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Abstract 10 

River terraces are frequently investigated with the aim of extracting information regarding tectonic or 

climate forcing on the evolution of landscapes. Terraces formed following the blockage of valleys by 

large-scale landsliding have received limited attention despite the high likelihood of their prevalence in 

landslide-dominated mountain belts. Here, we investigate the geomorphology, sedimentology, and 

chronology of two outstanding sets of terraces upstream of the giant, river-blocking Diexi palaeo-15 

landslide on the upper Minjiang River, eastern Tibetan Plateau. The first set occurs at Tuanjie village and 

has seven levels (T1-T7); the second set, at Taiping village, has three levels (T1-T3). All the terraces 

display a consistent sedimentary sequence comprising lacustrine muds topped by fluvial gravels 

sometimes capped by loess and a palaeosol. Based on field examination, lithofacies analysis, elevation 

data, and chronometric data (optically stimulated luminescence and radiocarbon dating), we correlate T1, 20 

T2 and T3 at Taiping with T5, T6 and T7 at Tuanjie. Our analysis suggests two damming and three 

outburst events have occurred at the Diexi palaeo-landslide over the past 35,000 years. A giant landslide 

(>300 m high) blocked the river before 35 ka followed by the first outburst flood at ~ 27 ka; the river 

was blocked again between 27 to 17 ka followed by a second outburst at ~17 ka; and a third outburst at 

~12 ka was followed by gradual fluvial incision of the palaeo-dam crest to its current level. We attribute 25 

the terraces at Diexi to the recurrent blockage and outburst events, which reflect the shifting sediment 

transport capacity and incision at the palaeo-dam crest. Here, climatic fluctuations play a minor role in 

terrace formation, and tectonism plays no role at all. 
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1 Introduction 

River terraces are temporary sediment storages along valleys that provide a natural archive of 30 

information on sediment transport and deposition through time (Chen et al., 2020; Liu et al., 2021), 

processes that are typically sensitive to the impacts of tectonism and climate (Pan et al., 2003; Singh et 

al., 2017; Avsin et al., 2019; Gao et al., 2020; Do Prado et al., 2022). Terraces have been shown to reflect 

a wide range of geomorphic controls, such as rock uplift rate (Jansen et al., 2013; Pan et al., 2013; Giano 

and Giannandrea, 2014; Malatesta et al., 2021), fault activity (Caputo et al., 2008), crustal flexure 35 

(Yoshikawa et al., 1964; Westaway and Bridgland, 2007; Okuno et al., 2014), glacier melting (Bell, 2008; 

Oh et al., 2019; Vásquez et al., 2022), changes in sediment supply (Jansen et al., 2011), sea level 

(Yoshikawa et al., 1964; Malatesta et al., 2021), and even the internal dynamics of the fluvial system 

(Schumm and Parker, 1973). In tectonically-active mountains, large-scale landslides, debris flows and 

rockfalls (Molnar et al., 1993; Molnar and Houseman, 2013; Srivastava et al., 2017) can cause river 40 

blockages and associated sudden outburst floods that have a major impact on the sedimentary processes 

of the upstream and downstream reaches, including terrace formation (Korup et al., 2007; Hewitt et al., 

2008; Korup et al., 2010; Hewitt et al., 2011). And yet, few studies have explored the influence of extreme 

events on the formation and evolution of terraces (Montgomery et al., 2004; Yuan and Zeng, 2012; Zhu 

et al., 2013; Chen et al., 2016; Arzhannikov et al., 2018; Hu et al., 2018; Arzhannikov et al., 2020; Xu et 45 

al., 2020). We attempt to address that knowledge gap here. 

Rapid uplift and climate change during the Quaternary have led to frequent extreme geomorphic 

events in the area drained by the Minjiang River at the eastern margin of the Tibetan Plateau (Gorum et 

al., 2011; Fan et al., 2017; 2018; Wu et al., 2019; Dai et al., 2021; Yang et al., 2021). The upper Minjiang, 

for instance, displays many terrace sequences with origins that remain debated (Yang, 2005). But due to 50 

the lack of detailed sedimentological, chronological and geomorphological information, the role of 

extreme geomorphic events, such as landslides and outburst floods, are still being explored (Yang et al., 

2003; Yang, 2005; Gao and Li, 2006; Zhu, 2014; Luo et al., 2019).  

A set of outstanding terraces occur just upstream of the 300 m-high Diexi palaeo-landslide dam, one 

of the largest, best-preserved, and longest-duration landslide-dammed lakes in a tectonically-active 55 

setting (Fan et al., 2019). The Diexi terraces (Fig. 1) have been examined by previous workers (Wang et 

al., 2005b; Yang et al., 2008; Fan et al., 2019), but a systematic analysis has yet to be conducted. A set of 
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terraces at the village of Tuanjie is thought to have resulted via repeated outburst floods from the Diexi 

palaeo-dammed lake between 30 and 15 ka—each terrace corresponding to a different outburst (Duan et 

al., 2002; Wang et al., 2005a; Wang, 2009; Zhu, 2014; Ma et al., 2018). At least two blockage events 60 

have also been suggested (Yang, 2005; Yang et al., 2008) together with four periods of fluvial 

progradation (Xu et al., 2020). However, mechanistic details of the terrace formational processes based 

on the sedimentology and a comprehensive dating analysis are lacking. Here, we seek to address the 

unresolved questions of the origins of the Diexi terraces, including the following aims: (1) to conduct a 

detailed analysis of terrace sedimentology; (2) to obtain absolute depositional ages of the terraces (at 65 

Tuanjie and Taiping); and (3) to understand the evolution of the Diexi palaeo-dam since its formation at 

more than 35 ka (Wang etal., 2020). Our broader objective is to provide a better understanding terrace 

formation linked to extreme geomorphic events in mountain regions. 

2 Study area 

The Diexi palaeo-landslide dam is located on the eastern Tibetan Plateau in the upper reaches of the 70 

Minjiang River. The area exposes rocks of the eastern part of the Bayan Har Block (Fig. 1a), spanning 

the Devonian, Carboniferous, Permian, Triassic, and Quaternary periods (An et al., 2008; Zhang et al., 

2011; Ma, 2017; Zhong, 2017). This region of the Tibetan Plateau has been affected by intense and 

frequent earthquakes (Yang et al., 1982; Chen and Lin, 1993; Li and Fang, 1998; Shi et al., 1999; Hou et 

al., 2001; Lu et al., 2004) linked to the ongoing collision of the Indian and Eurasian plates (Fig. 1b). 75 

The Diexi study has an arid to semi-arid climate (Shi, 2020), with a strong effect of the prevailing 

winds. Cumulative evaporation averages 1000–1800 mm/y (Yang, 2005), and mean temperature and 

precipitation are 13.4℃ and 500–600 mm/y, respectively. Vegetation patterns show major elevational 

zonation and comprise mainly of mountain coniferous forests, alpine meadows, and low shrubs at the 

highest elevations. 80 

The Minjiang valley widens downstream, overall, varying from 60 to 300 m wide at the valley floor 

(Yang, 2005; Jiang et al., 2016; Ma, 2017; Zhang, 2019), and up to 3000 m deep flanked by steep 

hillslopes that are typically 30-35° (Zhang et al., 2011; Guo, 2018). The Diexi palaeo-dammed lake 

(31º26′–33º16′ N; 102º59′–104º14′ E) is situated on the bend of the V-shaped Minjiang valley, which in 

turn lies in the well-known ‘north-south earthquake tectonic zone’ (Tang et al., 1983; Huang et al., 2003; 85 
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Yang, 2005; Deng et al., 2013). 

The Diexi palaeo-landslide is located on the left bank of the Minjiang River at Jiaochang village 

(Fig. 1b). The palaeo-landslide length and width are ~ 3500 m and 3000 m, respectively, and volume is 

~ 1.4 to 2.0 km3 (Zhong et al., 2021). The highest parts of the palaeo-landslide reach up to 3390 masl 

(metres above sea level), whereas the elevation of the dam crest is ~ 2500 masl (Dai et al., 2023).  90 

At Taiping village (32º12′ N, 103º45′ E), three terraces occur near the mouth of Luobogou Gully 

(Fig. 1d) (Wang et al., 2005a; Fan et al., 2021), while a suite of seven terraces occurs 12 km downstream 

at Tuanjie village (32º2′ N, 103º40′ E) near the mouth of the Songpinggou tributary (Fig. 1c). Further 

downstream, high-energy gravel outburst deposits occur at scattered locations, including near the villages 

of Xiaoguanzi, Shuigouzi, and Manaoding (Fig. 1b). 95 

 

 

Figure 1. The Diexi study area. (a) Location of Diexi at the eastern margin of the Tibetan Plateau. (b) 

Geological setting (maps modified from Guo, 2018; Wang et al., 2020a; Zhong et al., 2021). (c) Oblique 

view of the seven Tuanjie terraces, including elevations (masl). (d) Oblique view of the three Taiping 100 

terraces including elevations (masl). 
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3 Materials and methods 

3.1 Geomorphic and sedimentary description 

Field surveys were carried out from October to November 2018. We described sedimentary structure, 

geometric shape, sorting, roundness, and palaeo-flow direction of the gravels by applying the lithofacies 105 

approach primarily based on Miall (2000), but also including previous work conducted by Yang (2005) 

and Yang et al. (2008) (Table. 1). The terraces were numbered according to elevation from the lowermost 

terrace (T1) to higher terraces (Tn).  

Terrace elevations were measured using Light Detection And Ranging (LiDAR) data with ~ 0.5 m 

vertical accuracy and the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global 110 

Digital Elevation Model (ASTER GDEM) with ~ 30 m vertical accuracy (Fan et al., 2021). 

 

Table. 1 Lithofacies of terrace sediments at Diexi. Adapted from Miall (2000), Yang (2005) and Yang et al. (2008). 

Lithofacies 

code 

Lithofacies Sedimentary structures Interpretation 

Ps Palaeosol Pedogenic features, roots Pedogenesis 

Ls Sandy loess Massive texture Eolian deposits 

Gmm Matrix-supported, massive 

gravel 

Weak grading Plastic debris flow (high-strength, viscous) 

Gh Clast-supported, crudely 

bedded gravel 

Horizontal bedding, 

imbrication 

Longitudinal bedforms, lag deposits, sieve 

deposits 

Gci Clast-supported gravel Inverse grading Clast-rich debris flow (high strength), or 

pseudoplastic debris flow (low strength) 

Gcm Clast-supported, massive 

gravel 

- Pseudoplastic debris flow (inertial bedload, 

turbulent flow) 

Fm Mud snail shells Overbank, abandoned channel, or drape 

deposits 

Fl silty clay parallel bedding, wave 

bedding 

Lacustrine deposits 

 

3.2 Chronology 115 

Two independent dating methods: optically stimulated luminescence (OSL) and radiocarbon dating, 

were employed to establish a reliable chronostratigraphic framework for the Tuanjie and Taiping terraces. 

We collected samples from the top and bottom  of the lacustrine units, the top of and the gravel units, 

and from the base of the loess and palaeosol units with the aim of clarifying the timing of the damming 

and outburst processes and terrace stability: nineteen OSL samples and three nine radiocarbon samples 120 
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in total (Figs. 2 and 3). 

3.2.1 OSL dating 

At the Tuanjie terraces, twelve samples were taken from the lacustrine deposits (excluding T6 and 

the highest lacustrine deposits); two samples were collected from the gravel units of T2 and T5, and 

samples were taken from palaeosols at T1 to T5 and T7 (Figs. 2 and 3). At the Taiping terraces, four 125 

samples were taken from the lacustrine deposits at T1 to T3 and the highest deposits, and another was 

taken from the palaeosol unit at the T3 (Figs. 2 and 3). Samples were collected from freshly dug 

exposures, inserting stainless steel tubes followed by careful sealing from light. 

Samples were processed and measured at the Institute of Earth Environment, Chinese Academy of 

Sciences. The quartz grains were extracted following standard laboratory pre-treatment procedures 130 

(Kang et al., 2013; 2020).The sediment at the tube-ends, which may have been exposed to daylight 

during sampling, were discarded and the unexposed samples were prepared for equivalent dose (De) and 

environment dose rate determination. Approximately 50 g samples were treated with 30% HCl and 30% 

H2O2 to remove carbonates and organic matter, respectively. The samples were then washed with distilled 

water until the pH value of the solution reached 7. For samples IEE5542 and IEE5550, the coarse 135 

fractions (90-150 μm) were sieved out and etched with 40% HF for 45 mins, followed by washing using 

10% HCl and distilled water. For the other 17 samples, the fine polymineral grains (4-11 μm) were 

separated according to the Stokes' law. These fine polymineral grains were immersed in 30% H2SiF6 for 

3-5 days in an ultrasonic bath to extract quartz Finally, the purified fine (coarse) quartz was deposited 

(mounted) on stainless steel discs with a diameter of 9.7 mm. The purity of quartz was verified by IRSL 140 

intensity and OSL IR depletion ratio (Figs. S1 and S2a; Duller, 2003).  

All OSL measurements were performed on a Lesxyg Research measurement system, with blue light 

at (458 ± 10) nm, and infrared light at (850 ± 3) nm for stimulation and a 90S/90Y beta source (~0.05 Gy/s) 

for irradiation. Luminescence signals were detected by an ET 9235QB photomultiplier tube (PMT) 

through a combination of U340 and HC340/26 glass filters.  145 

The single-aliquot regenerative-dose (SAR) protocol (Table. S1; Murray and Wintle, 2000; Wintle 

and Murray, 2006) was utilised to determine the Equivalent Dose (De) following Kang et al. (2020). 

Quartz grains were preheated at 260°C for 10 s for natural and regenerative-dose, and a cut-heat at 220°C 

for 10 s was applied for the test dose. The quartz was stimulated for 60 s at 125°C with blue LEDs; the 
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OSL signal was calculated as the integrated value of the first 0.5 s of the decay curve minus the integrated 150 

value of the last 0.5 s as the background. For De determination, approximately 10 aliquots were measured 

for each sample. The mean De value of all aliquots was used as the final De value. Conventional tests in 

SAR protocol, including recuperation ratio, recycling ratio, quartz OSL brightness and fast-component 

dominated nature, growth curve shape, and De distribution (Figs. S2 and S3), indicated that the protocol 

is adequate for the samples in this study. 155 

The environmental dose rate was estimated from the radioisotope concentrations (U, Th, and K) and 

cosmic dose rates. U and Th concentrations were determined by inductively coupled plasma mass 

spectrometry, while K concentration was measured by inductively coupled plasma optical emission 

spectrometry. The cosmic dose rates were calculated using the equation proposed by Prescott and Hutton 

(1994). The α-value of fine-grained (4-11 μm) quartz was assumed to be 0.04 ± 0.002 (Rees-Jones, 1995). 160 

Considering the sedimentary texture, and current and past climate conditions since deposition, the water 

content of the gravel and palaeosol was assumed to be 10 ± 5%, while the water content of lacustrine 

deposits was estimated to be 20 ± 5%. Dose rate was calculated using the Dose Rate and Age Calculator 

(DRAC) (Durcan et al., 2015). Finally, the quartz OSL ages were obtained by dividing the measured De 

(Gy) by the environmental dose rate (Gy/ka). 165 

3.2.2 Radiocarbon dating 

Three Nine samples (all bulk sediment) were collected for radiocarbon analysis: two from the 

highest lacustrine deposits in the Tuanjie and Taiping Terraces, and one from the loess cap at Tuanjie T4, 

three from the bottom lacustrine deposits at Tuanjie T2, and three from the bottom lacustrine deposits at 

Taiping T1, T2, and T3 Tuanjie (Figs. 2 and 3). The radiocarbon sample collected from the highest 170 

lacustrine deposits at Taiping was used to compare with the OSL sample (TP19-1) taken from the same 

position. The radiocarbon samples collected from the highest lacustrine deposits at Tuanjie and the 

equivalent at Taiping were compared. Utilising the same dating method for age comparison enhances the 

robustness of our analysis. We sampled the loess unit at Tuanjie T4, as it was the most complete and 

easiest to access. Six samples taken from the bottom lacustrine deposits were used to determine the 175 

depositional ages of theeach terraces. 

All samples were tested for organic matter, and analysed using the NEC accelerator mass 

spectrometer and thermo infra-red mass spectrometer at the Beta Analytic Radiocarbon Dating 
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Laboratory. All radiocarbon ages reported here are calibrated using IntCal 20 (Reimer et al., 2020). 

 180 

 

Figure 2. OSL and calibrated radiocarbon (denoted as cal. ka BP) dating results from Tuanjie. (a) The 

highest lacustrine deposits. (b) Lacustrine deposits and palaeosol at T7. (c) Gravel unit at T5. (d) 

Lacustrine deposits and palaeosol at T5. (e) Loess at T4. (f) Lacustrine deposits and palaeosol at T4. (g) 

Palaeosol at T3. (h) Lacustrine deposits at T3. (i) Gravel unit and palaeosol at T2. (j) Lacustrine deposits 185 

at T2. (k) Lacustrine deposits at T2. (l) Palaeosol at T1. (lm) Lacustrine deposits at T1. White dashed 

lines mark unit boundaries. 
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Figure 3. OSL and calibrated radiocarbon (denoted as cal. ka BP) dating results from Taiping. (a) Paired 

OSL and radiocarbon samples collected from the highest lacustrine deposits. (b) Palaeosol at T3. (c) 190 

Lacustrine deposits in T3. (d) Lacustrine deposits in T3. (e) Lacustrine deposits at T2. (f) Lacustrine 

deposits at T2. ; (eg) Lacustrine deposits at T1. (h) Lacustrine deposits at T1. White dashed lines mark 

unit boundaries. 
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4 Results 

4.1 Terrace geometry and distribution 195 

The seven terraces at Tuanjie and three terraces at Taiping Terraces are all developed on thick 

lacustrine deposits (Fig. 4), which are naturally highly erodible. At Tuanjie, the lacustrine deposits 

are >200 m thick, and the longitudinal (stream-wise) lengths of the seven terraces range from 150 to 1000 

m (Fig. 4, Table 2). The Taiping terraces are developed on a hillside with a slope of 40–60°, and is 

therefore influenced by landslides and some human activity. The lateral extent of T1, T2, and T3 varies 200 

from 190 to 520 m (Table 2). Correlations between the terrace levels at the two sites are given in Table 2 

and Fig. 4. 

 

Table. 2. Elevation and correlation of terraces at Tuanjie and Taiping. Diexi Lake currently stands at ~ 

2150 masl. 205 

Tuanjie terraces Elevation 

(masl) 

Width 

(m) 

Taiping terraces Elevation 

(masl) 

Width 

(m) 

Highest 2390 - Highest 2390 - 

T7 2323 226 T3 2320 190 

T6 2298 - T2 2311 380 

T5 2276 378 T1 2279 520 

T4 2248 186 - - - 

T3 2215 150 - - - 

T2 2204 360 - - - 

T1 2178 11000 - - - 

 

 

Figure 4. Sketch showing correlation between the Tuanjie and Taiping terraces (see Table 1). 
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4.2 Terrace lithostratigraphy 210 

4.2.1 Tuanjie terraces 

Tuanjie terraces T1, T2, T3, T4, and T6 are characterised by a sequence of silts, sands, gravels, loess, 

and palaeosol units. T5 and T7 lack the loess unit (Fig. 5a) probably due to erosion via human activities, 

and for the same reason T4, T5, T6 and T7 show strong signs of deformation and collapse. The 

lithostratigraphy (Table 1 and Fig. 5a) is summarised as follows (starting from the base):  215 

(1) Silt clay (Fl), with intense weathering, horizontal bedding, and wave bedding, characteristic of 

lacustrine deposits.  

(2) Gravelly (Gh, Gci, Gmm) fluvial deposits separated by an unconformity with the underlying 

lacustrine deposits. The flow orientation of the gravels is predominantly parallel to the Minjiang River, 

suggesting it is the source of these gravels. The gravel units at T1, T4, T5, and T7 (Gh) are generally 220 

poorly-sorted and well-rounded, with a grain-sizes ranging 2-30 cm. Present are longitudinal bedforms, 

lag deposits, and sieve deposits (Fig. 5a). At T2 (Gci) the gravels show inverse grading, with grain-sizes 

ranging 2-25 cm (clasts > 35 cm are rare), poorly-sorted and sub-circular to round clasts without 

orientation. At T3 (Gci), the gravel units exhibit inverse grading, are poorly sorted, with sub-circular to 

round clasts of grain-size ranging 3-25 cm. Gravels at T6 (Gmm) show graded bedding with good sorting 225 

and rounding.  

(3) Loess (Ls), loess units of T1 and T2 are brick-red in colour; the loess at T3 contains angular 

fragments of phyllite.  

(4) Palaeosols (Ps), if present, are developed capping the fluvial strata, and contain abundant roots 

(Fig. 5a). Lacustrine deposits extend above T7 with a thickness of 30 m; these deposits show undulating 230 

bedding and severe denudation (Fig. 4).  

4.2.2 Taiping terraces 

Taiping terraces are characterised by a sequence of lacustrine silts, muds, gravels, loess, and 

palaeosol units (Fig. 5b). The lithostratigraphy (Table 1 and Fig. 5b) is summarised as follows (starting 

from the base):  235 

(1) Silt-clay (Fl) underlies all three terraces. Note that the highest extent of the lacustrine units 

reaches > 70 m thick. 

(2) Gravelly (Gh, Gci, Gmm) fluvial deposits observed on the Taiping terraces all show a flow 
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direction aligned with Luobogou Gully, indicating these gravels derive from the gully. Gravels at T1 

(Gcm) are characterised by poorly sorted and subrounded gravels with grain-sizes of 5-10 cm. Similarly, 240 

the gravel units in T2 and T3 (Gcm) contain numerous broken phyllite fragments. T3 displays two beds 

of horizontal, angular phyllite fragments (Gh, Gci) with grain-sizes of 2-5 cm. 

(3) Mud (Fm) units contain snail shells suggesting these may be overbank deposits, abandoned 

channels, or drape deposits.  

(4) Loess (Ls) units at T2 and T3 are mixed with some angular phyllite fragments 245 

(5) Palaeosols (Ps) cap all three terraces. 

 

Figure 5. Terrace sedimentary sequences, lithofacies, and dating results (radiocarbon dates are denoted 

cal. ka): (a) Tuanjie T1, T2, T3, T4, T5, T6, T7, and the highest lacustrine deposits, respectively. (b) 
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Taiping T1, T2, T3, and the highest lacustrine deposits. All lithofacies labels are linked to Table 1; see 250 

Table 2 and Fig. 4 for terrace correlations. 

4.3 OSL ages 

We measured 19 quartz OSL dates in total: 14 from Tuanjie and 5 from Taiping terraces (summarised 

in Fig. 5 and Table 3).  

At Tuanjie, the depositional ages of the lacustrine deposits range from ~32 ka to 10 ka and do not 255 

follow a simple elevational sequence. T1, T2, T3, and T4 display a younging trend with increasing 

elevation, while T5 and T7 yield similar ages, but are older than T3 and T4. Gravel units from T2 and T5 

yield ages of 28 ± 2 ka and 22 ± 2 ka, respectively. The palaeosols are all Holocene in age, mostly ranging 

from ~ 12 to 9 ka, with T1 yielding a notably younger age of ~ 4 ka. 

At Taiping, the depositional ages of all three lacustrine samples (plus the highest lacustrine sample) 260 

are consistently ~ 10 ka. 
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4.4 Radiocarbon ages 

Three Nine radiocarbon ages were measured in total, all from bulk sediment samples (Table 4). The 

highest lacustrine deposits at Tuanjie and Taiping yielded ages of ~ 27 cal. ka BP and ~ 17 cal. ka BP, 285 

respectively. The loess sample collected from Tuanjie T4 yielded an age of ~ 13 cal. ka BP. The bottom 

lacustrine deposits of T2 yielded ages of ~ 34, ~ 39, and ~ 37 cal. ka BP. The depositional ages of all 

three bottom lacustrine samples of Taiping T1, T2, T3 are The bottom lacustrine samples taken from 

Taiping T1, T2, T3 yielded ages of ~ 30, ~34, and ~ 30 cal. ka BP, respectively. 

 290 

Table. 4 Summary of the radiocarbon results for Tuanjie and Taiping.  

Samples Lab code Material 
Elevation 

(masl) 

13C 

(‰) 

Radiocarbon 

age (a BP) 

Calibration age 

(cal. ka BP) 

TP-max Beta-520926 bulk sediment 2342.95 -19.1 14050±50 17.15±0.18 

TP23-03 Beta-664881 bulk sediment 2311.00 -18.5 26040±120 30.44±0.34 

TP23-02 Beta-664890 bulk sediment 2279.00 -19.9 29350±160 34.00±0.39 

TP23-01 Beta-664882 bulk sediment 2269.00 -16.1 26010±120 30.45±0.34 

TJ-max Beta-520925 bulk sediment 2390.00 -19.2 22740±90 27.11±0.18 

TJ-T4-HT Beta-520924 bulk sediment 2280.00 -21.6 11490±40 13.38±0.08 

TJ23-03 Beta-664879 bulk sediment 2179.50 -17.7 32670±240 37.27±0.83 

TJ23-02 Beta-664878 bulk sediment 2178.60 -17.3 34170±280 39.41±0.74 

TJ23-01 Beta-664877 bulk sediment 2178.00 -17.2 29300±170 33.98±0.74 

5 Discussion 

5.1 Reliability of dating results 

First, we consider the reliability of our chronology. Given the relatively stable depositional 

environment of the silt-rich (lacustrine and palaeosol) samples and the normal distribution of De, we 295 

assume they were well-bleached before deposition and therefore yield reliable ages.  

Our ages are consistent with those reported by previous studies at Diexi, which fall mainly between 

about 36 and 11 ka (Table S2). We note that the older ages of the Tuanjie T1 T2and Taiping lacustrine 

deposits (3239.4 ± 2.10.7 cal.  Ka BP, DX19-13, Fig. 5a) is significantly older than our other lacustrine 

agesare ~35 ka and ~30 ka, respectively; however, two other published sources support our result: (1) a 300 

basal radiocarbon age (calibrated to 35.1 ± 0.3 cal. ka BP) reported from the Diexi Lake ZK2 drill-core 
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(Wang et al., 2012), and (2) two radiocarbon ages from another lacustrine section at Tuanjie (calibrated 

to 35.8±0.4, and 30.7±0.03 cal. ka BP) reported by Zhang et al. (2009). 

Both gravel units at Tuanjie T2 and T5 (~ 28 and 22 ka, respectively) yield OSL ages that are much 

older than the underlying lacustrine deposits (~ 11 and 10 ka, respectively) (Fig. 5). In this case, we 305 

favour the lacustrine ages and exclude the samples collected from thin sand lenses within the gravels.  

At Taiping, our radiocarbon-OSL dating pair collected from the highest lacustrine deposits yields 

ages of 17.2 ± 0.2 cal. ka BP and 10.8 ± 1.2 ka, respectively (Fig. 5). In this case, we suspect the 

radiocarbon age is overestimated due to the ‘old carbon reservoir’ effect. This reservoir effect in the 

sample can result from several factors, including: (1) the lower 14C-activity carbon and the atmosphere-310 

water exchange (Deevey et al., 1954; Keaveney and Reimer, 2012; Ascough et al., 2016); (2) landslides, 

debris flows, or other disturbances causing surface sediments to drop into the lake, mixing older 

sediments with new (Counts et al., 2015; Shi, 2020); and (3) the re-deposition of older organic 

components, such as stored charcoal (Kaplan et al., 2002; Krivonogov et al., 2016). 

5.2 Terraces along the upper Minjiang River 315 

A minimum of fifteen sets of river terraces occur along the upper Minjiang River valley, with nine 

sets located upstream of Diexi (from Gonggaling to Zhangla), two sets near Diexi (Taiping and Tuanjie), 

and four sets downstream (the Maoxian-Wenchuan area). From previously published work, we compiled 

a total of 124 dates (OSL, infra-red stimulated luminescence, thermoluminescence, radiocarbon and 

Electron spin resonance) measured on the terraces of the upper Minjiang River (Table S2). Terraces 320 

upstream of Diexi go as far back as ~ 830 ka (Zhao et al., 1994), but fall primarily between ~ 47 and 2 

ka (Fig. 6). Terraces in the Diexi area span ~ 505 to 2 ka (Kirby et al., 2000; Duan et al., 2002; Yang et 

al., 2003; Gao and Li, 2006; Wang et al., 2007; Wang, 2009; Mao, 2011; Jiang et al., 2014; Zhong, 2017; 

Guo, 2018; Luo et al., 2019; Zhang, 2019; Wang et al., 2020b) with the majority, 32-2 ka (Fig. 6). 

Downstream reaches host terraces ranging ~ 400 to 50 ka (Zhao et al., 1994; Yang et al., 2003; Yang, 325 

2005; Zhu, 2014), with a significant fraction falling between ~ 40 and 20 ka (Fig. 6).  

Terraces upstream (Zhangla basin to the source of the Minjiang) are attributed to tectonic uplift 

(Yang et al., 2003; Yang, 2005; Yang et al., 2008; 2011; Chen and Li, 2014; Zhu, 2014). Whereas, by 

contrast, the Tuanjie and Taiping terraces are thought to relate to the evolution of the Diexi palaeo-dam 

(Duan et al., 2002; Wang et al., 2005a; Wang, 2009; Zhu, 2014). Terraces downstream in the Maoxian-330 
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Wenchuan region share similar characteristics to those at Diexi, as they are also believed to have formed 

via outburst flooding from a palaeo-dammed lake (Zhu, 2014). However, those terraces are also strongly 

influenced by activity along the Maoxian-Wenchuan fault zone. We hypothesise that the formation and 

evolution of the Diexi terraces (at Tuanjie and Taiping) are distinct and independent of the upstream and 

downstream terraces. We test and discuss this idea further in the following sections. 335 

 

Figure 6. Frequency distribution histogram of terrace ages since 50 ka in the upper reaches of the 

Minjiang River (at Diexi, upstream, and downstream). By far the most frequent terrace age falls between 

20 and 10 ka. 

5.3 Correlation of the Tuanjie and Taiping terraces 340 

The highest lacustrine deposits at Tuanjie and Taiping occur at the same elevation (~ 2390 masl), 

suggesting that the two sets of terraces are also related somehow. The Tuanjie and Taiping terraces 

certainly share similar lithostratigraphy (Fig. 5). For instance, Tuanjie T5/Taiping T1 share the same 

sedimentary sequence (from the base to top): silty-clays (Fl), gravels (Gh at Tuanjie, Gcm at Taiping) 

and palaeosol (Ps), and very similar sequences are shared by Tuanjie T6/Taiping T2, and Tuanjie 345 

T7/Taiping T3. In addition, the chronology (Table 3) we have from the lacustrine deposits at Taiping T1 

(9.5 ± 1 ka) and Tuanjie T5 (10.4 ± 0.6 ka) compare closely, as do Taiping T3 (10 ± 0.8 ka) and Tuanjie 
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T7 (10 ± 0.8 ka). Based on these considerations, together with their elevation, we suggest that Taiping 

T1, T2, and T3 correspond to Tuanjie T5, T6 and T7 (Fig. 4).  

5.4 Controls on terrace formation at Diexi: tectonism, climate or outburst floods? 350 

The formation of terraces in mountain rivers is typically attributed to either tectonic activities 

(Burgette et al., 2017), climate change (Maddy et al., 2005; Gao et al., 2020), or some combination of 

those (Luo et al., 2019; Chen et al., 2020; Narzary et al., 2022; Ma et al., 2023). The impact of extreme 

events on terraces has come to the attention of researchers more recently (Hewitt, 2016; Wang et al., 

2021; Yu et al., 2021). At Diexi, the great thickness (> 200 m) of lacustrine deposits carved by floodwaters 355 

and topped discontinuously by terrace gravels and loess-palaeosol sequences, suggests a role for 

tectonism, climate, and outburst floods, but the relative influence of each is yet to be clarified. We pursue 

this question below. 

5.4.1 Effects of tectonism on the Diexi terraces 

The Tuanjie and Taping terrace sites are sufficiently close (12 km) to be considered subject to the 360 

equivalent tectonic forcing. In Section 5.2, we divided the upper Minjiang River into three segments: 

Gonggaling to Zhangla (upstream of Diexi), the Diexi area, and the Maoxian-Wenchuan area 

(downstream of Diexi). Since the initial damming at the Diexi palaeo-landslide, the fluvial incision rates 

in these three segments of the upper Minjiang is measured at 8.3–85.3 mm/yr, 13.6–198 mm/yr, and 58 

mm/yr, respectively (see Table S2). In comparison, the Minshan Block (which includes the reach from 365 

Gonggaling to Maoxian) is thought to have experienced an average uplift rate of 1.5 mm/yr during the 

Quaternary (Zhou et al., 2000). Clearly, recent incision rates in the Diexi area have been several-times 

faster than the average uplift rate of the Minshan Block. This highlights the unique character of Diexi 

and suggests that tectonic activity is not a primary factor in the formation of the terraces. 

5.4.2 Effects of climate changes on the Diexi terraces 370 

The regional climate has undergone three transitions from cold-dry to warm-humid climate between 

~ 40 and 30 ka (Zhang et al., 2009) followed by more than ten alternations of cold to warm between 30 

and 10 ka (Wang, 2009; Wang et al., 2014). The terraces at Tuanjie and Taiping span the past 392 ka, so 

to investigate the influence of climate we examine the climate variations over the same period (Fig. 7). 

The four climate proxies reveal significant fluctuations from the end of the Last Glacial Maximum (LGM) 375 
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to the early Holocene followed by relative stability throughout the Holocene. 

It is tempting to speculate that warmer periods triggered wetter conditions or glacier melt leading 

to the overtopping of the palaeo-dam and formation of terraces; however, we cannot see any clear 

relationship between the age of the terraces and the climatic variations over the past 395,000 yrs (Fig. 7). 

Nevertheless, two important points are worth making: 380 

 (1) A fluctuating climate may be seen in terrace geometry. In papers by Mao (2011), Jiang et al. 

(2014), and Shi (2020), it is argued that Tuanjie T2 displays an irregular sequence of ages with depth that 

suggest repeated fluctuations in the lake level by up to 11 m between 19 and 11 ka (the deglaciation 

period) (Table S2). (Malatesta and Avouac, 2018; Tian et al., 2021; Yu et al., 2021)Regarding Tuanjie T1, 

we note the extraordinary terrace width. There are three possible factors that Following the model 385 

described by Malatesta et al. (2021), we suggest that repetitive wave erosion associated with the 

fluctuating lake shoreline resulted in the bevelling and back-wearing at T1, createding thea very wide T1 

terrace (Fig. 8): (i) . During this period, strong monsoon activity resulted in high discharges and low 

sediment input, leading to river incision (Malatesta and Avouac, 2018; Tian et al., 2021; Yu et al., 2021). 

(ii) We note some additional erosion may have occurred owing to the positioning of the Tuanjie terraces 390 

on the concave margin of the valley (Fig. 1b) where lateral fluvial erosion tends to be accentuated. (iii) 

As tThe lowest terrace, Tuanjie T1, was subjected to frequent erosion during the progressive outburst of 

the palaeo-dam (Phase IV to Phase VII, Fig. 9). 

(2) Some degree of climate control can be recognised in terms of the aeolian and weathering 

processes. The loess unit at Tuanjie T4 (~13.4 ± 0.1 cal. ka BP) dates to just before the Younger Dryas 395 

reflecting a cool depositional environment; loess observed at Tuanjie T3 and T2, as well as Taiping T3 

and T2 suggest ages slightly younger. Most of the palaeosol units relate to the warming conditions of the 

early Holocene. 

(3) The three outburst floods (~ 27 ka, ~ 17 ka and ~ 12 ka, reported in Section 5.5) in Diexi area 

were happened at the climate fluctuation periods. We speculated these floods may be the result of the 400 

glacial melting. As Wang et al. (2012) mentioned that during the Last Glacial Period, the melting of 

glaciers triggered massive hillslopes instability, and formed palaeo-dammed lakes. 

(4) The absent of outburst flood in the Holocene may be related to the warm and stable climate. 
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 405 

Figure 7. Palaeoclimate (δ18O) proxies compared with the OSL and radiocarbon chronologies obtained 

from the Diexi terraces. (a) Sanbao Cave (Wang et al., 2008); (b) Hulu Cave (Wang et al., 2001); (c) East 

Asian Monsoon (Cheng et al., 2016); (d) GISP-2 (Grootes et al., 1993); and (e) the Diexi terraces at 

Tuanjie (solid symbol) and Taiping (hollow symbol). The early Holocene, Younger Dryas (YD), Bølling-

Allerød interstadial (BA), and the Last Glacial Maximum (LGM) are labelled. 410 
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Figure 8. A schematic model showing how lake-level fluctuations drive the evolution of T1 and T2 at 

Tuanjie (modified from Malatesta et al., 2021). Climate-driven fluctuations in lake level result in 

bevelling and back-wearing of the terrace and production of the widest surface at T1. 

5.5 Terrace formation and the evolution of the Diexi palaeo-landslide dam 415 

Damming and outburst floods can strongly impact upstream and downstream areas, causing 

aggradation and incision (Fig. 89) (Hewitt et al., 2008; Korup and Montgomery, 2008). A lake formed 

by the blockage of a river can raise water levels upstream, resulting in the potential upstream flooding 

(Guo et al., 2016), and following an outburst flood, the lake level drops as a result of sudden erosion at 

the crest of the dam. During this lower lake level, the river cuts through the easily eroded lacustrine 420 

deposits, forming terraces. 

The triangle formed by Tuanjie, Jiaochang and Xiaohaizi (Fig. 1b) marks the centre of the palaeo-

dammed Diexi Lake. We suggest that this ancient lake has experienced multiple damming and breach 

events leading to major outburst floods down the Minjiang River. For instance, high magnitude outburst 

sediments are identified downstream around the Xiaoguanzi-Manaoding (Fig. 1b). Based on our terrace 425 

lithofacies and chronological analyses, we attempt to reconstruct the history of river blocking and 

outburst floods sourced from the Diexi Lake, as follows. 

The Minjiang River was blocked by the Diexi palaeo-landslide sometime before 35 ka (Phase I: > 

35 ka), as indicated by three five lines of evidence: (1) the bottom lacustrine deposits of Tuanjie T2 dated 

to ~ 35 ka; (2) the deposition age of Taiping T2 was ~ 34 ka; (31) the basal radiocarbon age in a drill-430 

core from Diexi Lake is 35.1 ± 0.3 cal. ka BP (Wang et al., 2012) (note the lacustrine pile extends ~ 80 

m deeper); (42) at Xiaoguanzi, lacustrine sediments dated to 34.9 ± 0.8 and 35.6 ± 0.8 cal. ka BP (Wang 

et al., 2012) are observed capping part of the palaeo-landslide dam; and (35) the same occurs at 
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Manaoding dated to 34.5 ± 0.2 cal. ka BP (Wang et al., 2012). 

After being initially blocked by the palaeo-landslide, Diexi Lake reached its highest level around 435 

27 ka (highest lacustrine sediments at Tuanjie date to 27.1 ± 0.2 ka, Fig. 5a). This matches the timing of 

evidence of the first known outburst flood (Phase II: ~ 27 ka), a gravelly unit near Xiaoguanzi (Fig. 1b), 

OSL-dated by Ma et al. (2018) at 27.3 ± 2.8 ka. Further evidence of an outburst flood (or floods) around 

27 ka is indicated by two other nearby sites dated with OSL and radiocarbon, respectively: (1) a 35 m-

thick sequence of deformed lacustrine bedding at Shawan (Wang et al., 2011; Wang et al., 2012), and (2) 440 

convolution structures exposed near Jiaochang (Fig. 1b) (Wang et al., 2012). Around ~ 27 ka appears to 

have been a time of major perturbation in the upper Minjiang River: a palaeo-landslide at Qiangyang 

(Fig. 1b) is radiocarbon-dated to 26.5 ± 0.5 ka, 27.3 ± 0.4 cal. ka BP (Wang et al., 2012); and downstream, 

a palaeo-dammed lake at Maoxian is radiocarbon-dated to 26.8 ± 1.0 cal. ka BP (Wang et al., 2007). 

 The Diexi palaeo-dam was re-established and sedimentation in the lake resumed for about 10,000 445 

yrs (Phase III: ~ 27–17 ka), as indicated by the highest lacustrine sediments at Taiping dated to 17.2 ± 

0.2 cal. ka BP (Fig. 5b). 

 The second outburst flood (or floods) occurred ~ 17 ka (Phase IV). This event incised the palaeo-

dam, causing the Diexi Lake level to drop by ~ 110 m (to 2279 masl), as recorded at Taiping T1 and 

Tuanjie T5 (Fig. 5a, b). The lowering of the lake level exposed the highest lacustrine deposits at Taiping. 450 

The palaeo-landslide at Manaoding, dated to 16.8 ± 0.6 cal. ka BP (Wang et al., 2012), is possibly linked 

to this second outburst flood.  

 In the 5000 yrs that followed (Phase V: ~ 17–12 ka), two more outburst floods may have lowered 

the palaeo-dam further (forming Tuanjie T4 and T3), although the timing is uncertain. Yet, we can say 

with confidence that an outburst flood ~ 12 ka (Phase VI), lowered the palaeo-dam by ~ 70 m (to 2204 455 

masl), forming Tuanjie T2. From ~ 12 ka to the present (Phase VII), it appears the Diexi palaeo-dam 

crest has gradually incised to its current level ~ 2150 masl (aside from the brief period at a higher level 

following the 1933 Diexi earthquake, Dai et al., 2021). 
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Figure 89. Model of palaeo-landslide dam evolution through time, starting with a blocking event (e.g., 460 

a major landslide), which then becomes a natural dam on the river causing a lake to form. Lacustrine 

deposits accumulate behind the dam, sometimes to great depth (at Diexi lacustrine sediments are > 200 

m-thick). A positive water balance in the lake triggers overtopping of the dam, causing potentially 

catastrophic outburst floods downstream. The outburst flood typically erodes the crest of the dam 

subsequently lowering the lake level and allowing fluvial processes to resume along parts of the valley. 465 

This repeated process yields a terrace stratigraphy comprising (from base to top): lacustrine deposits 

topped by fluvial deposits perhaps capped by loess and palaeosol development. 



24 

 

 

Figure 109. Schematic model of the evolution of the Diexi palaeo-dam and Tuanjie terraces. See 

Section 5.5 for detailed descriptions of each phase. Brown text denotes the ages of loess and palaeosol 470 

units. 

6 Conclusions 

We set out to investigate the origin and chronology of two sets of outstanding terraces formed 

upstream of the giant river-blocking Diexi palaeo-landslide on the upper Minjiang River, eastern Tibetan 

Plateau.  475 

The Tuanjie terraces have seven levels (T1-T7), while those at Taiping have three (T1-T3). All 

terraces display a consistent sedimentary sequence comprising thick lacustrine muds topped by fluvial 

gravels, which at a few sites are capped by loess and a palaeosol. We correlate T5, T6 and T7 at Tuanjie 
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with T1, T2 and T3 at Taiping.  

Our reconstruction of the history of terrace formation suggests two damming and three outburst 480 

events have occurred at the Diexi palaeo-landslide over the past 35,000 years. The sequence of events is 

summarised as follows: a giant landslide (>300 m high) blocked the river before 35 ka followed by the 

first outburst flood at ~ 27 ka; the river was blocked again between 27 to 17 ka followed by a second 

outburst at ~17 ka; and a third outburst at ~12 ka was followed by gradual fluvial incision of the palaeo-

dam crest to its current level. 485 

Our findings at Diexi provide a detailed case study of terrace formation linked to the evolution of 

the palaeo-landslide dam. The Diexi terraces (at Tuanjie and Taiping) are distinct and independent of the 

upstream and downstream terraces along the upper Minjiang River—they are not directly the product of 

either tectonic or climate forcing. Instead, terrace height and geometry are the result of the sequence of 

outburst floods that progressively lowered the crest of the palaeo-landslide dam (the local base level to 490 

the terraces) since its emplacement more than 35,000 years ago. 

This study proposes a new perspective on terrace formation in steep rivers draining landslide-

dominated mountain belts. Given the frequent observation of valley blocking dams in high mountain 

settings, we suspect that the terrace formation processes described here may be more widespread than 

has been previously recognised. 495 
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