian matrix 𝐊 for our inversion would normally require conducting a 1-year perturbation simulation for 

each of the 𝑛  = 23691 grid cells optimized. This is computationally intractable. We construct the Jacobian matrix at 

substantially decreased computational cost using the reduced-rank method introduced by Nesser et al. (2021), which takes 

advantage of the heterogeneous information content of the TROPOMI observations. This method updates an initial, low-cost 

estimate of the Jacobian matrix by perturbing the patterns that best explain the information content of the observing system, 245 

constructing a reduced-rank Jacobian matrix that optimally preserves information content. 

 

We construct the initial, low-cost estimate of the Jacobian matrix 𝐊(0) using the mass-balance approach described by Nesser 

et al. (2021). We assume that a perturbation of methane emissions Δ𝑥2 in grid cell j with units kg m-2 s-1 produces column 

mixing ratio enhancements Δ𝑦3 over grid cell i according to 250 

 

Δ𝑦3 = 𝛼32
𝑀456

𝑀78!

𝐿𝑔
𝑈𝑝 	Δ𝑥2 	

(6) 

 

where 𝛼32 ∈ [0, 1] is a dimensionless coefficient providing a crude representation of turbulent diffusion, 𝑀456 and 𝑀78! are 

the molecular weights of dry air and methane, respectively, 𝐿 is a ventilation length scale equal to the square root of the grid 255 

cell area, 𝑔 is gravitational acceleration, 𝑈 is the wind speed taken here as 5 km h-1, and 𝑝 is the surface pressure taken here as 

1000 hPa. The use of 𝛼32 produces off-diagonal structure in 𝐊(0), which we found in Nesser et al. (2021) to be necessary for 

an effective first estimate. We apply a simple isotropic turbulent diffusion scheme in which the influence of emissions spreads 

linearly to concentric rings of grid cells. This is represented as 𝛼32 = (8 − ‖𝑖 − 𝑗‖)/36𝑐, where ‖𝑖 − 𝑗‖ = {0, 1, … , 7} gives 

the distance in latitude or longitude grid cell index between 𝑖 and 𝑗, 36 is the sum of ‖𝑖 − 𝑗 + 1‖ values, and 𝑐 gives the number 260 

of grid cells in the corresponding concentric ring. For ‖𝑖 − 𝑗‖ ≥ 8, 𝛼32 = 0. 

 

We use 𝐊(0) together with the error covariance matrices 𝐒! and 𝐒& to calculate the initial patterns of information content that 

are perturbed in the forward model. We calculate the prior pre-conditioned Hessian (Eq. (2)) using 𝐊(0) and perform its 

eigendecomposition. The resulting matrix of eigenvectors 𝐕(0) is related to the patterns of information content via 𝐒!
$ (⁄ 𝐕(0), 265 
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which is equivalent to the eigenvector matrix of the averaging kernel matrix calculated with  𝐊(0) (Bousserez and Henze, 

2018). We perturb the 𝑘$ = 434 eigenvectors that capture 50% of the DOFS generated with 𝐊(0). We then apply an optimal 

operator that restores the original state dimension and minimizes information content loss to yield an updated reduced-rank 

Jacobian matrix estimate 𝐊($). We recompute the eigenvectors, perturb the 𝑘( = 1952 eigenvectors that explain 80% of the 

initial DOFS, and construct the final reduced-rank Jacobian matrix 𝐊(() . This iterative update scheme optimizes the 270 

information content of the posterior solution while reducing the computational cost by an order of magnitude (Nesser et al., 

2021).  

2.7 Inversion ensemble 

The posterior error covariance matrix that results from Bayesian optimization (Eq. (4)) does not account for errors in inversion 

parameters including the prior and observing system error covariance matrices (Houweling et al., 2014). The analytical 275 

solution readily allows for the creation of an ensemble of inversions that reflects the sensitivity of the results to the chosen 

setup including parameters. Table 1 summarizes our quality-controlled ensemble of inversions. We conduct inversions that do 

or do not optimize the boundary conditions and apply either a latitudinal or mean bias correction to the prior (model - 

observation) difference as driven by boundary condition biases. For each inversion, we choose the relative prior error (50%, 

75%, or 100%) and regularization factor (between 0.175 and 0.5) so that the prior term of the cost function evaluated at the 280 

pos te r io r  so lu t ion  𝐽!(𝐱3) = (𝐱3 − 𝐱!)"𝐒!#$(𝐱3 − 𝐱!)  averages  to  1  ac ross  a l l  g r id  ce l l s  op t imized  by  the  

 
Table 1: The eight members of the inversion ensemble. 

Optimized 
boundary 
conditions1 

Bias 
correction2 

Prior error 
standard 
deviation3 

Regularization 
factor3 

Yes Latitudinal 
50% 0.2 

75% 0.45 

Yes Mean 

50% 0.175 

75% 0.3 

100% 0.5 

No Latitudinal 
50% 0.175 

75% 0.35 

No Mean 75% 0.175 
1 We conduct inversions that either do or do not optimize the boundary conditions. In inversions with optimized boundary conditions, we 
include in the inversion state vector four boundary condition elements corresponding to the northern, eastern, southern, and western borders 285 
of the North American domain. 
2 We also conduct inversions that apply either a latitudinal or mean bias correction to the prior (model – observation) difference. The 
latitudinal correction fits the bias with a first order polynomial. In inversions with a mean bias correction, we remove the mean prior (model 
– observation) difference as driven by boundary condition biases. 
3 We balance the prior and observing system errors to avoid overfitting the emissions to the observations. The regularization factor 𝜸 is 290 
applied to the inverse observing system error covariance matrix 𝐒𝐎"𝟏 so that values less than one increase the observing system errors. We 
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choose the value of the regularization factor and the prior error standard deviation for a given inversion so that the prior term of the posterior 
cost function is approximately one as required by chi-squared statistics (Sect. 2.7). 
reduced-rank inversion as expected from the chi-square distribution, which 𝐽!(𝐱) definitionally follows (Lu et al., 2021). This 

yields an ensemble of eight quality-controlled inversions with indistinguishable validity. All inversions have few grid cells 295 

with negative emissions, most of which are on the same order of magnitude as the soil sink. We Unless otherwise noted, our 

results report give the mean posterior emissions for the ensemble, with uncertainty ranges given by the ensemble range.  

2.78 Source attribution 

The high resolution of the inversion facilitates the attribution of the posterior emission estimates to individual source sectors 

or regions, including states and urban areas. We aggregate the native resolution emission and error estimates to the 300 

corresponding 𝑝 sectors, states, or urban areas using a summation matrix 𝐖 ∈ ℝ'×,. The rows of 𝐖 are given by the relative 

contribution of each grid cell to each source category. For sectoral attribution, the rows are given by the relative, area-

normalized contribution of each grid cell to a given sector in the prior emission estimate. For state attribution, the rows are 

given by the fraction of each grid cell within a given state. For urban area attribution, the rows have binary values depending 

on whether the grid cell overlaps with a given urban area. If the grid cell contains multiple urban areas, the fractional 305 

contribution of the grid cell to a given urban area is used instead. The reduced-dimension posterior estimate 𝐱3-.,6;<, posterior 

covariance matrix 𝐒4𝐊,6;<, and averaging kernel matrix 𝐀𝐊,6;< are then given by 

 

𝐱3-.,6;< = 𝐖𝐱3-., (7)
𝐒4𝐊,6;< = 𝐖𝐒4𝐊𝐖", and (8)
𝐀𝐊,6;< = 𝐖𝐀𝐊𝐖∗, (9)

 

 310 

where 𝐖∗ = 𝐖"(𝐖𝐖")#$ is the Moore-Penrose pseudo inverse (Calisesi et al., 2005). In the case of disaggregating our 

emission estimates to individual landfills, we scale the posterior estimate in the corresponding grid cell by the fraction of 

emissions attributed to landfills in the prior estimate. These approaches to source aggregation and disaggregation assume that 

the prior fractional sectoral contributions are correct in each grid cell and that emission sources are evenly distributed in grid 

cells that cross state lines. The uncertainty of this method is not reflected in the reported error bounds, but tThe high resolution 315 

of our emission estimates decreases the influence of these assumptions relative to coarser resolution estimates. Newly 

developed methods use prior and posterior error covariances to improve upon these assumptions (Cusworth et al., 2021).  

3 Results and discussion 

Figure 3 shows the ensemble mean posterior scale factors relative to the annual average prior emission estimate as described 

in Sect. 2.2 (left) and the corresponding averaging kernel sensitivities (right). Grid cells unoptimized by the inversion (mean 320 

averaging kernel sensitivity less than 0.05) are left blank. We find 772 (421 - 1279) DOFS for the domain, where the values  
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Figure 3: Optimization of methane emissions for 2019 by inversion of TROPOMI observations. The left panel shows the scale factors 
relative to the prior estimate for the inversion given by gridded versions of the national anthropogenic emissions inventories for the U.S. 
(EPA GHGI), Mexico (INECC), and Canada (ECCC), with U.S. oil and gas emissions updated as described in Sect. 2.2, and by WetCHARTs 325 
wetland emissions (top left panel of Fig. 1). The right panel shows the observing system information content as measured by the averaging 
kernel sensitivities (the diagonal elements of the averaging kernel matrix). Values of 1 indicate that TROPOMI quantifies emissions 
independently of the prior estimate, while values of 0 indicate that emissions are not optimized by the inversion. The sum of the averaging 
kernel sensitivities gives the degrees of freedom for signal (DOFS), shown inset, which defines the number of independent pieces of 
information quantified by the observing system. Grid cells with averaging kernel sensitivities less than 0.05 are left blank. 330 

in parentheses here and elsewhere are the quality-controlled, eight-member inversion ensemble minimum and maximum, 

respectively. This represents a large increase in information content relative to past inversions over North America: Lu et al. 

(2022) found 114 DOFS in a joint inversion of data from GOSAT and the National Oceanic and Atmospheric Administration’s 

(NOAA) GLOBALVIEWplus ObsPack in situ data, while Shen et al. (2022) found 201 DOFS in an inversion of TROPOMI 

observations over 14 oil and gas basins. This increase reflects both the improved coverage from TROPOMI and the benefit of 335 

achieving 0.25° × 0.3125° resolution on the continental scale. Of these DOFS, 641 (350 – 1058) are found for CONUS, 86 (53 

- 134) for Mexico, and 37 (15 - 69) for Canada. The high information content for CONUS reflects both the large emissions 

(Fig. 1) and the high density and consistency of TROPOMI observations (Fig. 2). As a result, we focus our discussion on 

CONUS. We isolate anthropogenic emissions by removing contributions from wetlands and other natural sources following 

Sect. 2.8. We compare our posterior emissions to the 2023 EPA GHGI inventory for 2019, including to the emission estimates 340 

for individual states (henceforth “GHGI23”;(EPA, 2023a, b) and to the most recent emission estimates for individual states as\ 

published with the 2022 EPA GHGI inventory for 2019 (henceforth “GHGI22”; EPA, 2022b). We remove emissions from 

Hawaii and Alaska from the GHGI total using these GHGI22 state estimates, which account for less than 0.5% of the national 

total scaled to match the GHGI23 sectoral totals.  

Posterior/prior scale factors

DOFS = 772

Averaging kernel sensitivities

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Posterior/prior scale factor

0.0 0.2 0.4 0.6 0.8 1.0

@x̂i/@xi



 

13 
 

 345 
We evaluate the inversion results by comparing simulated observations from GEOS-Chem driven by either the prior or the 

mean posterior emissions to TROPOMI observations and to independent in situ surface and tower observations from NOAA’s 

GLOBALVIEWplus CH4 ObsPack v3.0 database (Cooperative Global Atmospheric Data Integration Project, 2019). We 

follow Lu et al. (2021) and use only daytime ObsPack observations with outliers excluded. We use monthly average ObsPack 

observations over CONUS to increase consistency with the annual temporal resolution of our inversion and its distribution of 350 

information content. Compared to TROPOMI, both the prior and posterior GEOS-Chem simulations produce similar 

coefficients of determination (R2) and root mean squared errors (RMSEs). Compared to ObsPack, the posterior simulation 

improves upon the prior simulation, increasing R2 from 0.55 to 0.65 and decreasing the RMSE from 80 ppb to 73 ppb, similar 

to previous inversions of satellite data (Lu et al., 2021). The broad agreement of both simulations with observations reflects 

the high quality of the prior emission estimate in North America (Maasakkers et al., 2019).  355 

 

We also compare the TROPOMI v14 data used here to the most recent data (v19), which has improved bias corrections and 

performance compared to GOSAT in North America (Balasus et al., 2023). We define the grid cells containing observations 

sensitive to the optimized emissions by calculating the row-wise sum of the Jacobian matrix weighted by the prior and 

observing system error standard deviations, limited to emission grid cells with averaging kernel sensitivities greater than 0.05. 360 

Of the 95% of observation grid cells most sensitive to the optimized emissions, only 14% have an average mean-bias corrected 

(v14 – v19) difference greater than 5 ppb and less than 2% have a difference greater than 10 ppb. We similarly define the 

observation grid cells that influence the optimized emission grid cells using the Jacobian matrix columns. We find that the 

average mean-bias corrected (v14 – v19) difference for the observational grid cells influenced by optimized grid cells is -0.05 

ppb with a standard deviation of 0.1 ppb, indicating that there is little bias in the observations that influence any single grid 365 

cell. We finally find no correlation (R2 = 0.03) between our posterior scaling factors and the mean (v14 - v19) difference, 

suggesting that biases in the v14 data do not influence our posterior emissions. 

3.1 CONUS sectoral emissions 

We find posterior anthropogenic methane emissions of 30.9 (30.0 - 31.8) Tg a-1 for CONUS in 2019, a 13% increase from the 

GHGI23 estimate of 27.3 (25.1 - 30.6) Tg a-1, where the values in parentheses represent the GHGI23 95% confidence interval 370 

(EPA, 2023a). This estimate excludes Alaska and Hawaii, which likely represent a small (~1%) contribution to the national 

anthropogenic total (Miller et al., 2016; Konan and Chan, 2010). Lu et al. (2022) found larger anthropogenic emissions of 36.2 

(32.1 - 37.6) Tg a-1 over the same domain for 2017 by optimizing emissions and trends in a joint inversion of GOSAT and in 

situ observations for 2010 to 2017. Worden et al. (2022) found lower anthropogenic emissions of 27.6 (22.624.3 – 23.930.9) 

Tg a-1 over the U.S. for 2019 by regridding global inversions of GOSAT data that optimized emissions at 2° × 2.5° resolution 375 

using uncertainties for the prior and posterior estimates. Deng et al. (2022) reviewed an ensemble of global inversions and 
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Figure 4: Sectoral methane emissions in the contiguous United States (CONUS) for 2019. The 2023 EPA GHGI emissions for 2019 (top 
bars) and posterior estimates given by inversion of TROPOMI data for 2019 (bottom bars) are shown for different sectors. For wetland 380 
emissions we show the WetCHARTs estimate (top bar). The shading corresponds to emissions in grid cells that are optimized by the inversion 
(grid cells with averaging kernel sensitivities greater than 0.05), while the white represents emissions not optimized by the inversion so that 
the posterior defaults to the prior estimate. Error bars on the GHGI emissions represent the GHGI 95% confidence intervals. Error bars on 
the posterior emissions are given by the spread of the eight-member inversion ensemble. Also shown are independent sectoral emission 
estimates from previous inversions.  385 

found median U.S. posterior anthropogenic emissions for 2019 of 26.5 (20.8 - 38.7) Tg a-1 with GOSAT data and 31.9 (23.9 - 

43.1) Tg a-1 with in situ data. 

 

We allocate our national total to individual emission sectors using the attribution method described in Sect. 2.8. From the off-

diagonal structure of 𝐒4𝐊,6;< (Eq. (8)), we find very low posterior error correlation between the all anthropogenic and biogenic 390 

sectors (mean error correlation coefficients less than 0.2), indicating that we can accurately separate sectoral emissions. Figure 

4 and Table 2 summarize the results compared to the GHGI23. Livestock, oil and gas, and landfills account for 89% of posterior 

anthropogenic emissions and all increase relative to the GHGI23. We find a significant decrease from the GHGI23 only for 

coal. For these four sectors, we find sectoral averaging kernel sensitivities between 0.47 and 0.91, larger than the values found 

by Lu et al. (2022) from GOSAT and in situ data, indicating that TROPOMI constrains most of the emissions from these 395 

sources. We find a small but significant increase in wetland emissions that is consistent with the large range found by Lu et al.  
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Table 2: 2019 methane emissions for the contiguous United States (CONUS). 

  Inventory 
emissions1 

Posterior 
emissions2 Sensitivity3 

Total sources (Tg a-1) 35.1 39.3 (38.2 - 40.3)   

Anthropogenic sources 27.3 (25.1 - 30.6) 30.9 (30.0 - 31.8)   

Livestock 9.4 (8.5 - 10.7) 10.4 (10.0 - 10.7) 0.66 (0.55 - 0.76) 

Oil and natural gas 9.3 (8.1 - 10.6) 10.4 (10.1 - 10.7) 0.91 (0.88 - 0.95) 

Coal 2.1 (1.9 - 2.5) 1.5 (1.2 - 1.9) 0.60 (0.45 - 0.80) 

Landfills 4.6 (3.7 - 5.8) 6.9 (6.4 - 7.5) 0.47 (0.34 - 0.64) 

Wastewater 0.8 (0.5 - 1.0) 0.6 (0.5 - 0.7) 0.33 (0.16 - 0.60) 

Other anthropogenic 1.2 (0.7 - 1.8) 1.1 (1.0 - 1.2) 0.59 (0.44 - 0.76) 

Natural sources 7.8 8.4 (8.1 - 8.6)   

Wetlands 6.6 7.2 (7.0 - 7.4) 0.35 (0.16 - 0.55) 

Other biogenic 1.1 1.2 (1.2 - 1.2) 0.25 (0.19 - 0.32) 
1Inventory estimates of sectoral methane emissions. Anthropogenic emissions are given by the EPA 2023 GHGI for 2019, with error ranges 
inferred from the sum in quadrature of bottom-up subsector errors given as 95% confidence intervals. Wetland emissions are from a subset 
of the high performance WetCHARTs ensemble version 1.3.1; see Sect. 2.2 for details. 400 
2Optimized emissions from the inversion of TROPOMI data, with the range from the eight members of the inversion ensemble shown in 
parentheses. 
3The sensitivity of the posterior emissions to the observing system as given by the diagonal elements of the sectoral averaging kernel matrix 
calculated as described in Sect. 2.8. The values in parentheses give the range of the inversion ensemble. Values range from 0 (no sensitivity) 
to 1 (full sensitivity). 405 
 

(2022). However, the reduced-rank observing system only optimizes about half of wetland emissions, with most of the inferred 

increase limited to the south eastern coast, including South Carolina, Georgia, and eastern Florida. 

 

Landfill emissions show the largest relative and absolute increase from the GHGI23 for 2019. We find posterior emissions of 410 

6.9 (6.4 - 7.5) Tg a-1, a 51% increase relative to the GHGI23 estimate of 4.6 (3.7 - 5.8) Tg a-1. Lu et al. (2022) found similar 

posterior landfill emissions of 7.5 (5.9 - 7.7) Tg a-1 for 2017. We attribute the GHGI23 underestimate to two components of 

the GHGRP landfill inventory methodologies that produce key inputs for the GHGI, which we discuss in detail in Sect. 3.2. 

First, for landfills with gas recovery systems, the GHGRP assumes too-high collection efficiencies. Second, the GHGRP does 

not account for site-specific operations that may produce anomalous emissions.. 415 

 

Coal mining emissions of 1.5 (1.2 - 1.9) Tg a-1 exhibit the largest decrease in sectoral emissions relative to the GHGI23 estimate 

of 2.1 (1.9 - 2.5) Tg a-1. Lu et al. (2022) found much larger posterior emissions of 2.9 (2.3 - 3.4) Tg a-1 for 2017, and Worden 

et al. (2022) found similar values of 2.8 ± 0.4 Tg a-1 for 2019. Compared to these studies, we achieve a stronger  constraint on 

coal emissions as measured by averaging kernel sensitivities, reflecting the increased coverage from TROPOMI compared to 420 

GOSAT. Our lower estimate better reflects the 30% decrease in CONUS coal production from 2012 to 2019 (EIA, 2021), 
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which is also shown in the 30% decrease in GHGI23 coal emissions over the same period (EPA, 2023a). As expected, 

emissions correlate with underground coal mining: Appalachia generated 56% of U.S. coal from underground mines in 2019 

and 64% of posterior emissions from coal, while the Illinois Basin yielded 30% of U.S. underground coal and 20% of posterior 

emissions (EIA, 2021). 425 

 

Livestock emissions show broad agreement with the GHGI23, with posterior emissions of 10.4 (10.0 - 10.7) Tg a-1 representing 

an 11% increase from the GHGI23 estimate of 9.4 (8.5 - 10.7) Tg a-1. Lu et al. (2022) found similar mean posterior livestock 

emissions of 10.4 (8.8 - 11.6) Tg a-1 over CONUS for 2017, and Worden et al. (2022) found similar values of 9.9 ± 0.4 Tg a-1 

for 2019. Yu et al. (2021) conducted a seasonal inversion of aircraft observations over the North Central U.S. and South Central 430 

Canada for 2017 to 2018 and found mean posterior livestock emissions of 5.5 (5.1 - 6.2) Tg a-1, which agrees with our livestock 

estimate of 5.4 (5.2 - 5.6) Tg a-1 over the same region. Despite agreement with total GHGI23 livestock estimates, we find a 

significant increase in manure management emissions from 2.3 (1.9 - 2.8) Tg a-1 to 3.1 (2.9 - 3.2) Tg a-1, which would almost 

entirely explain the observed discrepancy between the mean GHGI23 and posterior emissions. The increase in manure 

management emissions is concentrated over the California Central Valley, northern Iowa, and Sampson and Duplin Counties 435 

in North Carolina. California is home to more dairy cattle than any other state, Iowa is the largest pork-producing state, and 

Sampson and Duplin Counties are the two largest pork-producing counties in CONUS (USDA, 2019). We find no correlation 

between our inferred increase and dairy cattle or hog populations, which could reflect variability in manure management 

practices. 

 440 

Posterior oil and gas emissions are 10.4 (10.1 - 10.7) Tg a-1, a 12% increase from the GHGI23 estimate of 9.3 (8.1 - 10.6) Tg 

a-1. Lu et al. (2022) found much larger posterior emissions of 4.8 (3.1 - 4.9) Tg a-1 for oil and 8.9 (8.0 - 9.8) Tg a-1 for gas in 

2017, and Lu et al. (2023) used the same inversion framework to find even larger total oil and gas emissions of 15.6 (12.8 - 

17.1) Tg a-1 for 2019 driven by increased emissions in the Anadarko, Marcellus, Barnett, and Haynesville Shales. Although 

we find good agreement on average with the basin-level emissions from Lu et al. (2023), we find much smaller emissions in 445 

the Anadarko and Marcellus Shales, as shown in Fig. S43. This difference likely results in part from the use of lognormal prior 

errors in Lu et al. (2023). Compared to Lu et al. (2022, 2023), Worden et al. (2022) found smaller 2019 emissions in the United 

States for oil of 2.4 ± 0.3 Tg a-1 and for gas of 7.9 ± 0.9 Tg a-1, and Shen et al. (2022) found oil and gas emissions of 12.6 ± 

2.1 Tg a-1 from an inversion of TROPOMI data over 14 North American basins extrapolated to the national scale for May 2018 

to February 2020. Both these emission estimates are within the uncertainty range of our posterior estimate. We also find 450 

consistent basin-level results with Shen et al. (2022) as shown in Fig. S43. Emissions for all posterior basins but one are within 

0.25 Tg a-1 of Shen et al. (2022) and all but six are within 0.10 Tg a-1. In particular, we find agreement within error bars in the 

Haynesville, Barnett, and Anadarko Shales. Of the basins where posterior emissions exceed the 0.5 Tg a-1 threshold defined 

by Shen et al. (2022) for successful quantification of basin emissions by TROPOMI, we find significant differences only in 

the Permian basin, where we find smaller emissions of 2.8 (2.8 - 2.9) Tg a-1. Our Permian estimate is consistent within error 455 
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bars with Lu et al. (2023) and with other recent studies when basin extent differences are accounted for (Zhang et al., 2020; 

Schneising et al., 2020; Liu et al., 2021; Varon et al., 2022; McNorton et al., 2022; Veefkind et al., 2023). 

3.2 Landfill emissions 

We consider in more detail the 51% increase in our posterior landfill emissions relative to the GHGI23. GHGI landfill estimates 

scale up the total emissions reported to the GHGRP to account for non-reporting landfills (EPA, 2023a). The GHGRP reporting 460 

requirements applied to 1297 landfills emitting more than 1 Gg a-1 across the U.S. in 2019 (EPA GHGRP, 2019), over 500 of 

which had gas recovery systems (EPA LMOP, 2019). The GHGRP requires that landfills use two methods to report emissions. 

Facilities without gas collection use two approaches that rely on landfill attributes and a first-order decay model based on 

landfilled mass so that emissions peak the year after waste disposal. However, a survey of 128 California landfills with gas 

recovery systems found that methane was produced at relatively constant rates over time (Spokas et al., 2015). Landfills with 465 

gas collection use one of these methods with recovered methane removed from the modelled emissions in addition to a back-

calculation approach that estimates emissions as a function of recovered methane given an estimated collection efficiency 

based on cover and operation methods. A default efficiency of 0.75 is assumed if cover information is unavailable (EPA, 

2023a). Both the model and back-calculation methods have high uncertainties and have not been field validated (NAS, 2018). 

 470 

We compare our posterior landfill emissions to individual GHGRP facilities that reported more than 2.5 Gg a-1 methane in 

2019. Of these 531 landfills, we limit our analysis to the 87 0.25° × 0.3125° grid cells where TROPOMI provides an averaging 

kernel sensitivity of at least 0.20 and where landfills explain at least 50% of prior emissions so that we are confident of our 

ability to separate landfill emissions from other sources. We exclude 33 facilities in grid cells containing multiple landfills 

because we are unable to separate the individual contributions to total emissions. Figure 5 shows the posterior emissions and 475 

corrections to the GHGRP for the remaining 73 70 facilities, Table 3 shows GHGRP and posterior information for the top 10 

methane-producing landfills as ranked by posterior emissions, and Table S3 shows GHGRP and posterior information for all 

73 70 facilities. 

 

We validate our posterior landfill results by comparison to aircraft-derived estimates for nine facilities as shown in Fig. 5. 480 

Cambaliza et al. (2015), Smith (2021), and Catena et al. (2022) used mass balance approaches to estimate emissions using 

observations from 2011, 2019 to 2021, and November 2021, respectively. Duren et al. (2019) used the integrated methane 

enhancement method with data from 2016 to 2018. We find agreement within error bounds at the Seneca Meadows Landfill 

in New York (landfill c in Fig. 5; Catena et al., 2022) and at the Kiefer (d), Frank R. Bowerman (f), Altamont (g), Newby 

Island (h), and Keller Canyon (i) Landfills in California (Smith, 2021; Duren et al., 2019). We find much larger emissions than 485 

previous studies at the South Side Landfill (a) in Indiana (Cambaliza et al., 2015) and at the West Miramar Sanitary (b) and 

Puente Hills (e) Landfills in California (Smith, 2021; Duren et al., 2019). The discrepancy at the South Side Landfill could  
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 490 
Figure 5: Methane emissions for 2019 from 73 70 individual landfills that report methane emissions of 2.5 Gg a-1 or more to the EPA’s 
Greenhouse Gas Reporting Program (GHGRP) for 2019 and for which our TROPOMI inversion provides site-specific information. The left 
panel shows the location of the landfills, with insets for parts of California (left) and Illinois and Indiana (right). Posterior emissions for each 
landfill are shown by the size of the marker. The colors show differences (Δ) between the posterior and GHGRP emissions for 2019, with 
red colors indicating posterior emissions larger than the reported value. Facilities that collect landfill gas are shown as circles, and others are 495 
shown as diamonds. The numbers (1 to 10) identify the top 10 methane-producing landfills listed in Table 3, and the letters (a to i) identify 
the nine validation sites listed in the right panel and outlined in gold.  Validation sites are landfills with independent estimates from aircraft 
campaigns as listed in the legend. Cambaliza et al. (2015) based their estimates on data from 2011, Duren et al. (2019) on data from 2016 to 
2018, Smith (2021) on data from 2019 to 2021, and Catena et al. (2022) on data from November 2021. The right panel shows GHGRP (top 
bars) and posterior (bottom bars) emissions for the validation sites, along with values reported from the aircraft campaigns. Sites are (a) 500 
South Side Landfill, (b) West Miramar Sanitary Landfill, (c) Seneca Meadows Landfill, (d) Kiefer Landfill, (e) Puente Hills Landfill, (f) 
Frank R. Bowerman Landfill, (g) Altamont Landfill, (h) Newby Island Landfill, and (i) Keller Canyon Landfill. 

reflect changed emissions since 2011, including the construction of a large landfill gas recovery facility beginning in June 

2019 (EPA LMOP, 2019). Methane concentrations of 8662 ppm were recorded at a leak at the West Miramar Sanitary Landfill 

in November 2019 (San Diego Air Pollution Control District, 2019), suggesting that estimates from other years may not be 505 

representative of 2019 emissions. The Puente Hills Landfill closed in 2013 but was previously one of the largest landfills in  
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Table 3: Top 10 methane-producing landfills in CONUS for 2019. 

Facility1 Location 
Emissions (Gg a-1) Gas capture efficiency 

GHGRP2 Posterior3 GHGRP4 Posterior5 

1. National Serv-All Landfill Fort Wayne, Indiana 3.4 44 (34 - 59) 0.86 0.32 (0.26 - 0.37) 

2. South Shelby Landfill Memphis, Tennessee 4.1 41 (30 - 56) 0.86 0.39 (0.31 - 0.46) 

3. South Side Landfill Inc. Indianapolis, Indiana 4.7 39 (32 - 52) N/A N/A 

4. Rumpke Sanitary Landfill Cincinnati, Ohio 10.1 39 (33 - 43) 0.84 0.58 (0.55 - 0.61) 

5. Quad Cities Landfill Phase IV Milan, Illinois 3.7 35 (28 - 47) N/A N/A 

6. City of Dothan Sanitary Landfill Dothan, Alabama 5.8 35 (28 - 43) N/A N/A 

7. Rochelle Municipal Landfill Rochelle, Illinois 2.7 32 (25 - 39) 0.76 0.22 (0.18 - 0.26) 

8. Seminole Road MSW Landfill Ellenwood, Georgia 12.3 30 (25 - 36) 0.18 0.08 (0.07 - 0.1) 

9. Caterpillar Inc.-Mapleton Mapleton, Illinois 6.4 25 (23 - 29) N/A N/A 

910. Sampson County Disposal, LLC Roseboro, North Carolina 29.2 25 (23 - 29) 0.37 0.41 (0.38 - 0.44) 

10. West Miramar Sanitary Landfill San Diego, California 6.2 24 (22 - 25) 0.78 0.47 (0.46 - 0.49) 
1The top 10 landfills with the largest posterior methane emissions from the TROPOMI inversion for 2019. Numbers correspond to the labels 510 
in Fig. 5. 
2Emissions reported by individual landfills to the EPA GHGRP for 2019 in gigagrams per year. 
3Posterior emissions from the inversion of TROPOMI observations in gigagrams per year. Posterior emissions are allocated to individual 
facilities as described in Sects. 2.8 and 3.2. Values in parentheses represent the range from the eight-member inversion ensemble. 
4For facilities that capture landfill gas, the recovery efficiency as calculated from emissions and recovered methane reported by individual 515 
landfills to the EPA LMOP. Facilities that do not capture landfill gas are listed as N/A. 
5The posterior recovery efficiency as calculated from posterior emissions and the recovered methane reported by individual landfills to the 
EPA LMOP. 
 

CONUS (EPA GHGRP, 2019). Our landfill attribution approach, which relies on a prior estimate from 2012, may therefore  520 

misallocate emissions to the Puente Hills Landfill instead of to co-located oil and gas operations. 

 

We find mean facility emissions of 13 Gg a-1 compared to the GHGRP mean of 7.2 Gg a-1 for the 73 70 landfills considered 

here, with a median 77% increase in reported emissions. The largest increases occur for facilities that capture landfill gas, for 

which we find a median 204% increase from the reported values. As reflected in Table 3, we find no correlation (R2 = 0.00) 525 

between GHGRP emissions and our posterior estimates, which does not improve when we consider only facilities that do or 

do not capture landfill gas. This implies that the bottom-up approaches used for emissions estimation have little predictability. 

 

For the 38 facilities that recover gas, we use captured methane emissions reported to the EPA Landfill Methane Outreach 

Program (LMOP) in 2019 together with posterior and GHGRP emissions to calculate a posterior and reported recovery 530 

efficiency, respectively. We find a low correlation (R2 = 0.17) between the efficiencies that does not depend on facility size 

but improves slightly for facilities constructed within the last decade (R2 = 0.31). The average posterior recovery efficiency of 
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0.50 (0.33 - 0.54) is much smaller than the GHGRP mean of 0.61, and both are much smaller than the 0.75 default (EPA, 

2023a). Across the six landfill gas facilities at the top 10 methane-producing landfills, we find a mean posterior recovery 

efficiency of 0.33 that is half the GHGRP value of 0.65. Indeed, four of the six facilities report methane emission and recovery 535 

values consistent with efficiencies larger than the 0.75 default. We find a similar but still lower efficiency at the Seminole 

Road MSW Landfill (landfill 8) and a marginally higher recovery efficiency only at Sampson County Disposal, LLC (110). 

We find a low correlation (R2 = 0.17) between the efficiencies that does not depend on facility size but improves slightly for 

facilities constructed within the last decade (R2 = 0.31). 

 540 

We consider in detail the 334 facilities for which posterior emissions show a significant 50% difference from the GHGRP. We 

find larger emissions for 29 28 of these facilities, with the largest discrepancies occurring in nine of the top 10 methane-

producing landfills. Three of these nine facilities experienced significant operational changes in the last decade. The South 

Shelby (landfill 2 in Fig. 5) and South Side (3) Landfills constructed large landfill gas facilities in 2019 (EPA LMOP, 2019; 

Russell, 2019), suggesting that emissions from gas infrastructure development may be large. The City of Dothan Sanitary 545 

Landfill (6) has been full since 2014, when it stopped accepting most trash (Wise, 2019). Reported emissions peaked at 7.4 

Gg a-1 that year (EPA GHGRP, 2019), a value almost five times smaller than our posterior emissions, suggesting that the first 

order decay model is inadequate to reproduce methane emissions over time. We also find a record of air quality and landfill 

standard violations at these 34 facilities. At the West Miramar Sanitary Landfill (10, b), a leak emitting 8662 ppm methane 

was recorded in November 2019 (San Diego Air Pollution Control District, 2019). The Sussex County Landfill in Virginia 550 

was fined USD 99000 in 2016 for failing to address cracks in the landfill cover (Vera, 2016). Lastly, the Newby Island Landfill 

(h), received 30 violation notices from 2014 to 2020, including for gas collection system shutdowns (Bay Area Air Quality 

Management District, 2022). 

 

There are five facilities for which our posterior emissions are significantly smaller than the 2019 GHGRP by 50%. Three report 555 

large decreases in estimated methane emissions from 2019 to 2020 that result from changed methodology (EPA GHGRP, 

2019). The updated estimates are consistent with our posterior emissions within error estimates in two cases and within 30% 

of our posterior emissions in the third case. 

3.3 State emissions 

The EPA recently began disaggregating the GHGI by state. The EPA uses the same methods to calculate state emissions as in 560 

the national inventory so that the total emissions are the same in both estimates. We use the most recent state inventories 

available as published with the GHGI22. The GHGI23 national emission estimate for 2019 increases only 2% from the 

GHGI22 value, suggesting that the unreleased GHGI23 state emissions should be similar to the GHGI22 estimates. State 

estimates are developed without reference to greenhouse gas inventories prepared by state governments, which may result in 

discrepancies in sectoral or total values due to different methods or accounting (EPA, 2023b). In addition to the GHGI22 state 565 



 

22 
 

estimates, the EPA provides references to the independent inventories of 24 states and Washington, D.C. (EPA, 2023). Of 

these, we find that eight produce a methane emission estimate separate from their inventory of total CO2-equivalent greenhouse 

gases. 

 
Figure 6: Anthropogenic methane emissions in 2019 for the 29 states responsible for 90% of U.S. anthropogenic posterior emissions. The 570 
bottom panel shows 2022 EPA GHGI state estimates for 2019 (left bar) and our posterior estimates from the inversion of TROPOMI data 
(right bar) divided by sector. States are listed from largest to smallest posterior emissions. The information content from the TROPOMI data 
as defined by the reduced-form averaging kernel sensitivities (the diagonal elements of the reduced-form averaging kernel matrix; Sect. 2.8) 
is shown in the top panel. Values of 1 indicate full sensitivity to TROPOMI, while values of 0 indicate no sensitivity. The error bars give 
the spread from the eight-member inversion ensemble. Also shown are emissions estimates from independent state inventories referenced 575 
by EPA (2022). 

We partition our anthropogenic gridded posterior emission estimates, excluding offshore emissions, to each of the 48 states in 

CONUS as described in Sect. 2.8 and compare the results to the GHGI22 state estimates and to inventories prepared by state 

governments. Figure 6 shows the results for the 29 states responsible for 90% of posterior CONUS anthropogenic emissions 

excluding offshore emissions and ordered by posterior emissions, and Table S1 shows the full results for all 48 CONUS states. 580 

TROPOMI provides a strong constraint at this resolution, with most state averaging kernel sensitivities larger than 0.5. Our 

state emissions are on average 107% larger than the GHGI22 estimates and 3428% larger in the top 10 methane-emitting states, 
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which produce 55% of CONUS posterior emissions. Oil and gas emissions on average generate 37% of posterior emissions 

and 4648% of the observed increase relative to the GHGI22 in these 10 states. In Texas, Oklahoma, New Mexico, and , and 

OklahomaLouisiana, the oil and gas sector explains more than 60% of posterior emissions, with emissions concentrated in the 585 

Permian Basin, the Haynesville Shale, and the Anadarko Shale. The addition of basin-specific information in the GHGI23 may 

improve the state-level distribution of oil and gas emissions (EPA, 2023). Livestock and landfills also play a significant role 

in these states. Emissions in California and Iowa are dominated by the livestock sector, with much of the observed increase 

relative to the GHGI22 attributed to manure management emissions (Sect. 3.1). Landfills account for 41% of posterior 

emissions in Illinois and 62% in Florida. Indeed, three of the ten largest landfills as reported to the GHGRP in 2019 are in 590 

Florida (EPA GHGRP, 2019). Consistent with our sectoral analysis, the largest posterior emission decreases relative to the 

GHGI22 are found in coal-producing states, including West Virginia and Pennsylvania. While we find a large decrease 

compared to the GHGI in Pennsylvania, we cannot confidently attribute the difference to a specific sector due to co-location 

of oil, gas, and coal facilities at the resolution of our inversion. 

 595 

We consider in more detail Texas and California, which are responsible for 21% and 7% of posterior CONUS anthropogenic 

emissions, respectively. Our posterior estimate for Texas is 6.3 (6.1 - 6.5) Tg a-1, a 6658% increase from the GHGI22 estimate 

of 3.84.0 Tg a-1. This increase is attributed almost entirely to the oil and gas sector, which accounts for 69% of posterior 

emissions compared to 5557% in the GHGI22. The Permian basin alone explains almost 40% of Texas’ posterior emissions. 

In California, we find posterior emissions of 2.1 (2.0 - 2.1) Tg a-1, 53% of which occur in the San Joaquin Valley air basin. 600 

Our posterior emissions increase 2127% from the GHGI22 estimate of 1.67 Tg a-1 and 3234% from an independent estimate 

produced by CARB of 1.56 Tg a-1 (CARB, 2023). Our posterior estimate is smaller than but consistent within error bars with 

a value of 2.4 ± 0.5 Tg a-1 found by an inversion of in situ observations in California from June 2013 to May 2014 (Jeong et 

al., 2016). We find in general good agreement with the sectoral partitioning in the GHGI22, the CARB inventory, and Jeong 

et al. (2016). Livestock explain 54% of emissions in our posterior estimate, 4547% in the GHGI22, 5455% in the CARB 605 

inventory, and 54% in Jeong et al. (2016), while landfills explain 25%, 2022%, 21%, and 19% of emissions, respectively. We 

find slightly smaller relative contributions from oil and gas, which accounts for 11% of emissions in our posterior estimate 

compared to 1814%, 17%, and 18% in the GHGI22, the CARB inventory, and Jeong et al. (2016), respectively. This 

partitioning differs from that found in an inversion of the 2010 CalNex aircraft campaign observations, where 30% of emissions 

were attributed to livestock, 38% to landfills, and 22% to oil and gas based on the sectoral distribution of the EDGAR v4.2 610 

methane emission inventory (Wecht et al., 2014b). 

 

We also compare our posterior emissions to independent state greenhouse gas inventories from Pennsylvania, Louisiana, Iowa, 

and Colorado referenced by EPA (2023), where we have a strong constraint from the inversion (state averaging kernel 

sensitivity greater than 0.5). Our posterior agrees with the Pennsylvania estimate (Pennsylvania DEP, 2022), but we find a 615 

source shift from fossil fuels (from 76% in the inventory to 63% in our work) to landfills (from 3% in the inventory to 16% in 
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our work). We find that Louisiana’s state inventory (Dismukes, 2021) is too low due to underestimated oil and gas emissions, 

while Iowa’s (Iowa DNR, 2020) is too low due to underestimated livestock emissions, particularly from manure management 

(Sect. 3.1). Colorado’s state inventory (Taylor, 2021) is 65% larger than our posterior estimate due to oil and gas emissions 

that are more than twice as large. 620 

3.4 Urban area emissions 

Urban areas are home to 81% of the U.S. population (U.S. Census Bureau, 2010) and are major sources of greenhouse gas 

emissions, including methane (Gurney et al., 2015; Hopkins et al., 2016). As urban populations grow (Seto et al., 2012), these 

emissions are likely to increase. Cities are well positioned to address methane emissions through waste-reduction initiatives, 

leak-detection programs, and strategic contracts with landfill operators and gas utilities. Regulation by air pollution control 625 

districts can also aid urban emissions reduction efforts (Hopkins et al., 2016). C40, a performance-based coalition of over 100 

mayors dedicated to climate change mitigation, recommends that cities target a 50% reduction in methane emissions by 2030 

(C40, 2022b). Numerous cities, including New York City, Los Angeles, and Philadelphia, are working toward these reductions 

through zero-waste programs (C40, 2022a). The U.S. Methane Emissions Reduction Action Plan intends to work with local 

governments to set up methane monitoring systems to identify and publicize information about municipal gas distribution 630 

leaks. The plan also challenges members of the U.S. Climate Mayors to prioritize pipeline abandonment or replacement (The 

White House, 2021). 

 

We calculate posterior emissions for 95 urban areas across CONUS with 2010 populations over 1 million and averaging kernel 

sensitivities from our inversion greater than 0.2, providing the first comprehensive national analysis of urban methane 635 

emissions. Quantification of urban emissions depends significantly on the definition of city extent due to the presence of large 

emitters such as landfills on the urban periphery (e.g., Balashov et al., 2020; Plant et al., 2022). We follow Plant et al. (2022) 

and others in using the U.S. Census Topographically Integrated Geographic Encoding and Referencing system (TIGER)/Line 

Urban Areas to standardize the definition across CONUS (U.S. Census Bureau, 2017). These urban areas are responsible for 

almost a quarter of the GHGI23 emissions spatially allocated using the gridded inventory from Maasakkers et al. (2016). The 640 

gridded inventory does not include post-meter emissions introduced in later versions of the GHGI, which we distribute by 

population for this analysis. In an average city, the gridded GHGI emissions originate from landfills (40%), gas distribution 

(9%, including 4% from post-meter emissions), wastewater (6%), and other sources that are not specific to urban areas such 

as livestock and oil and gas production and transmission (45%).  

 645 

Anthropogenic posterior emissions in these 95 urban areas total 6.0 (5.4 - 6.7) Tg a-1, 38 (24 - 54) % larger than the gridded 

GHGI23 value of 4.3 Tg a-1. Individual urban area emissions, listed in Table S2, increase by an average of 39 (27 - 52) %. 

These increases are much larger than the 13% increase we find in total CONUS anthropogenic emissions relative to the 

GHGI23. We are unable to attribute the increased emissions to individual sectors due to source co-location within urban areas 
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at the 0.25° × 0.3125° resolution of our inversion. However, given that landfills account for 40% of gridded GHGI23 emissions 650 

in an average urban area and increase 51% relative to the GHGI23, it is likely that they are responsible for a large fraction of  

 

Figure 7: Anthropogenic methane emissions for the largest 10 methane-producing urban areas in the contiguous United States (CONUS) 
for 2019 as identified by the inversion of TROPOMI data. Urban area extents are given by the U.S. Census Bureau TIGER/Line files (U.S. 
Census, 2010). The top bars show prior anthropogenic sectoral emissions from the 2023 EPA GHGI for 2019 spatially allocated following 655 
Maasakkers et al. (2016) with post-meter emissions allocated by population. The bottom bar shows posterior emissions from the TROPOMI 
inversion for 2019. We do not resolve posterior sectoral emissions estimates due to source colocation within urban areas at the scale of the 
inversion. Total emissions (left panel), per capita emissions (center panel), and averaging kernel sensitivities (right panel) are shown for 
each urban area. Error bars represent the spread of the eight-member inversion ensemble. Also shown are independent urban emissions 
estimates. 660 

the observed discrepancy. It is also likely that gas emissions, which represent less than 20% of gridded GHGI23 emissions in 

an average urban area but explain between 32% and 100% of methane emissions in many cities based on field measurements 

of methane-ethane ratios (Plant et al., 2019; Floerchinger et al., 2021; Sargent et al., 2021), are significantly underestimated. 

Finally, recent studies have shown large underestimates of methane emissions from wastewater treatment in the GHGI (Moore 

et al., 2023; Song et al., 2023) and over urban areas (de Foy et al., 2023), but increasing wastewater emissions accordingly 665 

only accounts for 2% of our observed discrepancy. City-specific variability prevents further attribution of urban emissions. 
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Indeed, we find no correlation between the posterior emission increase and urban area population, population change from 

2000 to 2010, population density, or surface area. 

 

Figure 7 shows results for the top 10 methane-producing urban areas as ranked by posterior emissions from landfills, gas 670 

distribution, and wastewater. These 10 regions explain 35 (34 - 36) % of anthropogenic posterior emissions across the 95 urban 

areas considered here. We find a mean increase relative to gridded GHGI23 emissions of 58 (37 - 84) %. We also compare our 

posterior emissions to municipal inventories from New York City and Philadelphia, the only available bottom-up urban 

methane emission estimates. Our emissions are more than twice as large as these inventories, but this likely results from our 

consideration of broader urban areas.  675 

 

Figure 7 also compares our results to 12 top-down studies published since 2015. Most of these focused on New York City or 

Los Angeles. Almost all the studies used larger definitions of urban area extent, with only Pitt et al. (2022) and Plant et al. 

(2022) using the U.S. Census designation. Most used aircraft or tower observations to infer emissions by inverting a CTM 

(Cui et al., 2015; Jeong et al., 2016; Cusworth et al., 2020; Pitt et al., 2022; Yadav et al., 2019, 2023). Kuwayama et al. (2019) 680 

used a mass balance approach, while others used observed methane to CO2 or CO ratios together with bottom-up inventories 

of these gases (Wong et al., 2015; Wunch et al., 2016; Plant et al., 2019). Plant et al. (2022) used the same approach with 

TROPOMI methane to CO emissions.  

 

We find in general lower but statistically consistent emissions compared to these studies. Our smaller estimates likely result 685 

from our restrictive definition of urban area extent. The only study that used aircraft data to estimate emissions within a U.S. 

Census Urban Area found 314 ± 96 Gg a-1 in New York City (Pitt et al., 2022), which is very similar to our estimate of 309 

(241 - 417) Gg a-1. Plant et al. (2022) used U.S. Census Urban Areas but relied on TROPOMI methane to CO ratios. They 

found slightly larger emissions in Atlanta and Philadelphia and much larger emissions in New York City, but their error bars 

spanned ranges almost twice as large as the derived emissions, limiting the utility of the comparison. Plant et al. (2019) found 690 

larger emissions in New York City and Philadelphia but used larger definitions of urban areas and produced similarly wide 

error ranges. 

 

We find much lower emissions than these studies only in Los Angeles, a difference that decreases but remains significant when 

we use the same extent as these studies. We attribute much of the discrepancy to decreasing emissions over time. Methane 695 

emissions from the Puente Hills Landfill, previously one of the largest landfills in CONUS, decreased following its closure in 

2013 (Yadav et al., 2019). This change is not fully reflected in the estimates of Cui et al. (2015), Wong et al. (2015), or Wunch 

et al. (2016). Yadav et al. (2023) found that Los Angeles emissions decreased an additional 7% from January 2015 to May 

2020. However, their posterior estimate of 251 ± 5 Gg a-1 for 2019 is still larger than our value of 179 (171 - 193) Gg a-1. 
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4 Conclusions 700 

We used TROPOMI atmospheric methane column observations for 2019 to optimize methane emissions at 0.25° × 0.3125° 

resolution over North America with a focus on the contiguous U.S. (CONUS). The high resolution of our inversion allowed 

us to quantify emissions from individual landfills, states, and urban areas. We compared our results to the 2023 EPA 

Greenhouse Gas Emissions Inventory (GHGI), including state-level estimates, for 2019; to new EPA state-level inventories 

for 2019 published most recently with the 2022 GHGI; to emissions reported by individual landfills to the EPA Greenhouse 705 

Gas Reporting Program (GHGRP); and to other estimates from states and cities. We find large upward corrections to the GHGI 

at all scales, which may present a challenge for U.S. climate policies and goals, many of which target significant reductions in 

methane emissions. 

 

We optimized methane emissions using an analytical inversion of TROPOMI methane observations with the GEOS-Chem 710 

chemical transport model run at 0.25° × 0.3125° resolution. The inverse solution, or posterior emission estimate, was obtained 

through a reduced-rank approximation of the analytical minimum of a Bayesian cost function regularized by a prior emission 

estimate from a gridded version of the GHGI. The analytical solution characterizes the error and information content of the 

posterior emissions and supported the generation of an eight-member inversion ensemble. We constructed the Jacobian matrix 

required for the high-resolution, continent-scale analytical solution by iterative approximation using the emissions patterns 715 

best informed by the prior emission estimate and the observations. This approach decreases the computational cost of our 

inversion by an order of magnitude compared to conventional analytical methods while optimally preserving its information 

content. 

 

We find posterior anthropogenic methane emissions of 30.9 (30.0 - 31.8) Tg a-1 in CONUS, where the range is given by the 720 

inversion ensemble. This is a 13% increase from the 2023 GHGI estimate of 27.3 (25.1 - 30.6) Tg a-1, where the range is given 

by the 95% confidence interval. Emissions for landfills, oil and gas, and livestock explain 89% of posterior CONUS emissions 

and each of these sectors’ emissions increase by at least 10% relative to the GHGI. We find a significant decrease compared 

to the 2023 GHGI only for coal emissions. These increases present a challenge to goals set by the U.S. government to decrease 

methane emissions from landfills by 30% and from livestock by 25% relative to 2015 levels by 2025 and to regulation in 725 

development that aims to reduce oil and gas methane emissions by 30% from 2020 to 2030., livestock, and landfills.  

 

Most of the total increase from the 2023 GHGI to the posterior emissions is attributed to a 51% increase in landfill emissions. 

We compare our optimized emissions for 73 70 individual landfills to those reported to the GHGRP and find a median 77% 

increase in emissions relative to reported values. We attribute the underestimated GHGI and GHGRP landfill emissions to 730 

standard inventory methods that (1) assume too-high recovery efficiencies at facilities that collect landfill gas and (2) 

inadequately account for anomalous operating events such as gas leaks or the construction of new landfill gas facilities. 
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We took advantage of the high resolution of our inversion to quantify emissions for each of the 48 states in CONUS and 

compare to the newly available state emission inventories published most recently with the 2022 GHGI. We find a 107% 735 

average increase with a 3427% average increase in the top 10 methane-emitting states. Much of the discrepancy in these 10 

states is attributed to increased oil and gas emissions, though livestock and landfills also play significant roles. Texas and 

California, the two largest methane-producing states, respectively emit 21% and 7% of total CONUS anthropogenic emissions 

in our posterior estimate. Emissions in Texas increase by 6658% relative to the 2022 GHGI almost entirely due to the oil and 

gas sector. Operations in the Permian basin alone explain almost 40% of all posterior emissions in the state. In California, we 740 

find a 2127% increase from the 2022 GHGI and a 3234% increase from an independent inventory prepared by the California 

Air Resources Board (CARB). Our sectoral partitioning for California is consistent with both inventories, including 54% of 

emissions from livestock, 25% from landfills, and 11% from oil and gas. 

 

We also provide a first national analysis of urban methane emissions by calculating emissions for 95 urban areas across 745 

CONUS. We find total emissions of 6.0 (5.4 - 6.7) Tg a-1 across these urban areas, representing a fifth of posterior 

anthropogenic emissions in CONUS and a 38 (24 - 54) % increase from the gridded 2023 GHGI value of 4.3 Tg a-1. Urban 

emissions increase on average by 39 (27 - 52) % compared to the GHGI. We attribute the observed discrepancy to 

underestimated landfill and gas emissions. Our urban emission estimates are in general consistent with previous top-down 

studies except for Los Angeles, which may be attributable in part to decreasing emissions between study periods. 750 

Code availability 

The GEOS-Chem code is available at https://doi.org/10.5281/zenodo.3676008, and the description of the model is available 

at geos-chem.org. The code to solve and analyze the inversion is at https://github.com/hannahnesser/TROPOMI_inversion.  

Data availability 

The TROPOMI v14 data are available from SRON at https://ftp.sron.nl/open-access-data-755 

2/TROPOMI/tropomi/ch4/14_14_Lorente_et_al_2020_AMTD/ (last access: 19 March 2021). The GLOBALVIEWplus CH4 

ObsPack v3.0 database is available from NOAA’s Global Monitoring Laboratory at http://dx.doi.org/10.15138/G3CW4Q. The 

prior and observational inputs for the inversion, and the posterior emissions and averaging kernel sensitivities, and summary 

datasets for sectors, states, cities, and landfills are available at https://github.com/hannahnesser/TROPOMI_inversion. 

Additional data related to this paper may be requested from the authors. 760 
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