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Abstract. Clustering of plankton plays a vital role in several biological activities including feeding, predation and mating.

Gyrotaxis is one of the mechanisms that induces clustering. A recent study (Candelier et al., 2022) reported a fluid inertial

torque acting on a spherical micro-swimmer, which is analogous to a gyrotactic torque. In this study, we model plankton cells

as micro-swimmers that are subject to gravitational sedimentation as well as a fluid inertial torque. We use direct numerical

simulations to obtain the trajectories of swimmers in homogeneous isotropic turbulence, and investigate their clustering by5

Voronoï analysis. Our findings indicate that fluid inertial torque leads to notable clustering, with its intensity depending on

the swimming and settling speeds of swimmers. By Voronoï analysis, we demonstrate that swimmers preferentially sample

downwelling regions where clustering is more prevalent.

1 Introduction10

Plankton are known to form small scale clusters in turbulent environment (Rothschild and Osborn, 1988). These clusters can

be down to centimeter-scale and significantly impact basic life processes of plankton such as feeding, predation and mating.

Gyrotaxis is one of the mechanisms that causes plankton to form clusters. Many plankton experience a gravitational stabilizing

torque that cause them to swim against gravity (Kessler, 1986). When plankton encounter flow shear, the gyrotactic torque

opposes the fluid viscous torque and tends to stabilize the swimming direction of the plankton (Qiu et al., 2022b).15

Gyrotactic plankton can form different kinds of clustering depending on the flow characteristics. For instance, plankton

accumulates in the center or the wall regions in downward or upward pipe flow, respectively (Kessler, 1985). Plankton that

are vertical migrating also form clustering when they encounter a shear layer that interrupts the migration (Durham et al.,

2009). Plankton in turbulence form small scale clusters that can be characterized by the swimming speed and the intensity of

gyrotactic torque. Durham et al. (2013) modeled plankton as spherical gyrotactic micro-swimmers and numerically studied20

their fractal clustering in homogeneous isotropic turbulence. They demonstrated that the intensity of clustering depends on

the swimming speed and the intensity of gyrotaxis that is typically characterized by the inverse of a timescale B. Clustering

is also shown to be correlated to the preferential sampling of downwelling regions (Durham et al., 2013). Later, Zhan et al.
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(2014) numerically investigated the effect of plankton shape on the clustering. Elongated swimmers are more sensitive to fluid

shear than spherical ones, weakening the clustering of strongly gyrotactic swimmers. However, elongation causes preferential25

alignment in local fluid structures, strengthening the clustering of weakly gyrotactic swimmers. To further clarify the complex

relationship between clustering and the swimming speed, gyrotaxis and shape of the swimmers, Gustavsson et al. (2016);

Fouxon and Leshansky (2015) established the theory of cluster using stochastic models. These theories were later verified by

direct numerical simulations of swimmers in homogeneous isotropic turbulence (Borgnino et al., 2018).

Previous studies suggested that gyrotaxis originates from the asymmetric body structures, such as nonuniform mass distri-30

bution (bottom-heaviness) (Kessler, 1985, 1986; Pedley and Kessler, 1987). However, a recent study by Candelier et al. (2022)

modeled planktonic microorganisms as settling spherical squirmers and found that a fluid inertial torque drives the squirmer to

swim against gravity. The squirmer model is proposed by Lighthill (1952) and improved by Blake (1971) to describe the slip

velocity on the surface of microorganisms generated by the movement of cilia. The squirmer model can describe the typical

propulsion modes such as puller for algae and pusher for E. coli by changing model parameters. Both theory and simulations in-35

dicated that fluid inertial torque on a settling squirmer is analogous to a gyrotactic torque, with a magnitude that is proportional

to the settling and swimming speeds (Candelier et al., 2022). Planktonic organisms are usually slightly negatively buoyant, thus

subject to a gravitational settling effect. For instance, dinoflagellates have a typical swimming speed of 300 µm/s and settling

speed of 30 µm/s (Smayda, 2010). Larger organisms such as copepod nauplii have swimming speeds up to 1000 µm/s and

settling speeds of 200 µm/s (Titelman and Kiørboe, 2003). As pointed out by Candelier et al. (2022), an organism with large40

swimming and settling speeds obtain a fluid inertial torque that is comparable to typical gyrotactic torque. However, earlier

studies usually neglected the gravity sedimentation and the fluid inertial torque, highlighting the need to consider their effects

on the motion of swimming, settling plankton.

In this study, we aim to analyze the clustering of planktonic swimmers under the influence of fluid inertial torque. We model

plankton as point-like spherical micro-swimmers undergoing gravity sedimentation. We use direct numerical simulations of45

swimmer trajectories in homogeneous isotropic turbulence to analyze their clustering characteristic. In section 2.1, we describe

the model and the numerical approaches. In section 3, we investigate the clustering using Voronoï analysis and show the

relation between clustering and preferential sampling of downwelling regions. In section 4, we draw the conclusions of the

present study.

2 Methods50

2.1 Model of spherical swimmers

In the present study, we consider a spherical swimmer undergoing gravitational sedimentation as shown in Figure 1. The motion

of plankton in fluid flows is usually described by a micro-swimmer model (Durham et al., 2009, 2013; Gustavsson et al., 2016;

Lovecchio et al., 2019; Zhan et al., 2014), which assumes a plankton to be a point-like micro-swimmer carried by a fluid flow
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Figure 1. A sketch of a settling swimmer.

whose scales are much larger than the plankton body length. The dynamics of the swimmer is governed by55

mp
dv

dt
= 6πaγρf (u−v) +mp(1−

ρf
ρp

)g +Fsn (1)

mpIp
dωp

dt
= 6πaρfγC

(
1
2
ω−ωp

)

+
9mpρf

8ρp
[(v−u)×vs] ,

(2)

where mp, ρp and a are the mass, the density and the radius of the swimmer, respectively. Eq. (1) governs the translational

motion of the swimmer, where the first term on the right-hand-side denotes the Stokes drag. Here, ρf , γ and u are the density,

kinematic viscosity, and velocity of fluid, respectively, and v denotes the velocity of the swimmer. The second term represents60

the gravity force and buoyancy on the swimmers due to gravity acceleration g. The third term represents a swimming force

Fs in the direction of the head of swimmer, denoted as n. Meanwhile, Eq. (2) governs the rotation of the swimmer, where

Ip = 2a2/5 denotes the moment of inertia per unit mass, and ωp represents the angular velocity of the swimmer. The first term

on the right-hand-side of Eq. (2) represents the Jeffery torque (Jeffery, 1922), where C = 4a2/3, and ω is the vorticity of the

fluid flow. The second term represents the fluid inertial torque experienced by a squirmer (Candelier et al., 2022), where vs65

represents the swimming speed of the squirmer in a quiescent fluid.

Using a velocity and a timescale of the flow uf and τf , we make Eqs. (1) and (2) dimensionless,

St
dv′

dt′
= u′−v′+ Φsn + Φgeg, (3)

St
Ip
C

dω′p
dt′

=
1
2
ω′−ω′p +

3τfu2
f

16γ
[(u′−v′)×v′s] , (4)

where the quantities with primes are dimensionless. In above equations, the Stokes number St= (2a2ρp)/(9γρfτf ) reflects70

the inertial of the swimmer relative to the fluid of the same mass. Φs = vs/uf and Φg = vg/uf are the dimensionless swim-

ming and settling speeds, respectively. According to typical plankton parameters (Qiu et al., 2022a), the inertia of plankton is

3

https://doi.org/10.5194/egusphere-2023-911
Preprint. Discussion started: 15 May 2023
c© Author(s) 2023. CC BY 4.0 License.



negligible and St→ 0. In such limit, the dynamics (3) and (4) can be simplified

dx′

dt′
= v′, (5)

dn

dt′
= ω′p×n, (6)75

v′ = u′+ Φsn + Φgeg, (7)

ω′p =
1
2
ω′+

1
2ΨI

(eg ×n) . (8)

where ΨI = 8γ/(3τfu2
fΦsΦg). Note that the second term on the right hand side of Eq. (8) is analogous to the gyrotactic effect

induced by bottom-heaviness, which is typically expressed as (2Ψ)−1(eg ×n) (Kessler, 1986; Durham et al., 2013). This

torque is quantified by a dimensionless reorientation timescale Ψ =B/τf , where B denotes the time required for a swimmer80

under gyrotactic torque to restore upward orientation from an inclined orientation in still fluid. Eq. (8) indicates that fluid

inertial torque on a squirmer swimmer provides effective gyrotaxis with a dimensionless reorientation timescale ΨI .

In turbulence, we can take the turbulence Kolmogorov velocity and timescales uη and τη as the characteristic scales of the

flow. Using the relation γ = u2
ητη , ΨI can be simplified as

ΨI =
8

3ΦsΦg
. (9)85

The typical value of Φs and Φg of plankton can be estimated with their swimming and settling speeds as well as the

Kolmogorov velocity scale of ocean turbulence. As summarized in Qiu et al. (2022a), the swimming speeds of different

species vary from 200 to 1500 µm/s, and the settling speeds vary from 10 to 200 µm/s. The Kolmogorov velocity scale of

ocean turbulence can be estimated from the typical dissipation rate ε= 10−9 to 10−6m2s−3 (Kiørboe and Enric, 1995), yielding

uη = (γε)1/4 = 178 to 1000 µm/s with γ = 10−6 m2s−1. Based on these estimations, we consider the typical parameter space90

of 0< Φs < 10 and 0< Φg < 1.

2.1.1 Direct numerical simulations of swimmers in turbulence

The motion of swimmers in homogeneous isotropic turbulence is simulated by a Eulerian-Lagrangian direct simulations.

The flow field is resolved in the Eulerian frame, while the motions of individual swimmers are solved along the Lagrangian

trajectories using local flow information at swimmers’ positions. The incompressible turbulent flow is directly simulated by95

solving the Navier-Stokes equations:

∂u

∂t
+ u · ∇u =−∇pf

ρf
+ γ∇2u + f , (10)

∇ ·u = 0, (11)

where pf is the pressure of fluid. An external force f is applied to sustain turbulence and balance the rate of viscous dissipation

at the Kolmogorov scale η. The force is applied to the large scale motion using the scheme proposed by Machiels (1997).100
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Figure 2. Instantaneous spatial distribution of swimmers in homogeneous isotropic turbulence. Black dots and tiny arrows represent the

position and swimming direction of each swimmer, respectively. Background contour represents the vertical fluid velocity uy . (a) Non-

settling swimmers (Φg = 0, Φs = 10). (b) Settling swimmers (Φg = 1, Φs = 10).

Periodic boundary conditions are applied on all boundaries of the cubic domain with a size of (2π)3. We use pseudo-spectral

method to solve the Navier-Stokes equations, and we adopt the 3/2 rule for reducing the aliasing error on the nonlinear term. The

separation between turbulent motion of large and small scales is quantified by the Taylor-Reynolds number Reλ = urmsLλ/γ,

where urms is the root-mean-square velocity, and Lλ = urms

√
15γε−1. In the present study, we consider a turbulence of

Reλ = 60. To resolve the turbulent flow down to the Kolmogorov scale, we use 963 grid points, which allows a maximum105

wave number resolved to be 1.78 times greater than the Kolmogorov wave number to ensure the accuracy of resolution even

at Kolmogorov scales (Pope, 2000). The initial flow field is set as a random flow with an exponential energy spectrum, and an

explicit second-order Adams-Bashforth scheme is used for time integration of Eqs. (10) and (11) with a time step smaller than

0.01τη (Rogallo, 1981).

Swimmers are initialized with random positions and orientations after turbulence is fully developed. When solving the110

trajectories of swimmer, fluid velocity and its gradients at Eulerian grid points are interpolated by a second-order Lagrangian

method at the positions of swimmers. Eqs. (5) and (6) are integrated by the same second-order Adams-Bashforth scheme as

the fluid phase. For each parameter configuration, 105 swimmers are simulated and the statistics are obtained by making an

ensemble average over more than 80 uncorrelated time samples after the dynamics has reached a steady state.

3 Results115

The instantaneous location and orientation of swimmers are depicted in Figure 2. When swimmers are not settling (Figure 2a),

they are distributed randomly with random orientation. Spherical swimmers are known to exhibit random orientation due to the

random fluid vorticity of turbulence. As a result, their motions in turbulence remain random and no cluster is formed. However,

when swimmers are settling under the influence of the gravity (Figure 2b), they tend to swim upwards and form clusters due

to the contribution of fluid inertial torque as predicted by Candelier et al. (2022). As discussed earlier, the fluid inertial torque120

on a settling swimmer induces an effective gyrotaxis mechanism. Gyrotactic swimmers are known to form spatial clusters

and preferentially sample regions with downwelling or upwelling fluid velocity. Previous studies have documented that these
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Figure 3. (a) Probability distribution function (PDF) of the volumes of Voronoï cells, normalized by the mean volume 〈V 〉. Φs = 10. (b)

Variance of Voronoï volumes σ2
V̂

= E(V/〈V 〉− 1)2 normalized by the value of randomly distributed particles. The white contour lines

represent the value of log10 ΨI in the parameter space.

phenomena depend on the swimming speed, reorientation time, and the shape of swimmers (Durham et al., 2013; Zhan et al.,

2014; Gustavsson et al., 2016; Borgnino et al., 2018). Here, gyrotaxis is induced by fluid inertial torque with a reorientation time

quantified by ΨI , which depends on the swimming and settling speeds of swimmers. ΨI cannot be treated as an independent125

parameters as earlier studies did (Durham et al., 2013; Zhan et al., 2014; Gustavsson et al., 2016; Borgnino et al., 2018). Hence,

the picture of clustering may differ from previous studies, and it is worth a further investigation.

3.1 Clustering

The clustering of swimmers is quantified by a three-dimensional Voronoï tessellation (Nilsen et al., 2013; Monchaux et al.,

2010). The whole domain is divided into many Voronoï polyhedrons based on the positions of swimmers, with each polyhedron130
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containing one swimmer. Any point in a polyhedron is closest to the corresponding swimmer among all swimmers. The volume

of a Voronoï polyhedron is smaller when the corresponding swimmer is surrounded by more other swimmers, and vice versa.

Therefore, the distribution of Voronoï polyhedron volumes quantifies the clusters of swimmers.

We use the MATLAB toolbox ’voronoi.m’ and ’convhull.m’ to compute the vertices of Voronoï polyhedrons and calculate

their volumes. Figure 3(a) shows the probability distribution function (PDF) of Voronoï volumes for swimmers with different135

settling speeds. The PDF of Voronoï volumes of non-settling swimmers remains the same as the one generated from random

positions, indicating the absence of clustering. When settling speed increases, the PDFs becomes skewed and a peak at small

V/〈V 〉 appears. This indicates the occurrence of clustering, because swimmers in clusters remain close to each other and

their Voronoï volumes are thus small. Settling swimmers form clusters due to the effect of fluid inertial torque. As shown in

Eq. (8), the fluid inertial torque drives settling swimmer to orientate upward with a finite reorientation timescale ΨI . This is140

analogous to the effect of bottom-heaviness (Kessler, 1986), which also drives swimmers to orientate upward with a timescale

Ψ dependent on the offset of the center of gravity with the center of hydrodynamic forces. For inertial torque, however, the

timescale ΨI is inversely proportional to both the settling and swimming speeds of the swimmer.

To show how clustering depends on the settling and swimming speeds, in Figure 3(b) we depict the variance of Voronoï

volumes for different Φg and Φs. The corresponding magnitude of log10 ΨI is also shown by white contour lines. The variance145

of Voronoï volumes quantifies the intensity of clustering because a stronger clustering results in a more nonuniform distribution

of Voronoï volumes with larger variance. The results show that clustering becomes stronger with increasing Φs and Φg , and

reaches a peak at Φg ≈ 0.5 and Φs ≈ 10. Further increasing Φg leads to a drop of the clustering intensity. This trend can be

explain using the dimensionless reorientation timescale ΨI , which is inversely proportional to Φs and Φg (Eq. 9). When ΨI is

zero, gyrotaxis is infinitely strong, causing swimmers to swim straight up against gravity, yielding n =−eg . Since the fluid is150

incompressible, according to Eq. (7), the velocity field of swimmers has zero divergence,∇·v =∇·u = 0, indicating that no

clustering is formed. When ΨI is infinitely large, the fluid inertial torque is negligible, and the swimming direction is entirely

determined by turbulent shear and becomes random, resulting in no clustering. Therefore, the maximal clustering is expected

to occur at a finite ΨI . Durham et al. (2013) observed that intensity of clustering of gyrotactic swimmers reaches its maximal

when Ψ is of the order of unity (Durham et al., 2013). Since ΨI is analogous to Ψ, the maximal clustering in the present case155

is also observed at certain Φs and Φg that yields ΨI ∼ 1.

3.2 Preferential sampling of downwelling regions

The clustering of spherical gyrotactic swimmers in turbulence has been shown to be associated with preferential sampling

of downwelling regions (Durham et al., 2013). Figure 4 shows the mean vertical fluid velocity at the position of swimmers.

Swimmers always sample downwelling regions, and the maximal sampling occurs at large Φs but moderate Φg which yields160

ΨI ≈ 1.0. This observation is similar to Durham et al. (2013) where the maximal preferential sampling is also reached when

Ψ≈ 1.

Comparing Figure 4 and Figure 3(b), we observed a very similar trend between the sampling of downwelling regions and the

intensity of clustering. The magnitude of both quantities increase with Φs and reach their maximal at a large Φs and a moderate
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Figure 4. (a) Mean vertical fluid velocity at swimmers’ positions, 〈uy〉, normalized by uη as a function of Φg and Φs. The black contour

lines represent the value of log10 ΨI in the parameter space.

Φg . This supports the theory that clustering occurs in downwelling regions (Durham et al., 2013; Fouxon and Leshansky, 2015;165

Gustavsson et al., 2016). Durham et al. (2013) showed that the divergence of the swimmer velocity field∇·v ∝−∇2uy . Since

the ∇2uy is negatively correlated to uy in incompressible, homogeneous isotropic turbulence, the sinks of swimmer velocity

field tend to be located in downwelling regions with uy < 0. Here, we provide more direct evidence for the clustering in

downwelling regions.

Voronoï analysis allows us to track the Voronoï volume of each swimmer. Based on the values of volumes, we can distinguish170

whether each swimmer is inside a cluster (with small Voronoï volume) or moving alone away from other swimmers (with large

Voronoï volume). Figure 5 shows the joint probability distribution function (joint PDF) of uy and log(V/〈V 〉) for swimmers

with different settling speeds. When Φg = 0 (Figure 5(a)), fluid inertial torque vanishes and swimmers do not preferentially

sample downwelling regions, resulting in a symmetric joint PDF with respect to uy = 0. Moreover, because non-settling swim-

mers do not form clusters and their Voronoï volumes tend to be uniformed, the joint PDF along log(V/〈V 〉) is concentrated175

at the peak. However, when Φg > 0, the joint PDF becomes asymmetric with respect to uy (Figure 5(b)). The peak shifts to-

wards uy < 0 because swimmers preferentially sample downwelling regions. Moreover, log(V/〈V 〉) tends to be smaller when

uy < 0, indicating that swimmers in downwelling regions are more likely to form clusters. When settling speed increases to

Φg = 0.5 (Figure 5(c)), the joint PDF becomes flattened along log(V/〈V 〉), because the intensity of clustering reaches its

maximal (see Figure 3(b)), making it more probable for swimmers to have both smaller and larger Voronoï volumes. Further-180

more, the joint PDF becomes less asymmetric with respect to uy , indicating that strong clustering no longer occurs only in

downwelling regions. When Φg further increases to Φg = 1, the distribution becomes slightly concentrated again because the

intensity of clustering is weakened compared to the case of Φg = 0.5. In general, the joint PDFs reveal that swimmers are more

likely to form cluster in downwelling regions, but when clustering is intense, the bias is weak.
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Figure 5. Joint probability distribution function (PDF) of vertical fluid velocity uy and the Voronoï volumes log(V/〈V 〉). Φs = 10 for all

panels. White dashed lines correspond to uy = 0. (a) Φg = 0. (b) Φg = 0.2. (c) Φg = 0.5. (d) Φg = 1.0.

4 Conclusions185

A settling spherical squirmer experiences a fluid inertial torque that causes it to swim against gravity, acting as an effective

gyrotactic torque (Candelier et al., 2022). While previous studies have focused on gyrotactic torque originating from bottom-

heaviness, the role of fluid inertial torque has been neglected (Durham et al., 2013; Zhan et al., 2014; Gustavsson et al., 2016;

Borgnino et al., 2018). In the present study, we modeled the inertia-less micro-swimmer under the influence of fluid inertial

torque. The magnitude of the torque is quantified using a dimensionless reorientation timescale ΨI which is proportional to190

the inverse of dimensionless swimming speed (Φs) and settling speed (Φg).

Using direct numerical simulation, we investigated the clustering of swimmers under fluid inertial torque. We quantified

the clustering using a Voronoï analysis. When swimmers are not settling, the fluid inertial torque vanishes, and the swimmers

are randomly distributed resulting from a random direction of swimming, with no clustering observed. Settling swimmers

experience a fluid inertial torque and behave similarly to gyrotactic swimmers. We observed that swimmers form more intense195

clustering when Φs and Φg become larger, with maximal clustering intensity occurring at the largest Φs and a modest Φg ,

corresponding to ΨI ∼ 1.

We also examined how the clustering of spherical swimmers is related to their preferential sampling of downwelling regions.

We found that when swimmers are not settling, their dynamics remains isotropic, and no preferential sampling is observed in

the gravity direction. However, the fluid inertial torque, as well as the settling speed, break this symmetry, and drive settling200

swimmers to sample downwelling regions. The sampling is more pronounced with larger Φs and Φg , reaching the maximum
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when ΨI ≈ 1. The trend of preferential sampling shows a similar pattern to that of clustering intensity, indicating a correlation

between the two phenomena. We used the joint PDF of Voronoï volumes and local vertical fluid velocity to demonstrate that

swimmers tend to form clusters in downwelling regions.

The fluid inertial torque on settling swimmers acts like a gyrotactic torque and can cause the formation of small-scale205

clusters, highlighting the importance of fluid inertial effects on the dynamics of plankton. However, most earlier studies did

not consider gravitational sedimentation, leading to the neglect of fluid inertial torque. This underestimates the intensity of

gyrotaxis because the total gyrotactic torque is contributed by both fluid inertial torque and bottom-heaviness. In addition, the

fluid inertial torque is proportional to the swimming and settling speeds, making the gyrotaxis reorientation time a dependent

parameter. Therefore, planktonic swimmers have the potential to tune their gyrotaxis and clustering intensity by adjusting their210

swimming speed, which might further impact their mating, predation and feeding.

We note that the present study considered only spherical swimmers. Non-spherical plankton, such as elongated ones, prob-

ably experience a fluid inertial torque stemming from both their non-spherical shape (Dabade et al., 2015; Sheikh et al., 2020;

Gustavsson et al., 2019; Qiu et al., 2022a) and propulsion mechanism (Candelier et al., 2022). While the analytical solution

for the fluid inertial torque on a non-spherical swimmer remains unclear, fully resolved numerical simulation could be used to215

reveal the dynamics of non-spherical settling swimmers. The resulting findings could be potentially applied to the model of

point-like swimmer.
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