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Abstract. Accurate wind speed prediction is crucial for the safe and efficient utilization of wind16

resources. However, current single-value deterministic numerical weather prediction methods17

employed by wind farms do not adequately meet the actual needs of power grid dispatching. In this18

study, we propose a new hybrid forecasting method for correcting 10-meter wind speed predictions19

made by the Weather Research and Forecasting (WRF) model. Our approach incorporates Variational20

Mode Decomposition (VMD), Principal Component Analysis (PCA), and five artificial intelligence21

algorithms: Deep Belief Network (DBN), Multilayer Perceptron (MLP), Random Forest (RF), eXtreme22

Gradient Boosting (XGBoost), light Gradient Boosting Machine (lightGBM), and the Bayesian23

Optimization Algorithm (BOA). We first predict wind speeds using the WRF model, with initial and24

lateral boundary conditions from the Global Forecast System (GFS). We first construct WRF-predicted25

wind speeds using the Global Forecast System (GFS) model output based on prediction results. We26

then perform two sets of experiments with different input factors and apply BOA optimization to tune27

the four artificial intelligence models, ultimately building the final models. Furthermore, we compare28

the aforementioned five optimal artificial intelligence models suitable for five provinces in southern29

China in the wintertime: VMD-PCA-RF in December 2021 and VMD-PCA-lightGBM in January 2022.30

We find that the VMD-PCA-RF evaluation indices exhibit relative stability over nearly a year:31
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correlation coefficient (R) is above 0.6, Forecasting Accuracy (FA) is above 85 %, mean absolute error32

(MAE) is below 0.6 m s-1, root mean square error (RMSE) is below 0.8 m s-1, relative mean absolute33

error (rMAE) is below 60 %, and relative root mean square error (rRMSE) is below 75 %. Thus, for its34

promising performance and excellent year-round robustness, we recommend adopting the proposed35

VMD-PCA-RF method for improved wind speed prediction in models.36

1 Introduction37

Sustainable energy plays a vital role in reducing carbon footprint and increasing system reliability38

(Hanifi et al., 2020). As renewable energy sources have a negligible carbon footprint, they have39

become the preferred choice for many industries in the power sector (Dhiman and Deb, 2020). Among40

these sources, wind energy is a crucial low-carbon energy technology with the potential to become a41

sustainable energy source (Tascikaraoglu and Uzunoglu, 2014). In 2022, the global wind power42

capacity reached 906 GW, with a 9 % year-on-year increase due to a newly installed capacity of 77.643

GW. The global onshore wind market increased by 68.8 GW while facing a 5 % growth decline44

compared to the previous year. Such change is attributed to a slowdown in China and the U.S., the45

world's two largest wind markets that account for over two-thirds of the world's onshore wind farm46

installations (Joyce and Feng, 2023). The instability and unpredictability of wind power generation can47

lead to instability in the power system. In addition, the decline of the wind energy market also makes it48

more challenging to improve the accuracy of wind speed forecasts. An accurate wind speed prediction49

method is needed to reduce the instability risk of power system and the economic loss of wind power50

enterprises (Huang et al., 2019). Therefore, accurate and stable wind speed prediction (WSP) is very51

important for the safe and stable operation of the power grid system and for improving the utilization52

rate of wind energy and economic development (Guo et al., 2021; Xiong et al., 2022; Tang et al.,53

2021).54

Current WSP algorithms are primarily categorized into physical algorithms (Zhao et al., 2016),55

statistical algorithms (Wang and Hu, 2015; Barthelmie et al., 1993), machine learning (ML) algorithms56

(Huang et al., 2019; Salcedo-Sanz et al., 2011; Ma et al., 2020), and hybrid algorithms (Deng et al.,57

2020; Xu et al., 2021; Zhao et al., 2019; Xiong et al., 2022; Tang et al., 2021). Physical methods, such58

as numerical weather prediction (NWP), are commonly used in wind speed forecasting. NWP, which59
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accounts for atmospheric processes and physical laws, solves discrete mass, momentum, and energy60

conservation equations along with other fundamental physical principles, establishing itself as a widely61

adopted and reliable physical method. Currently, the High-resolution Limited Area Model (HIRLAM)62

(Služenikina and Männik, 2016), the European Center for Medium-Range Weather Forecast (ECMWF)63

model, the fifth-generation mesoscale model (MM5) (Salcedo-Sanz et al., 2009), and the Weather64

Research and Forecasting Model (WRF) (Skamarock et al., 2021) are extensively utilized for wind65

speed prediction. However, NWP modeling faces challenges due to the selection of parameterization66

schemes, such as model microphysics and systematic errors, which exhibit temporal and spatial67

differences and uncertainties. These uncertainties hinder the accuracy of NWP models in wind speed68

prediction, making it difficult to meet the rising demands of the grid system (Zhao et al., 2019; Xu et69

al., 2021).70

Studies have demonstrated that enhancing the accuracy of numerical weather prediction (NWP)71

models and correcting prediction errors can effectively minimize the errors associated with wind speed72

prediction. These research endeavors have typically sought to optimize the physical and dynamic73

parameters of the NWP model (Cheng et al., 2013), refine the model structure (Jiménez and Dudhia,74

2012), or improve the accuracy of model inputs through preprocessing and denoising techniques (Xu et75

al., 2015). Additionally, improving initial field error through methods, such as target observation and76

data assimilation (Williams et al., 2013), can also minimize wind speed errors predicted by NWP77

models.78

Physical methods are generally more appropriate for long-term wind speed prediction, such as79

those 48-72 hours in advance, while their practical application in short-term forecasting is limited80

(Zhao et al., 2019; Deng et al., 2020; James et al., 2018). In contrast, statistical methods utilize81

historical data to establish a relationship between input and output variables and are therefore82

well-suited for short-term wind speed prediction. They are usually time series models, such as83

Autoregressive Moving Average (ARMA) (Erdem and Shi, 2011) and Autoregressive Integrated84

Moving Average (ARIMA) (Wang and Hu, 2015). Whereas filtering models (Cassola and Burlando,85

2012; Chen and Yu, 2014), machine learning models (Hu et al., 2013), and hybrid models (Huang et al.,86

2019) have been gradually developed to further improve wind speed prediction accuracy.87
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With purely statistical models becoming less suitable for wind speed predictions beyond 6 hours,88

the use of a combination of physical and statistical methods has gained growing interest (Zjavka, 2015;89

Xu et al., 2021). The error correction model improves the accuracy of the NWP model by training on90

the relationship between the NWP predictor variables and the observed correlation variables (Sun et al.,91

2019). However, traditional error prediction models rely solely on historical wind speed sequences as92

input factors (Deng et al., 2020; Guo et al., 2021) and do not incorporate the characteristic93

meteorological factors forecasted by the WRF model. Studies have shown that considering all relevant94

historical meteorological factors can lead to more accurate predictions compared to only taking into95

account historical wind speed (Zhang et al., 2019c). Therefore, it is crucial to include meteorological96

characteristic factors as input in the prediction model.97

For an error prediction model, wind speed is the most important input factor. Traditionally, the98

error prediction model uses historical wind speed data as input, without any feature selection. Feature99

selection methods, such as filtering methods, are commonly used in time series analysis. Currently,100

empirical mode decomposition (EMD) (Liu et al., 2018; Guo et al., 2012), ensemble empirical mode101

decomposition (EEMD) (Wang et al., 2017), wavelet decomposition (WD) (Zhang et al., 2019b),102

variational mode decomposition (VMD) (Hu et al., 2021; Zhang et al., 2019a), and other filtering103

methods are used to select key features in the wind speed data. As mentioned above, studies have104

shown that these feature selection methods can effectively extract the hidden features in the wind speed105

series to improve wind speed prediction accuracy. However, despite the effectiveness of wind speed106

filtering methods in wind speed prediction, only a few studies have applied these methods to the107

correction of wind speed errors in NWP forecasting (Xu et al., 2021; Li et al., 2022).108

In addition, traditional error correction methods generally adopt linear regression (Dong et al.,109

2013), multiple linear regression (Liu et al., 2016), machine learning (Salcedo-Sanz et al., 2011), and110

deep learning algorithms (Zhang et al., 2019c). However, the efficacy of machine learning and deep111

learning algorithms is highly dependent on the selection of model parameters (Guo et al., 2021; Xiong112

et al., 2022). The Bayesian optimization algorithm (Li and Shi, 2010; Guo et al., 2021) is considered a113

relatively advanced algorithm for optimizing model parameters and has been widely used in MATLAB114

and Python packages.115



5

In this study, we investigate a multi-step wind speed forecasting model that combines NWP116

simulation and an error correction strategy. We present two sets of experiments divided into three steps:117

(1) we use the first group of experiments to extract hidden features from various meteorological118

elements forecasted by NWP; The second group of experiments mainly focuses on the wind speed119

forecast of NWP, and the VMD-PCA algorithm is used to extract the hidden features in the forecasted120

wind speed; each set of experimental input factors is matched with the actual 10-meter wind speed data121

of 410 stations in time and space; (2) we employ four advanced machine learning algorithms optimized122

by the BOA algorithm, and DBN deep learning algorithm to train the two groups of experiments and123

perform 5-fold cross-validation; and (3) we analyze six distinct wind speed error indicators to compare124

and identify the most suitable wind speed error correction schemes for the five southern provinces125

(Yunnan, Guizhou, Guangxi, Guangdong, Hainan) in winter and throughout most of the year. The126

remainder of this paper is organized into sections discussing the effects of the BOA-VMD-PCA127

approach, the interpretability of RF feature importance, and the stability analysis of the proposed128

models.129

2 Data and methods130

2.1 Data131

The observed data comes from the China Meteorological Administration land data assimilation132

system (CLDAS-V2.0) real-time product data set. According to the description of the documents on the133

official website (https://data.cma.cn/data/cdcdetail/dataCode/NAFP_CLDAS2.0_RT.html), the dataset134

is constructed through the integration of multiple sources, including ground and satellite data, and is135

refined using advanced techniques such as multi-grid variational assimilation, physical inversion, and136

terrain correction. This dataset exhibits superior quality in comparison to other products, offering137

higher spatial and temporal resolutions. The target observation data includes 2-m air temperature, 2-m138

specific humidity, 10-meter wind speed, surface pressure, and precipitation. These data are processed139

by the China Meteorological Public Service Center to equivalent latitude and longitude grid scale,140

covering a geographical range of 15-32.97°N and 94-120.97°E. The spatial resolution of the grid is141

0.03° × 0.03° (3km by 3km) and the temporal resolution is 1 hour. China Meteorological Public142

Service Center applied the nearest neighbor interpolation for precipitation and bilinear interpolation for143
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the other four meteorological elements with downscaling from 3km to 410 sites. We select the144

10-meter wind speed data of 410 sites, as illustrated in Fig. 1.145

146
Figure 1. WRF model simulation area elevation diagram. (d02 represents the nested area of the second layer147
of the WRF model, and the black triangles represent the meteorological sites).148

149

2.2 Methods150

2.2.1 WRF simulation151

The WRF 4.2 model (Skamarock et al., 2021), developed by the National Center for152

Atmospheric Research (NCAR), represents a new generation of mesoscale numerical models with153

numerous applications in research forecasting. We use the WRF model with forcing from the 0.25° ×154

0.25° GFS model developed by the National Centers for Environmental Prediction (NCEP). We use the155

first 90 hours of the daily GFS forecast initialized at 06:00 UTC, with 3-h output, to provide initial and156

boundary conditions for a daily 42-h WRF forecast, analyzing the 18-42 h forecast and discarding the157
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first 18 h as spin up. When forecasting meteorological elements, the WRF model normally uses the158

GFS data developed by the National Centers for Environmental Prediction (NCEP). We use the WRF159

model in combination with daily GFS data resolution of 0.25° × 0.25°. The GFS data used by us is160

released at 06:00 UTC with forecasting every 3 hours for a total duration of 90 hours. We selected the161

24-h forecasting data from the WRF-resulted file after a spin-up time of 18 hours. The GFS data as the162

initial field and lateral boundary conditions for the WRF model. Surface static data, such as terrain, soil163

data, and vegetation coverage, are derived from the Moderate Resolution Imaging Spectroradiometer164

(MODIS) satellite with a resolution of 15 seconds (approximately 500 meters). Incorporating a165

two-layer grid nesting configuration, the forecast area is illustrated in Fig. 1. The WRF configuration166

process is detailed in Table 1. Given that the time scale of the meteorological station data in the study167

area is 1 hour, the forecast data time interval of the WRF model is also set to 1 hour. As a widely used168

numerical weather forecast model, the WRF model is suitable for weather studies from a few meters to169

several thousand kilometers. Therefore, this paper uses the WRF model to predict 10-meter wind speed170

as the input factor for the error correction model.171

172

Table 1. WRF configuration scheme173

Model (Version) WRF (V4.2)
Domains D1 D2

Horizontal grid points 600*500 967*535
Δx (km) 9 3

Vertical layers 58
Longwave radiation RRTMG (Iacono et al., 2008)
Shortwave radiation RRTMG (Iacono et al., 2008)

Land surface Noah LSM (Chen et al., 1997)
Surface layer MYJ (Janjić, 1994)
Microphysics Thompson (Thompson et al., 2008)
Boundary layer MYJ (Janjić, 1994)

Cumulus Tiedtke (Tiedtke, 1989; Zhang et al., 2011)

174

2.2.2 Variational mode decomposition175

As a new filtering method, VMD is robust in feature selection. The VMD algorithm decomposes a176

time series signal into several intrinsic mode functions (Isham et al., 2018). The sum of the modes177

equals the original signal, and the sum of the bandwidths is the smallest. The analysis signal is178
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calculated using the Hilbert transform to estimate the modal bandwidth. The optimization model is179

described as180
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where K is the total number of modes, uk is the decomposed K-th mode, wk is the corresponding182
center frequency, and v is the time-series signal, representing the wind speed sequence predicted by the183
WRF model in this study.184
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where  is the penalty parameter and ( )t is the Lagrange multiplier.190

Then we update uk, wk, and  using the alternating direction method of the multiplier:191
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where  is the update parameter.195
When the accuracy (left side of the following expression) meets the following condition, uk, wk196

and  would stop updating:197
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where ε is the tolerance of the convergence criterion.199

The VMD algorithm is implemented to decompose the wind speed signal predicted by the WRF200

model. When using multiple sub-signals instead of the original signal, more features of the wind speed201
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can be obtained. Therefore, it is beneficial to improve the prediction accuracy when using the202

sub-signal as input to the error correction model (Xu et al., 2021; Li et al., 2022).203

2.2.3 Principal Component Analysis204

Subsequences obtained by VMD usually have several illusory components. Using PCA to extract205

the principal components of subsequences increases the number of features input to the model and206

reduces the dimension of the data decomposed by VMD. When principal components (PCs) are used as207

the input of the error prediction algorithm, the PCs fully reflect the characteristics of the subsequence208

and reduce the model complexity. The PCs yk, k=1, 2, …, K of the subsequence matrix U and the209

cumulative contribution rate n of the first n principal components are expressed as:210

k ky c U (1.7)211
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where ck is the corresponding characteristic unit vector, with k=1, 2, …, K; k is the characteristic213

root, with 1 2 K    .214

2.2.4 Evaluation indicators215

There are many commonly used predictive effect evaluation indicators. This article uses the216

following evaluation indicators: correlation coefficient (R), root mean square error (RMSE), mean217

absolute error (MAE), relative root mean square error (rRMSE), relative mean absolute error (rMAE),218

Forecasting Accuracy (FA). Six error indicators are used to evaluate the correction results of short-term219

wind speed forecasts of wind farms. The formula for calculating the error index is as follows:220
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Among them, n represents the number of samples, ˆiy represents the i-th predicted value, iy227

represents the i-th actual value; Nr represents the number of wind speed absolute errors not greater than228
1 m s-1, and Nf represents the number of research samples.229

230

2.2.5 Proposed hybrid forecasting algorithms231

This study used five machine learning algorithms to conduct ten experiments following two main232

paths. The first path involves increasing the meteorological variables possibly related to wind speed in233

the forecast field. The correlation between the WRF-predicted 10-m wind speed and the observed wind234

speed is the highest. The purpose of the second experimental path is using the VMD-PCA algorithm to235

dig out the hidden wind speed characteristics of the 10-meter forecast wind speed, reduce the input of236

other meteorological factors such as WD10 and D2, and further prove that the VMD-PCA algorithm is237

effective before correcting the WRF-predicted wind speed. The overarching goal is to achieve accurate238

correction of the forecast field wind speed. The flowchart of the artificial intelligence models used to239

correct the WRF predicted wind speed for the two main experimental paths is illustrated in Fig. 2 and240

comprises the following three steps:241

Step 1. Data fusion, cleaning, and standardization: As depicted in Fig. 2, this paper proposes two242

distinct experimental paths, with the primary difference being the selection of input variables. In243

Experiment 1, as shown in Fig. 2, 12 sets of data are selected from the WRF forecast field, including244

altitude (HGT), 10-meter wind speed (WS10), latitude (LAT), longitude (LON), surface pressure (PRS),245

relative humidity (RH), 10-meter meridional wind (V10), 10-meter zonal wind (U10), 2-meter246

temperature (T2), 2-meter dew point temperature (D2), 10-meter wind direction (WD10), and hourly247

precipitation (PRE). Experiment 2 derives 8 sets of data by reducing the selected WRF field forecast248
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data to include only altitude, 10-meter wind speed, latitude, longitude, surface pressure, relative249

humidity, 2-meter temperature, and hourly precipitation. The focus is on unearthing hidden250

characteristic information of forecast wind speed. In this experiment, the wind speed is decomposed251

into 9 Intrinsic Mode Functions (IMFk, k=0, 1, 2, …, 8) using VMD. Subsequently, a low-dimensional252

wind speed vector is extracted from the 9 IMF components via PCA dimensionality reduction (pca0,253

pca1, pca2), and all data are concatenated to construct the input factors for the model in Experiment 2.254

The time points in the dataset where missing values are located are eliminated. Experiment 1255

(Experiment 2) standardizes 12 sets of meteorological elements (8 sets of meteorological elements in256

Fig. 3, 9 IMF components, and three PCA vectors in Fig. 4) and wind speed observation data,257

respectively. Standardization addresses the issue of varying meteorological factor values during258

training, which may result in different contributions. In this paper, the 24-hour forecast data correspond259

to the observation data of the subsequent 24 hours. The dataset spans from 00:00 on December 1, 2021,260

to 23:00 on February 28, 2022, totaling 2160 hours and encompassing 410 weather stations.261

Consequently, the original dataset comprises 2160*410 samples, with each sample containing 12262

meteorological features in Experiment 1 and 20 input features in Experiment 2. While similar past263

studies for wind speed correction from NWP models usually use several years for training and at least264

one year for testing whereas our periods are shorter, the size of our data set is sufficient. For example,265

Sun et al. 2019 used a data set that contained 1827 days, from January 2012 to December 2016, using266

143 grid points with a resolution of 0.5°*0.5° predicted by ECMWF, followed by 24 features for each267

sample, with a training set size of 1827*143*24 for each prediction time. Meanwhile, the size of our268

training set is about 2160*410*12. Therefore, even though it only took us a month to train, for this269

project, we trained millions of data; Second, the training data we used here was obtained through daily270

operational runs of numerical weather forecasting, so it would have taken several years to get an equal271

amount of training data.272

Step 2. BOA optimization of AI models and cross-validation: In this study, the dataset is273

partitioned into training, validation, and test sets in accordance with the time series. February 2022274

serves as the training and validation sets, while December 2021 and January 2022 constitute the test set.275

The training and validation sets are divided based on five-fold cross-validation. Both experiments276

employ five machine learning algorithms (DBN, MLP, RF, XGBoost, and LightGBM) to construct277
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distinct machine learning models. Concurrently, this paper utilizes the BOA algorithm to tune the278

parameters of all models, except for DBN, resulting in the optimal hyperparameters for each model.279

Step 3. Model evaluation and error analysis: The trained machine learning models are applied to280

the test set to obtain the revised wind speed data, and ultimately, the accuracy of all models is assessed281

through the wind speed evaluation index. The ultimate goal here is to identify the best wind speed282

correction model suitable for the entire year. Accordingly, the generalization of all models is evaluated283

across other seasonal months of the year, culminating in the selection of the best model.284

285
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Figure 2. Flowchart of the AI model used to correct WRF-predicted wind speeds in the two main286
experimental pathways.287

288

289
Figure 3. Daily average hourly rainfall (a), surface pressure (b), 2-meter temperature (c), 2-meter relative290
humidity (d), 10-meter wind speed (e), 2-meter dew point temperature (f), and 10-meter wind direction ( g)291
which are located at Guangdong Lechang Station from December 1, 2021, to February 28, 2022. (February292
2022 represents the training and verification sets, and December 2021 to January 2022 represents the293
testing set).294

295

296
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Figure 4. Three-dimensional view of 12 wind speed components after VMD and PCA processing of the297
10-meter forecast wind speed at Lechang Station in Guangdong from December 1, 2021, to February 28,298
2022.299

300

301

3 Results302

3.1 Experiment 1 evaluation303

In Experiment 1, the BOA optimization algorithm was applied to five AI models to correct the304

10-meter wind speed forecasted by WRF. There were 12 meteorological element features to establish305

five different AI models (see Table S1 for the hyper-parameters of the five AI models). The training,306

validation, and testing results for 10-meter wind speed are shown in Figs. S1-5 in the supplementary307

material. It is clear from Table 2 that all models, except the DBN model, can fit the training set data308

well. The DBN model exhibits the weakest performance on both the training and validation sets.309

Alternatively, the LightGBM and XGBoost models demonstrate superior prediction performance on310

the training set compared to the validation set. The scatters of the training sets of these two models311

accumulate on the 1:1 diagonal, indicating slight overfitting. As shown in Figs. S1-5d, f, considering312

different evaluation indices, the revision effects of the five models in two months demonstrate that313

RMSE in January 2022 is generally lower than in December 2021; FA in January 2022 is generally314

higher than in December 2021; R in January 2022 is generally lower than in December 2021. Overall,315

the prediction performance of the five models in January 2022 surpassed that in December 2021.316

Furthermore, the LightGBM and RF models exhibited the best performance among the five models in317

the two-month test sets, while the DBN model had the least effective correction effect.318

As illustrated in Fig. 5a, b, WS10 showed the strongest positive correlation with WSobs, with the319

highest R of 0.51, which was consistent with the highest variable importance value of 31 % (23 %) in320

experiment 1 (experiment 2). In addition to WS10, experiment 1 (experiment 2) also had another three321

dominant variables namely, LAT, HGT, and LON, with importance values of 16 % (14 %), 15 %322

(15 %), and 15 % (13 %), respectively. Meanwhile, in experiment 2, IMF0 and pca0 generated by the323

VMD-PCA algorithm have a good importance value of 9 % and 4 %, and the R values of them with324

WSobs are as high as 0.47 and 0.45.325
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Concerning the importance of RF characteristics (Fig. 5a, c), it is indisputable that the 10 m wind326

speed predicted by WRF plays a dominant role in correcting the actual wind speed. The ones following327

are latitude, longitude, and topographic height, which represent spatial geographic information, and the328

actual wind speed is closely related to geographic information. Subsequently, relative humidity is of329

lesser importance. The distribution of the humidity field typically correlates with the movement of the330

atmosphere, which is also closely related to wind speed. Certain meteorological elements, such as331

rainfall, 2 m dew-point temperature, and 2 m temperature, contribute less importance.332

Table 2. Table of evaluation indices of wind speed error trained and verified by 10 models in February 2022333

Model
training set validation set

R RMSE（m s-1） FA R RMSE（m s-1） FA

VMD-PCA-lightGBM 0.96 0.33 0.99 0.88 0.53 0.94

VMD-PCA-XGBoost 0.96 0.31 1.00 0.87 0.54 0.94

VMD-PCA-RF 0.89 0.52 0.94 0.86 0.57 0.93

VMD-PCA-DBN 0.74 0.75 0.87 0.74 0.75 0.87

VMD-PCA-MLP 0.84 0.60 0.91 0.81 0.66 0.90

lightGBM 0.93 0.41 0.98 0.88 0.54 0.94

XGBoost 0.96 0.31 0.99 0.87 0.56 0.93

RF 0.89 0.52 0.94 0.86 0.57 0.93

DBN 0.76 0.73 0.88 0.76 0.73 0.88

MLP 0.85 0.59 0.92 0.83 0.62 0.91

334
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335
Figure 5. Schematic diagram of correlation coefficients (represented the WS10 and input variables) and336
feature importance (calculated by the scikit-learn python package) for two sets of experiments. (a) and (c)337
represent experiment 1, and (b) and (d) represent experiment 2.338

339

3.2 Experiment 2 evaluation340

Experiment 2 builds upon Experiment 1, concentrating on the predicted 10-meter wind speed by341

the WRF model. We use the VMD algorithm to decompose the predicted wind speed into 9342

components and use the PCA algorithm to extract the main 3 principal components. In the RF feature343

importance analysis (Fig. 5b, d), it is evident that the VMD algorithm can decompose IMF0 and IMF1,344

with contributions surpassing those of 2-meter temperature and precipitation, respectively. The345

importance of the pca0 component, after PCA principal component extraction, reaches up to 8%. What346
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is particularly interesting is that in the correlation analysis, the correlation values between the IMF0347

and pca0 components and the actual wind speed are 0.50 and 0.51, which are second only to the348

forecasted wind speed.349

From the indices (RMSE, FA, R) of the training set and validation set shown in Table 2, in350

comparison to the above five artificial intelligence methods, the training results of VMD-PCA-DBN351

are relatively inferior. VMD-PCA-lightGBM and VMD-PCA-XGBoost models still train the processed352

data effectively. According to the scatter density figure (Fig. 6a, Fig. 7a), the scatters are relatively353

concentrated on the 1:1 line. From the indicators (RMSE, FA, R) of the testing set shown in Figs.354

S6-8d, f and Figs. 6-7d, f, the test results of the five models in Experiment 2 in December 2021 and355

January 2022 show that the error indices of RMSE and FA of each model exhibit a minimal difference356

in two months. Nonetheless, disregarding the R results, the performance of the five models in357

December 2021 is inferior to that in January 2022. The diurnal variation scatter plot of two months is358

tested. As is shown in Figs. S6-8d, f and Figs. 6-7d, f, the red scatters represent the nighttime wind359

speed, which is more concentrated on the 1:1 line. In contrast, the blue scatters represent the afternoon360

wind speed, which is slightly away from the 1:1 line. This suggests that the correction effect of the five361

models (VMD-PCA-lightGBM, VMD-PCA-XGBoost, VMD-PCA-RF, VMD-PCA-DBN, and362

VMD-PCA-MLP) exhibits a noticeable diurnal variation.363
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365

Figure 6. The scatter density map compared with the actual 10-meter wind speed: (a) 10-fold366
cross-validation training set of VMD-PCA-RF model in February 2022, (b) 10-fold cross-validation367
validation set of VMD-PCA-RF model in February 2022. The 24-hour scatter map compared with the368
actual 10-meter wind speed: (c) WRF forecasts in December 2021, (d) VMD-PCA-RF model forecasts in369
December 2021, (e) WRF forecasts in January 2022, and (f) VMD-PCA-RF model forecasts in January 2022.370
(The time is UTC + 08:00.)371

372
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374

Figure 7. The scatter density map compared with the actual 10-meter wind speed: (a) 10-fold375
cross-validation training set of VMD-PCA-lightGBM model in February 2022, (b) 10-fold cross-validation376
validation set of VMD-PCA-lightGBM model in February 2022. The 24-hour scatter map compared with377
the actual 10-meter wind speed: (c) WRF forecasts in December 2021, (d) VMD-PCA-lightGBM model378
forecasts in December 2021, (e) WRF forecasts in January 2022, and (f) VMD-PCA-lightGBM model379
forecasts in January 2022. (The time is UTC + 08:00.)380

381
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3.3 Comparison of the two experiments382

Firstly, all 10 models effectively corrected the 10-meter wind speed forecasted by WRF. Table S2383

and Table S3 represent the evaluation indices of wind speed errors predicted by 10 models in384

December 2021 and January 2022. From the two tables, it is evident that the VMD-PCA-RF and385

VMD-PCA-lightGBM models have the best performance in December 2021 and January 2022,386

respectively, with the most comprehensive performance of the forecast indicators. The MAE, RMSE,387

rMAE, rMAE, and FA for the two models VMD-PCA-RF (VMD-PCA-lightGBM) were 0.46 m s-1388

(0.45 m s-1), 0.62 m s-1 (0.63 m s-1), 37.36 % (34.75 %), 50.39 % (48.65 %), and 91.79 % (91.49 %) in389

December 2021 (January 2022). Additionally, based on the analysis of the Taylor chart (Fig. 8e, f) of390

10 models in Fig. 8, it can also be seen that the scatter distance of VMD-PCA-RF and391

VMD-PCA-lightGBM models is closest to the observed black dotted line and the black triangle392

position. The two models show that the standard deviation is close to the observed wind speed, with the393

lowest RMSE and the highest R. Secondly, in the comparison of cumulative probability distributions,394

all models passed Kolmogorov's 5 % confidence interval test when the interval of wind speed is 0.5 m395

s-1 (Fig. 8a, d). However, when the interval of wind speed is 0.2 m s-1 (Fig. 8b, e), the396

VMD-PCA-lightGBM model deviated from Kolmogorov's 5 % confidence interval detection in397

December 2021. This indicates that the VMD-PCA-RF model has a better predictive effect than the398

VMD-PCA-lightGBM model in December 2021 when the actual wind speed is within the range of 0.4399

m s-1-0.8 m s-1.400

401



23

402
Figure 8. The cumulative distribution probability scatter plots of the actual wind speed and the predicted403
wind speed of 10 models in wind speed intervals of 0.5 m s-1 ((a) represents December 2021, (d) represents404
January 2022) and 0.2 m s-1 ((b) represents December 2021, (e) represents January 2022) respectively;405
Taylor distribution map ((c) represents December 2021, (f) represents January 2022).406

407

408
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3.4 Spatial-temporal variations in the best models409

Based on our comparative analysis results, we conclude that the best performing combination410

models in December 2021 and January 2022 are VMD-PCA-RF and VMD-PCA-lightGBM411

respectively. Fig. 9 and Fig. S9 shows the diurnal variation corrections of the two best models for a412

given month, as well as the diurnal variation of wind speed in the original WRF forecast. The wind413

speed of the original WRF numerical weather forecast shows a noticeable overestimation, which is414

confirmed in Fig. 7c and 7e. The scatters of WRF forecast predominantly deviate towards the upper left415

corner, with relatively low correlation coefficients, 0.56 and 0.23, respectively. Furthermore, the wind416

speed forecast by WRF displays obvious diurnal variation traits, characterized by large errors between417

afternoon and evening, specifically between 11:00 and 20:00 (Fig. 9a, Fig. S9a). Moreover, the actual418

average wind speed in January 2022 deviates from the range of one standard deviation of the WRF419

forecast wind speed at 17:00 and 18:00 (Fig. S9a). This demonstrates that the wind speed forecast by420

WRF is inaccurate and exhibits substantial diurnal variation errors.421

After the best model was corrected, the error of diurnal variation was significantly reduced (Fig.422

9b, Fig. S9b). First, the average wind speed corrected by the best model is essentially consistent with423

the actual average wind speed curve, with minimal error and no diurnal variation. Second, the one424

standard deviation range of the corrected and actual wind speeds is also well-matched, indicating that425

the corrected and actual wind speed distributions are consistent. The correction effect at 16:00 and426

17:00 on January 2022 is suboptimal, which may be due to the insufficient generalization of the427

training model and the excessive fluctuation of the actual wind speed at these two-time points.428

The FA (Fig. 10a, Fig. S10a) and RMSE (Fig. 10b, Fig. S10b) distribution of WRF forecast429

10-meter wind speed at 410 stations in the five southern provinces shows that the 10-meter wind speed430

prediction effect of the WRF model in Yunnan is superior to that in the other four provinces. In the431

regions of Hainan, Guangxi, and Guangdong, the number of sites with a RMSE for 10-meter wind432

speed forecast in December 2021 ranging from 5.6 to 6.0 m s-1 was significantly higher than in January433

2022, especially in coastal areas (Fig. 10b, Fig. S10b). In the Yunnan area, the FA of most WRF434

forecast station 10-meter wind speeds exceeds 40 %, and the RMSE value is mostly below 2.4 m s-1.435

Conversely, in other regions, such as Guangxi, Guangdong, and Hainan, the terrain is relatively flat.436

The FA of the 10-meter wind speed forecast by WRF is as low as 30 % at some stations, and the437
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RMSE reaches up to 5.4 m s-1. However, after the VMD-PCA-RF and VMD-PCA-lightGBM models438

are corrected, the FA of most stations in the five southern provinces is as high as 90 %, and the RMSE439

is as low as 0.6 m s-1. Moreover, in Guangxi, Guangdong, and Hainan, where the WRF forecast effect440

is subpar, the accuracy of the corrected 10-meter wind speed by VMD-PCA-RF441

(VMD-PCA-lightGBM) is significantly improved.442
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443

444

Figure 9. VMD-PCA-lightGBM, VMD-PCA-RF, and WRF daily variation of predicted and actual wind445
speeds in December 2021. (The shading areas represent an interval of 1 standard deviation, which is a 68%446
confidence interval. The time is UTC + 08:00.)447

448
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449
Figure 10. FA ((a), (c)) and RMSE ((b), (d)) distribution maps of VMD-PCA-RF and WRF models on 410450

sites in five southern provinces in December 2021.451

4. Discussion452

4.1 The effects of BOA-VMD-PCA453

It is shown in Table S1 that the hyper-parameters of the 10 models in the two experiments are454

different. Since the DBN model is not added to the scikit-learn Python learning package, it is455

challenging to call the BOA algorithm for tuning parameters. Apart from the DBN model, all the other456

models are optimized using the BOA algorithm. From the various evaluation indicators in Table S2 and457

Table S3, the DBN model, which does not use the BOA algorithm to adjust the model parameters to458

obtain an optimal parameter configuration, yields the worst prediction results in December 2021 and459

January 2022. Moreover, studies (Xiong et al., 2022) also have shown that BOA can further improve460

the model's prediction accuracy by configuring optimal hyper-parameters. The hyper-parameters such461

as the number of neurons and learning rate in the hidden layer, significantly impact the model's462

performance. When the same model is applied to different data sets of two experiments, the BOA463

adaptively obtains the optimal combination of hyper-parameters, overcoming the limitations of manual464

parameter adjustment (Guo et al., 2021). This suggests that the selection of model hyper-parameters465

introduces considerable uncertainty in our prediction results. Therefore, the choice of optimization466

model parameters represents one source of uncertainty in the correction results, which entails the467
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complexity of parameter selection. However, a more advanced parameter tuning method, such as the468

BOA tuning algorithm, is essential.469

The VMD is used to obtain unknown but meaningful features hidden in the 10-meter wind speed470

sequences predicted using WRF models (Li et al., 2022). In addition, the PCA can extract important471

components of anemometer subsequences. When the stationary subsequence serves as an input to the472

error correction model, it contains more valuable information than the previous non-stationary wind473

speed sequences (Xu et al., 2021).474

The complexity of the input factors in this study is one of the sources of uncertainty in the process475

of correcting WRF prediction results. The input factors of the two experiments are not identical. In the476

second set of experiments, the input of meteorological factors is reduced based on the first set of477

experiments, while component information of the 10-meter wind speed predicted by WRF is increased.478

Multiple wind speed components processed by VMD-PCA and noise reduction are introduced. Among479

them, the importance of pca0 and IMF0 introduced is approximately 5 %. In the 13-month test sets, the480

correction accuracy of experiment 2 is no less than the results of experiment 1 (Figs. S11, 12),481

indicating that the 10-meter wind speed components introduced by the VMD-PCA contribute482

positively to the correction results.483

484

4.2 RF feature importance485

To further understand the feature importance ranking of the RF models, we divided the model486

prediction results and actual wind speeds of the 410 stations into 20 equal parts according to terrain487

height above sea level (Fig. 11). First of all, the actual wind speed in December 2021 and January 2022488

varies with the height of the station, showing that the lower the height of the station, the more489

significant the change of wind speed. This relationship is associated with the wind speed profile of the490

atmosphere, where wind speed increases as height decreases. Secondly, the wind speed during the day491

is generally greater than the wind speed at night, which is related to the turbulent motion of the492

atmosphere during the day. Solar radiation causes the atmosphere to mix, resulting in convective493

movement. The 10-meter wind speed at night is affected by the cooling radiation of the surface, and the494

atmosphere is relatively stable.495



29

The 10-meter wind speed predicted by WRF has the highest feature importance in the correction496

process of the RF models. Input factors with distinct geographic information, such as latitude,497

longitude, and height, rank highly in feature importance. Similarly, when Sun et al. 2019 used machine498

learning to correct the 10-meter wind speed predicted by the numerical weather prediction model499

ECMWF, the characteristic weight of the 10-meter wind speed predicted by the model was the highest,500

followed by the sea-land factor. Also, as the 10-meter wind speed forecast by WRF increases, the501

instability of the 10-meter wind speed corrected by the 10 machine learning models gradually increased,502

and the correction accuracy gradually decreased (Fig. 12). This partly explains the higher importance503

of the 10-meter wind speed forecast by WRF.504

With 1 km as the center, the measured 10-meter wind speed is more variable in areas where the505

station terrain height increases or decreases. However, the pink box of the 10-meter wind speed506

predicted by WRF becomes wider as the station terrain height decreases (Fig. 11). The distance507

between the gray box and the pink box is greater as the station terrain height decreases. It shows that508

the 10-meter wind speed predicted by WRF has less accuracy with the station terrain height decreases.509

The VMD-PCA-RF and VMD-PCA-lightGBM models significantly reduce the variability of the510

10-meter wind speed predicted by WRF. When the height of the station increases or decreases at 1 km,511

the correction intensity tends to increase gradually. This further explains the higher importance of the512

height factor in the RF model training.513
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514

Figure 11. The boxplots of the predicted wind speeds of the VMD-PCA-RF (yellow), VMD-PCA-lightGBM515
(blue), and WRF (pink) models at 20 stations at different height intervals, and the boxplots of the actual516
wind speeds (gray).517

518
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519

Figure 12. The prediction error boxplots of 10 models in different WRF prediction intervals.520

521

4.3 Stability analysis of the proposed models522

In order to identify the best model of the five southern provinces and assess the model's stability,523

we evaluated all 10 models over 13 different months. Fig. 13 shows the evaluation histogram of the524

10-meter wind speed predicted by the 10 models in Experiment 1 and Experiment 2, as well as the525

actual wind speed in various months. Meanwhile, Fig. S11 and Fig. S12 can more effectively illustrate526

the daily changes of the revised results of 10 models in 13 different months. As shown in Fig. 13, the527

evaluation indices of the model trained in Experiment 2, after VMD-PCA processing, outperform those528

of the model trained in Experiment 1. The RF model demonstrates exceptional robustness, while the529
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MLP model exhibits the poorest performance. VMD-PCA-RF evaluation indices are relatively stable530

across the 13 months, with a correlation coefficient R above 0.6, FA above 85 %, MAE below 0.6 m s-1,531

RMSE below 0.8 m s-1, rMAE below 60 %, and rRMSE below 75 %. However, the robustness of the532

VMD-PCA-lightGBM and VMD-PCA-XGBoost models is inferior to that of the VMD-PCA-RF, with533

all six evaluation indices performing worse than the VMD-PCA-RF as the seasons and months change.534

In general, VMD-PCA-lightGBM is the superior wind speed correction model for the winter, and535

VMD-PCA-RF performs the best throughout the entire year in the five southern provinces. In cases536

where ample machine CPU and other hardware resources, as well as training time, are available, we537

recommend using VMD-PCA-lightGBM for modeling each season. However, when dealing with538

limited resources such as a laptop and constrained training time, we recommend using VMD-PCA-RF539

to train data for a single month, as this yields the most robust correction results.540
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541
Figure 13. Evaluation histograms of 10-meter wind speed predicted by 10 models in different months in542
Experiment 1 and Experiment 2 ((a), (b), (c), (d), (e), and (f) represent R, FA (%), MAE (m s-1), RMSE (m543
s-1), rMAE (%), and rRMSE (%) respectively).544

545

5. Conclusions546

In an effort to enhance the wind speed prediction performance for wind farms, this study547

developed a WRF-based multi-step wind speed prediction model. A hybrid error correction strategy548

combining BOA, VMD, PCA, and RF (LightGBM) is proposed to increase the accuracy of WRF549

simulations. The first group of experiments used various meteorological elements as input factors in a550

control experiment. In the second group of experiments, the wind speed sequence predicted by the551
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WRF model was decomposed into multiple IMFs using the VMD algorithm for feature extraction. A552

principal component analysis method is used to extract meaningful principal components from these553

subsequence IMFs to improve computational efficiency. In the error correction model, RF (lightGBM)554

and other algorithms are used to train the relationship between different input factors and the actual555

wind speed error, respectively.556

Through a case analysis of 410 stations in five southern provinces in China, the following557

conclusions can be drawn: (1) The machine learning models tuned by the BOA-VMD-PCA algorithm558

exhibit a positive impact on wind speed error correction; (2) Feature importance analysis revealed that559

the top eight contributing factors for correcting WRF forecasted wind speed include WRF forecast560

10-meter wind speed (WS10), latitude, longitude, altitude, pca0 (pca0 physically represents the lowest561

frequency wind speed series after PCA treatment of all IMFk (k=0, 1, 2, …, 8) sub-series with reduced562

dimension), humidity, pressure, IMF0 (IMF0 physically represents the wind speed stationary series563

with a specific lowest center frequency after the original wind speed series has been processed by564

VMD); (3) VMD-PCA-RF and VMD-PCA-lightGBM are the most suitable wind speed correction565

algorithms for December 2021 and January 2022, respectively. The MAE, RMSE, FA, rMAE, rRMSE,566

and R of the corrected wind speed and the actual wind speed are 0.46 (0.45), 0.62 m s-1 (0.63 m s-1),567

37.36 % (34.75 %), 50.39 % (48.65 %), 91.79 % (91.49 %), and 0.82 (0.78); and (4) The proposed568

wind speed correction model (VMD-PCA-RF) demonstrates the highest prediction accuracy and569

stability in the five southern provinces in nearly a year and at different heights. VMD-PCA-RF570

evaluation indices for 13 months remain relatively stable: R is above 0.6, FA is above 85 %, MAE is571

below 0.6 m s-1, RMSE is below 0.8 m s-1, rMAE is below 60 %, and rRMSE is below 75 %. In future572

research, the proposed VMD-PCA-RF algorithm can be extrapolated to the 3 km grid points of the five573

southern provinces to generate a 3km grid-corrected wind speed product.574

575
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