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Abstract. Understanding the cooling service provided by
vegetation in cities is important to inform urban policy
and planning. However, the performance of decision-support
tools estimating heat mitigation for urban greening strategies
has not been evaluated systematically. Here, we further de-5

velop a calibration algorithm and evaluate the performance
of the urban cooling model developed within the open-source
InVEST (Integrated Valuation of Ecosystem Services and
Tradeoffs) software. The urban cooling model estimates air
temperature reduction due to vegetation based on four pre-10

dictors, shade, evapotranspiration, albedo, and building den-
sity, and was designed for data-rich and data-scarce situa-
tions. We apply the calibration algorithm and evaluate the
model in two case studies (Paris, France, and Minneapolis–
St Paul, USA) by examining the spatial correlation between15

InVEST predictions and reference temperature data at a 1 km
horizontal resolution. In both case studies, model perfor-
mance was high for nighttime air temperatures, which are
an important indicator of human wellbeing. After calibra-
tion, we found medium performance for surface temperatures20

during daytime but low performance for daytime air tem-
peratures in both case studies, which may be due to model
and data limitations. We illustrate the model adequacy for
urban planning by testing its ability to simulate a green in-
frastructure scenario in the Paris case study. The predicted 25

air temperature change compared well to that of an alterna-
tive physics-based model (r2

= 0.55 and r2
= 0.85 for day-

time and nighttime air temperatures, respectively). Finally,
we discuss opportunities and challenges for the use of such
parsimonious decision-support tools, highlighting their im- 30

portance to mainstream ecosystem services information for
urban planning.

1 Introduction

The urban heat island has been increasingly documented,
varying from 1 to 10 °C in European cities with an aver- 35

age of 6 °C for a sample of 110 European cities (Santa-
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mouris, 2016). The phenomenon involves an increase in air
and surface temperatures in urban areas due to the modifica-
tion of the energy budget (Oke, 1982). This has direct health,
economic, and energy consumption implications (Lehmann,
2014; Santamouris, 2020) as excessive heat has been associ-5

ated with increases in energy consumption for cooling pur-
poses, increases in ground-level ozone and particulate matter
concentrations, and increases in hospital admissions due to
cardiovascular conditions (Hémon and Jougla, 2004; Gosling
et al., 2009; Lai and Cheng, 2009; Reid et al., 2012; San-10

tamouris, 2015; Wang et al., 2017; Viguié et al., 2020). To
reduce these effects, policymakers and urban planners are in-
creasingly turning to blue–green infrastructure (e.g., street
trees, green roofs, and urban parks), a cost-effective op-
tion for urban cooling that also produces multiple secondary15

benefits (Bolund and Hunhammar, 1999; Rosenzweig et al.,
2006; Villanueva-Solis, 2017; Corburn, 2009; Cortinovis and
Geneletti, 2019).

Blue–green infrastructure influences air temperatures and
thermal comfort at several scales. At a local scale – a tree or20

building – shade can reduce air temperature under the canopy
(Kroeger et al., 2018; McDonald et al., 2016; Shashua-Bar
and Hoffman, 2000). Street trees can also indirectly improve
pedestrian comfort and reduce the use of air conditioning in
neighboring buildings, thus avoiding additional heat genera-25

tion (Viguié et al., 2020). Green roofs and walls change the
heat and energy balance of buildings; by absorbing incident
solar radiation to support biological functions, vegetation
acts as a screen and reduces seasonal temperature variations
– although to a limited extent compared to other insulating30

materials (Eumorfopoulou and Kontoleon, 2009). At a larger
scale, urban parks provide an “oasis effect”, reducing air tem-
peratures by up to 6 °C (Ziter et al., 2019; Kroeger et al.,
2018; Jauregui, 1990; Eliasson, 1996; Spronken-Smith and
Oke, 1999; Potchter et al., 2006; Yu et al., 2020). The effect35

is influenced by park size (Cao et al., 2010; Yu et al., 2020),
composition (Potchter et al., 2006), and local climatic condi-
tions (Shashua-Bar and Hoffman, 2000; Yu et al., 2020). In a
systematic literature review, Bowler et al. (2010) showed that
parks larger than 2–3 ha are systematically cooler than the40

rest of the city. Recent work by Wong et al. (2021) suggests
a lower threshold of 1 ha. For such large parks, the cooling
capacity depends mainly on evapotranspiration and can ex-
tend to 800 m, although it is more frequently closer to 100 m
(Kroeger et al., 2018; Wong et al., 2021).45

Quantitative estimates of the cooling service provided by
vegetation come from two main areas. Research in urban
climatology examines the physical processes contributing to
air cooling (Phelan et al., 2015). These studies often involve
complex numerical models – mesoscale or microscale (Meili50

et al., 2020; Lemonsu et al., 2012) that focus on one or sev-
eral processes explaining microclimate and increasingly in-
corporate vegetation effects (Bartesaghi Koc et al., 2018).
Such models require long development and calibration pro-
cesses and therefore significant human and time resources.55

The same applies to geostatistical models that require large
geospatial datasets (e.g., Cheung et al., 2021). On the other
hand, an increasing body of literature in the fields of ur-
ban ecology and ecosystem services science examines the
cooling service through indicators associated with land use 60

(Zardo et al., 2017; Larondelle and Haase, 2013; Derkzen et
al., 2015; Nedkov et al., 2017; Farrugia et al., 2013) as re-
viewed in previous work (Hamel et al., 2021). These models
further simplify the physical processes underlying the cool-
ing dynamics, the effect of the morphological parameters of 65

the buildings, and the daily or seasonal temperature varia-
tions, often by attributing a “cooling capacity” to a broadly
defined land use type.

Cooling service models routinely measure the cooling ef-
fect of vegetation using land surface temperature, which is 70

readily accessible from satellite data (Manoli et al., 2019;
Zhao et al., 2014). Surface temperature influences thermal
comfort and is often correlated with air temperature, making
it an interesting proxy for microclimate studies. However,
this temperature alone does not suffice to estimate the eco- 75

nomic or health implications of the urban heat island (Mar-
tilli et al., 2020; Venter et al., 2021), reducing the relevance
of models estimating land surface temperature in policy mak-
ing.

These model limitations lead to a lack of decision-support 80

tools that accurately quantify the cooling effect of vegeta-
tion on air temperatures and therefore cannot quantify its
impact in socioeconomic terms. A recent review of open-
source tools found that only a few ecosystem services soft-
ware tools were adequate for general urban planning pur- 85

poses – i.e., applicable in any location and flexible enough
to represent different types of blue–green infrastructure and
decision contexts (Hamel et al., 2021). InVEST (Integrated
Valuation of Ecosystem Services and Tradeoffs) is one of the
most popular tools developed to support ecosystem services 90

assessments by quantifying and mapping the benefits pro-
vided by blue–green infrastructure in urban or non-urban en-
vironments (Natural Capital Project, 2022). The urban cool-
ing model within InVEST, developed by the author team, ad-
dresses some of the limitations stated above by estimating 95

air temperature (instead of land surface temperature only), as
it is applicable in cities all around the world using readily
available data.

The InVEST urban cooling model has recently been ap-
plied to an urban European dataset (Cortinovis et al., 2022) 100

and to individual cities in Europe and India (Kadaverugu
et al., 2021; Zawadzka et al., 2021; Bosch et al., 2021).
However, attempts to validate the model against observed
or modeled data are much rarer. In previous work, Bosch et
al. (2021) found that the model performed well in Lausanne, 105

although the observation data were sparse, with 11 weather
stations over 112 km2. Zawadzka et al. (2021) found that the
model explained between 48 % and 60 % of the variability in
land surface temperature for a summer day in three towns in
the United Kingdom. Despite these notable efforts, the model 110
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has not been extensively tested and validated against spatial-
ized air temperature data.

The goal of this paper is to evaluate the performance of
the InVEST urban cooling model in different contexts: day-
time and nighttime and with different levels of data availabil-5

ity. In doing so, we further develop an open-source calibra-
tion algorithm to facilitate future applications of the model
(Bosch et al., 2021). Given the intended use of InVEST as
a decision-support tool, we focus model performance assess-
ment on two aspects: the ability to represent spatial variations10

in temperatures and the ability to represent temporal changes
in temperature due to landscape changes. We test the model
through two case studies with contrasting climates: the Paris
metropolitan area, France, and the Twin Cities, Minnesota,
USA. In the following sections, we present the model perfor-15

mance assessment and discuss the strengths and limitations
of the tool and its recommended use to inform urban plan-
ning policies.

2 Methods

We assess the performance of the InVEST model for the cur-20

rent land use and land cover (LULC) by comparing its out-
puts with available air temperature and land surface tempera-
ture “best estimates”. Since daytime temperatures are highly
influenced by convection and atmospheric turbulence con-
founding the effect of land use (Le Roy et al., 2020), we25

hypothesized that the InVEST daytime outputs would bet-
ter capture variations in land surface temperatures rather than
air temperatures. On the contrary, nighttime temperatures are
strongly influenced by land cover (in particular built infras-
tructure) and thermal processes, so we expected to find a30

stronger correlation between InVEST and nighttime air tem-
perature. Given the purpose of the model to support decision-
making, we also assess the model’s ability to capture the ef-
fect of a change in LULC on urban cooling.

2.1 Case studies35

2.1.1 Paris metropolitan area

The Paris metropolitan area, situated in the Île-de-France
administrative region, is our main case study. Île-de-France
spans over 12 000 km2, with the land use being predomi-
nantly agriculture (50 %), forests (24 %), and artificial ar-40

eas (22.5 %) (see Fig. A1 in Appendix A). The climate in
Paris is oceanic (humid temperate, no dry season, and warm
summers). Average rainfall over the period 1981–2010 was
637 mm, and summer (June to August) temperatures aver-
aged 19.7 °C with increasingly frequent temperature peaks45

in the middle of summer (Météo-France). The study period
is the heat wave of 8–13 August 2003, described in previ-
ous work (de Munck et al., 2018), which led to maximum
daytime temperatures of over 39 °C in the region. A green-
ing scenario for the Paris metropolitan area was developed50

by de Munck et al. (2018) to simulate the implementation of
low and high vegetation (60 % grass and small shrubs and
40 % deciduous trees) for 50 % of available ground surface
(except roads and areas already covered by vegetation). This
represents the greening of pavements, squares, car parks, and 55

some roofs over a surface of 199 km2, or a 23 % increase in
green areas, resulting in a reduction of up to 2 °C in maxi-
mum daily mean temperatures over the study area (de Munck
et al., 2018).

2.1.2 The Twin Cities 60

The second case study, used to validate the model in a dif-
ferent climate zone, is in the Twin Cities metropolitan area
surrounding the cities of Minneapolis and St Paul in Min-
nesota, USA (see Fig. A2 in Appendix A). The climate of
the Twin Cities is classified as hot-summer humid continen- 65

tal. We studied the regional heat wave event of 22 July 2016
and the average air temperatures over the period 2011–2014,
building on previous studies of urban heat islands in the re-
gion (Smoliak et al., 2015).

2.2 Model description 70

The InVEST urban cooling model, hereafter “InVEST
model”, is fully described in the InVEST software user man-
ual (Natural Capital Project, 2022). We provide a summary
of the key equations here to orient readers. The model com-
putes air temperature prior to air mixing (Tnomix, in degrees 75

Celsius) for each pixel as a function of a background rural
reference temperature (Tref) modified by a local heat factor.
The latter is expressed as the maximum urban heat island
intensity for the city (UHImax) modulated by the local heat
mitigation (HM) such that for a given pixel i, 80

Tnomix (i)= Tref+ (1−HM(i))×UHImax. (1)

While this temperature does not account for mixing due to
atmospheric turbulence, actual air temperature, Tair, is esti-
mated from Tnomix using a spatial moving average algorithm
with search radius rmix. This radius varies with time depend- 85

ing on the lateral mixing due to atmospheric turbulence and
can be estimated through calibration (Sect. 2.4).

The proportion of heat mitigation relative to UHImax, with
values ranging between 0 and 1, is derived from the cool-
ing capacity (CC) of the LULC type for a given pixel and 90

from the proximity to large parks. Following an approach
proposed by others (Zardo et al., 2017; Kunapo et al., 2018),
the cooling capacity during daytime is expressed as a func-
tion of shade, evapotranspiration, and albedo:

CC(i)=WS · S (i)+WA ·A(i)+WE ·E(i) , (2) 95

where S(i), A(i), and E(i) are unitless indices ranging from
0 to 1 that characterize shade, albedo, and evapotranspiration
for the pixel i, respectively. They are each weighted by a co-
efficient (WS, WA, or WE) constant across the study area. S
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represents the proportion of shade for a given LULC type,
e.g., 1 for a land cover type completely covered by canopy or
high buildings and 0 for bare ground. A is the albedo value of
the land cover. E is calculated from reference evapotranspi-
ration (a raster called ET0, in mm) and the crop coefficient5

(Kc, no unit) for the LULC type and then normalized by the
maximum value of reference evapotranspiration in the area
of interest according to

E(i)=
Kc (i) ·ET0 (i)

max(ET0)
. (3)

For nighttime temperatures, the model calculates cooling ca-10

pacity as the complement of building density (B), an indi-
cator representing urban compactness that is highly corre-
lated with heat storage capacity (Wong et al., 2021). Building
capacity is normalized across the area and can be obtained
from building density data: a value of 1 implies that the pixel15

is covered by the buildings with the highest energy reten-
tion, often the tallest buildings, corresponding to a maximum
nighttime urban heat island effect.

CC(i)= 1−B (i) (4)

To account for the effect of large parks (>2 ha) in both night-20

time and daytime, the heat mitigation factor, HM, equals a
distance-weighted average of the CC values from surround-
ing areas (CCpark). The algorithm for this distance-weighted
average for a pixel i is as follows:TS2

GA(i)= area ·
∑

j∈c(d°
cool)

g (j) , (5a)25

CCpark (i)=
∑

j∈

(
°
ı

)g (j) ·CCj · exp(−d (i,j)/dcool) , (5b)

HMi =

{
CCi if CCi ≥ CCparki

∨GAi < 2ha
CCparki

otherwise, (5c)

where GA(i) is the total area of green spaces in a buffer of ra-
dius dcool (the distance over which a green space has a cool-
ing effect); area is the area of a pixel in ha; c(dcool) is the30

buffer area of radius dcool; g (j) is 1 if pixel j is a green
space, 0 otherwise; CCpark(i) is the cooling capacity includ-
ing the influence of parks; and d (i,j) is the distance between
pixels i and j .

In plain words, if the amount of green space surrounding35

a pixel (GA) is less than 2 ha, the value of HM for the pixel
equals CC (Eq. 5c), assuming little cooling effect outside the
park other than through air mixing due to atmospheric turbu-
lence (defined by rmix). The threshold size of 2 ha is obtained
from the literature (Bowler et al., 2010; see also the “Discus-40

sion” section).

2.3 Input and calibration data

2.3.1 Paris metropolitan area

Input data. LULC data for the Île-de-France region were
obtained from the regional urban planning agency Mode45

d’occupation du sol (MOS) for the year 2003 (Fig. S1). Ref-
erence evapotranspiration (ET0) for August was obtained
from monthly modeled climatological data for the region, av-
eraged for the 1985–2005 period (ALADIN model; Stéfanon
et al., 2015). Using long-term average reference evapotran- 50

spiration instead of the 2003 reference evapotranspiration has
a limited effect on outputs given that the InVEST model only
uses relative values (see Eq. 3), which have lower temporal
variability than absolute values. LULC parameter values for
shade, crop evapotranspiration coefficient, albedo, and build- 55

ing intensity were assigned based on a combination of expert
opinion and literature review (see Appendix B).

Reference temperature data. In the Paris case study, we
compared the InVEST model outputs with two datasets of
land surface temperature and air temperature. Land surface 60

temperature maps with a 1 km horizontal resolution were re-
trieved from MODIS satellite products (Wan, 2013). They
were obtained for 13 August 2003 during daytime and night-
time since data were missing for the two dates closer to the
peak of the heat wave (11 and 12 August). We also consid- 65

ered higher-resolution data from Landsat, but due to their
lower frequency (16 d) there were no data from around the
study period. MODIS land surface temperature data have
been used in many surface urban heat island studies globally
and regionally (Chakraborty and Lee, 2019; Li et al., 2017). 70

Predictions of air temperature maps with a 1 km horizon-
tal resolution were obtained from the simulations performed
by de Munck et al. (2018) using the physical land surface
model Town Energy Balance/surface–atmosphere exchanges
(TEB/SURFEX; Masson, 2000; Lemonsu et al., 2012; Mas- 75

son et al., 2013). The model computes the energy and water
budgets for a geographic domain of 100 km× 100 km cen-
tered on Paris with a user-defined regular grid and for natu-
ral and urban areas, taking land cover and building charac-
teristics as inputs (Masson, 2000). The outputs used in this 80

study were the 6 d average air temperatures from 8 to 13 Au-
gust 2003. The 1st and 99th percentiles were extracted from
these air temperature data to define the extreme temperature
conditions over the domain during the heat wave (to exclude
visible outliers). The background reference rural temperature 85

(Tref) was set to the 1st percentile, while the maximum urban
heat island intensity (UHImax) was the difference between
both percentiles. Because the TEB/SURFEX data were avail-
able for a 100 km× 100 km window, the rest of the analyses
are presented for this domain rather than for the entire Île-de- 90

France region. The three datasets, InVEST, TEB/SURFEX,
and MODIS, were resampled using bilinear interpolation to
a common 1 km grid for comparison.

2.3.2 The Twin Cities

Input data. We used the 2016 LULC data from the National 95

Land Cover Dataset (NLCD; Homer et al., 2020). Details on
LULC parameter values are provided in Appendix B and in
previous work (Hamel et al., 2021). Reference evapotranspi-
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ration for July 2016 was obtained from globally available
data from the Consultative Group on International Agricul-
tural Research (CGIAR) Global Aridity Index and Potential
Evapotranspiration (ET0) Climate Database v2.

Reference temperature data. We compared air temperature5

as modeled by InVEST to two data sources: the midday land
surface temperature maps of the study area during a regional
heat wave on 22 July 2016, retrieved from Landsat data at a
30 m horizontal resolution for daytime and MODIS for night-
time (Wan, 2013), and rasters of average summertime (June,10

July, and August, 2011–2014) daytime and nighttime air tem-
peratures across the study area, interpolated from a dense net-
work of temperature sensors (∼ 170 stations over 5000 km2,
interpolated by co-kriging using impervious surfaces; Smo-
liak et al., 2015). We projected the reference temperature data15

to match the InVEST output coordinate system and resam-
pled all datasets using bilinear interpolation to match the res-
olution (∼ 1 km) of the Smoliak et al. (2015) data. The back-
ground reference rural temperature (Tref) was defined using
the average air temperature in July for the metropolitan area20

obtained from the US National Weather Service (23.2 °C;
NOAA, 2020), and the maximum urban heat island intensity
(UHImax) was taken from a global assessment of urban heat
islands (2.05 °C; Chakraborty and Lee, 2019).

2.4 Model calibration and performance assessment25

The model outputs were first assessed without calibration,
using the default parameter values (500, 100 m, 0.2, 0.2, and
0.6, for rmix, dcool, WA, WE, and WS, respectively). For cali-
bration, we further developed an optimization algorithm used
in previous work (Bosch et al., 2021). The algorithm starts30

with default parameter values and implements a simulated
annealing optimization to derive the values of the five param-
eters for daytime (rmix, dcool, WA, WE, and WS) or the two
parameters for nighttime (rmix and dcool) until the algorithm
converges to a solution that minimizes r2 (or a limit of 100 it-35

erations is reached). The main improvement to the calibration
tool developed for this study is the ability to use either point
data (e.g., a network of stations) or raster data (as is the case
for the temperature data in this study) as reference tempera-
tures. Other improvements are minor and of a technical na-40

ture. They include testing for the compatibility of user inputs,
updating deprecated packages, and improving the code effi-
ciency and readability, as is documented in the source code.
The tool reports several performance metrics: mean absolute
error (MAE), root mean square error (RMSE), and r2. Fol-45

lowing previous work (Bosch et al., 2021), we selected these
metrics since MAE and RMSE are useful quantifications of
the uncertainty in model outputs with physical quantities (ex-
pressed in °C), which is important for understanding the im-
pact of errors. However, MAE and RMSE also depend on50

UHImax, which means that performance might be artificially
good for areas with small urban heat island magnitudes. For
this reason, we also report r2 (the default performance cri-

terion for the optimization). The source code for the cali-
bration tool can be found at https://github.com/martibosch/ 55

invest-ucm-calibration/tree/v0.6.0 (last access: TS3 ) and on
Zenodo; please refer to the “Code availability ” section.
A user guide is available at https://invest-ucm-calibration.
readthedocs.io/en/latest/usage.html (last access: TS4 ). In ad-
dition, we performed one-at-a-time sensitivity analyses to 60

further understand how the calibration parameters influence
model outputs. Ranges of variation for each parameter are
provided in Appendix C.

To demonstrate the application of the InVEST model in
practice and assess the model’s ability to represent the ef- 65

fect of a change in LULC, we also examined the effect of
a greening strategy on urban cooling in the first case study,
where comparison data were available from an alternative
model. We used the greening scenario “LHV50” (50 % of
impervious areas covered by low and high vegetation) de- 70

veloped and simulated by de Munck et al. (2018) and de-
scribed in Sect. 2.1. In InVEST, we represented this scenario
by changing the LULC properties (shade, albedo, and crop
coefficient) for urban categories. Specifically, we estimated
the proportion of available ground, as defined above, for each 75

category of the LULC map and computed the weighted aver-
age of initial parameter values and values for an urban forest.
For example, for the “parks or gardens” LULC category, it
was estimated that 15 % of the ground was available, so a
weighted average of the shade value for the forest (1) and the 80

original park value (0.5) was computed. The resulting param-
eter values are shown in the Supplement.

3 Results

3.1 Model performance prior to calibration

3.1.1 Daytime temperatures 85

For the Paris case study, prior to calibration the InVEST day-
time temperatures were moderately correlated with daytime
land surface temperature (r2

= 0.60), with a MAE of 3 °C,
but showed no correlation with air temperatures (Table 1).
In the Twin Cities, the InVEST results had low correlation 90

with land surface temperature (r2
= 0.20) but slightly higher

correlation for air temperatures (r2
= 0.29). Of note, com-

parisons between InVEST and land surface temperature in
the Twin Cities revealed a large MAE (11.90 °C), as surface
temperatures can be much higher (up to 52 °C) than air tem- 95

peratures (up to 26 °C) based on the reference temperature
data.

Visual observations of the differences between the two
maps suggest that the model overestimates the temperatures
in forested areas (e.g., to the west and south; see Fig. S1 for 100

the LULC map) and in the dense urban areas in the city of
Paris (Fig. 1, center). In the Twin Cities, the model overesti-
mates temperatures in agricultural areas, while underestimat-

https://github.com/martibosch/invest-ucm-calibration/tree/v0.6.0
https://github.com/martibosch/invest-ucm-calibration/tree/v0.6.0
https://github.com/martibosch/invest-ucm-calibration/tree/v0.6.0
https://invest-ucm-calibration.readthedocs.io/en/latest/usage.html
https://invest-ucm-calibration.readthedocs.io/en/latest/usage.html
https://invest-ucm-calibration.readthedocs.io/en/latest/usage.html
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ing temperatures around wetland areas (see Figs. 2 and S1
for the detailed LULC map). In both case studies, the model
exhibited a higher variability than the reference data.

3.1.2 Nighttime temperatures

As expected, the InVEST nighttime temperatures were cor-5

related with both air temperature and surface temperature,
although more strongly with air temperature in Paris (r2

=

0.84 for Paris and r2
= 0.70 for the Twin Cities; Table 1).

The MAE is also significantly lower when calculated with
respect to air temperatures than to land surface temperatures10

for both cases (0.5 vs. 3.0 °C for Paris and 0.5 vs. 2.5 °C for
the Twin Cities).

Nevertheless, the maps of the differences between InVEST
and nighttime air temperature show important spatial hetero-
geneities. For Paris, this suggests that the model severely un-15

derestimates temperatures in the core area (by about 3 °C)
and overestimates temperatures in the new urban develop-
ments (by about 1 °C; Figs. 1 and S1). In the Twin Cities,
InVEST systematically underestimates temperatures in the
city center, outlying developed suburbs, and around bodies20

of water (e.g., in the west and at the confluence of the Min-
nesota and Mississippi rivers south of the city center), while
overestimating temperatures in the surrounding agricultural
countryside (Figs. 2 and S2).

3.2 Model performance after calibration25

The model performance remained relatively stable after cal-
ibration for nighttime air temperatures in both Paris and the
Twin Cities, reaching r2 values of 0.84 and 0.73, respec-
tively. Daytime temperatures, however, showed very low cor-
relation with the best estimates in Paris and medium correla-30

tion (r2
= 0.33) in the Twin Cities. The sensitivity analysis

conducted for the Paris case study confirmed that most model
parameters had only a limited effect on correlations with land
surface temperature data, which could explain the limited ef-
fect of calibration (Figs. C1 and C2 in Appendix C). Only35

rmix had a significant effect on r2 (with r2 values ranging
from 0.30 to 0.62 for rmix ranging from 100 to 5000 m). Be-
cause of the very low r2 values for daytime temperatures in
Paris, we considered calibration unsuccessful, and we do not
report the calibrated values.40

The Twin Cities daytime calibrated values of the parame-
ters are reported in Table 2 (UHImax = 11.7 °C). The shade
weight remains the highest after calibration, and values only
changed by <15 %. Nighttime calibrated parameter values
suggest that there is less air mixing, with both rmix and dcool45

having lower values than during daytime in the Twin Cities
(Table 2).

3.3 Effect of the greening scenario

Given the limited effect of calibration on daytime and night-
time air temperature data (see Sect. 3.2), we tested the cor- 50

relation obtained with temperature estimates from the uncal-
ibrated model. The results were satisfactory, with medium
correlation strength between InVEST and the TEB/SURFEX
model (r2

= 0.55 and a mean absolute error of 0.07 °C) for
daytime data (Fig. 3). For nighttime data, the correlation be- 55

tween the two models was stronger, with r2
= 0.85.

4 Discussion

4.1 Model calibration and performance

Based on the two case studies, the InVEST model perfor-
mance was best (r2>0.73) for nighttime air temperature after 60

calibration. The performance improvement due to calibration
was modest in most cases (day or night, air or surface tem-
perature), especially for nighttime air temperature in Paris
where the performance was already high prior to calibration
(r2
= 0.84). The calibration significantly improved model 65

performance in the Twin Cities only for surface temperature,
possibly due to the LULC configuration in this landscape, al-
though our analyses do not allow us to confirm this hypoth-
esis. The modest effect due to calibration can be explained
by a relatively low sensitivity to model parameters, which is 70

suggested by the sensitivity analyses presented in Appendix
C (Figs. C3 and C4).

For the Twin Cities, nighttime calibrated parameter values
(rmix and dcool) are lower than those for daytime, which sup-
ports the lower convection and air mixing during the night. 75

Calibrated values of rmix are 771 and 660 m for daytime and
nighttime, respectively, which compares well with the esti-
mate of 600 m obtained from previous studies (Schatz and
Kucharik, 2014; Lonsdorf et al., 2021). Similar reasoning to
verify the physical interpretation of model parameters could 80

be done in a case study for the shade, albedo, and evapo-
transpiration weights if such data are available; for example,
calibrated values could be compared with the relative pro-
portion of shade to evapotranspiration that has been studied
in some cities (e.g., in Singapore; Tan et al., 2018). In both 85

case studies, model performance for surface temperatures (r2

ranging from 0.43 to 0.76 post-calibration) compares with
the study by Zawadzka et al. (2021), who found that the In-
VEST model explained between 48 % and 60 % of the vari-
ability in land surface temperature for a summer day in three 90

towns in the United Kingdom. We highlight, however, that
the model was not initially developed for land surface tem-
peratures. The fair performance for land surface temperatures
is an artifact of the model’s simplified representation of air
temperatures, which imperfectly represents the local energy 95

balance, and of the strong correlation of both air and surface
temperatures with LULC.



P. Hamel et al.: Calibrating and validating the InVEST urban cooling model 7

Figure 1. Differences between modeled and reference air temperatures (°C) for the Paris region for daytime and nighttime simulations pre-
and post-calibration.

Figure 2. Differences between modeled and reference air temperatures (°C) for the Twin Cities region for daytime and nighttime simulations
pre- and post-calibration.
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Table 1. InVEST model performance for daytime and nighttime air (Tair) and land surface temperatures (LST) before and after calibration.
MAE is the mean absolute error. Post-calibration values are shown in parentheses.

Paris Twin Cities

r2 MAE (°C) r2 MAE (°C)

Tair Day <0.01 (0.01) 1.40 (1.30) 0.29 (0.33) 0.48 (0.43)
Night 0.84 (0.84) 0.52 (0.52) 0.70 (0.73) 0.48 (0.48)

LST Day 0.60 (0.62) 3.06 (2.80) 0.20 (0.43) 11.9 (8.70)
Night 0.45 (0.47) 2.99 (6.10) 0.59 (0.76) 2.54 (2.48)

Table 2. Calibrated coefficient values for air temperature in the two case studies (n/a – not applicable).

Paris Twin Cities

Daytime rmix (m) n/a 771
dcool (m) n/a 109
WA, WE, and WS n/a 0.21, 0.17, and 0.62

Nighttime rmix (m) 500 630
dcool (m) 100 66

Regarding scenario assessment, the model in the Paris case
study performed reasonably well (r2

= 0.55 and r2
= 0.85

for daytime and nighttime air temperatures, respectively).
This confirms the potential of the tool to support urban plan-
ning studies where different scenarios might need to be com-5

pared based on their cooling potential, similar to earlier work
with InVEST (Bosch et al., 2022). The effect from the green-
ing scenario, resulting in less than 1 °C cooling, is modest but
in line with the literature on such large-scale implementation
of green infrastructure, not only from the reference study by10

de Munck et al. (2018) but also for other temperate climate
studies.

4.2 Limitations of the study and future work

In both our case studies, we note that the performance was
poor for daytime air temperature, which does not support the15

use of the model for absolute temperature estimates. This
poor performance may be due to oversimplifications of the
physical processes involved in urban cooling. In particular,
simplification of the flow dynamics means that a model such
as InVEST cannot represent urban canyon and wind effects20

in the city. The effect of parks is also simplified with a thresh-
old of 2 ha for park size. While this has the advantage of re-
ducing the number of model parameters, it also ignores the
effect that smaller green spaces might have on their surround-
ings (Yu et al., 2020; Wong et al., 2021). The poor perfor-25

mance of the model for daytime air temperature may also
be attributed to errors in parameterizations, in particular the
use of climate data for short periods (e.g., 6–13 August 2003
for Paris) vs. averaged values over several months as was the
case for some inputs (e.g., reference evapotranspiration in the30

Paris case study or Tref and UHImax in the Twin Cities; see

Sect. 2.3). Further investigation of these temporal dynamics
should be explored in future work, although we highlight that
they did not seem to impact the fair performance of the model
for nighttime air temperatures or land surface temperatures. 35

An important limitation of any urban climate study exam-
ining fine-resolution spatial variations in temperature is the
availability of robust reference data. Because air temperature
cannot be readily derived from remote sensing data, mod-
els are routinely compared to networks of weather stations 40

(de Munck et al., 2018; Smoliak et al., 2015; Bosch et al.,
2021). This means that model performance is only assessed
for a limited number of points, which are not typically rep-
resentative of the diversity of LULC in a region. When data
are collected specifically for model validation purposes (e.g., 45

transect data), they are also limited by practical factors such
as timing considerations (e.g., a mismatch in time between
the beginning and end of the transect) or a lack of reference
data (Stewart, 2011; Velasco, 2018).

In our study, we have used alternative models as reference 50

data for air temperatures: either a physics-based model or
a statistical interpolation model. Both of these models have
limitations and uncertainties in and of themselves, making
a fine-scale understanding of the limitations of the InVEST
model challenging. In other words, the differences in models 55

observed in Figs. 1 and 2 might also be due to errors in the
reference data, and future studies could examine the effect
of uncertainty in reference datasets on calibration and model
performance. For example, the effect of shade during day-
time is poorly represented in the TEB/SURFEX model used 60

in Paris (de Munck et al., 2018). Land surface temperature
datasets, on the other hand, are less prone to such limitations
and are more robust when it comes to spatial distributions.
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Figure 3. Cooling service (°C) during daytime resulting from the greening scenario as simulated by InVEST and by the TEB/SURFEX
model (reference data).

Absolute values are nonetheless challenging to ascertain due
to temperature calculations requiring correction algorithms.

Finally, an important study limitation that could be ex-
plored in future work is the spatial resolution and scale of
case studies. In both cases, the InVEST model was evaluated5

at a 1 km horizontal resolution over an area of about 100 km
by 100 km. Because the model produces outputs at the same
resolution as LULC inputs, it would be interesting to evaluate
its performance at a different scale and resolution where such
data are available. Relatedly, the use of local climate zones,10

which is common in urban climate studies (Aslam and Rana,
2022), could be examined as an alternative parameterization
of the InVEST model. This work would also examine the in-
fluence of reference temperature (Tref) and maximum inten-
sity (UHImax) as well as the biophysical parameter values (in15

particular crop coefficients – notably difficult to ascertain for
urban land uses), which have not been explored in the present
study.

Overall, this discussion of data quality and calibrated pa-
rameter values highlights an important contribution of this20

study to the customized calibration tool available on GitHub
(https://github.com/martibosch/invest-ucm-calibration, last
access: TS5 ) and on Zenodo; please refer to the “Code and
data availability” section. Such a tool can be applied to any
other city where the InVEST urban cooling model is applied25

with the only data requirement beyond the InVEST model
input data being a reference temperature dataset (either point
data or raster data). The calibration tool allows for system-
atic calibration and model testing, which paves the way for
a better understanding of model limitations and strengths.30

Although in our case studies the performance improvement
from calibration was modest, future work could assess the
performance of the model over multiple cities with compara-
ble datasets, examine the potential of local climate zones for
improved parameterization, or explore finer temporal resolu-35

tion by linking the night and day model outputs.

5 Conclusion

In this study, we have developed a custom calibration tool to
assess the performance of the InVEST urban cooling model
in two case studies: in Paris, France, and in the Twin Cities, 40

MN, USA. Our analyses expand on past model testing stud-
ies by providing a much more extensive validation dataset of
air temperatures (continuous data based on a reference ur-
ban climate model in Paris and on data interpolated from a
dense weather station network in the Twin Cities). The model 45

showed good performance, assessed through mean absolute
error (0.52 °C) and r2 (0.84) for nighttime air temperatures.
Calibration only slightly improved model performance in the
Twin Cities. For the case study of Paris, the use of the tool for
scenario assessment was supported by moderate (daytime) 50

and high (nighttime) correlation with change predicted by an
alternative physics-based model (r2

= 0.55 and r2
= 0.85 for

daytime and nighttime air temperatures, respectively). With
respect to the study objectives, we conclude that the open-
source model can be used to support decisions related to land 55

use and land cover change in cities, with greater reliability
of nighttime UHI applications and of relative change (i.e.,
comparing scenarios to one another as opposed to the using
absolute values of model predictions). As these results were
obtained for the case studies in Paris and in the Twin Cities, 60

the InVEST model and calibration tools should be tested at
other locations to assess model performance for urban plan-
ning applications. For research applications, future studies at
other locations will help us further understand the effect of
data resolution and data quality on model performance. 65

https://github.com/martibosch/invest-ucm-calibration
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Appendix A: LULC input data

Figure A1. Land use and cover in the Île-de-France region, France, in 2017 (based on data developed by the Institut Paris Region).
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Figure A2. Locations and land cover in the Twin Cities metropolitan area in Minnesota, USA, with the cities of Minneapolis and St. Paul
outlined.
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Appendix B: InVEST biophysical tables

InVEST biophysical tables can be found in the Supplement.

B1 Paris case study

Albedo values for the Paris biophysical table were derived
from the following three sources.5

– APUR (2020).TS6

– Lavigne et al. (1994).TS7

– Stewart and Oke (2012).TS8

Specifically, most albedo values were taken from Stewart
and Oke (2012). Exceptions were parks, cemeteries, all in-10

dustrial land use, and all facilities except hippodromes and
race tracks (derived from Lavigne et al., 1994), while out-
door courts, transportation land use, quarries, dumpsites,
construction sites, hippodromes, and car tracks were derived
from APUR (2020).15

Crop evapotranspiration values were derived from the
FAO Irrigation paper 56 (Allen et al., 1998) as is described
in previous work (Tardieu et al., 2020).

– Allen et al. (1998).TS9

– Tardieu et al. (2021).TS1020

Shade values were assumed to be 1 for forested or tree-
planted land use, 0.5 for mixed land use with trees, 0.25 for
commercial land use with planted trees, and 0 for all remain-
ing land use.

B2 Twin Cities case study25

Details of the Twin Cities biophysical tables are provided in
the supplement of this source: Hamel et al. (2021).TS11

Appendix C: Sensitivity analyses

For the Paris case study, we performed a local sensitivity
analysis for the following five parameters (ranges for each30

parameter are in parentheses).

– Air mixing distance, rmix (50 to 5000 m).

– Green area maximum cooling distance, dcool (50 to
1000 m).

– Cooling capacity factors: WS, WA, and WE (0 to 1).35

We assessed results based on the correlation between day-
time and nighttime temperatures and land surface tempera-
tures. We found that the model was highly sensitive to rmix
(Fig. S1), with a local maximum of 500 m for daytime tem-
peratures and 1000 m for nighttime temperatures (Fig. S3).40

The model was less sensitive to the values of maximum cool-
ing distance and the cooling capacity factors; r2 varied be-
tween 0.61 and 0.63 for dcool and 0.59 and 0.64 for the weight
factors.

These results held for nighttime temperature, where In- 45

VEST was also most sensitive to the air mixing parameter,
rmix (Fig. S4). Sensitivity to the building density parame-
ter, B, and the maximum cooling distance, dcool, was much
lower.
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Figure C1. Sensitivity of the InVEST model to the rmix and dcool parameters and WE and WS factors. Results are plotted against the
correlation coefficient (r2) with daytime land surface temperature (MODIS).

Figure C2. Sensitivity of the InVEST model to the daytime weight factors, WE (W_eti), WA (W_albedo), and WS (W_shade). Results are
plotted against the correlation coefficient (r2) with daytime land surface temperature (MODIS).

Code and data availability. The code used in this article is
available at https://doi.org/10.5281/zenodo.8081822 (GitHub-
actions[bot], 2023TS12 ). The source files for the biophysical tables
to run the InVEST models can be found in the Supplement.

Other input data such as the LULC map for the Paris case study5

are not publicly available.
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