

1 A major midlatitude hurricane in the Little Ice Age

2 John Dickie^{1,2} and Grant Wach¹

- ³ ¹Basin and Reservoir Lab, Department of Earth and Environmental Sciences
- 4 Dalhousie University, Halifax, Canada B3H 4R2
- 5 ²Corresponding Author
- 6 Contacts: john.dickie@dal.ca; grant.wach@dal.ca

7 Abstract

- 8 An unusually severe hurricane struck Nova Scotia during the Seven Years' War (1756-1763),
- 9 causing exceptional damage to the ships of two naval fleets. Its impact was so much greater than
- 10 that of modern storms that it warranted detailed study. Quantitative storm attributes were
- 11 extracted from hourly entries in logs of multiple ships scattered by the hurricane. Wave height
- 12 and wind data at multiple ship locations characterized storm intensity which was compared to
- 13 storm surge calculated at two coastal sites. A comparison to modern Atlantic hurricanes suggests
- 14 it was a major hurricane, likely Cat 4 intensity at landfall making it more powerful than any
- modern (post-1851) storm despite the colder climate of the Little Ice Age (LIA c1300-1850).
- 16 Mean annual and multi-decadal climate trends did not capture the weather (days to weeks) that
- 17 fueled this storm. Understanding its climatology and that of other major LIA midlatitude
- 18 hurricanes can improve our understanding of natural variability and potential future impacts
- 19 under warming oceans.

20 **1.0 Introduction**

On September 25, 1757, a powerful hurricane struck the coast of Cape Breton Island,
Nova Scotia, Canada (Fig. 1). There would have had no record of the 'Louisbourg Storm' had it

- 23 not coincided with a British naval blockade of France's Fortress Louisbourg during the Seven
- 24 Years' War (1756-1763). Three French naval squadrons at Louisbourg and the blockading

Figure 1. Study location in Nova Scotia, Canada. Arrow length and orientation represent the distance and direction traveled by the British fleet on September 21-26, 1757. Dashed line is the estimated storm track with eye locations for dates shown calculated from log entries of winds except for Sept. 24 which is estimated from logs plus Fort Cumberland winds. Inset shows the study area relative to the North Atlantic and the hurricane track based on historic records.

The British blockade placed 49 sailing battleships and warships in the path of a storm descriptions suggest was a major hurricane (Category 3+ on the Saffir-Simpson Hurricane Wind Scale). This would make it more intense than any landfalling storm in Canadian waters since modern records began in 1851 (Landsea et al. 2004, NOAA HURDAT data *in* Finck 2015), yet it struck during the colder climate of the 'Little Ice Age' (LIA; c1300-1850).

36	Hurricanes are fueled by sea surface temperatures (SSTs) over 28C. They rapidly lose
37	energy over cooler midlatitude waters where half undergo extratropical transition (Hart and
38	Evans 2001). Modern tropical cyclone intensity is characterized in real time with instruments
39	carried by aircraft, satellites and at ground stations. In contrast, pre-industrial metrics must be
40	derived from historical observational records. Subjective interpretation and geographic bias can
41	make them less reliable than instrumental data (e.g., Jones and Mann 2004), yet they offer a
42	temporal resolution unavailable in scientific proxies, and they straddle the end of the LIA and the
43	rise of modern anthropogenic emissions. Oliver and Kington (1970) and Lamb (1982) first
44	explored their suitability for weather research. Naval logbooks were subsequently found to be a
45	superior source of historical weather data given that hourly ship observations were systematically
46	recorded in real time with a consistent terminology. Logbook data have been compiled to assess
47	historical atmospheric circulation patterns (e.g., Garcia et al. 2001, Garcia-Herrera et al. 2005a,
48	Wheeler et al. 2010, Barriopedro et al. 2014). CLIWOC, the Climatological Database for the
49	World's Oceans, was compiled from British, French, Dutch and Spanish naval logbooks. It
50	established a common historical wind force terminology to document ocean surface atmospheric
51	circulation patterns between 1750 and 1850 (Garcia-Herrera et al. 2005b).
52	To date, pooled historic naval records were used to identify longer-term regional
53	circulation patterns and extend the multidecadal climate signal into the industrial period (e.g.,
54	Garcia-Herrera at al. 2005a, b, Wheeler et al. 2010, Barriopedro et al. 2014). In contrast, this
55	study takes advantage of an unusual concentration of warships in the path of a single hurricane to
56	characterize its intensity. It seems counterintuitive that the colder LIA climate would generate
57	more powerful midlatitude Atlantic cyclones than in the modern era, yet historical records show
58	the LIA to be generally 'stormier' with unusually powerful midlatitude hurricanes despite

59	conditions that dampen hurricane energy. This study seeks to take advantage of a unique
60	historical data set to characterize the intensity of the Louisbourg Storm using spatial and
61	temporal weather metrics extracted from ship logbooks and Admiralty records, and compare
62	interpreted storm metrics to those of modern systems to ascertain if it was a major hurricane.
63	Characterizing its intensity supports historical descriptions and proxies of unusually severe
64	storms and sets the stage for more detailed LIA hurricane climatology.
65	2.0 Methodology
66	The logs of British ships at sea and French ships in Louisbourg Harbour contained: (1)
67	dates and times, (2) positions, (3) bearings, (4) wind directions, (5) wind speed terms that
68	evolved into the Beaufort Wind Scale (e.g., Garcia-Herrera et al. 2005a, b; Wheeler 2005;
69	Wheeler et al. 2010), and (6) descriptions of sea state. In the 18th Century navigation and
70	weather data were entered in the log starting at noon which marked the start of the sea day.
71	Britain adopted the Gregorian calendar in 1752. In 1757 ships relied on a local meridian for
72	longitude. British Admiralty records are preserved in England: Admiralty Correspondence and
73	Papers (ADM1/481, 1488, 2294) cover storm damage to British vessels on the 'Halifax Station'
74	in 1757, Fleet Lists (ADM8/31, 32) at the National Archives at Kew (UK), as are Royal Navy
75	Master's (ADM 51/409, 633,1075) and Captain's (ADM 52/578,819,1064) logbooks.
76	Lieutenant's logs (ADM51) kept at the National Maritime Museum, Greenwich, were often
77	incorporated into Captain's logs with addenda. Master's and Captain's logs of the Royal Navy
78	warships Invincible, Windsor, Sunderland, Eagle, Terrible, Grafton, Newark, and Captain, plus
79	ancillary official correspondence, were used in this study. All logs were consistent in content and
80	format. Letters and logbook entries written in cursive at sea were transposed, compiled into a
81	time sequence and cross referenced. Logs from French warships Fleur de Lys, l'Abenaquise,

82	Tonnant, l'Inflexible and Dauphin Royal translated from French describe conditions in
83	Louisbourg Harbour (McLennan 1918). Wind directions from gimballed ships' compasses
84	reference magnetic north. Bearings and wind directions used the 32 points of the compass
85	(Smyth 1867, Blake and Lawrence 1999) and were translated to azimuths. The Beaufort Wind
86	Force Scale covers winds up to hurricane threshold. 18th Century navies knew hurricanes
87	common to the Caribbean sometimes reached North America's eastern seaboard. The modern
88	Saffir-Simpson Hurricane Wind Scale provides a 1 to 5 storm intensity rating based on a
89	hurricane's maximum sustained wind speed over one minute. Since no such real time wind force
90	measurement existed in 1757, Virot et al.'s (2016) critical hurricane wind speeds that break trees
91	provided a basis for estimating winds that broke ships' masts in the Louisbourg Storm.
92	3.0 The Little Ice Age (LIA)
93	Matthes (1939) named the LIA to explain European glacier expansion during a
94	historically colder climate period. Heightened climate variability saw deeply cold winters and
95	cooler mean annual temperatures primarily in the northern hemisphere (e.g., Kreutz et al. 1997,
96	Mann 2002, Jones and Mann 2004). It may have been triggered by late 13th Century volcanic
97	eruptions and a cooling feedback process sustained by Arctic sea-ice expansion (Miller et al.,
98	2012). North Atlantic mean annual SSTs were 1-2°C cooler than today (e.g., Keigwin, 1996,
99	Winter et al. 2000, Richey et al. 2009, Saenger et al. 2009, Cronin et al. 2010, Bertler et al. 2011,
100	Mazzarella and Scaffeta 2018, Gebbie 2019). The Maunder Minimum, the coldest part of the
101	LIA, (MM; 1645-1715) saw greater 'storminess' during polar air breakouts from Europe
102	correlating to more frequent easterly gales in the English Channel and Approaches in 1685-1750
103	(Wheeler et al. 2010). Concentrated storm horizons in coastal dunes across western Europe and
104	in Brittany and on France's Mediterranean coast correlate to the coldest part of the LIA

105	(Dezileau et al. 2011, Van Vliet-Lanoe et al. 2014, Sicre et al. 2016, Jackson et al. 2019).
106	Dezileau et al. (2011) attributed LIA storminess to cold-enhanced lower tropospheric
107	baroclinicity modifying prevailing westerlies. In the northwest Atlantic, Donnelly et al. (2001)
108	described major hurricane deposits in New England coastal sediments dating to 1635, 1638 and
109	1815. Ludlum's (1963) compilation of historical northwest Atlantic hurricanes and tropical
110	storms includes the LIA's major 'Independence Hurricane' that struck New England on August
111	29, 1775 and the 'Newfoundland Hurricane' of September 9, 1775, a storm that left 4000 dead to
112	become Canada's deadliest hurricane (Ludlum 1963, Ruffman 1996).
113	Canada's Scotian Shelf on the Atlantic seaboard (Fig. 1) is dominated by the cold, south-
114	flowing, low-salinity Labrador Current. It originates in the Davis Strait of the Canadian Arctic
115	and hugs the coast to the start of the midlatitudes at Cape Hatteras, North Carolina where it
116	meets, mixes with, and redirects seaward the tropical, north-flowing more saline Gulf Stream.
117	The Labrador Current plays a critical role in hurricane extratropical transition (Hart and Evans
118	2001). Sediment cores from the Emerald Basin off Nova Scotia show 1600 years of cold
119	Labrador Current temperatures show a sudden and sustained warming from 1850 to the present
120	(Keigwin et al. 2003). Landsea et al. (2004) and Chenowith (2006) show a sharp increase in the
121	number and percentage of historical Atlantic tropical cyclones striking eastern Canada since
122	1850 with higher storm frequency correlating to rising SSTs (Vecchi and Knutson 2008).
123	Historical records offer detail unavailable in annual to multidecadal proxy trends.
124	Anomalous midlatitude coastal SST warming over days to weeks, conditions that fuel tropical
125	cyclones, are not likely to appear in annualized data weighted by colder, sustained LIA winters.
126	Jacoby and D'Arrigo's (1989) North American northern and Arctic temperature reconstruction
127	shows above normal temperatures in the 1750's. Lieutenant John Knox recorded unusually high

128	temperatures In Halifax on July 20, 1757, which fellow officers found hotter than Gibraltar and
129	the Mediterranean (Knox 1769). This coincided with a heat wave in Britain and southwest
130	Europe from July into early August that set records lasting into the 21st Century (The London
131	Chronicle, July 23-26, 1757; London Magazine, November 1758 p. 563-4). London on July 16-
132	26 had an average high of 41.2C (Nature Notes, 24 August 1882, p. 415). This does not assume
133	weather conditions in Europe fueled a hurricane tracking into Atlantic Canada, but demonstrates
134	that seasonal temperatures across the northern hemisphere known to intensify midlatitude
135	hurricanes existed.
136	The one hurricane recorded in 1757 by Chenowith (2006) was first seen off Florida and
137	followed the coastline past Cape Hatteras to New England on September 22-24 (Ludlum 1963).
138	Benjamin Franklin's observations of this specific storm led him to conclude that hurricanes "are
139	produced by currents of cold winds rushing from the north along the Atlantic coast and mingling
140	with the warm winds produced by the gulf-stream" (Warden 1819). It passed New England on
141	September 23-24 (Boston Herald, Oct. 17, 1757, Ludlum 1963) and struck Nova Scotia as the
142	Louisbourg Storm on September 25, 1757. Its arrival at Fort Cumberland on the Nova Scotia
143	border 200 km inland late September 22 included 'violent rain' and 'constant heavy rain' into the
144	23rd. Knox's journal on the 27th describes September 24-26 with 'I never saw such storms of
145	wind and rain as we have had for some days past' followed by 'windy, showery and very cold'
146	weather on the 27-28th and 'dry, cold windy weather' on the 29th, followed by frost and snow
147	by mid-October (Knox 1769).

148 **4.0 Historical Context**

Great Britain's 'Grand Plan' for the Seven Years' War (1756-1763) North American
campaign (Syrett 2008) began with John Campbell, the 4th Earl of Loudoun, appointed

151 Commander-in-Chief of the British military in North America. His adversary was Louis-Joseph de Montcalm-Grozon, Marquis de Montcalm de Saint-Veran, commander of French forces in 152 North America. To attack Montcalm at Quebec without leaving a powerful French fortress at his 153 rear, Loudoun needed to first seize Fortress Louisbourg in Nova Scotia. On May 22 to 25, 1757, 154 troops boarded 134 transport ships in New York to rendezvous at Halifax with a fleet departing 155 156 Britain under Vice Admiral Frances Holbourne. Pitt's brief removal as Prime Minister delayed the fleet but his return to power with a coalition government saw it depart Cork, Ireland, on May 157 8, 1757. The delay allowed France to reinforce Louisbourg with three naval squadrons ahead of 158 159 the British arrival. On May 23 five French battleships and a frigate under Chevalier Joseph de Beauffremont arrived from the West Indies, followed on June 15 by four battleships and two 160 frigates under Joseph Francois de Noble du Revest from Toulon. On June 20 nine battleships and 161 162 two frigates under Vice Admiral Emmanuel-Auguste de Cahideuc (Comte Dubois de la Motte) arrived from Brest. 4000 French troops bolstered a garrison of 3200 plus 300 Acadians and 163 164 Mi'kmaq warriors (McLennan 1918, Stoetzel 2008). Holbourne's arrival at Halifax on June 30 165 bolstered Loudoun's force to create an army of 12 000. HMS Gosport arrived on August 5 with letters intercepted from a French schooner captured off Newfoundland detailing Louisbourg's 166 reinforcement. It rendered the attack on the fortress untenable. Loudoun returned to New York 167 168 and on September 11, 1757 Holbourne sailed his fleet north to blockade Louisbourg (Fig 1). 5.0 The Louisbourg Storm 169

Historic references include ship structure whose specifications are presented in metric
converted from Imperial units. Square rigged ships' masts are, bow to stern, fore, main and
mizzen. Heavy canvas sails were the sole means of propulsion.

173 On September 21, Holbourne's 80-gun flagship Newark recorded fresh westerly gales followed by fair weather and light breezes then calm with fog on the 22nd. At Louisbourg an 174 officer on the 28-gun frigate Fleur de Lys saw a low mist enter the harbour. Invincible also 175 noted the mist which dissipated on the 23rd under a rising southeast breeze. Newark and Fleur de 176 Lys found the breeze veered to the southeast and intensified into moderate gales. On the 24th 177 178 Invincible and Newark reported increasing cloud, haze and rain under freshening southeast gales. French naval officers, expecting a storm, moored the fleet in two lines off Royal Battery (Fig. 2) 179 with 4 x 2-ton anchors at the bow of each ship. The British fleet at sea secured masts and rigging 180 181 and naval guns, weighing as much as 3 tons apiece, for heavy seas and strong winds.

183 Figure 2. Louisbourg Harbour showing the French fleet anchorage, Louisbourg Lighthouse,

184 Royal Battery, Battery de la Grave Guardhouse, and the southeast seawall overlain on chart

- image © Canadian Hydrographic Service (2011) Chart Guyon Island to Flint Island 1:37,866
- 186 [Issued 2022-11-26]. Shoals (shaded) relative to ship hull displacements of 5.8-7.0 m (19 to 23')

187 give a general sense of the scale of waves and surge needed to throw battleships on shore and

188 destroy the southeast facing seawall.

On September 25 fresh southeast gales rose to excessive hard gales with very heavy rain. 189 Windsor also recorded heavy rain and mist under intensifying strong gales and hard squalls. At 7 190 Sunderland faced very hard gales that rose to extreme hard gales by 10. At 12 Invincible faced 191 192 strong gales, torrential rains and a 'great sea.' At 2 a.m. Invincible faced an 'excessive hard gale' and 'a hurricane of wind' and mountainous waves. Topsails used to control ships in severe 193 weather were 'blown to rags' and Sunderland's main staysail was torn off. Waves 'made a free 194 195 passage over...' the 70-gun Devonshire and smashed in Lightning's stern gallery. The wind carried off the 8-gun Cruiser sloop's mizzen mast and three sailors were swept away. Cruiser 196 dumped its guns being 'very near foundering having been underwater several times.' 197 198 Windsor noted extreme gales, severe squalls, heavy rain and a great sea. Canvas 199 tarpaulins were stripped off deck gratings, allowing waves and rain to flood the ships with up to 200 2.5 m (9') of water in the hold despite the pumps in operation. Windsor and Sunderland sailed S 201 across SSW winds. Grafton's three-ton 7 m (30') rudder was torn off the ship. Invincible's rudder was likewise damaged and saved only by its preventer chains. Sails were torn away. 202 Flexural strain opened Invincible's hull planking and snapped the gun deck's iron reinforcing 203 brackets, allowing the entire deck supporting tens of tons of artillery to drop several inches. 204 Sunderland's foretopmast, reinforced by 10 x 5 cm (2") rope shrouds plus stays, was torn 205 off the ship and carried into the night with two sailors. *Invincible* was thrown onto her 'beam 206 ends' (side), forcing it to heave overboard 10 x 12-pounder upper deck guns and carriages 207 weighting roughly 20 tons to right the ship. Invincible's main yard was ordered taken down but 208 before it could be done the wind broke the 38" (1 m) diameter mainmast 20' (6 m) above the 209

210	deck. The falling mast tore down the foretopmast and mizzen mast and crushed the starboard
211	gunwale. The wreckage pulled the ship over and swept sailors John Guttredge and Samuel Kivby
212	into the sea. Invincible's crew cut the tangled mass away before it sank the ship.
213	The French officer at La Grave Battery (Fig. 2) led his men to safety when seawater rose
214	over their knees (Chevalier de Johnstone 1758). French warships drifted in port while offshore
215	the sea swallowed the British 14-gun Ferret sloop with its 104 crew. Around 6 a.m. Invincible
216	saw five British ships dangerously close to shore. Eagle was blown onto its beam ends and
217	jettisoned 10 upper deck guns and cut down its mizzen mast to right the ship. Captain's
218	foretopmast was torn off and caried off with two topmen. Lightning drifted toward offshore
219	breakers less than 200 m away. As Captain Faulkner ordered Windsor's guns jettisoned he saw
220	that Invincible had lost all but its lower foremast and bowsprit.
221	Sunderland was swept by 'a very heavy large sea' that 'passed freely over us.' Barges
222	lashed to the decks of <i>Windsor</i> and <i>Invincible</i> were smashed and swept overboard. <i>Sunderland</i>
222 223	lashed to the decks of <i>Windsor</i> and <i>Invincible</i> were smashed and swept overboard. <i>Sunderland</i> cut down its main topmast and threw guns overboard to right the ship. Its 61 cm (24") diameter
222 223 224	lashed to the decks of <i>Windsor</i> and <i>Invincible</i> were smashed and swept overboard. <i>Sunderland</i> cut down its main topmast and threw guns overboard to right the ship. Its 61 cm (24") diameter mizzen mast broke off under the wind. Anchors did not slow its drift toward the offshore
222 223 224 225	lashed to the decks of <i>Windsor</i> and <i>Invincible</i> were smashed and swept overboard. <i>Sunderland</i> cut down its main topmast and threw guns overboard to right the ship. Its 61 cm (24") diameter mizzen mast broke off under the wind. Anchors did not slow its drift toward the offshore breakers. The mainmast was cut down and the ship stopped near the breakers under a kilometer
222 223 224 225 226	lashed to the decks of <i>Windsor</i> and <i>Invincible</i> were smashed and swept overboard. <i>Sunderland</i> cut down its main topmast and threw guns overboard to right the ship. Its 61 cm (24") diameter mizzen mast broke off under the wind. Anchors did not slow its drift toward the offshore breakers. The mainmast was cut down and the ship stopped near the breakers under a kilometer from shore. The 74-gun <i>Terrible</i> also stopped near the breakers. <i>Eagle's</i> foretopmast was cut
222 223 224 225 226 227	lashed to the decks of <i>Windsor</i> and <i>Invincible</i> were smashed and swept overboard. <i>Sunderland</i> cut down its main topmast and threw guns overboard to right the ship. Its 61 cm (24") diameter mizzen mast broke off under the wind. Anchors did not slow its drift toward the offshore breakers. The mainmast was cut down and the ship stopped near the breakers under a kilometer from shore. The 74-gun <i>Terrible</i> also stopped near the breakers. <i>Eagle's</i> foretopmast was cut down to lessen the strain on the ship. It sailed past the breakers. <i>Newark's</i> anchor cable was cut
222 223 224 225 226 227 228	lashed to the decks of <i>Windsor</i> and <i>Invincible</i> were smashed and swept overboard. <i>Sunderland</i> cut down its main topmast and threw guns overboard to right the ship. Its 61 cm (24") diameter mizzen mast broke off under the wind. Anchors did not slow its drift toward the offshore breakers. The mainmast was cut down and the ship stopped near the breakers under a kilometer from shore. The 74-gun <i>Terrible</i> also stopped near the breakers. <i>Eagle's</i> foretopmast was cut down to lessen the strain on the ship. It sailed past the breakers. <i>Newark's</i> anchor cable was cut and guns went overboard to regain control and also cleared the offshore reef. Dawn's light
222 223 224 225 226 227 228 229	lashed to the decks of <i>Windsor</i> and <i>Invincible</i> were smashed and swept overboard. <i>Sunderland</i> cut down its main topmast and threw guns overboard to right the ship. Its 61 cm (24") diameter mizzen mast broke off under the wind. Anchors did not slow its drift toward the offshore breakers. The mainmast was cut down and the ship stopped near the breakers under a kilometer from shore. The 74-gun <i>Terrible</i> also stopped near the breakers. <i>Eagle's</i> foretopmast was cut down to lessen the strain on the ship. It sailed past the breakers. <i>Newark's</i> anchor cable was cut and guns went overboard to regain control and also cleared the offshore reef. Dawn's light revealed a signal flag raised at the French fishing village of St. Esprit to give the British crews
222 223 224 225 226 227 228 229 230	lashed to the decks of <i>Windsor</i> and <i>Invincible</i> were smashed and swept overboard. <i>Sunderland</i> cut down its main topmast and threw guns overboard to right the ship. Its 61 cm (24") diameter mizzen mast broke off under the wind. Anchors did not slow its drift toward the offshore breakers. The mainmast was cut down and the ship stopped near the breakers under a kilometer from shore. The 74-gun <i>Terrible</i> also stopped near the breakers. <i>Eagle's</i> foretopmast was cut down to lessen the strain on the ship. It sailed past the breakers. <i>Newark's</i> anchor cable was cut and guns went overboard to regain control and also cleared the offshore reef. Dawn's light revealed a signal flag raised at the French fishing village of St. Esprit to give the British crews hope (Bristol Journal, November 12, 1757).

French warships at Louisbourg drifted under severe winds and waves. The 70-gun *Dauphin Royale* fired a gun in distress when its anchor cables snapped. It struck the 80-gun

233	Tonnant, destroying its bowsprit, figurehead and cutwater, and damaging Tonnant's rudder and
234	poop deck. The two ships snagged l'Abenaquise's anchor cables and the three entangled ships
235	were heaved on shore at Royal Battery (Fig. 2). The <i>l'Abenaquise</i> frigate along with 25 merchant
236	ships, 50 schooners and 80 small vessels were driven ashore, many high and dry, and many
237	sailors drowned (McLennan 1918). By 10 a.m. the British fleet was close to being driven onto
238	the breakers at St. Esprit. Grafton struck a rock but floated free and managed to anchor. Windsor
239	and Eagle were able to avoid them by sailing south. Eagle's Captain Palliser saw Nottingham or
240	Tilbury near shore, landward of the breakers with its bow in with its foremast and mizzen mast
241	gone. It was afloat and attempting to wear (turn). Waves striking the coast tore down stone
242	seawalls at the fortress and reached lakes 10 km inland. Seawater flooded the streets of
243	Louisbourg, 'something never before seen' (Chevalier de Johnstone 1758).
244	Tonnant 'floated with the tide and the wind veered south, then west at 11 a.m. At 11:30
245	Windsor noted the wind had strengthened from the west. At noon Eagle recorded weakening
246	squalls. On Sunderland massive waves swept sailor George Lancey off the fore yard 24 m (80')
247	above the keel. By 3 p.m. waves at Louisbourg fell enough that <i>l'Inflexible</i> sent sailors to assist
248	other ships. French captains petitioned 74-year-old Admiral Dubois de la Motte to attack the
249	British but his orders to defend Louisbourg had been met and he kept his ships in port. James
250	Johnstone, a Scot serving as a French officer, felt that five French warships could have captured
251	the entire British fleet (Chevalier de Johnstone 1758). This sentiment was shared by Lady Anson,
252	daughter of a confidante of Lord Newcastle with whom Pitt had formed his coalition
253	government, in an October 31, 1757 letter to the First Lord of the Admiralty, her husband
254	George Anson (Anson 1757). On September 27th a boat arriving at Louisbourg from St. Esprit
255	announced that Tilbury had wrecked with over 120 lost. Four schooners with 160 French troops

- were unable to counter the heavy seas so they marched to the site across flooded land. Mi'kmaq
- 257 warriors gaining the wreck informed the shipwrecked sailor they would not be harmed since the
- storm had brought them to their shores (Moreau St. Mery *in* McLennan 1918).

259 6.0 Wave Height

Wave height is a function of wind speed and duration, fetch and bathymetry. Comparison 260 261 to ship dimensions provides an estimate. Sunderland's and Devonshire's bows were sufficiently submerged to tear away ships' boats lashed to the deck. As the ship crested each wave the 12.2 m 262 (40') from the keel to the upper deck (Lavery 1983) provides a height estimate with another 3-6 263 264 m (15-20') needed to flood the deck and tear away 18 m (60' long) 3 ton boats. Lightning's stern gallery windows 40-50' above the keel were destroyed by wave strikes from astern, suggesting 265 significant wave heights of 12.2 m (60'). A sailor washed out of the fore yard by a wave infers a 266 267 maximum wave height of 25 m (80') or more.

268 **7.0 Wind**

269 In this study the Beaufort Wind Force Scale is used to describe wind speeds from gale to 270 hurricane force (63-118 kph). The Saffir-Simpson Hurricane Wind Scale describes hurricane winds greater than 118+ kph with peak windspeeds averaged over one minute defining hurricane 271 intensity Categories 1-5. Wind speeds derived from log entries were plotted from the first 272 southeasterlies to the diminishing westerlies at the storm's end. A best-fit windspeed curve 273 274 passing through hurricane threshold speeds reach sustained critical wind force that broke masts, tore away sails and rolled ships onto their sides. Ephemeral squalls of 1 min duration above 275 threshold winds under the one-minute duration of the Saffir-Simpson scale reflects Category 3-4 276 hurricane intensity. The hurricane threshold of 118 kph plus 'hard squalls' of 60+ kph is 277

sufficient to mee the threshold wind speed of a major hurricane (178 kph), yet sustained winds

280

Figure 3. Hurricane wind evolution with time. The time sequence shows the arrival of southeast 281 winds (Beaufort Scale) intensifying to hurricane winds (118 kph), peaking to sustained 171 kph 282 283 critical wind force with increasing squalls, followed by a rapid decline to gale force westerlies. The horizontal axis is divided into days (noon) and 2-hour intervals. The vertical scale is wind 284 speed in kph. A best fit curve [1] is typical of windspeeds as a hurricane passes a fixed point. A 285 best fit curve for squall frequency [2] in ships' logs adds ephemeral wind speed increases to 286 sustained winds. 171 kph is considered the minimum critical wind force considering the superior 287 materials integrity of masts and their reinforcement with rigging. Wind directions represent, 288 north to south, winds affecting: French ships at Louisbourg, British ships near St. Esprit, 289 Windsor and Sunderland south of St. Esprit, and Invincible closest to the eye. 290

291 7.1 Wind Speed

- A 'gale' (Beaufort Force 8) was originally between a breeze (Force 2) and a violent
- storm (Force 11) and established a benchmark (Table 1). A 'near gale,' its diminutive (Smyth
- 1867) corresponds to a 'moderate gale.' Wheeler et al. (2010) categorized 'strong gale,' 'hard
- 295 gale,' 'blew hard' and 'storm' as stronger than 'fresh gale.' Adjectives 'stiff' and 'fresh' indicate
- winds stronger than a gale (Force 9) while 'severe' or 'hard' reflect a 'storm' (Force 10).
- 297 'Excessive' and 'extreme' hard gale, necessarily stronger than a 'hard gale,' appears to
- correspond to 'violent storm' (Force 11) which does not appear in the logs. 'Hurricane' (Force
- 12) is mentioned in both French and British records.

Logbook Term	Beaufort Scale	Rating	Wind (kph)
Hurricane	Hurricane	12	118+
Excessive / Extreme Hard Gale	Violent storm	11	103-117
Severe / Hard Gale	Storm	10	89-102
Strong / Stiff Gale	Strong Gale	9	75-88
Gale	Gale	8	62-74
Moderate Gale	Near Gale	7	50-61
Strong / Stiff Breeze	Strong Breeze	6	39-49

Table 1. Logbook Beaufort Terms and Associated Windspeeds (kph).

301

Squall' is a historical term for an increase in wind speed sustained above threshold for at
least one minute. The National Oceans and Atmospheric Administration (NOAA) defines it as a
sudden increase by at least 16 knots (33 kph) and sustained at over 22 knots (41 kph) for one
minute. Environment and Climate Change Canada (ECCC) defines squalls as increases of 34
knots (63 kph) or more above prevailing winds sustained for over a minute. The World
Meteorological Organization (WMO) uses 8 m/s and 11 m/s (29 and 40 kph) above threshold for
over one minute while the American Meteorological Association (AMA) notes squalls are of

309 'several minutes' duration. In considering these definitions 'squall' is taken to be a sudden increase in wind speed of 40-60 kph above threshold and sustained for at least one minute. We 310 place 'hard squalls' at the upper end of the spectrum. 311 Masts were constructed from single fir and pine trees into the 1770's and selectively 312 harvested in North America, Great Britain and the Baltic (Lavery 1984). Virot et al. (2016) 313 314 determined the wind force to break trees is 151 kph irrespective of species and a +9% factor for large diameter trees gives 165 kph. It assumes structural defects from a longer life offset the 315 advantage of size, yet masts were selected based on a lack of defects. Masts were not free-316 317 standing but reinforced to transfer wind energy from the sails to the hull. *Invincible's* masts were secured by 16 x 5 cm (2") hemp shrouds per side, each tensioned with paired deadeye blocks, the 318 lower block in an iron band bolted to the ship's frame. Invincible's 1 m (38") diameter lower 319 320 mainmast stepped against the ship's keelson rose 35.7 m (117') through two decks. Above it stood a 21.3 m (70') 51 cm (20") diameter topmast and above that the 10.7 m (35') 28 cm (11") 321 322 diameter topgallant mast (Lavery 1984, 1988). 323 7.2 Wind Direction French ships anchored at Louisbourg faced consistent SSE winds veering to westerlies on 324

the 26th. *Invincible* sailed SW under SE winds, but it faced a gradual wind directional change to SW under a NE-tracking cyclone. *Sunderland* and *Windsor* sailed south across SSW winds, while ships to their north by St. Esprit led by *Newark* faced SSE winds. *Invincible* was among the southernmost ships, the first to face hurricane winds and suffered the most damage (Fig. 3). It sailed SW¹/₂W (230°) against EbS (101°) winds on September 24 (Fig. 1). On September 24-25 the ship's displacement was 98 km toward 256.7° (22.5 km S; 96 km W). 6 km SE (135°) of Ile

331 Chedabucto Bay it faced W (270°) winds and SE surface currents estimated at 3.49 kph based on currents of 0.97 m/s recorded there during Hurricane Juan in 2003 (CBCL Report 2015). 332 On September 25 to 26 Invincible sailed 159 km toward 102.75 degrees. The ship spent 333 11 hours under SE winds and another 11 hours under SW winds. The last 2 hours it drifted west 334 335 under jury rig. The strongest winds were SW (225°). Cosine Law (Figure 4) gives a wind speed 336 of 170.62 kph to achieve 165 kph at the mast on the moving vessel. The 5.62 kph difference infers vessel motion played only a minor role in reaching critical force yet is still 18% of the 337 Saffir-Simpson Category 3 wind force range. Squalls of 40-60+ kph added to 170.62 kph yields 338 339 211-231 kph winds sustained for one minute, or Category 4 intensity. Normal lines drawn to 340 anticlockwise wind vectors tangential to concentric cyclone wind bands converge at the eye and lack the asymmetry of extratropical cyclones (e.g., Hart and Evans 2001). Successive eye 341 342 locations show the hurricane's track from landfall on Canso Peninsula and crossing Cape Breton before entering the Gulf of St. Lawrence. 343

Using Cosine Law, we solve for velocity a where α is 122.25 degrees: $a^2 = b^2 + c^2 - 2bc \cos \alpha$ $a^2 = (165)^2 + (10.13)^2 - 2 \times (165 \times 10.13) \times \cos (122.25)$ $a^2 = 27,225 + 102.62 - 2 \times (1671.45) \times (-0.5336)$ $a^2 = 27,327.62 + 1783.77$ a = 170.62 kph from 227.75 degrees (where b = 165 kph and β = 55 degrees)

344	
-----	--

Figure 4. Invincible drifted 159 km toward 102.75° between September 25 and 26 over 24 345 346 hours. It experienced SE (11 hours), then SW (11 hours) and finally W winds (2 hours). This solution focuses on the 11 hours the ship was under SW winds, the strongest winds closer to the 347 center of the cyclone (Fig. 3). During elapsed hours 59-70 the vessel sailed toward 102.75 under 348 349 a SW wind (225°) at an average of 6.64 kph based on the total displacement of 159 km toward 102.75°. The incident angle between the wind and the ship displacement vectors is 122.25°. A 350 351 surface current in Chedabucto Bay during Hurricane Juan (CBCL Report, 1995) of 0.97 m/s (3.492 kph) is assumed to be a reasonable estimate for this study. The resultant of 6.64 kph 352 toward 102.75° indicates speed relative to surface currents was 10.13 kph. Image not to scale. 353

354	8.0 Surge
355	Surge is a rise in sea level due to atmospheric pressure and storm winds and is
356	proportional to a tropical cyclone's intensity and translation rate. Coastal surge is a reasonable
357	estimate of storm intensity and can serve as a test of intensity derived from wind data.
358	8.1 Louisbourg Harbour
359	A Parks Canada coastal erosion study at Fortress Louisbourg National Historic Site
360	revealed iron mooring rings set in the remains of a seawall. Modern high tide compared to these
361	rings established historical high tide 0.90 m (3') of sea level rise since 1757 (Duggan 2010). La
362	Grave Battery (Fig. 2) is 2.0 m (6.6') above sea level (asl; Google Earth mid-tide datum), so sea
363	level rise plus flooding to sentries' knees (0.5 m) yields a 3.4 m (11') mid-storm surge. Historic
364	buildings along the waterfront (Fig. 2; 45°53'33.57" N 59°59'07.89" W) are 5 m (16.4') asl
365	while the first street, Rue Royale, is 7 m (22.9') asl. Seawater flooding the town streets at the
366	lowest levels and adjusted for sea level rise indicates 5.9 m (19.4') to 7.9 m (21.4') of surge.
367	Tonnant 'floated with the tide' when the wind veered south at 11 a.m. (Fleur de Lys log in
368	McLennan 1918). Louisbourg's 12-hour tidal cycle and assuming low tide around 10 a.m. gives
369	a high tide at 4 a.m. coinciding with storm landfall and creating a storm tide (Fig. 3). Backing out
370	the 1.5 m (5') tidal range gives a 4.4-6.4 m (14.4-21') peak surge, consistent with the earlier
371	surge of 3.4 m (11') at La Grave.
372	8.2 Tilbury Wreck Site
373	HMS Tilbury was a 58-gun square-rigged warship lost on the coast in the storm. Eagle's

captain saw either *Tilbury* or *Nottingham* shoreward of the breakers near St. Esprit, 45 km south
of Louisbourg. It was deduced to have been *Tilbury* since *Nottingham* survived the storm with a
different array of masts than seen on this ship.

377	Tilbury's gundeck was 147' (45 m) with a 42' (13 m) beam. It displaced 1888 tons, drew
378	18.1' (5.5 m) and its length to beam ratio of 3.5:1 provided warships the stability required of a
379	floating gun platform (Lavery 1983). Tilbury's wreck offers a chance to estimate surge at a
380	second location. This necessitates an exploration program to locate the wreck using historical
381	research and a marine magnetometer survey. 'Wreck' on a 1776 chart and parish boundaries
382	marked by fieldstone walls located historic St. Esprit (Fig. 4a, b). Storm (2002) used Zinck's
383	(1975) image of an 18th Century 6-pounder British naval gun at 'Tilbury Rocks' to view
384	Tilbury's wreckage in 4 m (15') from a boat in 1969. <i>Tilbury</i> 's location remained undisclosed
385	under treasure trove laws and a letter from the British High Commission in 2006 reminded the
386	Minister of Foreign Affairs Canada of the wreck's sovereign immunity and the wreck location
387	remained undisclosed, forcing the present study to conduct a search.
388	For this exercise, Ship Lists of Royal Navy vessels in Nova Scotia in 1757 were
389	consulted. Surviving logs of ships that had been in the hurricane were copied, translated and
390	cross-referenced to position the fleet up to September 26 (Fig. 1). Longitude entries were
391	deduced to be based on a zero meridian at Louisbourg Lighthouse (Fig. 2). A draft hydrographic
392	chart (Hanson 1954) was digitized and gridded with missing data interpolated. Paired depths and
393	locations were entered in a spreadsheet and a grid-plot of local bathymetry supported a marine
394	proton magnetometer survey of Tilbury Reef isobaths following best practices for submerged
395	archaeological sites (Cornwall Council Report 2010-R012). Dipole targets were investigated by
396	divers who identified mid-18th Century wreckage including a 6-pounder British naval gun in situ
397	in 3 m (10') depth near the 6-pounder on shore, both interpreted to be from <i>Tilbury's</i> forecastle.
398	In 1757 <i>Tilbury</i> bow was observed at the time as 'bow in' near shore (2.1 m / 7' 1757
399	bathymetry), landward of the breakers and 'attempting to wear' (turn) in water sufficiently deep

- 400 for its 18' displacement as it was seen to be afloat and under sail. Adding in the hydrographic
- 401 survey datum offset of 0.6 m (2') between lowest low tide at St. Esprit and the Google Earth
- 402 WGS84 (World Geodetic Standard 1984) mid-tide datum for Louisbourg suggests a minimum
- 403 4.0 m (13') surge at St. Esprit. Post-storm relaxation flow stranded the *Tilbury* (Fig. 4b) and
- 404 allowed native warriors to reach it.

Figure 5a. Location of Tilbury shipwreck. Inset map X – X' (45°38'31.21" N 60°27'41.99" W
to 45°38'31.61" N 60°26'05.28" W) correspond to Fig. 5b. Satellite image © Google Earth Pro
7.3.6.9345 (2022) St. Esprit, Nova Scotia Canada. 45°38'31.54"N 60°27'37.76"W Eye alt 4.50
km TerraMetrics © 2023 MaxarTechnologies © 2023

410

Figure 5b. Bathymetry of Tilbury site at lowest low water adjusted for 1757 relative sea level
(solid line) and minimum surge (dashed line) needed to float Tilbury. Coastal retreat of 27 m
(90') calculated from historic sea level gives the 1757 shoreline. Topographic and bathymetric
data are in feet for comparison to Tilbury's displacement.

415 **9.0 Modern Storms**

On September 29, 2003, Hurricane Juan struck Nova Scotia with peak winds of 165 kph 416 (Category 2), a significant wave height of 10 m (32'), a maximum wave height of 19.9 m (65') 417 and a surge at landfall near Halifax of 1.5 m (4.9') (Lixion 2003). On January 20-22, 2000, an 418 419 extratropical meteorological 'superbomb' that developed off Cape Hatteras struck Nova Scotia 420 with peak winds of 25-30 m/s (90-108 kph), a significant wave height of 12 m (39'), a peak wave height of 19 m (62') to 23 m (77') at drilling rigs near Sable Island (JD pers. obs.) and a 1.4 m 421 (4.6') surge at landfall near St. Esprit (Lalbeharry et al. 2009). Both cyclones produced similar 422 sea states and surge which can be compared to the Louisbourg Storm. On September 24, 2022, 423 Category 3 Hurricane Fiona began extratropical transition as it crossed the Scotian shelf. A cold 424

- 425 trough over Nova Scotia directed its landfall to the Canso Peninsula. Winds of 140 kph in Nova Scotia reached 177 kph in Newfoundland and Labrador. Significant and peak wave heights were 426 17 m (56') and 30 m (98') and surge reached 2.4 m (8'). 427 NOAA provides a database of Atlantic tropical cyclones (www.nhc.noaa.gov/data). In 428 1969 Hurricane Camille generated a 7.3 m (24') surge while Katrina in 2005 produced a storm 429 430 tide of 8.2 m (27'). Laura in 2020 had a 5.2 m (17.2') surge. The first two were Category 5 hurricanes and Laura was a powerful Category 4 with a 2.7-4.0 m (9-13') surge spanned 130 km 431 from Beaumont to Lake Arthur, Texas. In 2018 Hurricane Dorian (Cat 5) slowed to 2 kph over 432 433 the Bahamas creating an 8.5 m (28') surge (Avila et al. 2020). Hurricane Juan's translation before landfall was 1-5 m/s (4-18 kph). Compared to North Atlantic hurricane translation rates of 434 17.7-19.3 kph (11-12 mph) the Louisbourg Storm slowing from 33 kph over water to 4.6 kph at 435 436 landfall may have enhanced surge height, similar to Dorian over the Bahamas. The most intense rain, wind and surge of the right front quadrant enhanced storm impact on the coastline due to 437 438 the slowing storm's oblique track down the axis of the island.
- 439 **10.0 Discussion**

On September 25, 1757, sailors '50 years afloat had never seen the sea so awful' and
described 'a most terrible hurricane' (Chevalier de Johnstone 1758). The Louisbourg Storm
delayed the capture of Louisbourg and delayed Britain's North American campaign. If the
French fleet had seized the stricken British ships, a doubled naval force with 4000 French troops
would have captured Halifax, changing the balance of naval power in North America and likely
the outcome of the war.

On September 22, 1757, one day before the hurricane passed New England, southeast
winds and heavy rains struck Fort Cumberland. On September 23 the British fleet at sea and the

- French fleet in Louisbourg harbour noted a wind direction change to the southeast. By the
 evening of September 25 winds reached hurricane force and lasted 16 hours, peaking in intensity
 at 4 a.m. and causing maximum ship damage. British ships off St. Esprit and French ships 45 km
 north at Louisbourg faced SE winds. British warships *Windsor*, *Sunderland* and *Invincible* south
- 452 of the main fleet passed from the hurricane's front right quadrant's SE winds to SSW winds in its
- rear right quadrant (Fig. 6). They contain a hurricane's maximum winds, surge and rainfall.

Figure 6. Hurricane eye position on September 25-26, 1757. Normal lines drawn from wind
vectors at different ship locations converge at the eye. Successive eye locations give the storm
track and allow translation speed to be estimated. 1. Invincible, 2. Windsor and Sunderland, 3.
Newark and most of the British fleet, 4. French fleet at Louisbourg on September 25. Dashed
circle is a reconstruction of the storm center on September 26 using the same method.

460	Invincible was closest to the strongest winds at the eyewall which seems to be reflected in the
461	greatest ship damage. Sunderland and Windsor, respectively, recorded WNW and NWbW winds
462	as the storm passed, while Invincible drifted 159 km under SWbW to W winds. The storm
463	crossed the Canso Peninsula and Chedabucto Bay, entered central Cape Breton and returned to
464	the Gulf of St. Lawrence on September 26. Hard squall winds of 60+ kph added to the threshold
465	of 118 kph alone would make the Louisbourg Storm a major hurricane. However, the severe
466	damage to ships from sustained winds of 171 kph plus frequent squalls at this time of 40-60+
467	kph yields wind speeds of 221-231 kph, or Cat 4 on the Saffir Simpson scale. Surge height at
468	Louisbourg greatly exceeds surge of all three modern Scotian Shelf analogs and while consistent
469	with surge from various Category 4-5 hurricanes, it was still 100 km from landfall.
470	A blocking air mass over North America driven by the early onset of colder, more
471	baroclinic autumn air fits the description by Benjamin Franklin. A hurricane following the coast
472	drew energy from warm Gulf Stream waters which helped it intensify as it tracked north.
473	Landfall slowed its translation of 33 kph over the ocean to 4.6 kph over land, possibly enhancing
474	surge height further enhanced by a rising tide at landfall. An apparently symmetrical wind field
475	suggests an inherently tropical system at landfall. Still, interaction with colder drier air under
476	prevailing westerlies soon after based on weather observations at Fort Cumberland, and the
477	unusual intensity of this system at landfall could argue for thermal energy release in the earliest
478	stages of extratropical transition. The lack of any record of this storm in Newfoundland and
479	Labrador or Quebec likely indicates it dissipated over the Gulf of St. Lawrence.
480	11. Conclusions

The Louisbourg Storm provides an unusual opportunity to characterize the intensity of a
midlatitude LIA Atlantic hurricane. Historic records and proxy studies suggest more severe

483	hurricanes made midlatitude landfall in the colder climate of the LIA than today which appears
484	to be counterintuitive to the conditions needed for hurricane intensification in the midlatitudes.
485	The Louisbourg Storm's intensity was characterized from empirical spatial and temporal data
486	extracted from the logs of British and French naval vessels scattered across its path. The wind
487	speed and direction indicate a large cyclone that appears to have intensified just prior to crossing
488	the Scotian Shelf and may have been sustained by unusually warm coastal waters in the days to
489	weeks prior. Our interpretation that the Louisbourg Storm was a major hurricane is supported by
490	an exceptional coastal surge typically associated with Category 4-5 hurricanes. This storm was
491	therefore more intense than any tropical cyclone in Canadian waters since the end of the LIA. It
492	suggests that annual to multidecadal LIA climate studies may not capture the sub-seasonal (days
493	to weeks) natural variability that can fuel exceptionally severe hurricanes in the midlatitudes.
494	This indicates further research into the climatology of intense LIA hurricanes is warranted in
495	order to determine what those forcing mechanisms might imply for hurricanes intensifying
496	higher into the midlatitudes later in autumn given projections of warming oceans.
497	Data
498	Data used in this study can be made available under reasonable timelines

- 499 Author contributions
- 500 Both authors contributed to the study conception and design. Data collection and analysis were
- 501 by John Dickie. Grant Wach supported scientific resources through the Basin and Reservoir Lab
- and commented on draft versions with both authors approving the final manuscript.
- 503 Competing Interests
- 504 The authors have no relevant financial or non-financial competing interests to disclose.

505 Acknowledgements

- 506 Research assistance was provided by Cambria Huff (Dalhousie), John Allison (UK), the National
- 507 Archives (UK) and the Public Archives of Nova Scotia. Tony Sampson and Zodiac Divers
- 508 supported marine site assessment.

509 Funding

- 510 The authors declare that no funds, grants, or other supports were received during the preparation
- of this manuscript and that they have no financial or proprietary interests in any material
- 512 discussed in this article.

513 **References**

- Anson, Lady. Letter of October 31, 1757 from Lady Anson to George Anson, First Lord of the
 Admiralty, British Museum Collections Add MSS 35,376 f. 145, 1757.
- ADM 1/481 Letters from Commanders in Chief North America 1755-1760. (Charles Holmes)
- 517 The State and Condition of His Majesty's Ships and Sloops under my Command at New
- 518 York between 3rd of May 1757 and 9th following, 1757.
- ADM 1/481 Letters from Commanders in Chief North America 1755-1760. (Frances Holbourne)
- 520 Newark at sea 28 September 1757. [Letter to the Admiralty outlining his squadron's
- 521 inability to continue operations and the need to refit]
- ADM 1/481 Letters from Commanders in Chief North America 1755-1760. (Frances Holbourne)
- 523 Newark at sea 28 September 1757- list of damage to ships sustained in the gale
- ADM 1/481 Letters from Commanders in Chief North America 1755-1760 (Frances Holbourne)
 Newark at Sea 30 September 1757.

526	ADM 1/481 Letters from Commanders in Chief North America 1755-1760. Newark at Halifax
527	14 October 1757. A letter from Frances Holbourne to the Admiralty outlining the state of
528	the squadron and the enemy's ships at Louisbourg
529	ADM 1/1488 Captain's Letters 1757 (Bently, Jonathon). An account of the damages received on
530	board His Majesty's Ship Invincible in the hurricane on the 25th September 1757
531	ADM 1/2294 Captain's Letters 1757 (Palliser, Hugh). Sunday 25th September 1757 at 2 am. An
532	account of the Eagle's situation and of the damages she received in the late gale of wind.
533	ADM 1/2294 Captain's Letters 1757 (Palliser, Hugh). Eagle at sea 30 September, 1757. Account
534	of the Condition of His Majesty's Ship Eagle
535	ADM 8/31 Admiralty List Books 1756-1757 Halifax Station
536	ADM 8/32 Admiralty List Books 1757-1758 Halifax Station
537	ADM 51/471 Captain's Log HMS Invincible (1756 Aug 7–1758 Mar 6)
538	ADM 51/921 Captain's Log HMS Sunderland (1756 Nov 15–1759 Feb 23)
539	ADM 51/409 Captain's Log HMS Grafton (1755 Feb 7–1764 Jun 24)
540	ADM 51/633 Captain's Log HMS Newark (1755 Jul 31-1760 Apr 1)
541	ADM 51/1075 Captain's Log HMS Windsor (1755 Jun12-1759 May 20)
542	ADM 52/578 Master's Log HMS Eagle (1757 Apr 28–1759 Mar 3)
543	ADM 52/819 Master's Log HMS Captain 1756 May 21-1760 Feb 21)
544	ADM 52/1064 Master's Log HMS Terrible (1756 Feb 22-1758 Sep 30)

545	Barriopedro, David, Gallego, David, Alvarez-Castro, M. Carmen, Garcia-Herrera, Ricardo,
546	Wheeler, Dennis, Pena-Ortiz, Cristina, Barbosa, Susana: Witnessing North Atlantic
547	westerlies variability from ships' logbooks (1685-2008). Climate Dynamics. Vol. 43,
548	939-955. DOI 10.1007/s00382-013-1957-8. 2014.
549	Bertler, N.A., Mayewski, P.A., Carter, L.: Cold conditions in Antarctica during the Little Ice
550	Age-Implications for abrupt climate change mechanisms. Earth and Planetary
551	Science Letters, Vol. 308(1-2), 41-51, 2011.
552	Blake, Nicholas, and Lawrence, Richard: The Illustrated Companion to Nelson's Navy. Great
553	Britain: Chatham Publishing. p. 144, 1999.
554	Boston Herald, Oct. 17, 1757
555	British High Commission, Ottawa, Canada Note 26-06: Letter advising the Minister of Foreign
556	Affairs of the British Government's position respecting the sovereign protection of the
557	HMS Fantome and HMS Tilbury shipwrecks. 2006.
558	Canadian Hydrographic Survey Chart: Guyon Island to Flint Island (2011) 1:37,866 [Issue Date
559	2022-11-26. 2022.
560	CBCL Draft Report Bear Head LNG Terminal Metocean Study. 12 pp with Appendices, 2015.
561	Chenowith, M. A.: Reassessment of Historical Atlantic Basin Tropical Cyclone Activity,
562	1700–1855. Climatic Change Vol. 76, 169-240, 2006.
563	Corbett, Julian: England in the Seven Years' War: A Study in Combined Strategy. 2 Vols.
564	London: Longmans, Green and Company. 407 pp, 1907.
565	Cornwall Council Developing Magnetometer Techniques to Identify Submerged Archaeological
566	Sites. Cornwall Council Report 2010-R01. 221 pp, 2010.

567	Cronin, T.M., Hayo, K., Thunell, R.C., Dwyer, G.S., Saenger, C., Willard, D.A.: The medieval
568	climate anomaly and Little Ice Age in Chesapeake Bay and the North Atlantic Ocean.
569	Palaeogeography, Palaeoclimatology and Palaeoecology. Vol. 297, 299-310, 2010.
570	Dezileau, L., Sabatier, P., Blanchemanche, P., Joly, B., Swingedouw, D., Cassou, C., Castaings,
571	J., Martinez, P., Von Grafenstein, U.: Intense storm activity during the Little Ice Age
572	on the French Mediterranean coast. Palaeogeography, Palaeoclimatology,
573	Palaeoecology. Vol. 299, 289–297, 2011.
574	Duggan, Rebecca: Coastal Heritage Planning at the Fortress of Louisbourg – Planning it Out in
575	Archaeology in Nova Scotia: 2010 News. Halifax: Nova Scotia Museum Collections
576	Unit, 1-8, 2010.
577	Donnelly, Jeffrey, Bryant, Sarah, Butler, Jessica and Dowling, Jennifer: 700 yr. sedimentary
578	record of intense hurricane landfalls in Southern New England. Geological Society of
579	America Bulletin Vol. 113 (6), 714-727, 2001.
580	Finck, P.W.: A Geological and Coastal Vulnerability Analysis of Point Michaud Provincial Park,
581	Richmond County, Nova Scotia. Nova Scotia Natural Resources Open File Report ME
582	2015-003. 25 pp. 2015.
583	Garcia, R. R., H. F. Diaz, R. G. Herrera, J. Eischeid, M. d. R. Prieto, E. Hernandez, L.
584	Gimeno, F. R. Duran, and Bascary, A. M.: Atmospheric circulation changes in the
585	tropical Pacific inferred from the voyages of the Manila Galleons in the sixteenth-
586	eighteenth centuries, Bulletin of the American Meteorological Society. Vol. 82, 2435-
587	2455, 2001.

588	Garcia-Herrera, R., Wilkenson, C. Koek, F., Prieto, M., Jones, P. and Koek, F.: Description and
589	general background to ships' logbooks as a source of climatic data. Climatic Change.
590	Vol. 73, 13-36, 2005a.
591	García-Herrera R., Können G.P., Wheeler, D., Prieto, M.R., Jones, P.D., Koek, F.B.: CLIWOC:
592	a climatological database for the world's oceans 1750- 1854. Climatic Change. Vol. 73,
593	1–12, 2005b.
594 595	Gebbie, G.: Atlantic warming since the Little Ice Age. Oceanography. Vol. 32(1), 220–230, 2019.
596	Hanson, R.E.: St. Peter's Island to Kelpy Cove, Southeast Coast, Cape Breton Unpublished 1" =
597	3000' field sheet. Canadian Hydrographic Survey, 1954.
598	Hart, Robert and Evans, Jenni: A climatology of extratropical transition of Atlantic tropical
599	cyclones. Journal of Climate. Vol. 14, 546-564, 2001.
600	Jackson, Derek W.T., Costas, Susana, Guisado-Pintado. Emilia: Large-scale transgressive
601	coastal dune behaviour in Europe during the Little Ice Age. Global and Planetary
602	Change. Vol. 175, 82-91, 2019.
603	Johnstone, (James) Chevalier: The campaign of Louisbourg, 1750-'58 [microform]: a short
604	account of what passed at Cape Breton, from the beginning of the last war (1750) until
605	the taking of Louisbourg, by the English, in the year of Our Lord, 1758. Memoirs of the
606	Chevalier de Johnstone Vol. 3 of 3. 33 pp, (Translated in 1871 by Charles Winchester),
607	1758.
608	Jones, P.D. and Mann, M.E.: Climate over past millennia. American Geophysical Union.
609	https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2003RG000143.42 pp, 2004.

- 610 Keigwin, L.D.: The Little Ice Age and medieval warming period in the Sargasso Sea. Science,
- 611 Vol. 274, 1503-1508, 1996.
- Keigwin, L. D., Sachs, J. P, and Rosenthal, Y.: A 1600-year history of the Labrador Current off
- 613 Nova Scotia. *Climate Dynamics*. Vol. 21, 53–62, 2003.
- 614 Knox's Bristol Journal, November 12, 1757.
- 615 Knox, John (Captain): Historical journal of the campaigns in North America for the years
- 616 1757, 1758, 1759 and 1760. Volume 1 of 3. London: W. Johnston (Ludgate Street),
 617 and Dodsly, J. (Pall Mall), 49, 1769.
- 618 Kreutz, K.J., Mayewski, P.A., Meeker, L.D., Twickler, M.S., Whitlow, S.I., and Pittalwa, I.I.:

Bipolar changes in atmospheric circulation during the Little Ice Age. Science. Vol.
277 (5330), 1294-1296, 1997.

- 621 Lalbeharry, Roop, Bigio, Ralph, Thomas, Bridget and Wilson, Laurence: Numerical simulation
- of extreme waves during the storm of 20-22 January 2000 using winds generated by the

623 CMC weather prediction model. Atmosphere-Ocean. Vol. 47.1, 99-122, 2009.

- Lamb, H.H.: Climate, history, and the modern world. Methuen: New York. 387 pp, 1982.
- Landsea, C. W., Anderson, C., Charles, N., Dunion, J., Clark, G., Fernandez-Partag'as, J.,
- 626 Hungerford, P., Neumann, C., and Zimmer, M.: The Atlantic hurricane database re-
- analysis project: Documentation for the 1851–1910 alterations and additions to the
- 628 HURDAT database, *in* Murnane, R. J. and Liu, K.-B. (eds.), Hurricanes and Typhoons:
- 629 Past, Present, and Future, Columbia University Press, 177–221, 2004.
- Lavery, Brian: The Ship of the Line; Volume 1 Development of the Battlefleet 1650-1850.
- 631 London: Conway Maritime Press. 224 pp, 1983.

632	Lavery, Brian: The Ship of the Line; Volume 2 – Design, Construction and Fittings. London:
633	Conway Maritime Press. 191 pp, 1984.
634	Lavery, Brian: The Royal Navy's First Invincible. Portsmouth, United Kingdom: Invincible
635	Conservations Limited – Burgess and Son (Abingdon) Limited. 119 pp, 1988.
636	Lixion, Avila: National Hurricane Center Tropical Cyclone Report – Hurricane Juan. National
637	Oceanic and Atmospheric Administration (NOAA) AL152003_Juan.pdf. 11 pp, 2003
638	(Revised 2012).
639	Lixion, Avila, Stewart, Stacey, Berg, Robbie and Berg, Andrew: National Hurricane Center
640	Tropical Cyclone Report – Hurricane Dorian. National Oceanic and Atmospheric
641	Administration (NOAA) AL052019_Dorian.pdf 74 pp, 2020.
642	London Magazine, November, 563-564, 1758.
643	The London Chronicle, July 23-26, 1757.
644	Lamb, Hubert: Historical storms of the North Sea, British Isles and Northwest Europe. London:
645	Cambridge University Press. 204 pp, 1991.
646	Ludlum, David. Early American Hurricanes 1492-1870. American Meteorological Society. 198
647	pp, 1963.
648	Mann, Michael: Little Ice Age in The Earth System: Physical and Chemical Dimensions of
649	Global Environmental Change. MacCracken, M and Perry, S. (eds.) Encyclopedia of
650	Global Environmental Change. Chichester, UK: Wiley and Sons Ltd., 504-509, 2002.
651	Matthes, Francois E.: Report of Committee on Glaciers, April 1939. Transactions, American
652	Geophysical Union. Vol. 20 (4), 518, 1939.
653	Mazzarella, A. and Scafetta, N.: The Little Ice Age was 1.0-1.5 °C cooler than current warm
654	period. Climate Dynamics. Vol. 51, 3957-3968, 2018.

655	McLennan, J.S.: Louisbourg from its foundation to its fall. Sydney, Nova Scotia: Fortress Press
656	(1969), 207-210, 1918.
657	Miller, Gifford H., Geirsdóttir, Áslaug, Zhong, Yafang, Larsen, Darren J., Otto-Bliesner, Bette
658	L., Holland, Marika M., Bailey, David A., Refsnider, Kurt A., Lehman, Scott J., Southon,
659	John R., Anderson, Chance, Björnsson, Helgi, and Thordarson, Thorvaldur: Abrupt
660	onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean
661	feedbacks. Geophysical Research Letters. Vol. 39, L02708, doi:10.1029/
662	2011GL050168, 5 p, 2012.
663	Mowat, Henry Lieutenant in Holland, Samuel: A plan of the island of Cape Breton reduced from
664	Captn. Holland's Survey. [soundings and naval observations were taken by Lieut. Henry
665	Mowat, commander of His Majesty's armed ship Canceaux and the officers of the ship
666	under his direction] 1776.
667	NOAA https://nhc.noaa.gov [Saffir Simpson Hurricane Wind Scale Statement .pdf file]
668	Nature Notes, 24 August, 415, 1882.
669	Oliver, J. and Kington, J.A.: The usefulness of ships' log-books in the synoptic analysis of past
670	climates. Weather. Vol. 25 (12), 520-528, 1970.
671	Richey, Julie, N., Poore, Richard Z., Flower, Benjamin P., Quinn, Terrence M., and Hollander,
672	David J.: Regionally coherent Little Ice Age cooling in the Atlantic Warm Pool.
673	Geophysical Research Letters. Vol. 36, L21703, doi:10.1029/2009GL040445, 1-5,
674	2009.

675	Ruffman, Alan: The multidisciplinary rediscovery and tracking of 'The Great Newfoundland and
676	Saint-Pierre et Miquelon hurricane of 1775.' The Northern Mariner/Le Marin du Nord.
677	Vol. 1 (3), 11-23, 1996.
678	Saenger, Casey, Cohen, Anne L., Oppo, Delia W., Halley, Robert B. and Carilli, Jessica E.:
679	Surface-temperature trends and variability in the low-latitude North Atlantic since
680	1552. Nature Geoscience, 492-495, 2009.
681	Sicre, Marie-Alexandrine, Jalali, Bassem, Martrat, Belen, Schmidt, Sabine, <u>Bassetti,</u> Maria-
682	Angela, Kallel, Nejib: Sea surface temperature variability in the North Western
683	Mediterranean Sea (Gulf of Lion) during the Common Era. Earth and Planetary
684	Science Letters. Vol. 456, 124-133, 2016.
685	Smyth, W.H.: The Sailor's Word-book: an alphabetical digest of nautical terms, including some
686	more especially military and scientific as well as archaisms of early voyagers, etc. by
687	the late Admiral W.H. Smyth (2004 Reprint) Toronto: Algrove Publishing Limited. 744
688	pp, 1867.
689	Stoetzel, Donald: Encyclopedia of the French and Indian War in North America, 1754-1763.
690	United Kingdom: Heritage Books. 579 pp, 2008.
691	Storm, Alex. Seaweed and Gold. Sydney Nova Scotia: City Printers Limited. 192 pp, 2002.
692	Syrett, David: Shipping and Military Power in the Seven Years' War, 1756-1763: The Sails of
693	Victory. United Kingdom: Liverpool University Press 192 pp, 2008.
694	Van Vliet-Lanoë, Brigitte, Goslin, Jérôme, Hallégouët, Bernard, Hénaff, Alain, Delacourt,
695	Christophe, Fernane, Assia, Franzetti, Marcaurelio, Le Cornec, Erwan, Le Roy, Pascal
696	and Penaud, Aurélie: Middle- to late-Holocene storminess in Brittany (NW France):

697	Part I – morphological impact and stratigraphical record. The Holocene. Vol. 24 (4),
698	413–433, 2014.
699	Vecchi, G., and Knutson, T.: On estimates of historical North Atlantic tropical cyclone
700	activity. Journal of Climate. Vol. 21, 3580-3600, 2008.
701	Virot, E., Ponomarenko, A., Dehandschoewercker, E., Quere, D. and Clanet, C.: Critical wind
702	speed at which trees break. Physics Review. E. Vol. 93, 7 pp, 2016.
703 704 705	Warden, David: A statistical, political, and historical account of the United States of North America from the period of their first colonization to the present day. Vol. 1 of 3, 552 pp, 1819.
706	Wheeler, D.: An examination of the accuracy and consistency of ships' logbook weather
707	observations and records. Climate Change Vol. 31, 97-116, 2005.
708	Wheeler, D., Garcia-Herrera, R. and Wilkinson, C.W.: Atmospheric circulation and storminess
709	derived from Royal Navy logbooks: 1685 to 1750. Climatic Change. Vol. 101, 257-280,
710	2010.
711	Winter, Amos, Ishioroshi, Hiroshi, Watanabe, Tsuyoshi, Oda, Tadamichi, Christy, John.:
712	Caribbean sea surface temperatures' two-to-three degrees cooler than present
713	during the Little Ice Age. Geophysical Research Letters. Vol. 27 (20), 3365-3368,
714	2000.

715 Zinck, Jack: Shipwrecks of Nova Scotia. 226 pp, 1975.