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Abstract. Clustering of plankton plays a vital role in several biological activities including feeding, predation and mating.

Gyrotaxis is one of the mechanisms that induces clustering. A recent study (Candelier et al., 2022) reported a fluid inertial

torque acting on a spherical micro-swimmer, which is analogous to a gyrotactic torque. In this study, we model plankton cells

as micro-swimmers that are subject to gravitational sedimentation as well as a fluid inertial torque. We use direct numerical

simulations to obtain the trajectories of swimmers in homogeneous isotropic turbulence, and investigate their clustering by5

Voronoï analysis. Our findings indicate that fluid inertial torque leads to notable clustering, with its intensity depending on

the swimming and settling speeds of swimmers. By Voronoï analysis, we demonstrate that swimmers preferentially sample

downwelling regions where clustering is more prevalent.

Copyright statement. TEXT

1 Introduction10

Plankton are known to form small scale clusters in turbulent environment (Rothschild and Osborn, 1988). These clusters can

be down to centimeter-scale and significantly impact basic life processes of plankton such as feeding, predation and mating.

Gyrotaxis is one of the mechanisms that causes plankton to form clusters. Many plankton species experience a gravitational

stabilizing torque that cause them to swim against gravity (Kessler, 1986). When plankton encounter flow shear, the gyrotactic

torque opposes the fluid viscous torque and tends to stabilize the swimming direction of the plankton (Qiu et al., 2022b).15

Gyrotactic plankton can form different kinds of clusters depending on the flow characteristics. For instance, plankton ac-

cumulate in the center or the wall regions in downward or upward pipe flow, respectively (Kessler, 1985). Plankton that are

vertical migrating also form clustering when they encounter a shear layer that interrupts the migration (Durham et al., 2009).

Plankton in turbulence form small scale clusters that can be characterized by the swimming speed and the intensity of gyro-

tactic torque. Durham et al. (2013) modeled plankton as spherical gyrotactic micro-swimmers and numerically studied their20

fractal clustering in homogeneous isotropic turbulence. They demonstrated that the intensity of clustering depends on the

swimming speed and the intensity of gyrotaxis. Clustering is also shown to be correlated to the preferential sampling of down-

welling regions (Durham et al., 2013). Later, Zhan et al. (2014) numerically investigated the effect of plankton shape on the
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clustering. Elongated swimmers are more sensitive to fluid shear than spherical ones, weakening the clustering of strongly

gyrotactic swimmers. However, elongation causes preferential alignment in local fluid structures, strengthening the cluster-25

ing of weakly gyrotactic swimmers. To further clarify the complex relationship between clustering and the swimming speed,

gyrotaxis and shape of the swimmers, Gustavsson et al. (2016); Fouxon and Leshansky (2015) established the theory of clus-

ter using stochastic models. These theories were later verified by direct numerical simulations of swimmers in homogeneous

isotropic turbulence (Borgnino et al., 2018).

Previous studies suggested that gyrotaxis originates from the asymmetric body structures, such as nonuniform mass distri-30

bution (bottom-heaviness) (Kessler, 1985, 1986; Pedley and Kessler, 1987). However, a recent study by Candelier et al. (2022)

modeled planktonic microorganisms as settling spherical squirmers and found that a fluid inertial torque drives the squirmer to

swim against gravity. The squirmer model is proposed by Lighthill (1952) and improved by Blake (1971) to describe the slip

velocity on the surface of microorganisms generated by the movement of cilia. The squirmer model can describe the typical

propulsion modes such as puller for algae and pusher for E. coli by changing model parameters. Both theory and simulations in-35

dicated that fluid inertial torque on a settling squirmer is analogous to a gyrotactic torque, with a magnitude that is proportional

to the settling and swimming speeds (Candelier et al., 2022). Planktonic organisms are usually slightly negatively buoyant, thus

subject to a gravitational settling effect. For instance, dinoflagellates have a typical swimming speed of 300 µm/s and settling

speed of 30 µm/s (Smayda, 2010). Larger organisms such as copepod nauplii have swimming speeds up to 1000 µm/s and

settling speeds of 200 µm/s (Titelman and Kiørboe, 2003). As pointed out by Candelier et al. (2022), an organism with large40

swimming and settling speeds obtain a fluid inertial torque that is comparable to typical gyrotactic torque. However, earlier

studies usually neglected the gravity sedimentation and the fluid inertial torque, highlighting the need to consider their effects

on the motion of swimming, settling plankton.

In this study, we aim to analyze the clustering of planktonic swimmers under the influence of fluid inertial torque. We model

plankton as point-like spherical micro-swimmers undergoing gravity sedimentation. We use direct numerical simulations of45

swimmer trajectories in homogeneous isotropic turbulence to analyze their clustering characteristic. In section 2.1, we describe

the model and the numerical approaches. In section 3, we investigate the clustering using Voronoï analysis and show the

relation between clustering and preferential sampling of downwelling regions. In section 4, we draw the conclusions of the

present study.

2 Methods50

2.1 Model of spherical swimmers

In the present study, we consider a spherical swimmer undergoing gravitational sedimentation as shown in Figure 1. The motion

of plankton in fluid flows is usually described by a micro-swimmer model (Durham et al., 2009, 2013; Gustavsson et al., 2016;

Lovecchio et al., 2019; Zhan et al., 2014), which assumes a plankton to be a point-like micro-swimmer carried by a fluid flow.

This assumption is justified when the Reynolds number, Re = a|v−u|/γ, is much smaller than unity. Here, the Reynolds55

number is defined based on the radius of a swimmer, a, the differences between the velocities of a swimmer v and its ambient
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Figure 1. A sketch of a settling swimmer.

undisturbed flow u, and the kinematic viscosity of the fluid γ. For typical plankton species, this assumption is justified because

of their tiny size and limited motility, as summarized in our recent publication (Qiu et al., 2022a). For instance, the typical size

and swimming speed of zooplankton are a= 0.1 mm and |v−u|= 1.0 mm, respectively. Accordingly, we obtain Re = 0.1

using the viscosity of water γ = 10−6 mm2/s.60

The dynamics of the swimmer is governed by

mp
dv

dt
= 6πaγρf (u−v) +mp(1−

ρf
ρp

)g +Fsn (1)

mpIp
dωp
dt

= 6πaρfγC

(
1

2
ω−ωp

)
+

9mpρf
8ρp

[(v−u)×vs] , (2)

where mp and ρp are the mass and the density of the swimmer, respectively. Eq. (1) governs the translational motion of the

swimmer, where the first term on the right-hand-side denotes the Stokes drag. Here, ρf is the density of fluid. The second term65

represents the gravity force and buoyancy on the swimmers due to gravity acceleration g. The third term represents a swimming

force Fs in the direction of the head of swimmer, denoted as n. Meanwhile, Eq. (2) governs the rotation of the swimmer, where

Ip = 2a2/5 denotes the moment of inertia per unit mass, and ωp represents the angular velocity of the swimmer. The first term

on the right-hand-side of Eq. (2) represents the Jeffery torque (Jeffery, 1922), where C = 4a2/3, and ω is the vorticity of the

fluid flow. The second term represents the fluid inertial torque experienced by a squirmer (Candelier et al., 2022), where vs70

represents the swimming speed of the squirmer in a quiescent fluid. The model of fluid inertial torque is derived in the limit

of Re→ 0, but it has been shown to be justified when Re< 0.3 (Candelier et al., 2022), within the typical range of plankton

physical properties (Qiu et al., 2022a).

Using a velocity and a timescale of the flow uf and τf , we make Eqs. (1) and (2) dimensionless,

St
dv′

dt′
= u′−v′+ Φsn+ Φgeg, (3)75

St
Ip
C

dω′p
dt′

=
1

2
ω′−ω′p +

3τfu
2
f

16γ
[(u′−v′)×Φsn] , (4)

where the quantities with primes are dimensionless. In above equations, the Stokes number St= (2a2ρp)/(9γρfτf ) reflects

the inertia of the swimmer relative to the fluid of the same mass. Φs = vs/uf and Φg = 2(ρp/ρf − 1)a2g/(9γuf ) are the

dimensionless swimming and settling speeds, respectively. Typically, St of planktonic microswimmers are usually negligibly
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small as summarized in Qiu et al. (2022a). For instance, using a= 0.1mm, ρp/ρf = 1.05, and using typical range of turbulence80

Kolmogorov timescale τf = 31.6 to 1.0 s calculated from typical dissipation rate (Kiørboe and Enric, 1995), one obtains

St= 1.0× 10−4 to 2.3× 10−3. In such limit, the left-hand-side of dynamics (3) and (4) can be neglected, and the dynamics

simplifies

dx′

dt′
= v′, (5)

dn

dt′
= ω′p×n, (6)85

v′ = u′+ Φsn+ Φgeg, (7)

ω′p =
1

2
ω′+

1

2ΨI
(eg ×n) . (8)

where ΨI = 8γ/(3τfu
2
fΦsΦg). The last term of Eq. (8) indicates that fluid inertial torque drives a squirmer swimmer to

swim against gravity. Here, we use a dimensionless timescale ΨI to quantify the effect of fluid inertial torque. ΨI can be

understood as the dimensionless time that a swimmer in still fluid restores upward orientation from an inclined orientation under90

a reorientation torque. This is analogous to the gyrotactic effect induced by bottom-heaviness, which is typically expressed as

(2Ψ)−1(eg×n) (Kessler, 1986). We note that, however, they are two different mechanisms. The gyrotatic torque on a bottom-

heaviness cell depends on the distance of the offset between the center of gravity and hydrodynamic forces on a cell, which

is usually determined by morphology. On the contrary, the fluid inertial torque is due to the fluid motion disturbed by the

swimming and settling behavior of the cell, and thus, determined by motility.95

In turbulence, we can take the turbulence Kolmogorov velocity and timescales uη and τη as the characteristic scales of the

flow. Using the relation γ = u2ητη , ΨI can be simplified as

ΨI =
8

3ΦsΦg
. (9)

The typical value of Φs and Φg of plankton can be estimated with their swimming and settling speeds as well as the

Kolmogorov velocity scale of ocean turbulence. As summarized in Qiu et al. (2022a), the swimming speeds of different100

species vary from 200 to 1500 µm/s, and the settling speeds vary from 10 to 200 µm/s. The Kolmogorov velocity scale of

ocean turbulence can be estimated from the typical dissipation rate ε= 10−9 to 10−6m2s−3 (Kiørboe and Enric, 1995), yielding

uη = (γε)1/4 = 178 to 1000 µm/s with γ = 10−6 m2s−1. Based on these estimations, we consider the typical parameter space

of 0< Φs < 10 and 0< Φg < 1. Large Φs and Φg are reached by swimmers with strong motility in weak turbulence which uη

is small. In such case, the assumptions of our model are still justified. First, Re can be still small even for plankton that swim105

fast as long as their size is sufficiently small. Second, St is independent of plankton’s motility, which has been shown to be

negligibly small for typical turbulence conditions in the ocean (Qiu et al., 2022a).

2.1.1 Direct numerical simulations of swimmers in turbulence

The motion of swimmers in homogeneous isotropic turbulence is simulated by an Eulerian-Lagrangian direct simulations.

The flow field is resolved in the Eulerian frame, while the motions of individual swimmers are solved along the Lagrangian110
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trajectories using local flow information at swimmers’ positions. The incompressible turbulent flow is directly simulated by

solving the Navier-Stokes equations:

∂u

∂t
+u · ∇u =−∇pf

ρf
+ γ∇2u+f , (10)

∇ ·u = 0, (11)

where pf is the pressure of fluid. An external force f is applied to sustain turbulence and balance the rate of viscous dissipation115

at the Kolmogorov scale η. The force is applied to the large scale motion using the scheme proposed by Machiels (1997).

Periodic boundary conditions are applied on all boundaries of the cubic domain with a size of (2π)3. We use pseudo-spectral

method to solve the Navier-Stokes equations, and we adopt the 3/2 rule for reducing the aliasing error on the nonlinear term. The

separation between turbulent motion of large and small scales is quantified by the Taylor-Reynolds number Reλ = urmsLλ/γ,

where urms is the root-mean-square velocity, and Lλ = urms

√
15γε−1. In the present study, we consider a turbulence of120

Reλ = 60. To resolve the turbulent flow down to the Kolmogorov scale, we use 963 grid points, which allows a maximum

wave number resolved to be 1.78 times greater than the Kolmogorov wave number to ensure the accuracy of resolution even

at Kolmogorov scales (Pope, 2000). The initial flow field is set as a random flow with an exponential energy spectrum, and an

explicit second-order Adams-Bashforth scheme is used for time integration of Eqs. (10) and (11) with a time step smaller than

0.01τη (Rogallo, 1981).125

Swimmers are initialized with random positions and orientations after turbulence is fully developed. When solving the

trajectories of swimmer, fluid velocity and its gradients at Eulerian grid points are interpolated by a second-order Lagrangian

method at the positions of swimmers. Eqs. (5) and (6) are integrated by the same second-order Adams-Bashforth scheme as

the fluid phase. For each parameter configuration, 105 swimmers are simulated, and the statistics are obtained by making an

ensemble average over more than 80 uncorrelated time samples after the dynamics has reached a steady state.130

3 Results

The instantaneous location and orientation of swimmers are depicted in Figure 2. When swimmers are not settling (Figure 2a),

they are distributed randomly with random orientation. Spherical swimmers are known to exhibit random orientation due to

the random fluid vorticity of turbulence. As a result, their motions in turbulence remain random, and no cluster is formed.

However, when swimmers are settling under the influence of the gravity (Figure 2b), they tend to swim upwards and form135

clusters due to the contribution of fluid inertial torque as predicted by Candelier et al. (2022). As discussed earlier, the fluid

inertial torque on a settling swimmer induces an effect similar to gyrotaxis mechanism. Gyrotactic swimmers are known to

form spatial clusters and preferentially sample regions with downwelling or upwelling fluid velocity. Previous studies have

documented that these phenomena depend on the swimming speed, reorientation time, and the shape of swimmers (Durham

et al., 2013; Zhan et al., 2014; Gustavsson et al., 2016; Borgnino et al., 2018). However, in these studies, the reorientation time140

is determined by bottom-heaviness, which is independent of either swimming or settling speeds. Here, a reorientation effect
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Figure 2. Instantaneous spatial distribution of swimmers in homogeneous isotropic turbulence. Black dots and tiny arrows represent the

position and swimming direction of each swimmer, respectively. Background contour represents the vertical fluid velocity uy . (a) Non-

settling swimmers (Φg = 0, Φs = 10). (b) Settling swimmers (Φg = 1, Φs = 10).

is induced by fluid inertial torque with a timescale ΨI , which depends on the swimming and settling speeds of swimmers.

ΨI cannot be treated as an independent parameter as earlier studies did (Durham et al., 2013; Zhan et al., 2014; Gustavsson

et al., 2016; Borgnino et al., 2018). Hence, the picture of clustering may differ from previous studies, and it is worth a further

investigation.145

3.1 Clustering

The clustering of swimmers is quantified by a three-dimensional Voronoï tessellation (Nilsen et al., 2013; Monchaux et al.,

2010). The whole domain is divided into many Voronoï polyhedrons based on the positions of swimmers, with each polyhedron

containing one swimmer. Any point in a polyhedron is closest to the corresponding swimmer among all swimmers. The volume

of a Voronoï polyhedron is smaller when the corresponding swimmer is surrounded by more other swimmers, and vice versa.150

Therefore, the distribution of Voronoï polyhedron volumes quantifies the clusters of swimmers.

We use the MATLAB toolbox ’voronoi.m’ and ’convhull.m’ to compute the vertices of Voronoï polyhedrons and calculate

their volumes. Figure 3(a) shows the probability distribution function (PDF) of Voronoï volumes for swimmers with different

settling speeds. The PDF of Voronoï volumes of non-settling swimmers remains the same as the one generated from random

positions, indicating the absence of clustering. When settling speed increases, the PDFs becomes skewed and a peak at small155

V/〈V 〉 appears. This indicates the occurrence of clustering, because swimmers in clusters remain close to each other and

their Voronoï volumes are thus small. Settling swimmers form clusters due to the effect of fluid inertial torque. As shown in

Eq. (8), the fluid inertial torque drives settling swimmer to orientate upward with a finite reorientation timescale ΨI . This is

analogous to the effect of bottom-heaviness (Kessler, 1986), which also drives swimmers to orientate upward with a timescale

Ψ dependent on the offset of the center of gravity with the center of hydrodynamic forces. For inertial torque, however, the160

timescale ΨI is inversely proportional to both the settling and swimming speeds of the swimmer.

To show how clustering depends on the settling and swimming speeds, in Figure 3(b) we depict the variance of Voronoï

volumes for different Φg and Φs. The corresponding magnitude of log10 ΨI is also shown by white contour lines. We calculate
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Figure 3. (a) Probability distribution function (PDF) of the volumes of Voronoï cells, normalized by the mean volume 〈V 〉. Φs = 10. (b)

Variance of Voronoï volumes σ2
V̂

= E(V/〈V 〉− 1)2 normalized by the value of randomly distributed particles. The white contour lines

represent the value of log10 ΨI in the parameter space.
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Figure 4. (a) Mean vertical fluid velocity at swimmers’ positions, 〈uy〉, normalized by uη as a function of Φg and Φs. The black contour

lines represent the value of log10 ΨI in the parameter space.

the Voronoï volume of each swimmer, and obtain the variance of volume distribution normalized by the mean volume of each

swimmer, σ2
V̂

= E(V/〈V 〉− 1)2. The variance of Voronoï volumes quantifies the intensity of clustering because a stronger165

clustering results in a more nonuniform distribution of Voronoï volumes with larger variance. The results show that clustering

becomes stronger with increasing Φs and Φg , and reaches a peak at Φg ≈ 0.5 and Φs ≈ 10. Further increasing Φg leads

to a drop of the clustering intensity. This trend can be explain using the dimensionless reorientation timescale ΨI , which is

inversely proportional to Φs and Φg (Eq. 9). When ΨI is zero, gyrotaxis is infinitely strong, causing swimmers to swim straight

up against gravity, yielding n =−eg . Since the fluid is incompressible, according to Eq. (7), the velocity field of swimmers170

has zero divergence, ∇ ·v =∇ ·u = 0, indicating that no clustering is formed. When ΨI is infinitely large, the fluid inertial

torque is negligible, and the swimming direction is entirely determined by turbulent shear and becomes random, resulting in no

clustering. Therefore, the maximal clustering is expected to occur at a finite ΨI . Durham et al. (2013) observed that intensity

of clustering of gyrotactic swimmers reaches its maximal when Ψ is of the order of unity (Durham et al., 2013). Since ΨI is

analogous to Ψ, the maximal clustering in the present case is also observed at certain Φs and Φg that yields ΨI ∼ 1.175

3.2 Preferential sampling of downwelling regions

The clustering of spherical gyrotactic swimmers in turbulence has been shown to be associated with preferential sampling

of downwelling regions (Durham et al., 2013). Figure 4 shows the mean vertical fluid velocity at the position of swimmers.

Swimmers always sample downwelling regions, and the maximal sampling occurs at large Φs but moderate Φg which yields

ΨI ≈ 1.0. This observation is similar to Durham et al. (2013) where the maximal preferential sampling is also reached when180

Ψ≈ 1.

Comparing Figure 4 and Figure 3(b), we observed a very similar trend between the sampling of downwelling regions and the

intensity of clustering. The magnitude of both quantities increase with Φs and reach their maximal at a large Φs and a moderate
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Φg . This supports the theory that clustering occurs in downwelling regions (Durham et al., 2013; Fouxon and Leshansky, 2015;

Gustavsson et al., 2016). Durham et al. (2013) showed that the divergence of the swimmer velocity field∇·v ∝−∇2uy . Since185

the ∇2uy is negatively correlated to uy in incompressible, homogeneous isotropic turbulence, the sinks of swimmer velocity

field tend to be located in downwelling regions with uy < 0. Here, we provide more direct evidence for the clustering in

downwelling regions.

Voronoï analysis allows us to track the Voronoï volume of each swimmer. Based on the values of volumes, we can distinguish

whether each swimmer is inside a cluster (with small Voronoï volume) or moving alone away from other swimmers (with large190

Voronoï volume). Figure 5 shows the joint probability distribution function (joint PDF) of uy and log(V/〈V 〉) for swimmers

with different settling speeds. When Φg = 0 (Figure 5(a)), fluid inertial torque vanishes and swimmers do not preferentially

sample downwelling regions, resulting in a symmetric joint PDF with respect to uy = 0. Moreover, because non-settling swim-

mers do not form clusters and their Voronoï volumes tend to be uniformed, the joint PDF along log(V/〈V 〉) is concentrated

at the peak. However, when Φg > 0, the joint PDF becomes asymmetric with respect to uy (Figure 5(b)). The peak shifts to-195

wards uy < 0 because swimmers preferentially sample downwelling regions. Moreover, log(V/〈V 〉) tends to be smaller when

uy < 0, indicating that swimmers in downwelling regions are more likely to form clusters. When settling speed increases to

Φg = 0.5 (Figure 5(c)), the joint PDF becomes flattened along log(V/〈V 〉), because the intensity of clustering reaches its

maximal (see Figure 3(b)), making it more probable for swimmers to have both smaller and larger Voronoï volumes. Further-

more, the joint PDF becomes less asymmetric with respect to uy , indicating that strong clustering no longer occurs only in200

downwelling regions. When Φg further increases to Φg = 1, the distribution becomes slightly concentrated again because the

intensity of clustering is weakened compared to the case of Φg = 0.5. In general, the joint PDFs reveal that swimmers are more

likely to form cluster in downwelling regions, but when clustering is intense, the bias is weak.

4 Conclusions

A settling spherical squirmer experiences a fluid inertial torque that causes it to swim against gravity, acting as an effective205

gyrotactic torque (Candelier et al., 2022). While previous studies have focused on gyrotactic torque originating from bottom-

heaviness, the role of fluid inertial torque has been neglected (Durham et al., 2013; Zhan et al., 2014; Gustavsson et al., 2016;

Borgnino et al., 2018). In the present study, we modeled the inertia-less micro-swimmer under the influence of fluid inertial

torque. The magnitude of the torque is quantified using a dimensionless reorientation timescale ΨI which is proportional to

the inverse of dimensionless swimming speed (Φs) and settling speed (Φg).210

Using direct numerical simulation, we investigated the clustering of swimmers under fluid inertial torque. We quantified

the clustering using a Voronoï analysis. When swimmers are not settling, the fluid inertial torque vanishes, and the swimmers

are randomly distributed resulting from a random direction of swimming, with no clustering observed. Settling swimmers

experience a fluid inertial torque and behave similarly to gyrotactic swimmers. We observed that swimmers form more intense

clustering when Φs and Φg become larger, with maximal clustering intensity occurring at the largest Φs and a modest Φg ,215

corresponding to ΨI ∼ 1.
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Figure 5. Joint probability distribution function (PDF) of vertical fluid velocity uy and the Voronoï volumes log(V/〈V 〉). Φs = 10 for all

panels. White dashed lines correspond to uy = 0. (a) Φg = 0. (b) Φg = 0.2. (c) Φg = 0.5. (d) Φg = 1.0.

We also examined how the clustering of spherical swimmers is related to their preferential sampling of downwelling regions.

We found that when swimmers are not settling, their dynamics remains isotropic, and no preferential sampling is observed in

the gravity direction. However, the fluid inertial torque, as well as the settling speed, break this symmetry, and drive settling

swimmers to sample downwelling regions. The sampling is more pronounced with larger Φs and Φg , reaching the maximum220

when ΨI ≈ 1. The trend of preferential sampling shows a similar pattern to that of clustering intensity, indicating a correlation

between the two phenomena. We used the joint PDF of Voronoï volumes and local vertical fluid velocity to demonstrate that

swimmers tend to form clusters in downwelling regions.

The fluid inertial torque on settling swimmers can cause the formation of small-scale clusters, highlighting the importance of

fluid inertial effects on the dynamics of plankton. However, most of earlier studies did not consider gravitational sedimentation,225

leading to the neglect of fluid inertial torque. This underestimates the intensity of gyrotaxis because the total gyrotactic torque

is contributed by both fluid inertial torque and bottom-heaviness. In addition, the fluid inertial torque is proportional to the

swimming and settling speeds, making the reorientation time a dependent parameter. Therefore, planktonic swimmers have the

potential to tune their reorientation behavior and thus control clustering intensity by adjusting their swimming speed, which

might further impact their mating, predation and feeding.230

We note that the present study considered only spherical swimmers. Non-spherical plankton, such as elongated ones, prob-

ably experience a fluid inertial torque stemming from both their non-spherical shape (Dabade et al., 2015; Sheikh et al., 2020;

Gustavsson et al., 2019; Qiu et al., 2022a) and propulsion mechanism (Candelier et al., 2022). While the analytical solution
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for the fluid inertial torque on a non-spherical swimmer remains unclear, fully resolved numerical simulation could be used to

reveal the dynamics of non-spherical settling swimmers. The resulting findings could be potentially applied to the model of235

point-like swimmer.
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