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Abstract. Understanding the cooling service provided by vegetation in cities is important to inform urban policy and planning. 

However, the performance of decision-support tools estimating heat mitigation for urban greening strategies is not 

systematically evaluated. Here, we further develop a calibration algorithm and evaluate the performance of the Urban Cooling 20 

model developed within the open-source InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) software. The 

Urban Cooling model estimates air temperature reduction due to vegetation based on four predictors: shade provision, 

evapotranspiration, albedo, and building density and was designed for data-rich and data-scarce situations. We apply the 

calibration algorithm and evaluate the model in two case studies (Paris, France, and Minneapolis-St Paul, USA) by examining 

the spatial correlation between InVEST predictions and reference temperature data at 1-km horizontal resolution. In both case 25 

studies, model performance was high for nighttime air temperatures, which is an important indicator of human wellbeing. After 

calibration, we found a medium performance for surface temperatures during daytime but a low performance for daytime air 

temperatures in both case studies, which may be due to model and data limitations. We illustrate the model adequacy for urban 

planning by testing its ability to simulate a green infrastructure scenario in the Paris case study. The predicted air temperature 

change compared well with that of an alternative physics-based model (r2=0.55 and r2=0.85, for air daytime and nighttime 30 

temperatures, respectively). Finally, we discuss opportunities and challenges for the use of such parsimonious decision-support 

tools, highlighting their importance to mainstream ecosystem services information in urban planning.  

 



2 

 

1 Introduction 

The urban heat island is increasingly documented, varying in European cities from 1 to 10°C with an average of 6°C for a 35 

sample of 110 European cities (Santamouris, 2016). The phenomenon involves an increase in air and surface temperatures in 

urban areas due to the modification of the energy budget (Oke, 1982). This has direct health, economic and energy consumption 

implications (Lehmann, 2014; Santamouris, 2020) as excessive heat has been associated with increases in energy consumption 

for cooling purposes, increases in ground level ozone and particulate matter concentrations, and hospital admissions due to 

cardiovascular conditions (Gosling et al., 2009; Hémon & Jougla, 2004; Lai & Cheng, 2009; Reid et al., 2012; Santamouris, 40 

2015; Viguié et al., 2020; Wang et al., 2017). To reduce these effects, policy-makers and urban planners are increasingly 

turning to blue-green infrastructure (e.g., street trees, green roofs, urban parks), a cost-effective option for urban cooling that 

also produces multiple co-benefits (Bolund & Hunhammar, 1999; Corburn, 2009; Cortinovis & Geneletti, 2019; Rosenzweig 

et al., 2006; Villanueva-Solis, 2017). 

Blue-green infrastructure influences air temperatures and thermal comfort at several scales. At a local scale – a tree or building, 45 

shading can reduce air temperature under the canopy (Kroeger et al., 2018; McDonald et al., 2016; Shashua-Bar & Hoffman, 

2000). Street trees can also indirectly improve pedestrian comfort and reduce the use of air conditioning in neighboring 

buildings, thus avoiding additional heat generation (Viguié et al., 2020). Green roofs and walls change the heat and energy 

balance of buildings: by absorbing incident solar radiation to support biological functions, vegetation acts as a screen and 

reduces seasonal temperature variations – although to a limited extent compared to other insulating materials (Eumorfopoulou 50 

& Kontoleon, 2009). At a larger scale, urban parks provide an “oasis effect” reducing air temperatures by up to 6°C (Eliasson, 

1996; Jauregui, 1990; Kroeger et al., 2018; Potchter et al., 2006; Spronken-Smith & Oke, 1999; Yu et al., 2020; Ziter et al., 

2019). The effect is influenced by park size (Cao et al., 2010; Yu et al., 2020), composition (Potchter et al., 2006), and local 

climatic conditions (Shashua-Bar & Hoffman, 2000; Yu et al., 2020). In a systematic literature review, Bowler et al. (2010) 

showed that parks larger than 2-3 ha are systematically cooler than the rest of the city. Recent work by Wong et al. (2021) 55 

suggests a lower threshold of 1 ha. For such large parks, the cooling capacity depends mainly on evapotranspiration, and can 

extend to 800 m, although more frequently closer to 100 m (Kroeger et al., 2018; Wong et al., 2021). 

Quantitative estimates of the cooling service provided by vegetation come from two main areas. Research in urban climatology 

examines the physical processes contributing to air cooling (Phelan et al., 2015). These studies often involve complex 

numerical models –meso-scale or micro-scale (Lemonsu et al., 2012; Meili et al., 2020), which focus on one or several 60 

processes explaining microclimate and increasingly incorporating vegetation effects (Bartesaghi Koc et al., 2018). Such 

models require long development and calibration processes and therefore significant human and time resources. The same 

applies to geostatistical models that require large geospatial datasets (e.g., Cheung et al., 2021). On the other hand, an 

increasing body of literature in the fields of urban ecology and ecosystem services science examines the cooling service through 

indicators associated with land use (Derkzen et al., 2015; Farrugia et al., 2013; Larondelle & Haase, 2013; Nedkov et al., 2017; 65 

Zardo et al., 2017), as reviewed in previous work (Hamel et al., 2021). These models further simplify the physical processes 
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underlying the cooling dynamics, the effect of the morphological parameters of the buildings, and the daily or seasonal 

temperature variations, often by attributing a “cooling capacity” to a broadly defined land use type.  

Cooling service models routinely measure the cooling effect of vegetation with land surface temperature, which is readily 

accessible from satellite data (Manoli et al., 2019; Zhao et al., 2014). Surface temperature influences thermal comfort and is 70 

often correlated with air temperature, making it an interesting proxy for microclimate studies. However, this temperature alone 

does not suffice to estimate economic or health implications of the urban heat island (Martilli et al., 2020; Venter et al., 2021), 

reducing the relevance of models estimating land surface temperature in policy making.  

These model limitations lead to a lack of decision-support tools that accurately quantify the cooling effect of vegetation on air 

temperatures and therefore its impact in socio-economic terms. A recent review of open-source tools found that only a few 75 

ecosystem services software tools were adequate for general urban planning purposes—i.e. applicable in any geography, and 

flexible enough to represent different types of blue-green infrastructure and decision contexts (Hamel et al., 2021). InVEST 

(Integrated Valuation of ecosystem services and tradeoffs) is one of the most popular tools developed to support ecosystem 

services assessments by quantifying and mapping the benefits provided by blue-green infrastructure in urban or non-urban 

environments (Natural Capital Project, 2022). The Urban Cooling model within InVEST, developed by the author team, 80 

addresses some of the limitations stated above by estimating air temperature (instead of land surface temperature only), being 

applicable in cities all around the world by using readily available data. 

The InVEST Urban Cooling model has recently been applied to a European urban dataset (Cortinovis et al., 2022), and to 

individual cities in Europe, and India (Bosch et al., 2021; Kadaverugu et al., 2021; Zawadzka et al., 2021). However, attempts 

to validate the model against observed or modelled data are much rarer. In previous work, Bosch et al. (2021) found good 85 

performance of the model in Lausanne, although the observation data was sparse with 11 weather stations over 112 km2. 

Zawadzka et al. (2021) found that the model explained between 48% and 60% of the variability in land surface temperature 

for a Summer day in three towns in the United Kingdom. Despite these notable efforts, the model has not been extensively 

tested and validated against spatialized air temperature data. 

The goal of this paper is to evaluate the performance of the InVEST Urban Cooling model in different contexts: daytime and 90 

nighttime, and with different levels of data availability. In doing so, we further develop an open-source calibration algorithm 

to facilitate future applications of the model (Bosch et al., 2021). Given the intended use of InVEST as a decision-support tool, 

we focus model performance assessment on two aspects: the ability to represent spatial variations in temperatures, and the 

ability to represent temporal changes in temperature due to landscape changes. We test the model through two case studies 

with contrasted climates: the Paris metropolitan area, France, and the Twin Cities, Minnesota, USA. In the following, we 95 

present the model performance assessment and discuss the strengths and limitations of the tool and its recommended use to 

inform urban planning policies. 
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2 Methods  

We assess the performance of the InVEST model for the current land uses land covers (LULCs) by comparing its outputs with 

available (“best estimates”) air temperature and land surface temperature. Since daytime temperatures are highly influenced 100 

by convection and atmospheric turbulence, confounding the effect of land use (Le Roy et al., 2020), we hypothesized that the 

InVEST daytime outputs would better capture variations in land surface temperatures, rather than air temperatures. On the 

contrary, nighttime temperatures are strongly influenced by land cover (in particular built infrastructure)  and thermal processes, 

so we expected to find a stronger correlation between InVEST and nighttime air temperature. Given the purpose of the model 

to support decision-making, we also assess the model’s ability to capture the effect of a change in LULC on urban cooling.  105 

2.1 Case studies 

2.1.1 Paris metropolitan area 

The Paris metropolitan area, situated in the Île-de-France administrative region, is our main case study. Île-de-France spans 

over 12,000 km2, with land use being predominantly agriculture (50%), forests (24%), and artificial areas (22.5%) (see Figure 

A1 in Appendix). The climate in Paris is oceanic (humid temperate, no dry season and warm summers). Average rainfall over 110 

the period 1981-2010 was 637 mm and summer (June to August) temperatures averaged 19.7°C, with increasingly frequent 

temperature peaks in the middle of summer (Météo-France). The study period is the heat wave of 8-13 August 2003, described 

in previous work (de Munck et al., 2018), which led to maximum daytime temperatures of over 39°C in the region. A greening 

scenario for the Paris metropolitan area was developed by de Munck et al. (2018) to simulate the implementation of low and 

high vegetation (60% grass and small shrubs 40% of deciduous trees) for 50% of available ground surface (except roads and 115 

areas already covered by vegetation). This represents the greening of pavements, squares, carparks, and some roofs over a 

surface of 199 km2, or a 23% increase in green areas, resulting in a reduction of up to 2°C in maximum daily mean temperatures 

over the study area (de Munck et al., 2018). 

2.1.2 Twin Cities 

The second case study, to validate the model in a different climate zone, is in the Twin Cities metropolitan area surrounding  120 

the cities of Minneapolis and St Paul in Minnesota, USA (see Figure A2 in Appendix). The climate of the Twin Cities is 

classified as hot-summer humid continental. We studied the regional heat wave event of July 22, 2016, and the average air 

temperatures over the period 2011-2014, building on previous studies of urban heat island in the region (Smoliak et al., 2015). 

2.2 Model description 

The InVEST Urban Cooling model, hereafter “InVEST model”, is fully described in the InVEST software User’s manual 125 

(Natural Capital Project, 2022). We provide a summary of key equations here to orient readers. The model computes air 

temperature prior to air mixing (𝑇𝑛𝑜𝑚𝑖𝑥 , in degree Celsius) on each pixel as a function of a background rural reference 
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temperature (𝑇𝑟𝑒𝑓) modified by a local heat factor. The latter is expressed as the maximum urban heat island intensity for the 

city (𝑈𝐻𝐼𝑚𝑎𝑥) modulated by the local heat mitigation (𝐻𝑀), such that, for a given pixel i: 

𝑇𝑛𝑜𝑚𝑖𝑥(𝑖) = 𝑇𝑟𝑒𝑓 + (1 − 𝐻𝑀(𝑖)) × 𝑈𝐻𝐼𝑚𝑎𝑥 130 

[1] 

While this temperature does not account for mixing due to atmospheric turbulence, actual air temperature, 𝑇𝑎𝑖𝑟 , is estimated 

from 𝑇𝑛𝑜𝑚𝑖𝑥 using a spatial moving average algorithm with search radius rmix. This radius varies with time, depending on the 

lateral mixing due to atmospheric turbulence, and can be estimated through calibration (Section 2.4). 

The proportion of heat mitigation relative to 𝑈𝐻𝐼𝑚𝑎𝑥 , with values ranging between 0 and 1, is derived from the cooling capacity 135 

(CC) of the LULC type on a given pixel and the proximity to large parks. Following an approach proposed by others (Kunapo 

et al., 2018; Zardo et al., 2017), the cooling capacity during daytime is expressed as a function of shade, evapotranspiration, 

and albedo: 

𝐶𝐶(𝑖) = 𝑊𝑆. 𝑆(𝑖) + 𝑊𝐴. 𝐴(𝑖) + 𝑊𝐸 . 𝐸(𝑖), 

            [2] 140 

where S(i), A(i), and E(i) are unitless indices ranging from 0 to 1 that characterize shade, albedo, and evapotranspiration o n 

the pixel i, respectively. They are each weighted by a coefficient (WS, WA, WE) constant across the study area. S represents 

the proportion of shade for a given LULC type, e.g.,1 for a land cover type completely covered by canopy or high buildings, 

and 0 for bare lands. A is the albedo value of the land cover. E is calculated from reference evapotranspiration (a raster termed 

𝐸𝑇0, in mm) and the crop coefficient (𝐾𝑐, no unit) for the LULC type, and then normalized by the maximum value of reference 145 

evapotranspiration in the area of interest according to: 

𝐸(𝑖) =
𝐾𝑐(𝑖). 𝐸𝑇0(𝑖)

𝑚𝑎𝑥(𝐸𝑇0)
 

            [3] 

For nighttime temperatures, the model calculates cooling capacity as the complement of building density (B), an indicator 

representing urban compactness and highly correlated to heat storage capacity (Wong et al., 2021). Building capacity is 150 

normalized across the area and can be obtained from building density data: a value of 1 implies that the pixel is covered by the 

buildings with the highest energy retention, often the tallest building, corresponding to a maximum nighttime urban heat island 

effect:  

𝐶𝐶(𝑖) = 1 − 𝐵(𝑖), 

            [4] 155 

To account for the effect of large parks (>2 ha), both in nighttime and daytime, the heat mitigation factor 𝐻𝑀 equals a distance-

weighted average of the CC values from surrounding areas (𝐶𝐶𝑝𝑎𝑟𝑘). The algorithm for this distance-weighted average, for a 

pixel i, is as follows: 

𝐺𝐴(𝑖) = 𝑎𝑟𝑒𝑎 ⋅ ∑𝑗∈c(d𝑐𝑜𝑜𝑙)˚ 𝑔(𝑗) 
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[5a] 160 

𝐶𝐶𝑝𝑎𝑟𝑘(𝑖) = ∑𝑗∈(𝑖)˚ 𝑔(𝑗) ⋅ 𝐶𝐶𝑗 ⋅ 𝑒𝑥𝑝(−𝑑 (𝑖, 𝑗) 𝑑𝑐𝑜𝑜𝑙⁄ ) 

[5b] 

𝐻𝑀𝑖 = {
𝐶𝐶𝑖    𝑖𝑓  𝐶𝐶𝑖 ≥ 𝐶𝐶𝑝𝑎𝑟𝑘𝑖

∨ 𝐺𝐴𝑖 < 2ℎ𝑎

𝐶𝐶𝑝𝑎𝑟𝑘𝑖
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

[5c] 

where GA(i) is the total area of green spaces in a buffer of radius dcool (the distance over which a green space has a cooling 165 

effect); 𝑎𝑟𝑒𝑎 is the area of a pixel in ha; c(dcool) is the buffer area of radius dcool; 𝑔(𝑗) is 1 if pixel j is green space, 0 otherwise; 

CCpark(i) is the cooling capacity including the influence of parks; and 𝑑(𝑖, 𝑗) is the distance between pixel i and j. 

In plain words, if the amount of green spaces surrounding a pixel (GA) is less than 2 ha, the value of 𝐻𝑀 on the pixel equals 

CC (Eq. 5c), assuming little cooling effect outside the park other than through air mixing due to atmospheric turbulence 

(defined by rmix). The threshold size of 2 ha is obtained from the literature (Bowler et al., 2010; also see Discussion). 170 

2.3 Input and calibration data 

2.3.1 Paris metropolitan area 

Input data. LULC data for the Île-de-France region were obtained from the regional urban planning agency (Institut Paris 

Region, 2019) for the year 2003 (Figure S1). Reference evapotranspiration (𝐸𝑇0) for August was obtained from monthly 

modeled climatological data for the region, averaged for the 1985-2005 period (ALADIN model, Stéfanon et al., 2015). Using 175 

long-term average reference evapotranspiration instead of 2003 reference evapotranspiration has a limited effect on outputs 

given that the InVEST model only uses relative values (see Eq. 3 above), which have lower temporal variability than absolute 

values. LULC parameter values for shade, crop evapotranspiration coefficient, albedo, and building intensity were assigned 

based on a combination of expert opinion and literature review (see Appendix B). 

Reference temperature data. In the Paris case study, we compared the InVEST model outputs with two datasets of land surface 180 

temperature and air temperature. Land surface temperature maps with a 1-km horizontal resolution were retrieved from MODIS 

satellite products (Wan, 2013). They were obtained for August 13th 2003 at daytime and nighttime since data were missing at 

the two dates closer to the peak of the heat wave (August 11th and 12th). We also considered higher resolution data from Landsat 

but due to its lower frequency (16 days) there was no data around the study period. MODIS land surface temperature data have 

been used in many surface urban heat island studies globally and regionally (Chakraborty & Lee, 2019; Li et al., 2017). 185 

Predictions of air temperature maps with a 1-km horizontal resolution were obtained from the simulations performed by de 

Munck et al. (2018) with the physical land-surface model TEB/Surfex (Lemonsu et al., 2012; Masson, 2000; Masson et al., 

2013). The model computes the energy and water budgets on a geographic domain of 100 km x 100 km centered on Paris with 

a user-defined regular grid, and for natural and urban areas, taking land cover and building characteristics as inputs (Masson, 

2000). The outputs used in this study were the 6-day average air temperatures from 8-13 August 2003. The 1st and 99th 190 
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percentiles were extracted from these air temperature data to define the extreme temperature conditions over the domain during 

the heat wave (to exclude visible outliers). The background reference rural temperature (Tref) was set to the 1st percentile, while 

the maximum urban heat island intensity (UHImax) was the difference between both percentiles. Because the TEB/Surfex data 

were available for a 100 km x 100 km window, the rest of the analyses are presented for this domain, rather than the entire I le-

de-France region. The three datasets InVEST, TEB/Surfex and MODIS were resampled to a common 1-km grid for 195 

comparison, using bilinear interpolation. 

2.3.2 Twin Cities 

Input data. We used 2016 LULC data from the National Land Cover Dataset (NLCD; Homer et al., 2020). Details on LULC 

parameters values are provided in Appendix B and in previous work (Hamel et al., 2021). Reference evapotranspiration for 

July 2016 was obtained from globally available data from the Consultative Group on International Agricultural Research 200 

(Trabucco & Zomer, 2018).  

Reference temperature data. We compared air temperature as modeled by InVEST to two data sources: the midday land surface 

temperature maps of the study area during a regional heatwave on July 22, 2016, retrieved from Landsat data at a 30-m 

horizontal resolution for daytime and MODIS for nighttime (Wan, 2013); and rasters of average summertime (June, July, 

August, 2011-2014) daytime and nighttime air temperatures across the study area, interpolated from a dense network of 205 

temperature sensors (~170 stations over 5000 km2, interpolated with by cokriging using impervious surfaces) (Smoliak et al., 

2015). We projected the reference temperature data to match the InVEST output coordinate system and resampled all datasets 

to match the resolution (~1 km) of Smoliak et al.’s data using bilinear interpolation. The background reference rural 

temperature (Tref) was defined using the average air temperature in July for the metropolitan area obtained from the US National 

Weather Service (23.2 °C; NOAA 2020) and the maximum urban heat island intensity (UHImax) was taken from a global 210 

assessment of urban heat islands (2.05°C; Chakraborty & Lee, 2019). 

2.4 Model calibration and performance assessment 

The model outputs were first assessed without calibration, using default parameter values (500 m, 100 m, 0.2, 0.2, 0.6, for rmix, 

dcool, Wa, We, Ws, respectively). For calibration, we further developed an optimization algorithm used in previous work (Bosch 

et al., 2021). The algorithm starts with default parameter values and implements a simulated annealing optimization to derive 215 

the values of the five parameters for daytime (rmix, dcool, Wa, We, Ws) or two parameters for nighttime (rmix, dcool,) until the 

algorithm converges to a solution that minimizes r2 (or a limit number of 100 iterations is reached). The main improvement on 

the calibration tool developed for this study is the ability to use as reference temperatures either point data (e.g., a network of 

stations) or raster data (as is the case for the temperature data in this study). Other improvements are minor and of technical 

nature. (They include testing for the compatibility of user inputs, updating deprecated packages, and improving the code 220 

efficiency and readability, as documented in the source code.). The tool reports several performance metrics: mean absolute 

error (MAE), root mean square error (RMSE), and r2. We Following previous work (Bosch et al., 2021), we selected these 
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metrics since MAE and RMSE are useful quantification of the uncertainty in model outputs with physical quantities (expressed 

in °C), which is important from a user perspectivefor users to understand the impact of errors. However, MAE and RMSE also 

depend on UHImax, which means that performance might be artificially good for areas with small urban heat island magnitudes. 225 

For this reason, we also report r2 (the default performance criterion for the optimization). The source code for the calibration 

tool can be found at: https://github.com/martibosch/invest-ucm-calibration/tree/v0.6.0 (and on Zenodo: Please refer to the 

Code Availability section) and a user guide available at: https://invest-ucm-calibration.readthedocs.io/en/latest/usage.html. In 

addition, we performed a one-at-a-time sensitivity analyses to further understand how the calibration parameters influence 

model outputs. Ranges of variation for each parameter are provided in Appendix C. 230 

To demonstrate the application of the InVEST model in practice and assess the model’s ability to represent the effect of a 

change in LULC, we also examined the effect of a greening strategy on urban cooling in the first case study, where comparison 

data were available from an alternative model. We used the greening scenario LHV50 (50% of impervious areas covered by 

low and high vegetation) developed and simulated by de Munck et al. (2018) and described in Section 2.1. In InVEST, we 

represented this scenario by changing the LULC properties (shade, albedo, crop coefficient) for urban categories. Specifically, 235 

we estimated the proportion of available ground, as defined above, for each category of the LULC map, and computed the 

weighted average of initial parameter values and values for an urban forest. For example, for the “Parks or Gardens” LULC 

category, it was estimated that 15% of the ground was available, so a weighted average of the shade value for Forest (1) and 

original park value (0.5) was computed. The resulting parameter values are shown in Supplementary Material. 

3 Results 240 

3.1 Model performance prior to calibration 

3.1.1 Daytime temperatures 

For the Paris case study, prior to calibration, the InVEST daytime temperatures were moderately correlated with daytime land 

surface temperature (r2=0.60), with a MAE of 3°C, but showed no correlation with air temperatures (Table 1). In the Twin 

Cities, the InVEST results had low correlation with LST (r2=0.20) but slightly higher for air temperatures (r2=0.29). Of note, 245 

comparisons between InVEST and land surface temperature in the Twin Cities revealed a large MAE (11.90°C) as surface 

temperatures can be much higher (up to 52°C) than air temperatures (up to 26°C) based on the reference temperature data.  

Visual observations of the difference between the two maps suggest that the model overestimates the temperatures in forested 

areas (e.g., to the west and southern areas, see Figure S1 for LULC map), as well as in the dense urban areas in the city of 

Paris (centre, Figure 1). In the Twin Cities, the model overestimates temperatures in agricultural areas, while underestimating 250 

temperatures around wetland areas (Figure 2 and Figure S1 for detailed LULC map). In both case studies, the model exhibited 

a higher variability than reference data.  

https://www.google.com/url?q=https://github.com/martibosch/invest-ucm-calibration/tree/v0.6.0&sa=D&source=docs&ust=1682056727067651&usg=AOvVaw3uRnFjWZMdJdjYndB-jpaA
https://invest-ucm-calibration.readthedocs.io/en/latest/usage.html
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3.1.2 Nighttime temperatures 

As expected, the InVEST nighttime temperatures were correlated with both air and surface temperature, although more 

strongly with air temperature in Paris (r2=0.84 for Paris, and r2=0.70 for the Twin Cities, Table 1). The MAE is also 255 

significantly lower when calculated with respect to air temperatures than land surface temperatures for both cases (0.5 against 

3.0°C for Paris and 0.5 against 2.5°C for Twin Cities). 

Nevertheless, the maps of the differences between InVEST and nighttime air temperature show important spatial 

heterogeneities. For Paris, this suggests that the model severely underestimates temperatures in the core area (by about 3°C)  

and overestimates temperatures in the new urban developments (by about 1°C, Figure 1 and Figure S1). In the Twin Cities, 260 

InVEST systematically underestimates temperatures in the city center, outlying developed suburbs, and around bodies of water 

(e.g. in the west and the confluence of the Minnesota and Mississippi rivers south of the city center), while overestimating 

temperatures in the surrounding agricultural hinterlands (Figure 2 and Figures S2).  

3.2 Model performance after calibration 

The model performance remained relatively stable after calibration for nighttime air temperatures in both Paris and the Twin 265 

Cities, reaching r2 values of 0.84 and 0.73, respectively. Daytime temperatures, however, showed very low correlations with 

best estimates in Paris and medium correlation (r2=0.33) in the Twin Cities. The sensitivity analysis conducted for the Paris 

case study confirmed that most model parameters had only a limited effect on correlations with land surface temperature data, 

which could explain the limited effect of calibration (Figures C1 and C2 in Appendix C). Only rmix had a significant effect on 

r2 (with a range of r2 values ranging from 0.30 to 0.62 for rmix ranging from 100 to 5000 m). Because of the very low r2 values 270 

for daytime temperatures in Paris, we considered calibration unsuccessful and we do not report the calibrated values.  

The Twin Cities daytime calibrated values of the parameters are reported in Table 2 (with UHImax=11.7°C). The shade weight 

remains the highest after calibration, and values only changed by <15%. Nighttime calibrated parameter values suggest that 

there is less air mixing, with both rmix and dcool having lower values than during daytime in the Twin Cities (Table 2). 

 275 

Table 1: InVEST model performance for daytime and nighttime air (Tair) and surface (LST) temperatures (MAE: mean absolute 

error) before and after calibration. Post-calibration values are shown in parentheses. 

  Paris Twin Cities 

  r2 MAE (°C) r2 MAE (°C) 

Tair  Day <0.01 (0.01) 1.40 (1.30) 0.29 (0.33) 0.48 (0.43) 

Night 0.84 (0.84) 0.52 (0.52) 0.70 (0.73) 0.48 (0.48) 

LST Day 0.60 (0.62) 3.06 (2.80) 0.20 (0.43) 11.9 (8.70) 

Night 0.45 (0.47) 2.99 (6.10) 0.59 (0.76) 2.54 (2.48) 

 

Table 2: Calibrated coefficient values for air temperature in the two case studies.  

  Paris Twin Cities 
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Daytime rmix (m) n.a. 771 

dcool (m) n.a. 109 

𝑊𝑎  ;  𝑊𝑒  ;  𝑊𝑠 n.a. 0.21; 0.17; 0.62 

Nighttime rmix (m) 500 630 

dcool (m) 100 66 

 280 

 

Figure 1: Difference between modelled and reference air temperatures (°C) for the Paris region for daytime and nighttime 

simulations, pre- and post-calibration  
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 285 

Figure 2: Difference between modelled and reference air temperatures (°C) for the Twin Cities region for daytime and nighttime 

simulations, pre- and post-calibration  

 

3.3 Effect of the greening scenario 

Given the limited effect of calibration for daytime and nighttime air temperature data (see Section 3.2), we tested the correlation 290 

obtained with temperature estimates from the uncalibrated model. The results were satisfactory, with a medium correlation 

strength between InVEST and the TEB/Surfex model (r2= 0.55 and mean absolute error of 0.07 °C) for daytime data (Figure 

3). For nighttime data, correlation between the two models was stronger, with r2= 0.85.  
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Figure 3: Cooling service (°C) during daytime resulting from the greening scenario as simulated by InVEST and the TEB/Surfex 295 

model (reference data).  

4 Discussion 

4.1 Model calibration and performance 

Based on the two case studies, the InVEST model performance was best (r2>0.73) for nighttime air temperature after 

calibration. The performance improvement due to calibration was modest in most cases (day or night, air or surface 300 

temperature), especially for nighttime air temperature in Paris where the performance was already high prior to calibration in 

Paris (r2=0.84). Only in the Twin Cities for surface temperature did the calibration significantly improve model performance, 

possibly due to the LULC configuration in this landscape, although our analyses do not allow us to confirm this hypothesis . 

The modest effect due to calibration can be explained by a relatively low sensitivity to model parameters, which is suggested 

by the sensitivity analyses presented in Appendix (Figures C3 and C4). 305 

For the Twin Cities, nighttime calibrated parameter values (rmix and dcool) are lower than for daytime, which supports the lower 

convection and air mixing during the night. Calibrated values of rmix are 771 m and 660 m for daytime and nighttime, 

respectively, which compares well with the estimate of 600 m obtained from previous studies (Lonsdorf et al., 2021; Schatz 

& Kucharik, 2014). Similar reasoning to verify the physical interpretation of model parameters could be done for the shade, 

albedo, and evapotranspiration weights if such data are available in a case study: for example, calibrated values could be 310 

compared with relative proportion of shading to evapotranspiration that are studied in some cities (e.g., in Singapore, Tan et 

al., 2018). In both case studies, model performance for surface temperatures (r2 ranging from 0.43 to 0.76 post-calibration) 
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compares with the study by Zawadzka et al. (2021), who found that the InVEST model explained between 48% and 60% of 

the variability in land surface temperature for a Summer day in three towns in the United Kingdom. We highlight, however, 

that the model was initially not developed for land surface temperatures. The fair performance for land surface temperatures 315 

is an artifact of the model’s simplified representation of air temperatures, which imperfectly represents the local energy 

balance, and the strong correlation of both air and surface temperatures with LULC.  

Regarding scenario assessment, the model in the Paris case study performed reasonably well (r2= 0.55 and r2= 0.85 for air 

daytime and nighttime temperatures, respectively). This confirms the potential of the tool to support urban planning studies 

where different scenarios might need to be compared based on their cooling potential, similar to earlier work with InVEST 320 

(Bosch et al., 2022). The effect from the greening scenario, resulting in less than 1°C cooling, is modest but in line with the 

literature on such large-scale implementation of green infrastructure, not only from the reference study by de Munck et al. 

(2018), but also for other temperate climate studies. 

4.2 Limitations of the study and future works 

In both our case studies, we note that the performance was poor for daytime air temperature, which does not support the use 325 

of the model for absolute temperature estimates. This poor performance may be due to i or oversimplifications of the physical 

processes involved in urban cooling. In particular, the simplification of the flow dynamics means that a model such as InVEST 

cannot represent urban canyon and wind effects in the city. The effect of parks is also simplified with a threshold of 2 ha for 

park size. While this has the advantage of reducing the number of model parameters, it also ignores the effect of smaller 

greenspaces might have on their surroundings (Wong et al., 2021; Yu et al., 2020). The poor performance of the model for 330 

daytime air temperature may also be attributed to errors in parameterizations, in particular the use of climate data for short 

periods (e.g., Aug 6-13th 2003 for Paris) vs. average values over several months, as was the case for some inputs (e.g., reference 

evapotranspiration in the Paris case study, or Tref and UHImax in the Twin Cities, see Section 2.3). Further investigation of these 

temporal dynamics should be explored in future work, although we highlight that they did not seem to impact the fair 

performance of the model for nighttime air temperatures or land surface temperatures. 335 

An important limitation of any urban climate study examining fine-resolution spatial variations in temperature is the 

availability of robust reference data. Because air temperature cannot be readily derived from remote sensing data, models are 

routinely compared to networks of weather stations (Bosch et al., 2021; de Munck et al., 2018; Smoliak et al., 2015). This 

means that model performance is only assessed for a limited number of points, which are not typically representative of the 

diversity of LULC in a region. When data are collected specifically for model validation purposes (e.g., transect data), they  340 

are also limited by practical factors such as timing considerations (e.g., mismatch in time between the beginning and end of 

the transect) or lack of reference data (Stewart, 2011; Velasco, 2018). 

In our study, we have used alternative models as reference data for air temperatures, either a physics-based model or a statistical 

interpolation model. Both of these models have limitations and uncertainties in themselves, making a fine scale understanding 

of the limitations of the InVEST model challenging. In other words, differences in models observed in Figures 1 and 2 might 345 
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also be due to errors in the reference data and future studies could examine the effect of uncertainty in reference datasets on 

calibration and model performance. For example, the effect of shade during daytime is poorly represented in the TEB/Surfex 

model used in Paris (de Munck et al., 2013). Land surface temperature datasets, on the other hand, are less prone to such 

limitations and are more robust when it comes to spatial distributions. Absolute values are nonetheless challenging to ascertain 

due to temperature calculations requiring correction algorithms. 350 

Finally, an important study limitation that could be explored in future work is the spatial resolution and scale of case studies. 

In both cases, the InVEST model was evaluated at 1-km horizontal resolution over an area of about 100 km by 100 km. Because 

the model produces outputs at the same resolution as LULC inputs, it would be interesting to evaluate its performance at a 

different scale and resolution, where such data are available. Relatedly, the use of local climate zones, which is common in 

urban climate studies (Aslam & Rana, 2022), could be examined as an alternative parameterization of the InVEST model. This 355 

work would also examine the influence of reference temperature (𝑇𝑟𝑒𝑓) and maximum intensity (𝑈𝐻𝐼𝑚𝑎𝑥), as well as the 

biophysical parameter values (in particular crop coefficients – notably difficult to ascertain for urban land uses), which have 

not been explored in the present study.  

Overall, this discussion of data quality and calibrated parameter values highlights an important contribution of this study, in 

the customized calibration tool available on Github (https://github.com/martibosch/invest-ucm-calibration and on 360 

Zenodo, please refer to the Code Availability section). Such a tool can be applied to any other city where the InVEST Urban 

Cooling model is applied with the only data requirement, beyond the InVEST model input data, being a reference temperature 

dataset (either point data or raster). The calibration tool allows for systematic calibration and model testing, which paves the 

way for better understanding of model limitations and strengths. Although in our case studies the performance improvement 

from calibration was modest, future work could assess the performance of the model over multiple cities with comparable 365 

datasets, examine the potential of local climate zones for improved parameterization, or explore finer temporal resolution by  

linking the night and day model outputs. 

5 Conclusion 

In this study, we have developed a custom calibration tool to assess the performance of the InVEST Urban cooling model in 

two case studies: in Paris, France, and the Twin Cities, MN, USA. Our analyses expand on past model testing studies by 370 

providing a much more extensive validation dataset of air temperatures (continuous data based on a reference urban climate 

model in Paris, and on data interpolated from a dense weather station network in the Twin Cities). The model showed good 

performance, assessed through mean absolute error (0.52°C) and r2 (0.84) for nighttime air temperatures. Calibration only 

slightly improved model performance in the Twin Cities. For the case study of Paris, the use of the tool for scenario assessment 

was supported by moderate (daytime) and high (nighttime) correlation with change predicted by an alternative, physics-based 375 

model (r2=0.55 and r2=0.85, for air daytime and nighttime temperatures, respectively). With respect to the study objectives, 

we conclude that the open-source model can be used to support decisions related to land use and land cover change in cities, 

https://www.google.com/url?q=https://github.com/martibosch/invest-ucm-calibration&sa=D&source=docs&ust=1682056727070219&usg=AOvVaw1CzqRBgyZjOjH5IUnLTw9P
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with greater reliability for nighttime UHI applications and for relative change (i.e., comparing scenarios to one another as 

opposed to using absolute values of model predictions. As these results were obtained for the case studies of Paris and the 

Twin Cities, the InVEST model and calibration tools should be tested in other geographies to assess model performance for 380 

urban planning applications. For research applications, future studies in other geographies will help further understand the 

effect of data resolution and data quality on model performance. 

 

Appendices 

A Input LULC data 385 

 

Figure A1: Land use and cover in Ile-de-France region in 2017, France (based on data developed by the Institut Paris 

Region) 
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Figure A2: Location and land cover of the Twin Cities metropolitan area in Minnesota, USA, with the cities of 390 

Minneapolis and St. Paul outlined.  
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B InVEST biophysical tables 

InVEST biophysical tables can be found in Supplementary Material. 

 395 

Paris case study 

Albedo values for the Paris biophysical table were derived from the following three sources: 

• APUR. (2020). Atténuer les îlots de chaleur urbains - Cahier n°5 : méthodes et outils de conception des projets. 

https://www.apur.org/fr/nos-travaux/attenuer-ilots-chaleur-urbains-cahier-5-methodes-outils-conception-projets 

(Accessed 30 April 2023) 400 

• Lavigne, P., P. Brejon, and Fernandez. 1994. Architecture Climatique: Une Contribution Au Développement 

Durable. Edisud. 

• Stewart, I.D., Oke, T.R., (2012). Local Climate Zones for Urban Temperature Studies. Bulletin of the American 

Meteorological Society 93, 1879-1900 

Specifically, most albedo values were taken from Stewart and Oke (2012). Exceptions are for parks, cemeteries, all industrial 405 

land uses and all facilities but hippodromes and car tracks (derived from Lavigne et al, 1994), while outdoor courts, 

transportation land use, quarries, dumpsites, construction sites, hippodromes and car tracks were derived from APUR (2020).  

Crop evapotranspiration values were derived from the FAO Irrigation paper 56 (Allen et al., 1998), as described in previous 

work (Tardieu et al., 2020): 

• Allen, R.G., Pereira, L.S., Raes, D., Smith, M. (1998) FAO Irrigation and Drainage Paper No. 56. Irrigation and 410 

Drainage, 56, No. 97. Food and Agriculture Organization of the United Nations, Rome. 

• Tardieu L, Hamel P, Viguié V, Coste L, Levrel H (2021). Are soil sealing indicators sufficient to guide urban 

planning? Insights from an ecosystem services assessment in the Paris metropolitan area. Environmental Research 

Letters 16(10). https://doi.org/10.1088/1748-9326/ac24d0 

Shade values were assumed to be 1 for forested or tree-planted land uses, 0.5 for mixed land use with trees, 0.25 for commercial 415 

land use with planted trees, and 0 for all remaining land uses. 

 

Twin Cities case study 

Details on the Twin Cities biophysical tables are provided in Supplementary Information of this source: 

• Hamel, P., Guerry, A. D., Polasky, S., Han, B., Douglass, J. A., Hamann, M., Janke, B., Kuiper, J. J., Levrel, H., Liu, 420 

H., Lonsdorf, E., McDonald, R. I., Nootenboom, C., Ouyang, Z., Remme, R. P., Sharp, R. P., Tardieu, L., Viguié, V., 

Xu, D., … Daily, G. C. (2021). Mapping the benefits of nature in cities with the InVEST software. Npj Urban 

Sustainability, 1(1), 25. https://doi.org/10.1038/s42949-021-00027-9 

Field Code Changed

https://www.apur.org/fr/nos-travaux/attenuer-ilots-chaleur-urbains-cahier-5-methodes-outils-conception-projets
https://doi.org/10.1038/s42949-021-00027-9


18 

 

C Sensitivity analyses 

For the Paris case study, we performed a local sensitivity analysis for the five following parameters (ranges for each parameter 425 

are in parentheses): 

- Air mixing distance rmix (50 to 5000 m) 

- Green area maximum cooling distance dcool (50 to 1000 m) 

- Cooling capacity factors 𝑊𝑠, 𝑊𝑎, and 𝑊𝑒 (0 to 1)  

We assessed results based on the correlation with daytime and nighttime temperatures and land surface temperatures. We 430 

found that the model was highly sensitive to rmix (Figure S1), with a local maximum for a value of 500 m for daytime 

temperatures and 1000 m for nighttime temperatures (Figure S3). The model was less sensitive to the values of maximum 

cooling distance and the cooling capacity factors: r2 varied between 0.61 and 0.63 for dcool, and 0.59 et 0.64 for the weight 

factors. 

These results held for nighttime temperature, where InVEST was also most sensitive to the air mixing parameter, rmix (Figure 435 

S4). Sensitivity to the building density parameter B and the maximum cooling distance dcool was much lower.  

 

 

   

Figure C1: Sensitivity of the InVEST model to the rmix and dcool parameters and We and Ws factors. Results are plotted 440 

against the correlation coefficient (r2) with daytime land surface temperature (MODIS).  
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Figure C2: Sensitivity of the InVEST model to daytime weight factors We (W_eti), Wa (W_albedo) and Ws (W_shade). 

Results are plotted against the correlation coefficient (r2) with daytime land surface temperature (MODIS). 445 

 

 

Code availability 

The code materials used in this article are available at: https://zenodo.org/record/8081822 (last access: 30 April 2023).  

 450 
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