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Abstract. Flash floods have dramatic economic and social consequences, and efficient adaptation policies are required to re-

duce their impacts, especially in a context of global change. Developing more efficient flash flood forecasting systems can

largely contribute to these adaptation requirements. The aim of this study was to assess the ability of a new seamless short

range ensemble quantitative precipitation forecast (QPF) product, called PIAF-EPS and recently developed by Météo-France,

to predict flash floods when used as input of an operational hydrological forecasting chain. For this purpose, eight flash flood5

events that occurred in the French Mediterranean region between 2019 and 2021 were reanalysed, using a similar hydrological

modeling chain to the one implemented in the French “Vigicrues-Flash” operational flash flood monitoring system. The hy-

drological forecasts obtained from PIAF-EPS were compared to the forecasts obtained with different deterministic QPFs from

which PIAF-EPS is directly derived . The verification method applied in this work uses scores calculated on contingency tables,

and combines the forecasts issued on each 1km2 pixel of the territory. This offers a detailed view of the forecast performances,10

covering the whole river network and including the small ungauged rivers. The results confirm the added value of the ensemble

PIAF-EPS approach for flash flood forecasting, in comparison to the different deterministic scenarios considered.

1 Introduction

The year 2022, and particularly the summer season, was marked by several deadly and catastrophic flash floods in Pakistan,

Kentucky (USA), Iran, Sierra Leone, Bangladesh, Australia, and unfortunately many other countries. Very few parts of the15

world seem to be spared from flash floods. According to the World Meteorological Organization (WMO, 2020), floods are the

deadliest natural hazards, and flash floods account for 85% of the flooding events and have the highest mortality rate within the

category (5000 victims annually). In France, the Mediterranean region is particularly prone to severe flash floods. Even though

an intensification of extreme rainfall events in response to anthropogenic influence was diagnosed (Ribes et al., 2019), the

consequences of climate change on flash floods remain unclear in this region, particularly because of the compensating effect20

of the expected decrease in soil moisture (Tramblay et al., 2019). However, the increase in the vulnerability to these episodes

may lead to an increase in the global risk associated with flash floods in the future years.
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In this context, developing flash flood forecasting is of crucial interest to limit the death toll and optimize the emergency

response. Several operational flash flood warning systems have recently been developed worldwide, and they generally have

similar features. The observed or forecast rainfall can be directly compared to reference thresholds to estimate the flash flood25

likelihood. It is the case for instance in the Flash Flood Guidance system in the US (Clark et al., 2014), or the ERIC/ERICHA

system in Europe (Raynaud et al., 2015; Corral et al., 2019). Rainfall data can also be used as input of highly distributed

hydrological models, which may bring additional information about the intensity and temporal dynamics of the floods, and

may be particularly interesting for decision-making (Zanchetta and Coulibaly, 2020). The FLASH system in the USA (Gourley

et al., 2017) or the Vigicrues Flash service in France (Javelle et al., 2016; Piotte et al., 2020) are following this second principle.30

The operational systems using hydrological models are still often based on radar Quantitative Precipitation Estimates (QPEs),

without involving Quantitative Precipitation Forecasts (QPFs). This choice increases the quality of detection and limits the risks

of false alarms, but also highly limits the anticipation, that cannot exceed the (limited) response times of the small catchments

where flash-floods do occur.

The development of convection permitting Numerical Weather Prediction (NWP) models has paved the way for the use35

of QPFs as input of flash-flood warning systems, with the objective to extend anticipation lead times up to 24-48h (Collier,

2007; Hapuarachchi et al., 2011; Zanchetta and Coulibaly, 2020). Convection permitting models offer an interesting capacity

to describe heavy precipitation events, and offer space and time resolutions which are suited to the hydrological models used in

flash-flood warning systems. However, the current QPF products still show spatial and temporal uncertainties in the description

of intense rainfall cells, that may significantly exceed the typical scales of small river basins (Roberts and Lean, 2008; Clark40

et al., 2016; Armon et al., 2020). This may highly limit the capacity to issue relevant flash-flood warnings, without appropriate

strategies to represent or reduce uncertainties (Silvestro et al., 2011; Vincendon et al., 2011; Furnari et al., 2020). Even if

ensemble approaches have been widely used as input of flash flood forecasting chains (Vié et al., 2012; Alfieri and Thielen,

2012; Davolio et al., 2013, 2015; Hally et al., 2015; Nuissier et al., 2016; Amengual et al., 2017; Furnari et al., 2020; Sayama

et al., 2020; Amengual et al., 2021), uncertainties in QPFs can still hardly be reduced for lead times exceeding 6-8h, even with45

enhanced assimilation schemes in NWP models (Davolio et al., 2017; Lagasio et al., 2019).

Efficient flash flood forecast strategies can also be developed for short lead-times (< 6 hours, i.e. the nowcasting range),

with a high update frequency (typically 5 min to one hour between two runs of forecasts) to take regular benefit from the

last available observations (Lovat et al., 2022). For such applications, the QPF products can be either derived from adapted

versions of convection permitting NWP models (Auger et al., 2015; Benjamin et al., 2016), or by extrapolating the last radar50

observations (Berenguer et al., 2011; Silvestro and Rebora, 2012; Imhoff et al., 2022). Simple Lagrangian radar extrapolations

can easily outperform NWP models for lead times up to 2-3h (Mandapaka et al., 2012), however they are not suited to larger

lead times because they cannot reproduce the physical changes occurring in the atmosphere. For that reason, up-to-date short-

range QPF approaches now combine both information sources through blending techniques, to offer a seamless transition

between observed and forecast rainfall fields (Poletti et al., 2019; Lovat et al., 2022; Scheufele et al., 2014). However, despite55

all these efforts to create seamless short-range QPFs products, the forecast uncertainties still remain significant and need to be
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quantified through ensemble approaches (Bowler et al., 2006; Seed et al., 2013; Descamps et al., 2015; Osinski and Bouttier,

2018; Bouttier and Raynaud, 2018).

The objective of this paper is to assess the potential of a new seamless short-range ensemble QPF product, called PIAF-EPS

(“PIAF” meaning Prévision Immédiate Agrégée Fusionnée, and “EPS” meaning Ensemble Prediction System) and recently60

developed by Meteo-France, for flash flood nowcasting purposes. This ensemble aims to represent very short-range forecast

uncertainties. It can be frequently updated at a very small numerical cost, to keep it consistent with the latest nowcasting data

based on radar images. The aim is to confirm the benefits of using such an ensemble seamless product as input of flash flood

nowcasting chains, compared to other short-range deterministic QPF products from which PIAF-EPS is directly derived. For

this purpose, a reanalysis of eight flash flood events observed in the French Mediterranean region between 2019 and 2021 is65

proposed, using a similar hydrological modeling chain as the one implemented in the French “Vigicrues Flash” operational flash

flood monitoring system. Since the selected flash floods mainly occurred on small rivers, the proposed evaluation framework

does not focus only on a couple of gauged outlets, but offers a comprehensive coverage of the small rivers hit by the studied

rainfall events. This is achieved by comparing the hydrological forecasts obtained using QPFs with simulated discharges

(i.e. based on QPEs), at each pixel of the hydrological model grid (1-km resolution), and following a methodology adapted70

from Charpentier-Noyer et al. (2023).

The paper is organised as follows: Section 2 describes the hydrometeorological forecasting chains compared in the study;

Section 3 provides details about the case studies used for the evaluation as well as the chosen verification method; finally,

Section 4 presents and discusses the verification results.

2 The short-range hydrometeorological forecasting chains75

2.1 General structure of the chains

The forecasting chains applied in this study are directly inspired from the French Vigicrues Flash operational flash flood mon-

itoring service (Javelle et al., 2016; Piotte et al., 2020). They are presented on figure 1. The chains evaluate the severity of the

floods, by comparing the simulated or forecasted hydrographs to reference discharge quantiles. The simulated/forecast hydro-

graphs and the reference discharges are obtained using a fully distributed rainfall runoff model, detailed in section 2.4. This80

hydrological model is forced with the PANTHERE (Projet Aramis Nouvelles Technologies en Hydrométéorologie Extension

et Renouvellement) rainfall QPEs, derived from a network of about 30 radars over mainland France and its vicinity (Tabary

et al., 2013). As mentioned in the introduction, the choice of using radar QPEs without QPFs would tend to limit the false

alarms emitted by the chain, but would also drastically limit its anticipation capacity.

In this paper, we thus combined QPEs with different QPFs products as input of the chain, with the objective of increasing85

the current anticipation levels. The common time step for QPE-QPF and the hydrological model is 15 minutes. All the QPFs

mentioned are available up to 6-hour forecast lengths but their refresh times depend on the considered product. For the present

3



study, we decided to consider QPFs only for 0-3h forecast ranges and with a common refresh time of one hour. The QPF

products include the new PIAF-EPS ensemble product, and three deterministic products used as reference. Two of these ref-

erence QPFs are directly involved in the generation of the PIAF-EPS ensemble (see figure 2), i.e. the deterministic version of90

PIAF, and the AROME-NWC numerical weather prediction model (AROME: Applications de la Recherche à l’Opérationnel

à Méso-Echelle, NWC: Nowcasting). The third reference QPF corresponds to a naive constant rain scenario.

The next sections present each of the components involved in the forecasting chains applied in this study.

Figure 1. General structure of the forecasting chains

2.2 The three deterministic QPFs: AROME-NWC, deterministic PIAF and naive constant rain scenario

The first QPF product used as input of the chain corresponds to the AROME-NWC system, documented in (Auger et al.,95

2015). It is a rapid refresh version of the AROME convection-permitting numerical weather prediction system. It is updated

every hour by a 3D-Var data assimilation system with a ten-minute observation cutoff (i.e. the initial state of each forecast is

prepared using observations collected up to 10 minutes after its validity time), from which 6-hour forecasts are produced at

1.3km resolution with a 20-minute delivery time. Each 3D-Var analysis updates the model state by multivariately blending tens

of thousands of observations from various meteorological networks (including radar winds and reflectivities, satellite radiances,100

GPS data, in situ surface and aircraft reports, etc). More information about the AROME-NWC 3D-Var can be found in Auger

et al. (2015).

The second QPF product involved is the deterministic rain nowcast system called PIAF ("Prévision Immédiate Agrégée

Fusionnée" in French, (Moisselin et al., 2019). Each PIAF forecast blends rainfall fields between radar QPF products, and

AROME-NWC numerical predictions, as explained hereafter. The radar QPF product is derived from the PANTHERE radar105

QPEs. Rainfall accumulations are estimated every 5 minutes at 1km resolution, and extrapolated in time using an optical

flow technique that persists the apparent motion of reflectivity from recent radar images. The blending between radar extrap-

olations and AROME-NWC follows equation PIAF = α× radarQPF +(1−α)×AromeNWC, where α is a forecast

range-dependent weighting factor. At short forecast ranges, α is equal to 1 so PIAF is equivalent to extrapolated radar QPF,

which tends to be better than AROME-NWC. At longer forecast ranges, typically beyond 1 to 2 hours, α smoothly decreases110

towards zero so that the PIAF converges to the latest available AROME-NWC precipitation forecast, which consistenly out-
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performs radar QPF at longer forecast ranges. The speed at which α decreases is case-dependent: it is determined by a simple

online machine learning procedure (Auer et al., 2002; Devaine et al., 2013) that minimizes the average forecast errors over the

past six hours, as measured by a Gerrity score over large subdomains. In a nutshell, this algorithm produces a smooth transition

(as a function of forecast range) between the latest available radar extrapolation and AROME-NWC forecast; compared to115

climatologically optimal weights, this transition occurs earlier if AROME-NWC performed better than average during the six

preceding hours (relative to radar extrapolation). Evaluations of the deterministic PIAF precipitation forecasts (Moisselin et al.,

2019; Lovat et al., 2022) indicate that they statistically outperform both radar QPF products and AROME-NWC forecasts for

forecast ranges between 0 and 3 hours.

Finally, we considered a third "naive" QPF scenario, corresponding to a constant future rain. Despite its very simplistic120

principle, this scenario may give valuable information since flash floods are often caused by quasi-stationary storm systems

(Gaume et al., 2009).

2.3 The new PIAF-EPS ensemble QPF product

PIAF-EPS is a new experimental short range ensemble rainfall product, which is built by adding perturbations to the determin-

istic PIAF nowcast. The ensemble generation is original, and inspired by previously proposed stochastic nowcasting schemes,125

e.g. Bowler et al. (2006) and Seed et al. (2013). The perturbation tuning parameters have been kept to a minimum, in order to

facilitate future operational deployment and maintenance of the proposed system. The perturbation technique is an adaptation

to nowcasting ranges of the ’pertDpepi’ method used by Peredo et al. (2021) and Charpentier-Noyer et al. (2023). It is illus-

trated in figure 2. Each PIAF forecast (available every 5 min) is used to generate 16 perturbed members using equiprobable

perturbations of the precipitation field: spatial perturbations and amplitude perturbations.130

Figure 2. Illustration of the generation of the PIAF-EPS ensembles

The 16 spatial perturbations are pseudorandom shifts that approximate (together with the unperturbed forecast) a 17-member,

isotropic Gaussian sample in the 2D space. The shifting vectors are computed following the recommendations and dataset of

Wang et al. (2019), which is a Dirac mixture algorithm involving the Cramér-von Mises method. It is a deterministic 2D

distribution that is on average a better approximation of a Gaussian than a Monte Carlo sample, given the small ensemble

size. The vector directions are constant in time for each ensemble member. The vector amplitudes are scaled as a function135
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of lead time so that the amplitude of the spatial shifts grows linearly from zero to 30km over three hours, after which it is

kept constant. This setting was based on a visual examination of spatial prediction errors for a set of high-impact precipitation

events (independent from the ones used for the evaluations in this study).

The 16 amplitude perturbations are multiplications by 2D patterns of the spatially shifted fields. Each pattern is an inde-

pendent realization of a 2D random field that has Gaussian autocorrelations in space, and a serial time autocorrelation from140

a clipped AR(1) autoregressive process. The autocorrelation scales are set to approximately (40km, 6h), respectively. Thus,

the amplitude perturbations are independent between members, and they slowly evolve in time. The standard deviation of the

perturbation amplitude grows linearly in time for the first forecast hour, after which it is kept constant; it has been tuned to

produce reliable average standard deviations of the precipitation spread (as measured by the spread/skill ratio of the whole en-

semble) over a large forecast tuning sample (one month, independent from the cases evaluated in this study). Likewise, a small145

bias correction (amplification of the highest precipitation intensities) of the forecasts with respect to precipitation observations

has been applied using the same tuning sample. An example of the pertubations is given in figure 3.

Figure 3. Example of PIAF-EPS ensemble forecast perturbations. Left : deterministic PIAF forecast of 15-minute rainfall accumulation

(forecast start: 19 Sept 2020 at 06utc, forecast range: 2 hours). This is used as member zero of the ensemble. Right: same field in members 1

to 16, the shading represents rainfall areas above 5mm, with one colour for each member.

The unperturbed PIAF forecast is used as a 17th ensemble member, which makes the ensemble slightly non-equiprobable, but

minimizes the risk of corrupting a good deterministic forecast by applying too large ensemble perturbations. The justification is

that, in a few high impact cases, experience shows that intense Mediterranean precipitation can be quite precisely predicted by150

numerical models thanks to the influence of local orographic features. Further improvement to our (purely statistical) ensemble
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generation technique would be needed to automatically reduce the perturbation amplitudes in such cases, which is left for a

future study.

2.4 The SMASH hydrological model and the Vigicrues Flash method

The rainfall-runoff part of the forecasting chains is based on the SMASH (Spatially-distributed Modelling and Assimilation155

for Hydrology) model. SMASH is a highly distributed, continuous and conceptual hydrological model developed at INRAE

and Hydris Hydrologie (Jay-Allemand et al., 2020). The general principle of the model is presented in Figure 4. SMASH is

inspired by the GR (Génie Rural) reservoir-based family of models (Perrin et al., 2003). For each pixel of the territory, the

model includes a production reservoir (capacity cp), a transfer reservoir (capacity ctr), and an adapted cell-to-cell routing

model, represented by a routing reservoir (capacity cr).160

Figure 4. General outlines of SMASH (Jay-Allemand, 2020). P represents the local rainfall over one cell; E is the potential evapotranspira-

tion; Pr is the effective rainfall; q is the elementary discharge; and Q is the total routed discharge

The version of SMASH used in this study is the one that is currently operational in the Vigicrues Flash system. This version

is working on a 1-km grid, at a 15 min time resolution. It is a "lag 0" version, which means that there is no cell to cell routing

scheme (or in other words, that the routing velocity is infinite) : the discharge on a cell is the sum of the instantaneous discharges

of all the upstream cells. This method does not provide realistic hydrographs, but this is not considered as a problem, since the

warning thresholds are defined based on a "climatological" run of the same model (see next paragraph).165

According to the Vigicrues Flash method, the forecasted hydrographs obtained with SMASH are compared with reference

discharge quantiles corresponding to defined return periods. These reference values are obtained by running the SMASH model

for a long and continuous period, and by adjusting a Gumbel distribution to the corresponding annual maximum series. For this
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study, a 15-year long simulation period was used, which is the longest period that can be simulated based on an homogeneous

PANTHERE QPE product. T=2, 5 and 10-year discharge quantiles were obtained on each 1km2 pixel of the studied area (see170

section 3.1). Figure 5b illustrates the discharge quantiles obtained for the return period T=2-year. In the West zone, the effect

of relief in the Cévennes mountainous area is clearly distinguishable, logically resulting in higher rainfall amounts and higher

flood quantiles. However, the results appear less consistent in the East zone, firstly because several very intense events occurred

in the 2006-2021 simulation time window (sensibility to sampling), and secondly because the quality of the radar rainfall is

questionable in this area. Indeed, a V-shaped band can be clearly observed, which is probably the result of bad calibration of175

the Collobrières radar. However this does not alter the methodology and results proposed in this study, since only simulated

(and not observed) discharges are used to assess the quality of the forecast results.

3 Case studies and verification method

3.1 Study area and selected events

The South of France and particularly the Mediterranean region has experienced a large number of catastrophic flash flood180

events this last decade, both in terms of economical damage and casualties. The study has been focused on the most recent

events that hit this area, since the ensemble PIAF-EPS forecasts can be released only from February 2019 (it would be labour

intensive to process older cases, because of technical constraints in the archiving system, and they would be less and less

relevant to current operational forecasting systems because the AROME and PIAF systems are frequently upgraded, typically

once a year). Eight heavy precipitation events which occurred between 2019 and 2021 in the South-Eastern region of France185

(see Figure 5a) were selected. Figure 6 shows the maps of rainfall accumulations for each event and Table 1 provides additional

information including the duration, the maximum rainfall accumulation (spatial maximum), and the intensity and geographical

extent of the hydrological responses simulated by the SMASH model.
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Figure 5. Study area and French departments affected by the events (a) and T = 2years specific discharge quantiles estimated on the study

area based on a 15-year SMASH simulation (b)
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Figure 6. Maps of rainfall accumulations for each of the selected events. These maps were drawn using the ANTILOPE QPE (Laurentin,

2008), i.e. the best reanalysed QPE merging radar estimations and rain gauge observations
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Date Max. cumulative rainfall
SQ≥QT=2y

SZone
× 100

SQ≥QT=5

SZone
× 100

SQ≥QT=10y

SZone
× 100 Zone Label

22-25/11/2019 380 mm 22.06 7.92 3.86 East A

01/12/2019 360 mm 11.92 6.53 4.77 East B

02-03/10/2020 600 mm 2.42 1.28 0.97 East C

03-04/10/2021 370 mm 4.31 2.00 1.33 East D

21-24/10/2019 300 mm 11.03 6.91 5.39 West E

18-20/09/2020 590 mm 1.35 0.77 0.53 West F

13-14/09/2021 330 mm 0.36 0.27 0.25 West G

03-04/10/2021 540 mm 3.94 1.76 1.38 West H
Table 1. Description of the flash flood events: date, maximum rainfall accumulation (spatial maximum), percentages of the study area where

the SMASH simulated peak discharge exceeds the 2-year, 5-year and 10-year discharge thresholds, affected zone (by reference to figure 5)

and assigned label

The rainfall accumulations presented in Figure 6 show that the selected events have very different features. Some events,

such as events A and E, show a wide spread of rainfall. For these events, the larger rainfall accumulations appear homogeneous190

over areas covering one or several departments. The other events are much more localized and have a larger variability of

rainfall accumulations. Some of them show locally very intense rainfall cells (events C, D and F). The rainfall accumulation

map for the October 2021 event shows that two separated zones were affected by the heavy rains, and the study of the QPE

over time revealed that both zones were not affected at the same time : the heavy rainfall hit the Lozère department first, on

October 3rd, and then the Bouches-du-Rhône and Var departments, on October 4th. It was therefore decided to separate this195

event into two distinct events, labelled D and H.

For most of the 8 selected events, the larger hydrological responses occurred in small ungauged catchments. However,

for events A, B and C, post-event studies could estimate the maximum peak discharge values (Lebouc and Payrastre, 2020;

Brigode et al., 2021; Payrastre et al., 2022). For events A and B, it was estimated that peak discharges reached locally a 5 to 15

m3/s/km2 range, in the small basins hit by the larger rainfall accumulations. These two events are hydrologically interesting200

because they happened close in time and in the same area: the maximum peak discharges were probably observed during event

B because of larger soil saturation and higher rainfall intensities observed on short time steps (Brigode et al., 2021). For event

C (Storm Alex) which hit the same department (Alpes Maritimes), Payrastre et al. (2022) estimated that despite significantly

higher rainfall accumulations, the peak discharges were globally similar to those observed during the November-December

2019 flash flood events, except on some upstream basins were the estimated peak discharges reached values in the 15 to 20205

m3/s/km2 range. Considering these discharge values, events B and C are among the most intense floods observed up to now

in the Var and Alpes Maritimes departments.
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Because of the limited information about the actual intensity and location of the flood responses during the eight selected

events, it is difficult to compare more thoroughly the characteristics of the flood events. The comparison of simulation results

obtained with the SMASH model can, nevertheless, bring additional information. Table 1 gives the percentage of surface where210

several discharge thresholds (2, 5, and 10-year return periods) were exceeded by the reference simulation. It refers to figure A1

in appendix A, which gives an idea of the extent of the flood responses exceeding these thresholds for each event. Again, we

can see here that the considered flood events show very different characteristics in terms of spatial extent: from very localized

events (F and G), up to more generalized flood responses (events A, B and E), according to the SMASH simulations.

3.2 Verification method215

As mentioned in the introduction, the objective is to assess the benefits of forcing the flash flood nowcasting chain with the

PIAF-EPS forecasts. The whole river network of the study area, including small ungauged rivers, should be considered. As

a consequence, the verification process has been applied at each 1km2 pixel of the SMASH model, to provide an as detailed

evaluation as possible. Since no discharge observation is generally available at this 1km2 scale, the discharge simulated by

the SMASH hydrological model forced with the observed PANTHERE QPE was used as reference. This reference also allows220

ignoring the errors due to the hydrological model, the performance of which have not been assessed in this study. Therefore, in

the following, Qsim is assigned to the discharge calculated by the SMASH model forced with PANTHERE QPE, while Qfor

is assigned to the discharge forecasts obtained by forcing the model with the different rainfall forecasts.

The verification process aims to evaluate if the exceedances by Qsim of discharge thresholds Qt, are well anticipated by

Qfor, i.e. when rainfall forecasts are used as input of the chain, instead of the PANTHERE QPEs. Since Qfor may correspond225

either to ensemble forecasts (case of PIAF-EPS QPF) or to deterministic forecasts (case of other QPFs), we selected verification

scores that can be applied on both deterministic and probabilistic forecasts.

The verification is based on the filling of contingency tables, which are commonly used for assessing the ability of forecasting

systems to detect binary events (Mason, 1982). The contingency tables are filled by comparing the reference (Qsim) and

forecasted (Qfor) discharges to a threshold (Qt), resulting in the four outcomes presented in table 2. Then, the probability230

of detection (POD = a
a+c ) and the probability of false detection (POFD = b

b+d ) can be calculated. In the case of ensemble

forecasts, they can be plotted for different forecast probabilities to create a ROC curve (Mason, 1982).

Qfor ≥Qt Qfor <Qt

Qsim ≥Qt HIT (a) MISS (c)

Qsim <Qt FALSE ALARM (b) CORRECT REJECTION (d)
Table 2. Content of a contingency table. a, b, c, and d correspond to the number of forecasts in each category.

Contingency tables are usually filled by combining a continuous temporal sequence of forecasts, at one single site and

for one unique lead time. However, we followed here the principle proposed by Charpentier-Noyer et al. (2023) to build the
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contingency tables by aggregating the forecasts issued during the most critical phase of the event (i.e. the forecasts issued during235

the flood rising limb, just before the threshold exceedance by Qsim, independently of the lead time). The detailed methodology

is explained in appendix B.1. It includes a selection process of the forecasts considered to fill the contingency table, called

stratification. Some adaptations have been introduced in this process in order to create a forecast-based stratification, rather

than an observation-based stratification, following the recommendations of Bellier et al. (2017). The details are provided in

appendix B.2.240

Here we considered the forecasts obtained for each pixel of the SMASH model to build the contingency tables. Three

discharge thresholds were considered at each pixel : Qt = {QT=2y,QT=5y,QT=10y} (see section 2.4 and appendix A). The

contingency tables obtained for each threshold may be visualised directly on a map (see figure 7), or summarized using

synthetic scores such as the POD or POFD. However, the POFD score is sensitive to the extent of the verification area, which

directly determines the number of correct rejections (see figure 7). The choice of the verification area was already identified as245

an important issue by Charpentier-Noyer et al. (2023) who suggested to pay a particular attention to the choice of the "HFA"

(Hydrological Focus Area). For that reason, we chose to summary the contingency tables based on the Critical Success Index

(CSI = a
a+b+c ) instead of POD/POFDs. The CSI score does not take into account the correct rejections, thus is much less

sensitive to the choice of the verification spatial window. This choice avoided the issue of defining an appropriate verification

zone for each of the considered events.250

It is important to mention that although the verification method is based on classical statistical scores, it cannot characterize

the performances of the QPFs for long temporal series. We are only assessing here the ability of the different QPFs to correctly

predict several specific events of high intensity. The obtained results, even if providing interesting information, cannot be

extrapolated to future events because of the too limited number of events considered in this study.

4 Results and discussion255

4.1 Maps of contingency tables : presentation on a result sample

As explained in section 3.2, the contingency tables filled for each event can be represented on maps. One map can be extracted

for each discharge threshold Qt = {QT=2y,QT=5y,QT=10y}, and each QPF product. In the case of the PIAF-EPS ensemble

forecast, one map is obtained for each percentile of the forecast ensemble.

These maps allow to observe and compare the performance of the forecasts. For example, figure 7 shows the maps obtained260

in the case of event F and a threshold Qt =QT=2y . For this event, the constant rain and the AROME-NWC forecasts showed

poor performance , the first one correctly emitting warnings on the affected region but emitting many false alarms elsewhere,

and the other one missing most of the area affected by the event. The CSI scores summarizing the content of the contingency

tables (see section 3.2) are 0.12 and 0.13 respectively for these two forecasts. The improvements observed for the deterministic

PIAF forecast (CSI=0.21) confirm that, in this case, the blending of radar QPFs and AROME-NWC was effective. Moreover,265
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the 60% percentile of the PIAF-EPS forecast, which has the highest CSI score among the other percentiles, shows even better

results than the PIAF forecast (CSI=0.27), by reducing notably the area affected by false alarms.

Figure 7. Maps of contingency tables for each forecast product, event F, Qt =QT = 2y

Figure 8 shows the maps of the contingency tables obtained for another single event (event B) and for the different PIAF-

EPS percentiles. This figure illustrates the evolution of the forecast performance depending on the considered percentile of

the ensemble forecast. Logically, for low percentiles, the number of correct detections is very small and much lower than the270

number of missed warnings, resulting in low values of CSI. For intermediate percentiles, the number of correct detections

increases with respect to the number of missed warnings and false alarms, which results in an increase of the CSI values.

However, for larger percentiles, the number of false alarms increases up to the point that it outweighs the increase of correct

detections, resulting in a decrease of the CSI scores.

This evolution of detection performance depending on the percentile of the ensemble forecasts directly explains the ex-275

pected "hill" shape of the CSI curves presented on figure 9. The "best" ensemble percentiles can be identified by selecting the

maximum on these curves. In the case of event B, figures 8 and 9 show an optimal HIT/MISS/FALSE ALARM balance for

percentiles around 50-60%.
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Figure 8. Map results of contingency tables for the QT=5y (event B).

4.2 Analysis of CSI scores at the event scale

Figure 9 summarizes the CSI scores obtained for each event, each discharge threshold and each of the considered forecast280

products. One unique CSI score is computed for the reference deterministic forecasts, whereas a CSI curve is obtained in

the case of the ensemble PIAF-EPS forecast. These CSI scores provide a synthetic view enabling to compare the respective

performances of the different forecast approaches. For a more detailed analysis, the corresponding maps of contingency tables

are presented on figure D1 in appendix D: the best performing (i.e. maximal CSI) reference deterministic forecast is compared

to the best performing PIAF-EPS percentile, for the QT=10y threshold and for each event. These maps are complementary285
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to the CSI values presented on figure 9, since they allow to visualize the geographical differences between the different QPF

products, resulting in CSI differentials.

Before comparing the different forecast approaches, two generic observations can be made on figure 9. First, the performance

of all forecasts tends to decrease as the discharge thresholds increase. This is in agreement with the theory developed by

Schaefer (1990), according to which the CSI is biased by the frequency of the forecast event. Typically, the rarer an event is,290

the higher its return period is, and the lower is the CSI. Here it leads to a CSI decrease of 0.1 to 0.2, when comparing the

2-year and 10-year discharge thresholds. Second, the CSI curves for the PIAF-EPS forecasts do not always have the expected

"hill" shape with a maximum at intermediate percentiles. Especially, for events D, E, G and H, the maximum CSI is reached

at low percentiles. It means that, for those events, PIAF-EPS had a tendency to over-estimate the discharge probabilities. This

is consistent with the rank diagrams plotted for each event in appendix C (figure C1), which generally show a slight positive295

discharge bias for the same events (D,E,G,H). A larger bias can even be observed for the forecast discharges exceeding the 2-

year return period threshold, even if in this specific case the bias can be increased by the stratification process (see appendix C).

Furthermore, figure 9 shows that the intermediate percentiles of PIAF-EPS (i.e. 40% to 60%) outperform almost systemat-

ically the naive forecast approach (constant rain), and the deterministic PIAF forecast. This confirms that adding spatial and

amplitude perturbations to the PIAF QPFs, to obtain the PIAF-EPS ensemble QPF product, resulted in better performances of300

the flash-flood forecasts, at least for the 8 intense flash-floods considered in this study. The results are more mixed concerning

AROME-NWC. For 5 out of 8 events, AROME-NWC shows equivalent or lower CSI values than the deterministic PIAF, and

it is outperformed by the PIAF-EPS forecasts in these cases, at least for intermediate percentiles. Conversely, there are 3 events

for which AROME-NWC leads to significantly higher CSI values than deterministic PIAF (events E, G and H). For two of

these three events (events E and G), PIAF-EPS largely compensates the poor performance of deterministic PIAF, leading to305

CSI values that are similar to AROME-NWC (events E and G). Lovat et al. (2022) have already shown that, depending on

the lead time, AROME-NWC can outperform deterministic PIAF forecasts. The relationship between the CSI values and the

lead times can hardly be investigated in this work, as the verification method applied looks at all the forecast runs emitted in a

specific time window, regardless of their respective lead times. An explanation for the poor performance of deterministic PIAF

on these events could be a sudden stationarization of the rain cells. In such a situation, the Lagrangian radar QPE extrapolation310

becomes a very poor rain predictor, because it cannot account for rapid changes in the speed of high precipitation areas. The

results obtained here suggest that PIAF-EPS can at least partly handle the inherent uncertainty of these situations where the

blending with radar QPE extrapolations limits the quality of the deterministic PIAF forecast.
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Figure 9. CSI curves of each event, for the various forecast products and thresholds

4.3 Averaged CSI scores

Averaged CSI scores were also calculated in order to provide a more synthetic view of the forecast performance, by aggregating315

them over all studied events. There are two possible ways of calculating global CSI scores:

17



CSI1 =
1

Nevt

∑Nevt

n=1
an

an+bn+cn
and CSI2 =

∑Nevt
n=1 an∑Nevt

n=1 an+bn+cn

Since the studied events have very different spatial extents (see figure A1 and table 1), we chose to use the CSI1 formula

where the averaging implies that all the events have the same weight. CSI2 would have given much more relative weight to

the large-scale events.320

The global CSI curves obtained from CSI1 are presented in figure 10 and indicate that globally, PIAF-EPS 30-60% per-

centiles outperform all the deterministic reference forecasts. This identification of "best" percentiles can be useful for end-users

(WMO, 2012), particularly if they remain relatively stable depending the considered events. In this paper, we assess the value

of these "best" percentiles in a slightly overoptimistic way, since we use all events to derive the optimum CSI values (i.e. it

is not an "out of sample" optimization), because our sample is very small. This methodological weakness does not invalidate325

our conclusions, however, since the CSI curves are rather stable from case to case in our sample. The global CSI1 scores

also confirm that AROME-NWC globally performs better than PIAF for the eight studied events. However, this conclusion is

largely influenced by events G and H, for which the CSI differences between AROME-NWC and deterministic PIAF are the

largest.

Figure 10. Averaged CSI scores calculated for the eight flood events

Finally, the averaged CSI values obtained with the intermediate percentiles (40%-50%) of PIAF-EPS are in the 0.3-0.4 range,330

depending on the return period of the discharge threshold considered. The CSI scores can reach up to 0.6 for some specific

events. These CSI values may appear relatively low in the perspective of operational decision making. However, the real added

value of these forecasts for decision making can only be evaluated by considering the balance between the gains associated

with the hits, and the costs related to false alarms. Moreover, other studies dealing with flash-flood nowcasting found similar

CSI values of 0.20 (Clark et al., 2014) and 0.38 (Gourley et al., 2017), even though these CSI values were obtained in very335

different contexts (using observations over the whole U.S.), and thus cannot be directly compared with the values of this paper.
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4.4 Anticipation lead times

The CSI scores presented above assess the ability of the rainfall products to predict discharge threshold exceedances, regardless

of anticipation. However, maximizing the anticipation times of good forecasts is another desirable property in an operational

forecasting context. An estimation of the anticipation times associated with the HITs in contingency tables was proposed by340

Charpentier-Noyer et al. (2023) , by computing the difference tsim−trun, where tsim represents the first threshold exceedance

by the reference simulation, and trun corresponds to the starting time of the first forecast that identifies this threshold ex-

ceedance event. Anticipation times for each QPF (50th percentile for PIAF-EPS, as intermediate percentiles where identified

as optimal in the previous section) and for the 5-year threshold are presented in figure 11. Firstly, the results show that the

anticipation times can reach up to 6 hours. This is due to the choice of counting a HIT when tsim falls within the inter-345

val ]trun; trun +T +3h] (see appendix B2), T being the forecast range (0< T ≤ 3 hours). Anticipation times exceeding the

forecast length of 3 hours, even if helpful in anticipating threshold exceedances, result from unrealistic forecasts where the

threshold crossing is forecasted too early. It is thus logical to observe that the constant rain scenario has the highest number of

anticipation times exceeding 3 hours, and it is rather satisfying to note that PIAF-EPS has the least occurrences in this antic-

ipation range. The comparison of histograms in the 0-3h range of anticipation times confirms that PIAF and PIAF-EPS yield350

a larger number of HITs globally. Additionally, it shows that this increase of HITs is primarily obtained in the 0-2h range of

anticipation times compared to AROME-NWC. This logic is clear as it corresponds to the forecast range where radar extrap-

olations are involved in building PIAF and PIAF-EPS. Furthermore, it suggests that PIAF-EPS brings additional HITs mainly

in the 0-1h range of anticipation times when compared to PIAF. However, drawing systematic conclusions is complicated, as

we are only examining one ensemble percentile here, and we are considering all events, while important differences may exist355

within each event.

Figure 11. Anticipation times aggregated for all events and for each QPF (50th percentile for PIAF-EPS), for the 5-year threshold

5 Conclusions

The development of efficient tools and methods for flash-flood forecasting is of crucial importance to limit the often catastrophic

consequences of flood hazards. The objective verification of newly developed forecasting methods and products is a key step
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before their integration into operational forecasting suites. In the current study, the potential of the experimental PIAF-EPS360

short-range ensemble rainfall product for flash flood forecasting purposes has been assessed. Eight heavy precipitation events

that occurred between 2019 and 2021 in the South-Eastern region of France were reanalysed using a hydrological forecasting

suite similar to the one that is currently operational in the French national flash flood warning system, Vigicrues Flash. An

original verification process, directly derived from Charpentier-Noyer et al. (2023), was performed on each 1km2 pixel of the

area. This allowed us to plot maps to precisely visualize the forecasts performance, and to summarize it as CSI scores.365

The hydrological forecasts based on PIAF-EPS have been compared to those obtained with deterministic PIAF and AROME-

NWC rainfall forecasts, since PIAF-EPS is directly obtained from these two deterministic products. A naive constant rainfall

scenario was also used as a reference. The results showed that PIAF-EPS systematically outperformed the constant rainfall and

the deterministic PIAF forecasts. As indicated in previous studies, it was also observed that PIAF does not always outperform

AROME-NWC, because the forecast quality depends on the lead time and on the performance of radar QPE extrapolations.370

Over the eight events considered in this study, it was observed that the PIAF-EPS performance is generally similar to, or better

than AROME-NWC.

In a nutshell, the results obtained confirm the added value of using the PIAF-EPS products for anticipating flash floods in the

Mediterranean area. We argue that statistical scores such as the CSI provide valuable indications of performance despite not

being applied on long data series, but on only eight particularly intense flash-floods. Indeed, when assessing the performance375

of such a new forecasting product, it is essential to carefully check its behaviour on some high-impact events, as a complement

to more generic statistical evaluations. The results presented here should nevertheless be complemented with more robust

statistical evaluations over longer periods of time and on a larger number of high precipitation events, bringing a more generic

overview of the quality of the forecast ensembles.
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Appendix A: Hydrological presentation of the studied events380

Figure A1. Discharge quantiles exceeded by the PANTHERE simulation Qsim during each event
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Appendix B: Methodology for filling the contingency tables

The contingency tables are filled for each pixel of the zones. For an ensemble forecast product, each percentile is considered

separately, to be treated as a deterministic product. For each pixel, we look at the hydrograph Qsim(t) simulated by SMASH

with the PANTHERE QPE as input, and at the hydrographs Qfor(t) forecasted by SMASH when forced with a QPF product

(constant rain scenario, AROME-NWC, PIAF or PIAF-EPS percentiles). Let trun be the forecast start time, let T be the385

forecast range (0< T ≤ 3h), and let Qt be the considered discharge threshold.

B1 Detailed method of Charpentier-Noyer et al. (2023) : observation-based stratification

The method, applied on each spatial entity and for each forecast probability, is as follows:

– If there exists t such that Qsim(t)≥Qt, then the date tsim corresponding to the first threshold exceedance by Qsim is

selected. A sample S consisting of all the pairs (trun,T ) such that trun < tsim ≤ trun +T is constructed.390

– If there exists (trun,T ) ∈ S such that Qfor(trun,T )≥Qt, a HIT is counted. The trun corresponding to the first

threshold exceedance is selected to calculate the anticipation time : tsim − trun.

– If Qfor(trun,T )<Qt ∀(trun,T ) ∈ S, a MISS is counted.

– If Qsim(t)<Qt ∀t, the date tsim corresponding to the global maximum of Qsim is selected and a sample S consisting

of all the pairs (trun,T ) such that trun < tsim ≤ trun +T is constructed.395

– If there is (trun,T ) ∈ S such that Qfor(trun,T )≥Qt, a FALSE ALARM is counted.

– If Qfor(trun,T )<Qt ∀(trun,T ) ∈ E, a CORRECT REJECTION is counted.

B2 Adapted method : forecast-based stratification

The detailed process used to build the contingency table is as follows:

– If there exists (trun,T ) such that Qfor(trun,T )≥Qt, the pair (trun,T ) corresponding to the first threshold exceedance400

by Qfor is selected.

– If Qsim(t)<Qt ∀t, a FALSE ALARM is counted. See figure B1a.

– If there is t such that Qsim(t)≥Qt, the first threshold exceedance occurring at tsim :

• If tsim ∈ ]trun; trun +T +3h], a HIT is counted. The anticipation time is equal to tsim − trun. The time

interval ]trun; trun +T +3h], and particularly the +3h part, was chosen in order to create a tolerant window405

for the HIT counting. It seemed coherent to use a time tolerance equal to the maximum lead time. See figure

B1b.

• If tsim > trun +T +3h, a FALSE ALARM is counted. See figure B1c.
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• If tsim ≤ trun, a MISS is counted. See figure B1d.

– If Qfor(trun,T )<Qt ∀(trun,T ) :410

– If Qsim(t)<Qt ∀t, a CORRECT REJECTION is counted. See figure B1e.

– If there exists t such that Qsim(t)≥Qt, the first threshold exceedance occurring at tsim, a MISS is counted. See

figure B1f.

Figure B1. Six possible cases in the new methodology (inspired by Charpentier-Noyer et al., 2022): (a) forecasted threshold exceedance not

present in the simulated hydrograph (False Alarm), (b) threshold exceedance correctly forecasted (Hit), (c) threshold exceedance anticipated

but anticipation largely exceeding the forecast lead time (false alarm), (d) threshold exceedance detected by one forecast, but right after

the simulation (miss), (e) absence of threshold exceedance both in the simulation the forecasts (correct rejection), (f) threshold exceedance

undetected by all the forecasts (miss)
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Appendix C: Rank diagrams

Rank diagrams, also called Talagrand diagrams (Candille and Talagrand, 2005), are one of the most common tools for assessing415

the reliability of meteorological ensemble forecasts. The general idea of this tool is to count the number of times the observation

value is included in a given interval of the ensemble forecast quantiles. As a consequence, if the observation value is often close

to low quantiles, it means that the forecast model has a tendency to overestimate. On the other hand, if the observation is more

often close to high quantiles, then the model tends to underestimate. Logically, a perfect diagram would be perfectly flat,

which would mean that the observation is uniformly distributed among the ensemble forecast quantiles. However this never420

happens in reality. The rank diagram is useful to quickly detect biases in an ensemble forecast. It can detect positive or negative

biases, but also under and over dispersion of the ensemble forecasts. Traditionally, the rank diagram is applied to rainfall

ensemble forecasts. However, in this study it was applied to discharge ensemble forecasts, at each pixel of the SMASH model

computation grid. The rank diagrams presented here combine all the forecasts issued during each event, and are computed for

a fixed lead time (one hour).425

In order to distinguish the roles of high and low discharges in the rank diagram form, it was decided to build separate rank

diagrams for each category. However it is necessary to take precautions concerning the criteria that distinguish those categories.

Indeed, Bellier et al. (2017) have shown that a sample stratification based on the observations can introduce bias. A sample

stratification based on forecasts is recommended in most of the cases. Therefore, the following categories were chosen:

– Qmed ≤ 1
2QT=2y for low discharges.430

– 1
2QT=2y <Qmed ≤QT=2y for medium discharges.

– Qmed >QT=2y for high discharges.

Where Qmed is the median discharge of the hydrological ensemble forecasts and QT=2y is the 2-year return period quantile,

according to the historical run of the SMASH model.

Note that even if based on forecast discharges, this stratification can still cause bias: when only the areas and time steps with435

high forecast discharges are considered, the overall probability that the considered forecasts exceed the observed discharges

tends logically to be higher, and conversely. However, this stratification effect does not affect the global rank diagrams.
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Figure C1. Rank diagrams obtained for each event, 1hour-lead-time
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Appendix D: Maps of contingency tables for each event

Figure D1. Best deterministic forecast (left) and best PIAF-EPS percentile (right) in terms of CSI, for each event, Qt =QT=10y
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