
Referee’s Comment #1: 

As the authors point out, there have been a number of papers examining clustering 

of microswimmers due to gyrotaxis in homogeneous isotropic turbulence over the past 

one or two decades.  

The main contribution of the present paper appears to be the addition of the inertial 

torque (second term on the RHS of Eq. 2) to an otherwise standard model of a 

microswimmer that has previously been studied. This inertial torque comes from the work 

of Candelier et al. (2022). Candelier et al. go to great lengths to describe the various 

orders of approximations in their work and the conditions under which their results are 

valid. However, the authors of the present paper do not clarify whether the situation they 

consider is consistent with including this extra term and whether they can include only 

this extra term without the need to include other extra terms for consistency. In a similar 

vein, the authors (between Eq 4 and Eq 5) state the microswimmer inertia is negligible 

and consider the limit where their St —> 0 without any explanation of whether the limit 

exits at finite Re (required for the inertial torque to be relevant). 

Author’s Reply: 

Thank you for your constructive comments. One of your major comments is 

concerned with the validation of our model in the situation currently discussed. We 

apologize for the lack of clarification of model assumptions. We provide a clearer 

clarification as follows about how the assumptions of our model are met in the parameter 

range that is specified right after Eq. (9). 

The first assumption is that we adopted Candelier’s model for the fluid inertial torque. 

This requires the Reynolds number to be finite but much smaller than unity, which is 

satisfied for typical marine microorganisms. For instance, we assume the radius and the 

swimming speed of a typical plankton to be a = 0.1 mm and  vS = 0.5 mm/s, respectively. 

The obtained Reynolds number is Re = 2avs/𝛾 = 0.1 , where γ =  1 mm2/s  is the 

kinematic viscosity of fluid. The Candelier’s model is expected to describe the inertial 

torque quite precisely at such a low Reynolds number according to Candelier et al. (2022). 

A more detailed presentation of Reynolds number of typical plankton species can be 

referred to Table II in our earlier publication (Qiu et al., Physical Review Research 4, 

023094 (2022)), which is shown below.  

The second assumption is made when we derive Eqs. (5-8) from Eqs. (3) and (4). 

Here, we assume the Stokes number is negligibly small. The Stokes number, usually used 

to quantifying the inertia of a rigid particle, is defined as St = 2Da2/(9𝛾𝜏𝑓), where a, D, 

and τf are the radius of the plankton, the cell-to-fluid density ratio, and the time scale 

of fluid motion, respectively. For typical plankton parameters, we have a = 0.1 mm and D 

= 1.05. Considering the typical intensity of ocean turbulence, τf ranges from 1.0 to 31.6 

s (Kiørboe & Enric 1995). Using all these parameters, we estimate that St ranges from 

0.0001 to 0.0023. With such small St, our derivation is justified.  

At the limit of zero St, the fluid inertial torque is not negligible as long as the 

swimming and settling speeds are not so small. This is shown in Eq. (4). When St ->0, the 

last term on the right-hand-side, which represents fluid inertial torque, is unaffected. Its 

magnitude is determined by a coefficient scaling with τf uf
2 / γ  as well as the 

dimensionless swimming and settling speeds, Φs and Φg. In a turbulent flow, τf and uf 



are chosen as the Kolmogorov time and velocity scales, giving τf uf
2 / γ = 1 . This 

equation is given by the definition of Kolmogorov scales, where τf  =  (γ/ϵ)1/2 , uf  =

 (γϵ)1/4, and ϵ is the energy dissipation rate of turbulence. As a result, the fluid inertial 

term is comparable to other terms as long as the dimensionless swimming and settling 

speeds (Φs and Φg) are finite. According to the Table below, both Φs and Φg vary 

across a wide range depending on species and flow condition. For some zooplankton 

species, Φs and Φg are large enough so that the inertial torque is not negligible, while 

Re and St are still within the range of our model assumptions. 

To address the validation of our model, we revised the text in section 2.1 (additional 

text is clearly marked), and we show typical values of St and Re using physical properties 

of marine plankton. 

 

Around line 55: 

“The motion of plankton in fluid flows is usually described by a micro-swimmer 

model (citations, …), which assumes a plankton to be a point-like micro-swimmer carried 

by a fluid flow. This assumption is justified when the Reynolds number, 𝑅𝑒 = 𝑎|𝒗 − 𝑢|/𝛾, 

is much smaller than unity. Here, the Reynolds number is defined based on the radius of 

a swimmer, 𝑎, the differences between the velocities of a swimmer 𝒗 and its ambient 

undisturbed flow 𝒖 , and the kinematic viscosity of the fluid 𝛾 . For typical plankton 

species, this assumption is justified because of their tiny size and limited motility, as 

summarized in our recent publication (Qiu et al., 2022a). For instance, the typical size and 

swimming speed of zooplankton are 𝑎 = 0.1 𝑚𝑚 , |𝒗 − 𝑢| = 1.0 𝑚𝑚 , respectively. 

Accordingly, we obtain 𝑅𝑒 = 0.1using the viscosity of water 𝛾 = 10−6𝑚2/𝑠” 

 

Around line 70: 

“The model of fluid inertial torque is derived in the limit of Re → 0, but it has been 

shown to be justified when Re < 0.3 (Candelier et al., 2022), within the typical range of 

plankton physical properties (Qiu et al., 2022a)” 

 

Around Line 80: 

“Typically, St of planktonic microswimmers are usually negligibly small as summarized in 

Qiu et al. (2022a). For instance, using 𝑎 =  0.1𝑚𝑚 , 𝜌𝑝/𝜌𝑓 = 1.05 , and using typical 

turbulence Kolmogorov timescale 𝜏𝑓 = 31.6 𝑡𝑜 1.0 𝑠, one obtains 𝑆𝑡 = 1.0 × 10−4 𝑡𝑜 2.3 ×

10−3.” 

 

 



 
Table II in Qiu et al., Physical Review Research 4, 023094 (2022). In this table, Φswim 

and Φsettle means Φs and Φg in the present paper. We also note that ΨI in this 

table does not refers to the reorientation time scale defined in the present paper.  

 

 

Referee’s Comment #2 

The final microswimmer equations used in the simulations (Eq 5 — Eq 8) are dubious for 

the reasons outlined above. However, taken them as a given, the results are not 

particularly novel because these microswimmer equations simplify to those investigated 

before (spherical gyrotactic settling microswimmers) and thus the results are not 

particularly novel.  

Author’s Reply: 

You pointed out that our model simplifies to the classic Kessler’s gyrotaxis model. 

However, despite the similarities in mathematical forms, the mechanism responsible for 

the orientation effect is totally different from that in Kessler’s model. The fluid inertial 

torque makes a swimmer to swim in upward direction because the symmetry of flow 

ambient field is broken by the swimming behavior. In Kessler’s model, a swimmer swim 

upwards under a gravity torque due to the offset between the centers of mass and the 

hydrodynamic force. The difference in the mechanisms can be seen in the definition of 

the reorientation time scale Ψ . In our model, ΨI  depends on both swimming and 

settling speeds, while in Kessler’s model, Ψ depends on the size of swimmer and the 

distance of the offset mentioned above.  

We believe this difference is important and deserves investigation. First, it allows a 

plankton to modify its swimming speed and then control its reorientation behavior. 

Second, our results suggest that the settling speed also matters when we consider a 

motile plankton, because it generates a reorientation effect under fluid inertial. To 

address both points, we studied how clustering and preferential sampling are altered 

when micro-swimmers have different swimming and settling speeds.  

This paper aims to understand the influence of fluid inertial torque in the 

reorientation phenomenon of micro-swimmers. Therefore, we isolate the term for fluid 

inertial torque in Eq. (4), which simplifies the discussion. To model the motion of an actual 



plankton precisely, one must also consider other relevant mechanisms such as bottom-

heaviness or phototaxis. However, they are not in the scope of this paper.  

We have revised section 2.1 to address the difference between our model and 

Kessler’s model. 

 

Around line 90:  

“This is analogous to the gyrotactic effect induced by bottom-heaviness, which is 

typically expressed as 2𝛹−1(𝑒𝑔 × 𝑛) (Kessler, 1986). We note that, however, they are two 

different mechanisms. The torque generated by bottom-heaviness depends on the distance 

of the offset between the center of gravity and hydrodynamic forces on a cell, which is usually 

determined by morphology. On the contrary, fluid inertial torque depends on the swimming 

and settling speeds and, determined by motility” 

 

 

Referee’s Comment #3 

Additionally, the authors apply their model to extremely high swimming speeds and high 

settling speeds (L91) without any comment on whether this range of values are consistent 

with their assumptions. (I suspect they are not).  

Author’s Reply: 

As shown in the Table above, large Φs and Φg can be reached by zooplankton 

species in weak turbulence, while Re and St are still within the range of our model 

assumptions. For instance, the nauplius of Eurytemora affinis has Φs = 9.1, Φg = 1.0, 

Re = 0.3 and St = 3*10-5.  

To address our assumption about the range of dimensionless parameters, we added 

some sentences to discuss the typical parameters of marine planktons.  

 

Around Line 105: 

“Large 𝛷𝑠 and 𝛷𝑔 are reached by swimmers with strong motility in weak turbulence 

which uη is small. In such case, the assumptions of our model are still justified. First, Re 

can be still small even for plankton that swim fast as long as their size is sufficiently small. 

Second, St is independent of plankton’s motility, which has been shown to be negligibly 

small for typical turbulence conditions in the ocean (Qiu et al., 2022a)” 

 

Referee’s Comment #3 

Minor comments: 

L16, ‘accumulates’ — check grammar 

L17, ‘clustering’ — check grammar 

L22, ‘the inverse of a timescale B’ — unclear writing. It needs to be explained here what 

B is (timescale for reorientation against gravity in an otherwise quiescent environment). 

Eq. 4 — v_s\prime should be \Phi_s 

Author’s Reply: 

We thank you for your careful review. We have addressed these points in the revised 

manuscript. 

 



Referee’s Comment #4 

L146, ‘variance of Voronoi volumes’ — I’m not sure whether the authors mean the 

location of the peak of the distribution or indeed the variance. 

Author’s Reply: 

The term ‘variance of Voronoi volumes’ means the actual variance of the Voronoi 

volumes of each swimmer. To avoid ambiguity, we explain the term when it appears in 

the text first time. 

Around line 160: 

“We calculate the Voronoi volume of each swimmer, and obtain the variance of 

volume distribution normalized by the mean volume of each swimmer, σ�̂�
2 =

𝐸 (
𝑉

<𝑉>
  − 1)

2
 . 

 


