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Abstract. Accurate wind speed prediction is crucial for the safe and efficient utilization of wind16

resources. However, current single-value deterministic numerical weather prediction methods17

employed by wind farms do not adequately meet the actual needs of power grid dispatching. In this18

study, we propose a new hybrid forecasting method for correcting 10-meter wind speed predictions19

made by the Weather Research and Forecasting (WRF) model. Our approach incorporates Variational20

Mode Decomposition (VMD), Principal Component Analysis (PCA), and five artificial intelligence21

algorithms: Deep Belief Network (DBN), Multilayer Perceptron (MLP), Random Forest (RF), eXtreme22

Gradient Boosting (XGBoost), light Gradient Boosting Machine (lightGBM), and the Bayesian23

Optimization Algorithm (BOA). We first construct WRF-predicted wind speeds using the Global24

Forecast System Global Prediction System (GFS) model output based on prediction results. We then25

perform two sets of experiments with different input factors and apply BOA optimization to tune the26

four artificial intelligence models, ultimately building the final models. Furthermore, we compare the27

aforementioned five optimal artificial intelligence models suitable for five provinces in southern China28

in the wintertime: VMD-PCA-RF in December 2021 and VMD-PCA-lightGBM in January 2022. We29

find that the VMD-PCA-RF evaluation indices exhibit relative stability over nearly a year: correlation30

coefficient (R) is above 0.6, Forecasting Accuracy (FA) is above 85 %, mean absolute error (MAE) is31
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below 0.6 m s-1, root mean square error (RMSE) is below 0.8 m s-1, relative mean absolute error (rMAE)32

is below 60 %, and relative root mean square error (rRMSE) is below 75 %. Thus, for its promising33

performance and excellent year-round robustness, we recommend adopting the proposed34

VMD-PCA-RF method for improved wind speed prediction in models.35

1 Introduction36

Sustainable energy plays a vital role in reducing carbon footprint and increasing system reliability37

(Hanifi et al., 2020). As renewable energy sources have a negligible carbon footprint, they have38

become the preferred choice for many industries in the power sector (Dhiman and Deb, 2020). Among39

these sources, wind energy is a crucial low-carbon energy technology with the potential to become a40

sustainable energy source (Tascikaraoglu and Uzunoglu, 2014). In 2022, the global wind power41

capacity reached 906 GW, with a 9 % year-on-year increase due to a newly installed capacity of 77.642

GW. The global onshore wind market increased by 68.8 GW while facing a 5 % growth decline43

compared to the previous year. Such change is attributed to a slowdown in China and the U.S., the44

world's two largest wind markets that account for over two-thirds of the world's onshore wind farm45

installations (Joyce and Feng, 2023). The instability and unpredictability of wind power generation can46

lead to instability in the power system. In addition, the decline of the wind energy market also makes it47

more challenging to improve the accuracy of wind speed forecasts. An accurate wind speed prediction48

method is needed to reduce the instability risk of power system and the economic loss of wind power49

enterprises (Huang et al., 2019). Therefore, accurate and stable wind speed prediction (WSP) is very50

important for the safe and stable operation of the power grid system and for improving the utilization51

rate of wind energy and economic development (Guo et al., 2021; Xiong et al., 2022; Tang et al.,52

2021).53

Current WSP algorithms are primarily categorized into physical algorithms (Zhao et al., 2016),54

statistical algorithms (Wang and Hu, 2015; Barthelmie et al., 1993), machine learning (ML) algorithms55

(Huang et al., 2019; Salcedo-Sanz et al., 2011; Ma et al., 2020), and hybrid algorithms (Deng et al.,56

2020; Xu et al., 2021; Zhao et al., 2019; Xiong et al., 2022; Tang et al., 2021). Physical methods, such57

as numerical weather prediction (NWP), are commonly used in wind speed forecasting. NWP, which58

accounts for atmospheric processes and physical laws, solves discrete mass, momentum, and energy59
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conservation equations along with other fundamental physical principles, establishing itself as a widely60

adopted and reliable physical method. Currently, the High-resolution Limited Area Model (HIRLAM)61

(Služenikina and Männik, 2016), the European Center for Medium-Range Weather Forecast (ECMWF)62

model, the fifth-generation mesoscale model (MM5) (Salcedo-Sanz et al., 2009), and the Weather63

Research and Forecasting Model (WRF) (Skamarock et al., 2021) are extensively utilized for wind64

speed prediction. However, NWP modeling faces challenges due to the selection of parameterization65

schemes, such as model microphysics and systematic errors, which exhibit temporal and spatial66

differences and uncertainties. These uncertainties hinder the accuracy of NWP models in wind speed67

prediction, making it difficult to meet the rising demands of the grid system (Zhao et al., 2019; Xu et68

al., 2021).69

Studies have demonstrated that enhancing the accuracy of numerical weather prediction (NWP)70

models and correcting prediction errors can effectively minimize the errors associated with wind speed71

prediction. These research endeavors have typically sought to optimize the physical and dynamic72

parameters of the NWP model (Cheng et al., 2013), refine the model structure (Jiménez and Dudhia,73

2012), or improve the accuracy of model inputs through preprocessing and denoising techniques (Xu et74

al., 2015). Additionally, improving initial field error through methods, such as target observation and75

data assimilation (Williams et al., 2013), can also minimize wind speed errors predicted by NWP76

models.77

Physical methods are generally more appropriate for long-term wind speed prediction, such as78

those 48-72 hours in advance, while their practical application in short-term forecasting is limited79

(Zhao et al., 2019; Deng et al., 2020; James et al., 2018). In contrast, statistical methods utilize80

historical data to establish a relationship between input and output variables and are therefore81

well-suited for short-term wind speed prediction. They are usually time series models, such as82

Autoregressive Moving Average (ARMA) (Erdem and Shi, 2011) and Autoregressive Integrated83

Moving Average (ARIMA) (Wang and Hu, 2015). Whereas filtering models (Cassola and Burlando,84

2012; Chen and Yu, 2014), machine learning models (Hu et al., 2013), and hybrid models (Huang et al.,85

2019) have been gradually developed to further improve wind speed prediction accuracy.86

With purely statistical models becoming less suitable for wind speed predictions beyond 6 hours,87

the use of a combination of physical and statistical methods has gained growing interest (Zjavka, 2015;88
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Xu et al., 2021). The error correction model improves the accuracy of the NWP model by training on89

the relationship between the NWP predictor variables and the observed correlation variables (Sun et al.,90

2019). However, traditional error prediction models rely solely on historical wind speed sequences as91

input factors (Deng et al., 2020; Guo et al., 2021) and do not incorporate the characteristic92

meteorological factors forecasted by the WRF model. Studies have shown that considering all relevant93

historical meteorological factors can lead to more accurate predictions compared to only taking into94

account historical wind speed (Zhang et al., 2019c). Therefore, it is crucial to include meteorological95

characteristic factors as input in the prediction model.96

For an error prediction model, wind speed is the most important input factor. Traditionally, the97

error prediction model uses historical wind speed data as input, without any feature selection. Feature98

selection methods, such as filtering methods, are commonly used in time series analysis. Currently,99

empirical mode decomposition (EMD) (Liu et al., 2018; Guo et al., 2012), ensemble empirical mode100

decomposition (EEMD) (Wang et al., 2017), wavelet decomposition (WD) (Zhang et al., 2019b),101

variational mode decomposition (VMD) (Hu et al., 2021; Zhang et al., 2019a), and other filtering102

methods are used to select key features in the wind speed data. As mentioned above, studies have103

shown that these feature selection methods can effectively extract the hidden features in the wind speed104

series to improve wind speed prediction accuracy. However, despite the effectiveness of wind speed105

filtering methods in wind speed prediction, only a few studies have applied these methods to the106

correction of wind speed errors in NWP forecasting (Xu et al., 2021; Li et al., 2022).107

In addition, traditional error correction methods generally adopt linear regression (Dong et al.,108

2013), multiple linear regression (Liu et al., 2016), machine learning (Salcedo-Sanz et al., 2011), and109

deep learning algorithms (Zhang et al., 2019c). However, the efficacy of machine learning and deep110

learning algorithms is highly dependent on the selection of model parameters (Guo et al., 2021; Xiong111

et al., 2022). The Bayesian optimization algorithm (Li and Shi, 2010; Guo et al., 2021) is considered a112

relatively advanced algorithm for optimizing model parameters and has been widely used in MATLAB113

and Python packages.114

In this study, we investigate a multi-step wind speed forecasting model that combines NWP115

simulation and an error correction strategy. We present two sets of experiments divided into three steps:116

(1) we use the first group of experiments to extract hidden features from various meteorological117
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elements forecasted by NWP; The second group of experiments mainly focuses on the wind speed118

forecast of NWP, and the VMD-PCA algorithm is used to extract the hidden features in the forecasted119

wind speed; each set of experimental input factors is matched with the actual 10-meter wind speed data120

of 410 stations in time and space; (2) we employ four advanced machine learning algorithms optimized121

by the BOA algorithm, and DBN deep learning algorithm to train the two groups of experiments and122

perform 5-fold cross-validation; and (3) we analyze six distinct wind speed error indicators to compare123

and identify the most suitable wind speed error correction schemes for the five southern provinces124

(Yunnan, Guizhou, Guangxi, Guangdong, Hainan) in winter and throughout most of the year. The125

remainder of this paper is organized into sections discussing the effects of the BOA-VMD-PCA126

approach, the interpretability of RF feature importance, and the stability analysis of the proposed127

models.128

2 Data and methods129

2.1 Data130

The observed data comes from the China Meteorological Administration land data assimilation131

system (CLDAS-V2.0) real-time product data set. According to the description of the documents on the132

official website (https://data.cma.cn/data/cdcdetail/dataCode/NAFP_CLDAS2.0_RT.html), the dataset133

is constructed through the integration of multiple sources, including ground and satellite data, and is134

refined using advanced techniques such as multi-grid variational assimilation, physical inversion, and135

terrain correction. This dataset exhibits superior quality in comparison to other products, offering136

higher spatial and temporal resolutions. The target observation data includes 2-m air temperature, 2-m137

specific humidity, 10-meter wind speed, surface pressure, and precipitation. These data are processed138

by the China Meteorological Public Service Center to equivalent latitude and longitude grid scale,139

covering a geographical range of 15-32.97°N and 94-120.97°E. The spatial resolution of the grid is140

0.03° × 0.03° (3km by 3km) and the temporal resolution is 1 hour. China Meteorological Public141

Service Center applied the nearest neighbor interpolation for precipitation and bilinear interpolation for142

the other four meteorological elements with downscaling from 3km to 410 sites. We select the143

10-meter wind speed data of 410 sites, as illustrated in Fig. 1.144
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146
Figure 1: . WRF model simulation area elevation diagram. (d02 represents the nested area of the second147
layer of the WRF model, and the black triangles represent the meteorological sites).148

149

2.2 Methods150

2.2.1 WRF simulation151

The WRF 4.2 model (Skamarock et al., 2021), developed by the National Center for152

Atmospheric Research (NCAR), represents a new generation of mesoscale numerical models with153

numerous applications in research forecasting. When forecasting meteorological elements, the WRF154

model normally uses the GFS data developed by the National Centers for Environmental Prediction155

(NCEP). We use the WRF model in combination with daily GFS data resolution of 0.25° × 0.25°. The156

GFS data used by us is released at 06:00 UTC with forecasting every 3 hours for a total duration of 90157

hoursUsing the WRF model in combination with daily GFS data resolution of 0.25° × 0.25°, the GFS158

data updates at 06:00 UTC and generates forecasting every 3 hours for a total duration of 90 hours. We159
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selected the 24-h forecasting data from the WRF-resulted file after a spin-up time of 18 hours. The160

GFS data as the initial field and lateral boundary conditions for the WRF model. Surface static data,161

such as terrain, soil data, and vegetation coverage, are derived from the Moderate Resolution Imaging162

Spectroradiometer (MODIS) satellite with a resolution of 15 seconds (approximately 500 meters).163

Incorporating a two-layer grid nesting configuration, the forecast area is illustrated in Fig. 1. The WRF164

configuration process is detailed in Table 1. Given that the time scale of the meteorological station data165

in the study area is 1 hour, the forecast data time interval of the WRF model is also set to 1 hour. As a166

widely used numerical weather forecast model, the WRF model is suitable for weather studies from a167

few meters to several thousand kilometers. Therefore, this paper uses the WRF model to predict168

10-meter wind speed as the input factor for the error correction model.169

170

Table 1: . WRF configuration scheme171

Model (Version) WRF (V4.2)
Domains D1 D2

Horizontal grid points 600*500 967*535
Δx (km) 9 3

Vertical layers 58
Longwave radiation RRTMG (Iacono et al., 2008)
Shortwave radiation RRTMG (Iacono et al., 2008)

Land surface Noah LSM (Chen et al., 1997)
Surface layer MYJ (Janjić, 1994)
Microphysics Thompson (Thompson et al., 2008)
Boundary layer MYJ (Janjić, 1994)

Cumulus Tiedtke (Tiedtke, 1989; Zhang et al., 2011)

172

2.2.2 Variational mode decomposition173

As a new filtering method, VMD is robust in feature selection. The VMD algorithm decomposes a174

time series signal into several intrinsic mode functions (Isham et al., 2018). The sum of the modes175

equals the original signal, and the sum of the bandwidths is the smallest. The analysis signal is176

calculated using the Hilbert transform to estimate the modal bandwidth. The optimization model is177

described as178
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where K is the total number of modes, uk is the decomposed K-th mode, wk is the corresponding180
center frequency, and v is the time-series signal, representing the wind speed sequence predicted by the181
WRF model in this study.182

The above-constrained problem can be transformed into an unconstrained problem using the183
Lagrangian function:184
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where  is the penalty parameter and ( )t is the Lagrange multiplier.188

Then we update uk, wk, and  using the alternating direction method of the multiplier:189
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where  is the update parameter.193
When the accuracy (left side of the following expression) meets the following condition, uk, wk194

and  would stop updating:195
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where ε is the tolerance of the convergence criterion.197

The VMD algorithm is implemented to decompose the wind speed signal predicted by the WRF198

model. When using multiple sub-signals instead of the original signal, more features of the wind speed199

can be obtained. Therefore, it is beneficial to improve the prediction accuracy when using the200

sub-signal as input to the error correction model (Xu et al., 2021; Li et al., 2022).201
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2.2.3 Principal Component Analysis202

Subsequences obtained by VMD usually have several illusory components. Using PCA to extract203

the principal components of subsequences increases the number of features input to the model and204

reduces the dimension of the data decomposed by VMD. When principal components (PCs) are used as205

the input of the error prediction algorithm, the PCs fully reflect the characteristics of the subsequence206

and reduce the model complexity. The PCs yk, k=1, 2, …, K of the subsequence matrix U and the207

cumulative contribution rate n of the first n principal components are expressed as:208

k ky c U (1.7)209

1

1

n

k
k

n K

k
k














(1.8)210

where ck is the corresponding characteristic unit vector, with k=1, 2, …, K; k is the characteristic211

root, with 1 2 K    .212

2.2.4 Evaluation indicators213

There are many commonly used predictive effect evaluation indicators. This article uses the214

following evaluation indicators: correlation coefficient (R), root mean square error (RMSE), mean215

absolute error (MAE), relative root mean square error (rRMSE), relative mean absolute error (rMAE),216

Forecasting Accuracy (FA). Six error indicators are used to evaluate the correction results of short-term217

wind speed forecasts of wind farms. The formula for calculating the error index is as follows:218
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Among them, n represents the number of samples, ˆiy represents the i-th predicted value, iy225

represents the i-th actual value; Nr represents the number of wind speed absolute errors not greater than226
1 m s-1, and Nf represents the number of research samples.227

228

2.2.5 Proposed hybrid forecasting algorithms229

This study used five machine learning algorithms to conduct ten experiments following two main230

paths. The first path involves increasing the meteorological variables possibly related to wind speed in231

the forecast field. The correlation between the WRF-predicted 10-m wind speed and the observed wind232

speed is the highest. The purpose of the second experimental path is using the VMD-PCA algorithm to233

dig out the hidden wind speed characteristics of the 10-meter forecast wind speed, reduce the input of234

other meteorological factors such as WD10 and D2, and further prove that the VMD-PCA algorithm is235

effective before correcting the WRF-predicted wind speed. The overarching goal is to achieve accurate236

correction of the forecast field wind speed. The flowchart of the artificial intelligence models used to237

correct the WRF predicted wind speed for the two main experimental paths is illustrated in Fig. 2 and238

comprises the following three steps:239

Step 1. Data fusion, cleaning, and standardization: As depicted in Fig. 2, this paper proposes two240

distinct experimental paths, with the primary difference being the selection of input variables. In241

Experiment 1, as shown in Fig. 2, 12 sets of data are selected from the WRF forecast field, including242

altitude (HGT), 10-meter wind speed (WS10), latitude (LAT), longitude (LON), surface pressure (PRS),243

relative humidity (RH), 10-meter meridional wind (V10), 10-meter zonal wind (U10), 2-meter244

temperature (T2), 2-meter dew point temperature (D2), 10-meter wind direction (WD10), and hourly245

precipitation (PRE). Experiment 2 derives 8 sets of data by reducing the selected WRF field forecast246

data to include only altitude, 10-meter wind speed, latitude, longitude, surface pressure, relative247

humidity, 2-meter temperature, and hourly precipitation. The focus is on unearthing hidden248
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characteristic information of forecast wind speed. In this experiment, the wind speed is decomposed249

into 9 Intrinsic Mode Functions (IMFk, k=0, 1, 2, …, 8) using VMD. Subsequently, a low-dimensional250

wind speed vector is extracted from the 9 IMF components via PCA dimensionality reduction (pca0,251

pca1, pca2), and all data are concatenated to construct the input factors for the model in Experiment 2.252

The time points in the dataset where missing values are located are eliminated. Experiment 1253

(Experiment 2) standardizes 12 sets of meteorological elements (8 sets of meteorological elements in254

Fig. 3, 9 IMF components, and three PCA vectors in Fig. 4) and wind speed observation data,255

respectively. Standardization addresses the issue of varying meteorological factor values during256

training, which may result in different contributions. In this paper, the 24-hour forecast data correspond257

to the observation data of the subsequent 24 hours. The dataset spans from 00:00 on December 1, 2021,258

to 23:00 on February 28, 2022, totaling 2160 hours and encompassing 410 weather stations.259

Consequently, the original dataset comprises 2160*410 samples, with each sample containing 12260

meteorological features in Experiment 1 and 20 input features in Experiment 2. While similar past261

studies for wind speed correction from NWP models usually use several years for training and at least262

one year for testing whereas our periods are shorter, the size of our data set is sufficient. For example,263

Sun et al. 2019 used a data set that contained 1827 days, from January 2012 to December 2016, using264

143 grid points with a resolution of 0.5°*0.5° predicted by ECMWF, followed by 24 features for each265

sample, with a training set size of 1827*143*24 for each prediction time. Meanwhile, the size of our266

training set is about 2160*410*12. Therefore, even though it only took us a month to train, for this267

project, we trained millions of data; Second, the training data we used here was obtained through daily268

operational runs of numerical weather forecasting, so it would have taken several years to get an equal269

amount of training data.270

Step 2. BOA optimization of AI models and cross-validation: In this study, the dataset is271

partitioned into training, validation, and test sets in accordance with the time series. February 2022272

serves as the training and validation sets, while December 2021 and January 2022 constitute the test set.273

The training and validation sets are divided based on five-fold cross-validation. Both experiments274

employ five machine learning algorithms (DBN, MLP, RF, XGBoost, and LightGBM) to construct275

distinct machine learning models. Concurrently, this paper utilizes the BOA algorithm to tune the276

parameters of all models, except for DBN, resulting in the optimal hyperparameters for each model.277
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Step 3. Model evaluation and error analysis: The trained machine learning models are applied to278

the test set to obtain the revised wind speed data, and ultimately, the accuracy of all models is assessed279

through the wind speed evaluation index. The ultimate goal here is to identify the best wind speed280

correction model suitable for the entire year. Accordingly, the generalization of all models is evaluated281

across other seasonal months of the year, culminating in the selection of the best model.282

283
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284
Figure 2: . Flowchart of the AI model used to correct WRF-predicted wind speeds in the two main285
experimental pathways.286

287
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288
Figure 3: . Daily average hourly rainfall (a), surface pressure (b), 2-meter temperature (c), 2-meter relative289
humidity (d), 10-meter wind speed (e), 2-meter dew point temperature (f), and 10-meter wind direction ( g)290
which are located at Guangdong Lechang Station from December 1, 2021, to February 28, 2022. (February291
2022 represents the training and verification sets, and December 2021 to January 2022 represents the292
testing set).293

294

295

Figure 4: . Three-dimensional view of 12 wind speed components after VMD and PCA processing of the296
10-meter forecast wind speed at Lechang Station in Guangdong from December 1, 2021, to February 28,297
2022.298

299
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300

3 Results301

3.1 Experiment 1 evaluation302

In Experiment 1, the BOA optimization algorithm was applied to five AI models to correct the303

10-meter wind speed forecasted by WRF. There were 12 meteorological element features to establish304

five different AI models (see Table 2 S1 for the hyper-parameters of the five AI models). The training,305

validation, and testing results for 10-meter wind speed are shown in Figs. S1-5 in the supplementary306

material. It is clear from Table 3 2 that all models, except the DBN model, can fit the training set data307

well. The DBN model exhibits the weakest performance on both the training and validation sets.308

Alternatively, the LightGBM and XGBoost models demonstrate superior prediction performance on309

the training set compared to the validation set. The scatters of the training sets of these two models310

accumulate on the 1:1 diagonal, indicating slight overfitting. As shown in Figs. S1-5d, f, considering311

different evaluation indices, the revision effects of the five models in two months demonstrate that312

RMSE in January 2022 is generally lower than in December 2021; FA in January 2022 is generally313

higher than in December 2021; R in January 2022 is generally lower than in December 2021. Overall,314

the prediction performance of the five models in January 2022 surpassed that in December 2021.315

Furthermore, the LightGBM and RF models exhibited the best performance among the five models in316

the two-month test sets, while the DBN model had the least effective correction effect.317

As illustrated in Fig. 5a, b, WS10 showed the strongest positive correlation with WSobs, with the318

highest R of 0.51, which was consistent with the highest variable importance value of 31 % (23 %) in319

experiment 1 (experiment 2). In addition to WS10, experiment 1 (experiment 2) also had another three320

dominant variables namely, LAT, HGT, and LON, with importance values of 16 % (14 %), 15 %321

(15 %), and 15 % (13 %), respectively. Meanwhile, in experiment 2, IMF0 and pca0 generated by the322

VMD-PCA algorithm have a good importance value of 9 % and 4 %, and the R values of them with323

WSobs are as high as 0.47 and 0.45.324

Concerning the importance of RF characteristics (Fig. 5a, c), it is indisputable that the 10 m wind325

speed predicted by WRF plays a dominant role in correcting the actual wind speed. The ones following326

are latitude, longitude, and topographic height, which represent spatial geographic information, and the327
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actual wind speed is closely related to geographic information. Subsequently, relative humidity is of328

lesser importance. The distribution of the humidity field typically correlates with the movement of the329

atmosphere, which is also closely related to wind speed. Certain meteorological elements, such as330

rainfall, 2 m dew-point temperature, and 2 m temperature, contribute less importance.331

Table 2. The best hyper-parameters of the models332

Model parameters

VMD-PCA-lightGBM ‘max_depth’ : 28, ‘min_child_samples’ : 30, ‘n_estimators’ : 436,

‘num_leaves’ : 287

VMD-PCA-XGBoost ‘gamma’ : 1, ‘max_depth’ : 19, ‘min_child_weight’ : 1, ‘n_estimators’:

408

VMD-PCA-RF ‘max_depth’ : 31, ‘max_features’ : 14, ‘min_samples_leaf’ : 28,

‘min_samples_split’ : 3, ‘n_estimators’ : 371

VMD-PCA-DBN ‘input_length’ : 20, ’output_length’ : 1, ’loss_function’ :

‘MSE’, ’optimizer’ : ‘Adam’, ’hidden_units’ : [400,

200], ’batch_size’ :20000, ’epoch_pretrain’ : 100, ’epoch_finetune’ :

200

VMD-PCA-MLP ‘batch_size’ : 10114, ‘hidden_layer_sizes’ : 305, ‘max_iter’ : 386

lightGBM ‘max_depth’ : 21, ‘min_child_samples’ : 19, ‘n_estimators’ : 312,

‘num_leaves’ : 297

XGBoost ‘gamma’ : 0, ‘max_depth’ : 21, ‘min_child_weight’ : 9, ‘n_estimators’:

299

RF ‘max_depth’ : 40, ‘max_features’ : 12, ‘min_samples_leaf’ : 23,

‘min_samples_split’ : 2, ‘n_estimators’ : 440

DBN ‘input_length’ : 12, ’output_length’ : 1, ’loss_function’ :

‘MSE’, ’optimizer’ : ‘Adam’, ’hidden_units’ : [400, 200], ’batch_size’ :

20000, ’epoch_pretrain’ : 100, ’epoch_finetune’ : 200

MLP ‘batch_size’ : 10232, ‘hidden_layer_sizes’ : 494, ‘max_iter’ : 311

333

Table 3. Table of evaluation indices of wind speed error trained and verified by 10 models in February 2022334
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Model
training set validation set

R RMSE（m s-1） FA R RMSE（m s-1） FA

VMD-PCA-lightGBM 0.96 0.33 0.99 0.88 0.53 0.94

VMD-PCA-XGBoost 0.96 0.31 1.00 0.87 0.54 0.94

VMD-PCA-RF 0.89 0.52 0.94 0.86 0.57 0.93

VMD-PCA-DBN 0.74 0.75 0.87 0.74 0.75 0.87

VMD-PCA-MLP 0.84 0.60 0.91 0.81 0.66 0.90

lightGBM 0.93 0.41 0.98 0.88 0.54 0.94

XGBoost 0.96 0.31 0.99 0.87 0.56 0.93

RF 0.89 0.52 0.94 0.86 0.57 0.93

DBN 0.76 0.73 0.88 0.76 0.73 0.88

MLP 0.85 0.59 0.92 0.83 0.62 0.91

Table 2. Table of evaluation indices of wind speed error trained and verified by 10 models in February 2022335

Model
training set validation set

R RMSE（m s-1） FA R RMSE（m s-1） FA

VMD-PCA-lightGBM 0.96 0.33 0.99 0.88 0.53 0.94

VMD-PCA-XGBoost 0.96 0.31 1.00 0.87 0.54 0.94

VMD-PCA-RF 0.89 0.52 0.94 0.86 0.57 0.93

VMD-PCA-DBN 0.74 0.75 0.87 0.74 0.75 0.87

VMD-PCA-MLP 0.84 0.60 0.91 0.81 0.66 0.90

lightGBM 0.93 0.41 0.98 0.88 0.54 0.94

XGBoost 0.96 0.31 0.99 0.87 0.56 0.93

RF 0.89 0.52 0.94 0.86 0.57 0.93

DBN 0.76 0.73 0.88 0.76 0.73 0.88

MLP 0.85 0.59 0.92 0.83 0.62 0.91

336
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337
Figure 5: . Schematic diagram of correlation coefficients (represented the WS10 and input variables) and338
feature importance (calculated by the scikit-learn python package) for two sets of experiments. (a) and (c)339
represent experiment 1, and (b) and (d) represent experiment 2.340

341

3.2 Experiment 2 evaluation342

Experiment 2 builds upon Experiment 1, concentrating on the predicted 10-meter wind speed by343

the WRF model. We use the VMD algorithm to decompose the predicted wind speed into 9344

components and use the PCA algorithm to extract the main 3 principal components. In the RF feature345

importance analysis (Fig. 5b, d), it is evident that the VMD algorithm can decompose IMF0 and IMF1,346

with contributions surpassing those of 2-meter temperature and precipitation, respectively. The347

importance of the pca0 component, after PCA principal component extraction, reaches up to 8%. What348
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is particularly interesting is that in the correlation analysis, the correlation values between the IMF0349

and pca0 components and the actual wind speed are 0.50 and 0.51, which are second only to the350

forecasted wind speed.351

From the indices (RMSE, FA, R) of the training set and validation set shown in Table 32, in352

comparison to the above five artificial intelligence methods, the training results of VMD-PCA-DBN353

are relatively inferior. VMD-PCA-lightGBM and VMD-PCA-XGBoost models still train the processed354

data effectively. According to the scatter density figure (Fig. 6a, Fig. 7a), the scatters are relatively355

concentrated on the 1:1 line. From the indicators (RMSE, FA, R) of the testing set shown in Figs.356

S6-8d, f and Figs. 6-7d, f, the test results of the five models in Experiment 2 in December 2021 and357

January 2022 show that the error indices of RMSE and FA of each model exhibit a minimal difference358

in two months. Nonetheless, disregarding the R results, the performance of the five models in359

December 2021 is inferior to that in January 2022. The diurnal variation scatter plot of two months is360

tested. As is shown in Figs. S6-8d, f and Figs. 6-7d, f, the red scatters represent the nighttime wind361

speed, which is more concentrated on the 1:1 line. In contrast, the blue scatters represent the afternoon362

wind speed, which is slightly away from the 1:1 line. This suggests that the correction effect of the five363

models (VMD-PCA-lightGBM, VMD-PCA-XGBoost, VMD-PCA-RF, VMD-PCA-DBN, and364

VMD-PCA-MLP) exhibits a noticeable diurnal variation.365
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366

Figure 6.: The scatter density map compared with the actual 10-meter wind speed: (a) 10-fold367
cross-validation training set of VMD-PCA-RF model in February 2022, (b) 10-fold cross-validation368
validation set of VMD-PCA-RF model in February 2022. The 24-hour scatter map compared with the369
actual 10-meter wind speed: (c) WRF forecasts in December 2021, (d) VMD-PCA-RF model forecasts in370
December 2021, (e) WRF forecasts in January 2022, and (f) VMD-PCA-RF model forecasts in January 2022.371
(The time is UTC + 08:00.)372

373
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374

Figure 7: . The scatter density map compared with the actual 10-meter wind speed: (a) 10-fold375
cross-validation training set of VMD-PCA-lightGBM model in February 2022, (b) 10-fold cross-validation376
validation set of VMD-PCA-lightGBM model in February 2022. The 24-hour scatter map compared with377
the actual 10-meter wind speed: (c) WRF forecasts in December 2021, (d) VMD-PCA-lightGBM model378
forecasts in December 2021, (e) WRF forecasts in January 2022, and (f) VMD-PCA-lightGBM model379
forecasts in January 2022. (The time is UTC + 08:00.)380

381
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3.3 Comparison of the two experiments382

Firstly, all 10 models effectively corrected the 10-meter wind speed forecasted by WRF. Table 3383

S2 and Table 4 S3 represent the evaluation indices of wind speed errors predicted by 10 models in384

December 2021 and January 2022. From the two tables, it is evident that the VMD-PCA-RF and385

VMD-PCA-lightGBM models have the best performance in December 2021 and January 2022,386

respectively, with the most comprehensive performance of the forecast indicators. The MAE, RMSE,387

rMAE, rMAE, and FA for the two models VMD-PCA-RF (VMD-PCA-lightGBM) were 0.46 m s-1388

(0.45 m s-1), 0.62 m s-1 (0.63 m s-1), 37.36 % (34.75 %), 50.39 % (48.65 %), and 91.79 % (91.49 %) in389

December 2021 (January 2022). Additionally, based on the analysis of the Taylor chart (Fig. 8e, f) of390

10 models in Fig. 8, it can also be seen that the scatter distance of VMD-PCA-RF and391

VMD-PCA-lightGBM models is closest to the observed black dotted line and the black triangle392

position. The two models show that the standard deviation is close to the observed wind speed, with the393

lowest RMSE and the highest R. Secondly, in the comparison of cumulative probability distributions,394

all models passed Kolmogorov's 5 % confidence interval test when the interval of wind speed is 0.5 m395

s-1 (Fig. 8a, d). However, when the interval of wind speed is 0.2 m s-1 (Fig. 8b, e), the396

VMD-PCA-lightGBM model deviated from Kolmogorov's 5 % confidence interval detection in397

December 2021. This indicates that the VMD-PCA-RF model has a better predictive effect than the398

VMD-PCA-lightGBM model in December 2021 when the actual wind speed is within the range of 0.4399

m s-1-0.8 m s-1.400

Table 3. Table of evaluation indices of wind speed error predicted by 10 models in December 2021401

Model MAE（m s-1） RMSE（m s-1） rMAE（%） rRMSE（%） FA（%） R

VMD-PCA-lightGBM 0.47 0.63 37.67 51.25 91.13 0.81

VMD-PCA-XGBoost 0.49 0.68 39.84 54.82 89.22 0.78

VMD-PCA-RF 0.46 0.62 37.36 50.39 91.79 0.82

VMD-PCA-DBN 0.53 0.75 43.32 61.13 87.93 0.71

VMD-PCA-MLP 0.53 0.72 43.04 58.47 87.2 0.75

lightGBM 0.49 0.67 39.59 54.16 89.68 0.79

XGBoost 0.51 0.70 41.51 56.64 87.9 0.77

RF 0.48 0.65 38.80 52.32 90.64 0.81
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DBN 0.56 0.77 45.25 62.46 86.74 0.71

MLP 0.55 0.74 44.65 60.1 86.08 0.75

402
Table 4. Table of evaluation indices of wind speed error predicted by 10 models in January 2022403

Model MAE（m s-1） RMSE（m s-1） rMAE（%） rRMSE（%） FA（%） R

VMD-PCA-lightGBM 0.45 0.63 34.75 48.65 91.49 0.78

VMD-PCA-XGBoost 0.47 0.66 36.31 51.01 90.23 0.76

VMD-PCA-RF 0.46 0.64 35.06 49.00 91.57 0.78

VMD-PCA-DBN 0.53 0.75 40.96 57.49 87.61 0.67

VMD-PCA-MLP 0.50 0.69 38.46 53.16 88.94 0.73

lightGBM 0.46 0.64 35.24 49.34 91.11 0.77

XGBoost 0.48 0.67 36.68 51.38 89.88 0.75

RF 0.46 0.64 35.18 49.13 91.36 0.78

DBN 0.53 0.74 40.97 56.86 87.71 0.68

MLP 0.49 0.68 37.83 52.26 89.57 0.74

404
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405
Figure 8: . The cumulative distribution probability scatter plots of the actual wind speed and the predicted406
wind speed of 10 models in wind speed intervals of 0.5 m s-1 ((a) represents December 2021, (d) represents407
January 2022) and 0.2 m s-1 ((b) represents December 2021, (e) represents January 2022) respectively;408
Taylor distribution map ((c) represents December 2021, (f) represents January 2022).409

410

411
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3.4 Spatial-temporal variations in the best models412

Based on our comparative analysis results, we conclude that the best performing combination413

models in December 2021 and January 2022 are VMD-PCA-RF and VMD-PCA-lightGBM414

respectively. Fig. 9 and Fig. S9 shows the diurnal variation corrections of the two best models for a415

given month, as well as the diurnal variation of wind speed in the original WRF forecast. The wind416

speed of the original WRF numerical weather forecast shows a noticeable overestimation, which is417

confirmed in Fig. 7c and 7e. The scatters of WRF forecast predominantly deviate towards the upper left418

corner, with relatively low correlation coefficients, 0.56 and 0.23, respectively. Furthermore, the wind419

speed forecast by WRF displays obvious diurnal variation traits, characterized by large errors between420

afternoon and evening, specifically between 11:00 and 20:00 (Fig. 9a, Fig. S9ab). Moreover, the actual421

average wind speed in January 2022 deviates from the range of one standard deviation of the WRF422

forecast wind speed at 17:00 and 18:00 (Fig. S9a). This demonstrates that the wind speed forecast by423

WRF is inaccurate and exhibits substantial diurnal variation errors.424

After the best model was corrected, the error of diurnal variation was significantly reduced (Fig.425

9c9b, Fig. S9bd). First, the average wind speed corrected by the best model is essentially consistent426

with the actual average wind speed curve, with minimal error and no diurnal variation. Second, the one427

standard deviation range of the corrected and actual wind speeds is also well-matched, indicating that428

the corrected and actual wind speed distributions are consistent. The correction effect at 16:00 and429

17:00 on January 2022 is suboptimal, which may be due to the insufficient generalization of the430

training model and the excessive fluctuation of the actual wind speed at these two-time points.431

The FA (Fig. 10a, Fig. S10ab) and RMSE (Fig. 10e10b, Fig. S10bf) distribution of WRF forecast432

10-meter wind speed at 410 stations in the five southern provinces shows that the 10-meter wind speed433

prediction effect of the WRF model in Yunnan is superior to that in the other four provinces. In the434

regions of Hainan, Guangxi, and Guangdong, the number of sites with a RMSE for 10-meter wind435

speed forecast in December 2021 ranging from 5.6 to 6.0 m s-1 was significantly higher than in January436

2022, especially in coastal areas (Fig. 10b, Fig. S10b). In the Yunnan area, the FA of most WRF437

forecast station 10-meter wind speeds exceeds 40 %, and the RMSE value is mostly below 2.4 m s-1.438

Conversely, in other regions, such as Guangxi, Guangdong, and Hainan, the terrain is relatively flat.439

The FA of the 10-meter wind speed forecast by WRF is as low as 30 % at some stations, and the440
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RMSE reaches up to 5.4 m s-1. However, after the VMD-PCA-RF and VMD-PCA-lightGBM models441

are corrected, the FA of most stations in the five southern provinces is as high as 90 %, and the RMSE442

is as low as 0.6 m s-1. Moreover, in Guangxi, Guangdong, and Hainan, where the WRF forecast effect443

is subpar, the accuracy of the corrected 10-meter wind speed by VMD-PCA-RF444

(VMD-PCA-lightGBM) is significantly improved.445

446

447
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Figure 9: . VMD-PCA-lightGBM, VMD-PCA-RF, and WRF daily variation of predicted and actual wind448
speeds in December 2021 and January 2022. (The shading areas represent an interval of 1 standard449
deviation, which is a 68% confidence interval. The time is UTC + 08:00.)450

451

452
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453

Figure 10: . FA ((a), (b), (c), and (d)) and RMSE ((eb), (fd), (g), and (h)) distribution maps of VMD-PCA-RF,454

VMD-PCA-lightGBM and WRF models on 410 sites in five southern provinces in ((a), (c), (e), and (g)455

represent December 2021; (b), (d), (f), and (h) represent January 2022).456

4. Discussion457

4.1 The effects of BOA-VMD-PCA458

It is shown in Table 2 S1 that the hyper-parameters of the 10 models in the two experiments are459

different. Since the DBN model is not added to the scikit-learn Python learning package, it is460

challenging to call the BOA algorithm for tuning parameters. Apart from the DBN model, all the other461

models are optimized using the BOA algorithm. From the various evaluation indicators in Table 3 S2462

and Table 4S3, the DBN model, which does not use the BOA algorithm to adjust the model parameters463

to obtain an optimal parameter configuration, yields the worst prediction results in December 2021 and464

January 2022. Moreover, studies (Xiong et al., 2022) also have shown that BOA can further improve465

the model's prediction accuracy by configuring optimal hyper-parameters. The hyper-parameters such466

as the number of neurons and learning rate in the hidden layer, significantly impact the model's467

performance. When the same model is applied to different data sets of two experiments, the BOA468

adaptively obtains the optimal combination of hyper-parameters, overcoming the limitations of manual469

parameter adjustment (Guo et al., 2021). This suggests that the selection of model hyper-parameters470

introduces considerable uncertainty in our prediction results. Therefore, the choice of optimization471
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model parameters represents one source of uncertainty in the correction results, which entails the472

complexity of parameter selection. However, a more advanced parameter tuning method, such as the473

BOA tuning algorithm, is essential.474

The VMD is used to obtain unknown but meaningful features hidden in the 10-meter wind speed475

sequences predicted using WRF models (Li et al., 2022). In addition, the PCA can extract important476

components of anemometer subsequences. When the stationary subsequence serves as an input to the477

error correction model, it contains more valuable information than the previous non-stationary wind478

speed sequences (Xu et al., 2021).479

The complexity of the input factors in this study is one of the sources of uncertainty in the process480

of correcting WRF prediction results. The input factors of the two experiments are not identical. In the481

second set of experiments, the input of meteorological factors is reduced based on the first set of482

experiments, while component information of the 10-meter wind speed predicted by WRF is increased.483

Multiple wind speed components processed by VMD-PCA and noise reduction are introduced. Among484

them, the importance of pca0 and IMF0 introduced is approximately 5 %. In the 1013-month test sets,485

the correction accuracy of experiment 2 is no less than the results of experiment 1 (Figs. S9S11, 1012),486

indicating that the 10-meter wind speed components introduced by the VMD-PCA contribute487

positively to the correction results.488

489

4.2 RF feature importance490

To further understand the feature importance ranking of the RF models, we divided the model491

prediction results and actual wind speeds of the 410 stations into 20 equal parts according to terrain492

height above sea level (Fig. 11). First of all, the actual wind speed in December 2021 and January 2022493

varies with the height of the station, showing that the lower the height of the station, the more494

significant the change of wind speed. This relationship is associated with the wind speed profile of the495

atmosphere, where wind speed increases as height decreases. Secondly, the wind speed during the day496

is generally greater than the wind speed at night, which is related to the turbulent motion of the497

atmosphere during the day. Solar radiation causes the atmosphere to mix, resulting in convective498

movement. The 10-meter wind speed at night is affected by the cooling radiation of the surface, and the499

atmosphere is relatively stable.500
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The 10-meter wind speed predicted by WRF has the highest feature importance in the correction501

process of the RF models. Input factors with distinct geographic information, such as latitude,502

longitude, and height, rank highly in feature importance. Similarly, when Sun et al. 2019 used machine503

learning to correct the 10-meter wind speed predicted by the numerical weather prediction model504

ECMWF, the characteristic weight of the 10-meter wind speed predicted by the model was the highest,505

followed by the sea-land factor. Also, as the 10-meter wind speed forecast by WRF increases, the506

instability of the 10-meter wind speed corrected by the 10 machine learning models gradually increased,507

and the correction accuracy gradually decreased (Fig. 12). This partly explains the higher importance508

of the 10-meter wind speed forecast by WRF.509

With 1 km as the center, the measured 10-meter wind speed is more variable in areas where the510

station terrain height increases or decreases. However, the pink box of the 10-meter wind speed511

predicted by WRF becomes wider as the station terrain height decreases (Fig. 11). The distance512

between the gray box and the pink box is greater as the station terrain height decreases. It shows that513

the 10-meter wind speed predicted by WRF has less accuracy with the station terrain height decreases.514

The VMD-PCA-RF and VMD-PCA-lightGBM models significantly reduce the variability of the515

10-meter wind speed predicted by WRF. When the height of the station increases or decreases at 1 km,516

the correction intensity tends to increase gradually. This further explains the higher importance of the517

height factor in the RF model training.518
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520

Figure 11: . The boxplots of the predicted wind speeds of the VMD-PCA-RF (yellow), VMD-PCA-lightGBM521
(blue), and WRF (pink) models at 20 stations at different height intervals, and the boxplots of the actual522
wind speeds (gray).523

524
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525

Figure 12: . The prediction error boxplots of 10 models in different WRF prediction intervals.526

527

4.3 Stability analysis of the proposed models528

In order to identify the best model of the five southern provinces and assess the model's stability,529

we evaluated all 10 models over 10 13 different months. Fig. 13 shows the evaluation histogram of the530

10-meter wind speed predicted by the 10 models in Experiment 1 and Experiment 2, as well as the531

actual wind speed in various months. Meanwhile, Fig. S9 S11 and Fig. S10 S12 can more effectively532

illustrate the daily changes of the revised results of 10 models in 10 13 different months. As shown in533

Fig. 13, the evaluation indices of the model trained in Experiment 2, after VMD-PCA processing,534

outperform those of the model trained in Experiment 1. The RF model demonstrates exceptional535
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robustness, while the MLP model exhibits the poorest performance. VMD-PCA-RF evaluation indices536

are relatively stable across the 10 13 months, with a correlation coefficient R above 0.6, FA above537

85 %, MAE below 0.6 m s-1, RMSE below 0.8 m s-1, rMAE below 60 %, and rRMSE below 75 %.538

However, the robustness of the VMD-PCA-lightGBM and VMD-PCA-XGBoost models is inferior to539

that of the VMD-PCA-RF, with all six evaluation indices performing worse than the VMD-PCA-RF as540

the seasons and months change. In general, VMD-PCA-lightGBM is the superior wind speed541

correction model for the winter, and VMD-PCA-RF performs the best throughout the entire year in the542

five southern provinces. In cases where ample machine CPU and other hardware resources, as well as543

training time, are available, we recommend using VMD-PCA-lightGBM for modeling each season.544

However, when dealing with limited resources such as a laptop and constrained training time, we545

recommend using VMD-PCA-RF to train data for a single month, as this yields the most robust546

correction results.547
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549
Figure 13: . Evaluation histograms of 10-meter wind speed predicted by 10 models in different months in550
Experiment 1 and Experiment 2 ((a), (b), (c), (d), (e), and (f) represent R, FA (%), MAE (m s-1), RMSE (m551
s-1), rMAE (%), and rRMSE (%) respectively).552

553

5. Conclusions554

In an effort to enhance the wind speed prediction performance for wind farms, this study555

developed a WRF-based multi-step wind speed prediction model. A hybrid error correction strategy556

combining BOA, VMD, PCA, and RF (LightGBM) is proposed to increase the accuracy of WRF557

simulations. The first group of experiments used various meteorological elements as input factors in a558

control experiment. In the second group of experiments, the wind speed sequence predicted by the559
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WRF model was decomposed into multiple IMFs using the VMD algorithm for feature extraction. A560

principal component analysis method is used to extract meaningful principal components from these561

subsequence IMFs to improve computational efficiency. In the error correction model, RF (lightGBM)562

and other algorithms are used to train the relationship between different input factors and the actual563

wind speed error, respectively.564

Through a case analysis of 410 stations in five southern provinces in China, the following565

conclusions can be drawn: (1) The machine learning models tuned by the BOA-VMD-PCA algorithm566

exhibit a positive impact on wind speed error correction; (2) Feature importance analysis revealed that567

the top eight contributing factors for correcting WRF forecasted wind speed include WRF forecast568

10-meter wind speed (WS10), latitude, longitude, altitude, pca0 (pca0 physically represents the lowest569

frequency wind speed series after PCA treatment of all IMFk (k=0, 1, 2, …, 8) sub-series with reduced570

dimension), humidity, pressure, IMF0 (IMF0 physically represents the wind speed stationary series571

with a specific lowest center frequency after the original wind speed series has been processed by572

VMD); (3) VMD-PCA-RF and VMD-PCA-lightGBM are the most suitable wind speed correction573

algorithms for December 2021 and January 2022, respectively. The MAE, RMSE, FA, rMAE, rRMSE,574

and R of the corrected wind speed and the actual wind speed are 0.46 (0.45), 0.62 m s-1 (0.63 m s-1),575

37.36 % (34.75 %), 50.39 % (48.65 %), 91.79 % (91.49 %), and 0.82 (0.78); and (4) The proposed576

wind speed correction model (VMD-PCA-RF) demonstrates the highest prediction accuracy and577

stability in the five southern provinces in nearly a year and at different heights. VMD-PCA-RF578

evaluation indices for 10 13 months remain relatively stable: R is above 0.6, FA is above 85 %, MAE579

is below 0.6 m s-1, RMSE is below 0.8 m s-1, rMAE is below 60 %, and rRMSE is below 75 %. In580

future research, the proposed VMD-PCA-RF algorithm can be extrapolated to the 3 km grid points of581

the five southern provinces to generate a 3km grid-corrected wind speed product.582

583
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