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Abstract. Plant litter decomposition stands at the intersection between carbon (C) loss
and sequestration in terrestrial ecosystems.  During  Organic matter during  this process
organic  matter  experiences  chemical  and  physical  transformations  that  affect
decomposition rates of distinct components with different transformation fates. However,
most decomposition studies only fit one-pool models that consider organic matter in litter
as  a  single  homogenous  pool  and  do  not  incorporate  the  dynamics  of  litter
transformations  and  transfers  in  their  framework.  As  an  alternativeTo  this  extent,
compartmental dynamical systems are sets of differential equations that  serve  can be
used to represent both the heterogeneity in decomposition rates of organic matter, and
the transformations it can undergo.  This is achieved by including parameters for initial
proportion of mass in each compartment, their respective decomposition rates, and mass
transfer coefficients between compartments. The number of compartments, as well as
their  interactions,  in  turn,  determine  model  structure.  For  instance,  a  one-pool
modelFurther, a metric that can be  considered a compartmental model with only one
compartment.  Models  with  two  or  more  parameters,  in  turn,  can  have  different
structures, such as parallel if each compartment decomposes independently, or in series
if there is mass transfer from one compartment to another. However, because of these
differences  in  model  parameters,  comparisons  in  model  performance  can  be
complicated. In this context we introduce the concept of  used to compare models with
different structures is the transit time, a random variable defined as the age distribution
that is, the mean age of particles when they are released from a system which can be
used to compare models with different structurescompartmental system. In this study,
we first asked what model structures are more appropriate to represent decomposition
from a publicly available database of decomposition studies in aridlands: aridec. For this
purpose,  we  fit  one-  and  two-pool  decomposition  models  with  parallel  and  series
structures,  compared  their  performance  using  the  Bias  Corrected  Akaike  Information
Criteria (AICc),  and used model averaging as a multi-model inference approach. We then
asked what the potential ranges of the median transit times of litter mass C in aridlands
are and what are their relationships with environmental  and chemical variables. Hence,
we calculated  median  transit time for those models and explored patterns in the data
with  respect  to  mean annual  temperature  and  precipitation,  solar  radiation,  and  the
Global  Aridity  Index,  and  one  litter  chemistry  trait,  the  initial  lignin  content.  Median
transit time was 1.9 years for the one- and two-pool model with parallel structure, and
five years for the two-pool series model. The information in our datasets supported all
three models in a relatively similar way, thus our decision to use a multi-model inference
approach. After model-averaging, median transit time had values of around three years
for all datasets. Exploring patterns of transit time in relation to environmental variables
yielded weak correlation coefficients, except for mean annual temperature, which was
moderate and negative. Overall,  our analysis suggests that  current and historical  the
information  content  in  litter  decomposition  studies  often  do  not  contain  holds  little
information on how litter quality changes over time or do not last long enough for litter to
entirely  decompose.  This  makes  fitting  accurate  mechanistic  models  very difficultthe
heterogeneity  of  litter  and  its  transformation  rate.  Nevertheless,  the  multi-model
inference framework proposed here can help to reconcile theoretical expectations with
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the  information  content  from  field  studies  and  can  further  help  to  design  field
experiments that better represent the complexity of the litter decomposition process. 

1 Introduction 

Plant litter decomposition is the process through which plant-derived organic matter is
broken down into smaller components. The main biotic driver of decomposition is the
metabolic activity of fungi and bacteria  (Bradford et al.,  2017), but soil  fauna can be
important too (García-Palacios et al., 2013; Zanne et al., 2022). The magnitude of biotic
decomposition is further determined by climate  (Gholz et al.,  2000) and litter quality
(Cornwell et al., 2008). Additionally, abiotic drivers of decomposition like solar radiation
can have a large contribution to this process  (Méndez et al.,  2022). Altogether, plant
litter decomposition releases carbon that was fixed by plants back to the atmosphere
and mediates soil organic matter carbon (SOC) formation (Cotrufo et al., 2015). This puts
decomposition at a crucial intersection between C loss and sequestration in terrestrial
ecosystems.  It  is  thus  of  great  interest  to  gain  a  better  understanding  on  how
decomposition influences the terrestrial Ccarbon balance and how this process wouldwill
be affected by global change. 
Plant litter is composed of material of different physical  and chemical  properties that
decays  at  different  rates  (Adair  et  al.,  2008;  Tuomi  et  al.,  2009).  However,  litter
decomposition models commonly assume a single pool that considers the decomposition
of organic  matter  as if  it  was a homogenous mass pool  with a single decomposition
constant  (Adair et al.,  2010). Alternatively, organic matter dynamics can be modelled
using compartmental dynamical  systems, which are sets of differential equations that
serve  can  be  used  to  represent  both  the  heterogeneity  of  organic  matter  chemical
quality, and the transformations plant residues can undergo  (Sierra and Müller, 2015).
This is achieved with the inclusion of different pools that decompose at different rates.
This allows to model the dynamics of labile C compounds that are more readily available
for  microbial  consumption  like  sugars,  and  other  compounds  that  have  a  longer
persistence in the litter pool like tannins or lignin. Additionally, it is possible to include
interactions between these pools like C transfers from one pool to another. This mass
transfer between pools represents the transformation of molecules in litter without actual
mass loss the actual loss of C from the litter system (Prescott and Vesterdal, 2021). The
number of compartments, as well as their interactions, finally determine model structure.
Compartmental  models  of  decomposition  have been successfully  applied for  decades
(Chappelle et al., 2023; Parton et al., 1987; Tuomi et al., 2009), and it has been proven
many times that they can be an improvement from the traditional one-pool model (Adair
et al., 2008; Cornwell and Weedon, 2014; Derrien and Amelung, 2011; Manzoni et al.,
2012). 
Despite the richness of information that can be learned from compartmental  models,
there are still still exist limitations for their widespread application. One main limitation is
parameter identifiability. This happens because more complex models usually have more
parameters and, in some cases, the information contained in time series of litter mass
loss may not be enough to estimate those parameters unambiguously (Brun et al., 2001).
Depending on the resolution and extension of the time series, it might be possible to
obtain different number of parameters from the available data  (Sarquis et al.,  2022a;
Sierra  et  al.,  2015).  Consequently,  different  studies  developed  under  different
methodologies  and  sampling  schemes  may  provide  information  on  different  model
structures.  Further,  this  limits  the application of  compartmental  models to  data  from
extensive heterogenous databases, since not all parameters might be identifiable for all
datasets (Sarquis et al., 2022a2022). 
It is common to compare model parameters like the decomposition constant when the
same model has been applied to many datasets. But, comparing the behavior of models
with  different  structures  in  the  same  way  is  not  possible,  because  decomposition
constants of single homogenous pools are not comparable to decomposition constants of
specific pools, such as those in compartmental models. Thus, a metric that can be used
to compare models with different structures is the transit time of mass in a complex
heterogeneous system. Transit time represents the mean age of particles when they are
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released  from a  system  (Sierra  et  al.,  2017).  In  the  context  of  litter  decomposition
studies, transit time can tell us about how long it takes for mass C to exit litter since the
start  of  an  experiment.  Transit  time  is  a  random  variable  with  its  own  probability
distribution, and thus mean and median transit times can be calculated  (Sierra et al.,
2018). Unlike a single decomposition rate, transit time can be calculated for the bulk of
litter  when  using  compartmental  models.  Transit  time  contains  information  from  all
different  massC compartments  (Lu  et  al.,  2018),  and  so,  it  becomes  a  more  useful
parameter when making comparisons from models that have different structures. 
In this study we used the aridec database, which is an open access database of published
decomposition studies in aridlands from around the world  (Sarquis et al., 2022a). The
focus of  this  database on aridlands  stems from how widespread aridlands  are,  since
around 41% of the land surface is classified as arid to some extent  (Safriel and Adeel,
2005). This large area represents a wide range of diverse ecosystems, with many shared
functional characteristics. For instance, aridlands are usually more sparsely vegetated
(Guttal  and  Jayaprakash,  2007) and  this  produces  a  shift  in  the  importance  of
decomposition  drivers  in  comparison  to  humid  ecosystems.  Plant  litter  under  these
conditions  is  more  susceptible  to  solar  radiation  (Austin  and  Vivanco,  2006) and
desiccation by wind (D’Odorico et al., 2019). Further, water sources other than rain can
become more relevant when mean annual precipitation is low (Evans et al., 2020). These
unique  traits  of  arid  ecosystems  probably  explain  why  decomposition  rates  are  not
correlated to mean annual precipitation in these systems (Austin, 2011), contrary to what
was  proposed  in  the  traditional  literature  (e.g.,  Meentemeyer,  1978).  Furthermore,
aridland processes are thought to become more widespread in the future because of
aridland expansion (Feng and Fu, 2013) and drought-intensification of humid ecosystems
(Grünzweig et al., 2022). 
Hence,  we  used  the  aridec database  to  address  the  following  questions:  given  the
information content in time series of litter decomposition studies, what model structures
are more appropriate to represent decomposition from arid ecosystems? From the set of
models obtainedobtained models, what are the potential ranges of the median transit
times of  litter massC? Moreover, what are the potential relationships between median
transit  time  and  environmental  variables?  We  fit  one-  and  two-pool  decomposition
models with parallel and series structures, compared their performance using AICc,  and
used model averaging as a multi-model inference approach. We further calculated transit
times for those models and explored patterns in the data in relation to environmental
and litter chemical variables.

2 Methods 

2.1 Model fitting

First, we used the  aridec database to fit a group of  candidatepotential decomposition
models. The  aridec database is a publicly available database of decomposition studies
from aridlands across the world (Sarquis et al., 2022a). This database contains bulk litter
mass loss data, but it lacks mass loss dynamics of different litter organic matter pools
that decompose at different rates (e.g.: soluble carbohydrates, cellulose, lignin). Because
of  this,  we  took  an  inverse-modelling  approach  that  allowed  us  to  estimate  the
parameters of these unknown pools by fitting the models to mass loss data. This model
calibration procedure constitutes a non-linear optimization problem, where the objective
is to find parameter values that minimize a measure of badness of fit, like a weighted
sum of squared residuals  (Soetaert and Petzoldt,  2010).  Following this procedure, we
obtained a groupset of parameters for each dataset and fit the dynamics of mass loss for
different pools. We did this with the SoilR (Sierra et al., 2012) and the FME (Soetaert and
Petzoldt, 2010) packages in R (R Core Team, 2020). 
SoilR is a modelling framework that contains a wide set of functions and tools to model
soil  organic  matter  decomposition  within  the  R  computing  platform.  Organic  matter
decomposition in SoilR is represented by systems of linear differential  equations that
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generalize most  compartment-based models.  A simple general  structure  to represent
litter decay with no inputs follows Equation 1: 

dC (t)
dt

=A C( t)                                                                                                                                                 (1)

C ( t )=[C pool1 , …,C poolm]
T

A=[
−k 1 ⋯ a1i

⋮ ⋱ ⋮
a j 1 ⋯ −k m

]
Where C(t) is a m x 1 vector with m pools of litter mass observed at time t, and A is a
square  m x m matrix that contains decomposition rates (km) for each pool and transfer
rates (aij) between them. These different pools may correspond to different ways in which
the  quality  of  the  litter  is  expressed  in  different  studies.  For  example,  they  may
correspond to different  compounds  obtained from a specific  extraction method (e.g.:
water soluble sugars, or acid detergent lignin), or they can be defined by general decay
classes  such  as  fast  and  slow  decay  compounds.  The  linear  dynamical  system
represented by Eq. (1), has many different solutions, but we are only interested in the
solution that satisfies 

C (t = 0) = C0 = [total C0 ∙ p1, …, total C0 ∙ pm]T                                                                                                  (2)

where  C0 is a  m×1 vector with the value of initial litter mass content in the different
compartments m. We set total initial C0 to be 100% for this analysis and the resulting pm

parameters are the initial proportions of litter in m pools.
Before fitting the models, we run a collinearity test following the procedure by Soetaert
and Petdzolt (2010) and the results are presented in Sarquis et al. (2022a2022). Briefly,
when parameters are functionally related, changes in one of them can be compensated
by changes in others. This produces different parameter sets that have similar probability
distributions, thus it is impossible to determine a single parameter set for a model (Brun
et  al.,  2001;  Sierra  et  al.,  2015).  From this  analysis,  we  were  able  to  choose  three
models: a one-pool model, a two-pool parallel model, and a two-pool series model (Fig.
1).  The  one-pool  model  represents  mass  loss  data  as  a  single  homogeneous  mass
compartment and has a single parameter, the decomposition rate k. The two-pool model
with  parallel  structure  considers  litter  mass  as  two  distinct  compartments  that
decompose at different rates. Hence, its parameters are the two decompositions rates (k1

and k2) and the initial proportion of litter mass in pool one (p1, from which the proportion
of mass in pool 2 can be calculated as p2 = 1 – p1). Finally, the two-pool series model is
similar to the parallel model, but it incorporates the transfer of matter from pool one to
pool two after its transformation. This is indicated in the model by the parameter a12 (i.e.,
the transfer rate from pool 1 to pool 2).

4

165

170

175

180

185

190

195



Figure 1: Decomposition models fitted in this study. C0: total initial  litter masscarbon
content  in  litter  samples;  C10:  initial  litter  mass  incarbon  content  of the  fast-
decomposing pool;  C20:  initial  litter mass incarbon content of the slow-decomposing
pool; k, k1, k2: decomposition rates of the total,   carbon pool, the fast- and the slow-
decomposing littercarbon pools, respectively; a1,2: masscarbon transfer coefficient from
the fast-decomposing pool to the slow-decomposing pool; dashed lines denote median
transit time; dotted lines denote mean transit time.  

Specifically  for  the  two-pool  series  model  our  collinearity  analysis  showed  that  only
20.1% of the datasets produced identifiable results for this model, and only so when we
restricted parameter  p1.  Restricting or fixing parameters to known values is a way of
avoiding collinearity issues. For this purpose, we decided to use initial litter lignin content
as  a  proxy  for  the  p2 parameter  (the  initial  proportion  of  mass  in  pool  2)  which  is
complementary to  p1 (p1 + p2 = 1). We were limited by the number of datasets that
provided  initial  lignin  values  in  aridec.  We  searched  for  this  missing  information
incompleted only three of these datasets with information from the TRY database, which
contains plant trait data for ecology and earth system sciences  (Kattge et al., 2020). We
could only find information for three of these datasets in the TRY database. We then
completed some of the missing values by averaging lignin data of the same litter types
that were already present in aridec. Having all the data ready, we proceeded to fit the
models mentioned above. All time variables were transformed to monthly timescales to
achieve more consistent comparisons. 

2.2 Transit time

For each model, we calculated litter mass transit time (Sierra et al., 2017). This concept
represents the mean age of the particles when they are released from the bulk litter.
Another way to interpret this is the time it takes particles to transit the litter system
since the beginning of the experiment. We used a modified version of the Mean Transit
Time (MTT) from Sierra et al. (2017) without new litter inputs:

MTT=−(1 ,…,1 ) A−1                                                                                               (3)

For both two-pool models, we used the function transitTime in the SoilR package. This
function calculates the mean and median of the distribution of the transit time as well as
other quantiles of the distribution. The transit time median is interpreted as the time it
takes half the litter mass in a sample to decompose. As a special case, for the one-pool
model the MTT can be simply calculated as:

MTT=
1
k

                                                                                                                (4)

While the Median TT (mTT) can be calculated as:
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mTT =
ln  2

k
                                                                                                             (5)

We found that MTT was usually overestimated in our models (S4, Pre-averaging results
table),  possibly  due  to  the  already  slow  decomposition  rates  of  arid  lands  and  the
inclusion of the  a12 parameter that prolonged the time that molecules remained in the
litter system in the  Some of the mTT values from the  two-pool series models. Instead,
values  of  mTT were  usually  lower,  so  we decided to  only  work  with  mTT hereafter.
However,  some of  the  mTT  values  obtained  were  also  overestimated  and  so   were
extremely high and did not make any biological sense. Because of this,  we decided to
make a cutoff at a mTT of 14.5 years. This value came from fitting the two-pool series
this  model to the longest data set in aridec which is 10 years long and corresponds to
average data of different species at Central Plains Experimental Range in  Adair et al.
(2017) (S1). We excluded from this study the data sets that exceeded this median transit
time cutoff. Finally, after accounting for collinearity, the availability of initial litter lignin
data  and  the  mTT  cutoff,  we  were  left  with  128  data  sets  from  12  aridec  entries
(Appendix A).

2.3 Model selection and multi-model inference

As  a  first  attempt  at  model  selection,  we  calculated  the  Bias  Corrected  Akaike
Information Criteria, which is used for small sample sizes (AICc; Burnham and Anderson,
2002). We used the formula from Shumway and Stoffer (2017):

AICc=log σ 2 k+
n+k

n−k−2
                                                                                         (6)

where σ2k is the variance of the model (in this case the mean squared residuals, i.e. sum
of  squared  residuals  divided  by  sample  size,  MSR  hereafter),  k is  the  number  of
parameters in the model, and n is the sample size or the number of points in each time
series.  We  accounted  for  the  variance  as  one  of  the  parameters  in  the  formula  as
Burnham and Anderson (2002) recommend. 
A common way of choosing the model with the best fit is by looking at the model with the
lowest  AIC  value.  We  did  this  by  using  the  akaike.weights function  from  the  qpcR
package. Additionally, we calculated the difference in AICc between the model with the
lowest AICc and the other two candidate models (ΔAICc). Since we did not have enough
information to choose a single model structure based on AICc (see Results section), we
decided to follow a multi-model inference approach (Burnham and Anderson, 2002). We
first calculated Akaike Weights using the function Weights from the MuMin R package for
each model. Akaike Weights can be interpreted as the probability that a model  j is the
best of all i candidate models given the data (Lukacs et al., 2010), and are calculated as:

w j=

exp(−1
2

ΔAICc j)
∑
i=1

exp (−1
2

ΔAICc i)
                                                                                          (7)

We then calculated new average estimators for the mean and the median transit times
as:

β̂ i=∑
j=1

w j β̂ ij                                                                                                           (8)

where  β̂ ij is the  i parameter estimator  β̂ for each j model. This results in estimators of
mean (avgMTT) and median (avgmTT) transit times averaged across models for each
database entry.
We calculated  as well  the unconditional variance as well for each averaged estimator
(Burnham and Anderson, 2002; Lukacs et al., 2010) as: 
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vâr [ β̂ i ]=∑
j=1

w j [ MSR j+( β̂ ij− β̂ i )
2

]                                                                               (9)

Finally, we estimated 95% confidence intervals as: 

β̂ i± cv √vâr [ β̂ i ]                                                                                                      (10)

where  cv stands  for  the  critical  value  of  a  t-distribution  for  a  particular  number  of
degrees of freedom. 

We made non-parametric Kendall’s rank correlation tests between study duration in days
and  avgMTT  and  avgmTT,  respectively.  We  also  plotted  data  against  environmental
variables to explore potential relationships betweenwith avgmTT and calculated Pearson
r  correlation coefficients.  We used data already available in  aridec like mean annual
temperature and  ,  mean annual precipitation, and one litter quality variable like initial
lignin content. We additionally used Global Aridity Index as calculated in Sarquis et al.
(2022a2022)  for  aridec  entries  and  annual  downward  shortwave  radiation  (hereafter
annual solar radiation)solar radiation from the TerraClimate database (Abatzoglou et al.,
2018).  We  only  used  data  from  litter  decomposed  in  ambient  conditions  (without
manipulative treatments) for data exploration.
Further, to test whether the data fit an exponential distribution, we calculated the ratio
between avgmTT and ln2 * avgMTT. In an exponential distribution, the median equals ln2
times the mean. So, if the ratio between the median from our models (avgmTT) and the
median calculated as  ln2 * avgMTT equals 1, that would imply that both medians are
equal, and the model follows an exponential distribution. All calculations, modelling and
figures were made using R (R Core Team, 2020).

3 Results 

We fit  three different  candidate  models  for  128 time series  of  decomposition,  which
totaled  384  models (see  table  S2  for  model  fit).  The  information  in  our  datasets
supported all  three models in a similar way. Most times the one-pool  model  had the
lowest AICc values, but close to one-third of the times the two-pool series model had the
best fit according to AICc (Fig. 2A and Table S22). Our ΔAICc values were very low (ΔAICc
of the 3rd quartile: 1.515),  so we would have not been able to apply a ∆AICc=2 cutoff
criterion if we wanted to, even when this practice is not recommended (Anderson, 2008;
Burnham and Anderson,  2002).  All  of  this showed  which reinforced the idea  that the
information  available  was  not  enough  to  choose  a  single  model  with  the  best  fit.
Additionally, we obtained root mean squared residuals for all 128 datasets. For the one-
pool  model  this  indicator  ranged from 1.1 to 12.9, for  the two-pool  parallel  model  it
ranged from 1.1 to 12.3, and for the two-pool series model it ranged from 0.3 to 6.6 (Fig.
2B). The first two models performed similarly according to this parameter, but the series
model had considerably lower residuals.  Following this, we decided  to implement  for  a
multi-model inference approach using model averaging, which left us with 128 individual
models (see Tabletable S3 for model variance and confidence intervals).
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Figure 2: Model fit for all 128 datasets. (A) Number of models with the lowest AICc 
values, and (B) root mean squared residuals  for each model structure.  1p: one-pool 
model; 2pp: two-pool parallel model; 2ps: two-pool series model.

Median transit time of plant litter in arid lands after model averaging was within the
range  of  the  original  models  (Fig.  3).  In  this  analysis,  we only  used data  from litter
decomposed in ambient conditions (without manipulative treatments). One and two-pool
parallel  models  had  similar  mTT (23.27  ± 9.28  and  23.04  ± 9.65  months,  mean  ±
standard  deviation respectively).  The two-pool  series  model  had near three-fold  mTT
values of 60.21 ± 45.80 months. After model-averaging mTT (i.e.: avgmTT) dropped to
36.15 ± 22.20 months. 
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Figure 3: Median transit time (months) for three different models and for the averaged 
model. Only data for control or ambient treatments were used for this figure. 1p: one-
pool model; 2pp: two-pool parallel model; 2ps: two-pool series model.

Looking  at  the  avgmTT  alone  showed  the  wide  range  of  time  that  litter  takes  to
decompose in arid ecosystems (Fig. 4).  Correlation between duration in days and the
avgMTT was positive (tau=0.2, p=0.002) but it was not significantly different from zero
for avgmTT (p=0.3; Appendix B).  Exploration of patterns of transit  time in relation to
environmental variables yielded weak correlation coefficients, except for mean annual
temperature  which was moderate  but  significative  (r  = -0.56,  p  = 0.047).  Values of
avgmTT at the coldest end ranged between 37 and 65 months, while the warmest site
showed values of  8 months (Fig.  4a).  This  showssuggests that plant  litter in warmer
aridlands decomposes faster than in colder sites.

Figure 4: Transit time (months) Pearson correlations with versus (A) mean annual 
temperatures (°C), (B) mean annual precipitation (mm), (C) global aridity index, and (D)
annual solar radiation (W m-2  , and (E) initial litter lignin content (%). Only data for control or ambient 
treatments were used for this figure. Each diamond represents the mean avgmTT for 
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different values of a variable at each site. Pearson correlation Correlation coefficients 
(r) and p-values are displayed.

Calculating the quotient between the avgmTT and avgMTT times the natural logarithm of
two showed contrasting results (Fig. 5). Fourty-two percent of the models in this analysis
had values near to zero, which suggests that those models did not follow an exponential
distribution.  This is because in an exponential distribution the median equals  ln2 times
the mean, and their ratio, if equal, should result in one. On the other hand, only Only 15
% of the models had values between 0.9 and 1.0. Complementarily, this suggests that
those models had indeed a near exponential distribution. 

Figure 5: Histogram of frequency for the quotient of the median transit time and the 
natural logarithm of two times the mean transit time from average models. Bars 
represent the number of models for a range of values of the quotient.

4 Discussion 

We asked as our first question: what model structures are more appropriate to represent
decomposition in aridlands? After fitting three different models to the data in aridec we
found that there was not enough information to choose a unique model judging by their
AICc values (Fig 2A). This limitation comes from the information contained in the original
datasets which constrains our capacity to distinguish between models. Simply put, we
cannot force a model to reveal information that is not contained in the input data (Brun
et al., 2001). As a workaround, 2), so instead we took a multi-model inference approach
(Burnham and Anderson, 2002) that. This allowed us to incorporate the dynamics of all
three models in our results by using AICc weights (Lukacs et al., 2010). In this way, our
predictions of transit time in arid lands include the differences in litter chemistry and
their  effects  on  decomposition,  instead  of  just  considering  the  bulk  of  litter  as  a
homogenous C pool. This type of information theoretical approach like model averaging
is not novel, but is still underused in ecological studies (Grueber et al., 2011). 
However,  before fitting complex compartmental  models,  researchers should take into
consideration the issue of collinearity. In a previous study, we found that most of the
time series in the aridec database could only be fitted to simpler models with less than
three parameters (Sarquis et al., 2022a). This was because the information contained in
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those  time series  of  litter  decomposition  was not  sufficient  to  inform more  complex
models,  for  example:  models  with  three  distinct  litter  massC pools  with  transfer
coefficients  between  them.  This  lack  of  information  in  the  data  caused  collinearity
between  parameters,  which  in  turn  made  it  impossible  to  identify  a  single  set  of
parameters  for  each  model  (Brun  et  al.,  2001;  Sierra  et  al.,  2015).  Some  of  these
limitations  probably  come  from  the  short  number  of  sampling  points  in  most
decomposition  studies  (Sarquis  et  al.,  2022a),  which  lowers  the  degrees  of  freedom
available and limits our capacity to model complex organic matter dynamics. The fact
that complex models cannot be obtained from the data suggests that we should put
more  attention  into  designing  field  experiments  that  can  better  inform about  model
structures that are more consistent with our current understanding of litter heterogeneity
and transformations (Prescott and Vesterdal, 2021).
Our second question was: what are the potential ranges of the median transit times of C
in  litter  for  aridlands?  This  part  of  our  study  yielded  some  new  insights  into  the
biogeochemistry  of  arid  environments.  Median  transit  time  from  one-  and  two-pool
decomposition models without interactions were similar and showed that half of the litter
mass C in litter is lost after almost 2 years in the field (Fig. 3). However, results from the
two-pool model with series structure were almost three times higher. This is explained by
the massC transfer from the fast-decomposing pool to the slow-decomposing pool, which
slows  down  mass  lossC  release from  litter.  After  model-averaging,  we  obtained
intermediate values of median transit times of around three years (Fig. 3).  Previously,
estimations were made of mean transit time for litter of between 3.4 and 3.8 years for
the same models as this study (Manzoni et al., 2012). However, their data did not come
from an aridland.  To our  knowledge,  our  study  is  the first  attempt to estimate litter
transit time in arid environments.
The discrepancy between estimations from the two-pool series model and the other two
models  Interestingly,  this  connects  back  to  the  issueproblem of  model  parameter
identifiability. Most decomposition studies carried out in aridlands last for only a year
(Sarquis  et  al.,  2022a).  But  our  results  show  that  decomposition  of  litter  in  arid
environments  can  take  on  average  six  times  longer  until  all  litter  mass  C  exits  the
system. This means that most field decomposition studies are not capturing the entire
dynamics  of  massC release  through  time.  Most  decomposition  studies  usually  must
compromise between measurement resolution and study length.  Usually,  studies that
describe fine-scale dynamics of chemical  compounds in leaf  litter do not last for  the
entire decomposition process. On the contrary, longer studies usually focus on broad-
scale  processes  and  represent  litter  as  a  homogenous  pool.  In  turn,  this  has
consequences for potential future research because the information that is not contained
in data cannot be retrieved by modeling techniques  (Brun et al., 2001).  Similar to this
study, Derrien and Amelung  (2011) concluded that future continuous isotope labelling
studies should make more measurements in time and with a finer time resolution in
order to make more reliable estimations of soil C fluxes and reservoirs from models. If we
aim to incorporate field data into complex Earth system models, we need to take into
consideration the study  time length and resolution  length  to capture  both broad- and
fine-scale  mechanisms  of  decompositionthe  entire  decomposition  process.  We
acknowledge this might seem excessive given academic times go usually faster than
litter  decomposition  in  aridlands.  However,  successful  long-term litter  decomposition
projects exist  and can be a potential  solution to this issue  (e.g.:  LIDET; Gholz et al.,
2000).
We asked as our third question: what are the relationships between median transit time
and environmental  and litter chemical  variables? From the set of fourfive variables that
we  used  to  explore  these  relationships,  only  mean  annual  temperature  showed  a
moderate  correlation  with  median  transit  time  from  average  models  (Fig.  4a).  The
importance of  temperature  as a climatic  driver of  decomposition  is  well  documented
(Zhang  and  Wang,  2015),  both  through  its  positive  effects  on  microbial  activity
(Sinsabaugh et al., 1991) and its increase of photochemical emissions  (Day and Bliss,
2020). Moreover, the correlation with mean annual precipitation was weak (Fig. 4b). This
was rather  expected since  it  has  been long known that  precipitation  fails  to  explain
patterns of decomposition rates in aridlands (Austin, 2011).
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As a final remark, we explored what can transit time teach us about the distribution of
decomposition models. We calculatedAfter calculating the quotient of the median transit
time and the natural logarithm of two times the mean transit time from average models.
Since the median of an exponential  distribution equals ln2 times the mean, this ratio
should equal one for models that are close to a single exponential distribution. But , only
15 % of the models had values close to one (Fig. 5), which. This is indicative that for most
cases  models  did  not  follow  an  exponential  distribution since  the  median  of  an
exponential distribution equals ln2 times the mean. The negative exponential model of
decomposition has been the standard for litter and soil  organic matter decomposition
studies since at least five decades ago  (Olson, 1963). This connects back to our first
results  where  the  one-pool  exponential  model  was  not  chosen  by  our  information
theoretical approach (Fig. 2). Previous studies found similar results where the negative
exponential one-pool model did not rank first for the entirety of the datasets considered
(Adair et al., 2008; Cornwell and Weedon, 2014; Manzoni et al., 2012). One alternative to
exponential  models has been a linear function relating mass loss and time, as it has
performed  statistically  well  in  the  past,  especially  in  photodegradation  experiments
carried out in aridlands  (Brandt et al., 2010). However, such linear functions lack any
theoretical support as they imply that litter keeps losing mass even after all mass has
decayed away in the long term. In contrast, the compartmental approach used here can
account for chemical and physical transformations of litter as it decays and has strong
theoretical support. Future studies could take advantage of the compartmental modeling
framework to test multiple model structures that would represent different mechanism of
litter transformation and decay, having the one-pool model structure as a null model that
can  be  contrasted  against  more  complex  structures  suggested  by  the  information
content in the data. 

5 Conclusions 

Testing  which  distributions  fit  best  the  data  beforehand  is  a  must  and  future
decomposition studies should test whether the single-pool negative exponential model is
actually the best model to fit.
Although our theoretical understanding of the litter decomposition process is based on
the  assumption  that  plant  litter  is  chemically  and  physically  heterogeneous,  and
undergoes multiple transformations, time series of litter decomposition studies contain
only  relatively  little  information  on  litter  heterogeneity  and  its  transformation  rates.
However,  we  have  shown  that  a  multi-model  inference  approach  helps  to  reconcile
theoretical  understanding  with  information  content  in  observed  datasets  of  litter
decomposition. In particular, the combination of AIC model averaging applied to a metric
that is independent of model structure, the transit time, provides an inference framework
that is useful to understand decomposition dynamics. This framework could help us get a
better insight into the chemical transformations of organic matter in litter and soil, and
how soil organic matter responds to changes in the environment.
We recognize some limitations for modelling these complex structures arise from field
study  designs  that  do  not  capture  the  entire  decomposition  process.  This  limits  the
quantity and the quality of the information that can be extracted from empirical data. We
recommend that future field decomposition studies incorporate in their designs some
strategy to better capture the dynamics of different organic matter pools in litter. This
could be done by either measuring the proportion of each compound through time, or by
increasing sampling times and study length. The two latter can help gain a better fit and
avoid collinearity when using an inverse-modelling approach as in this study. We further
encourage researchers to fit models other than the one-pool model, when possible.

6 Appendices

Appendix A: entry name in the  aridec  database, study site, decimal coordinates and
citation of the datasets included in this study.
Entry Name Study Site Coordinates Citation
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Austin2006a Chubut, Argentina Latitude: -45.7
Longitude: -70.3

Austin et al. (2006)

Berenstecher2021 Chubut, Argentina Latitude: -45.7
Longitude: -70.3

Berenstecher et al. 
(2021)

Brandt2007 Colorado, USA Latitude: 40.8
Longitude: -
104.8

Brandt et al. (2007)

Day2018 Arizona, USA Latitude: 33.5
Longitude: -
111.8

Day et al. (2018)

Giese2009 Inner Mongolia, China Latitude: 43.6
Longitude: 
116.7

Giese et al. (2009)

Huang2017 Xinjiang, China

Xinjiang, China

Xinjiang, China

Latitude: 44.4
Longitude: 87.9
Latitude: 45.3
Longitude: 87.6
Latitude: 42.9
Longitude: 89.2

Huang et al. (2017)

Li2016 Inner Mongolia, China Latitude: 43.0
Longitude: 
120.7

Li et al. (2016)

Manlay2004 Kaolack, Senegal Latitude: 13.8
Longitude: -15.7

Manlay et al. (2004)

Qu2020a Inner Mongolia, China Latitude: 41.5
Longitude: 
107.0

Qu et al. (2020)

Santonja2017 Provence-Alpes-Côte d'Azur, 
France

Latitude: 44.0
Longitude: 5.9

Santonja et al. (2017)

Smith2018 New Mexico, USA Latitude: 32.5
Longitude: -
106.8

Smith and Throop 
(2018)

WangY2020 Inner Mongolia, China Latitude: 44.2
Longitude: 
116.5

Wang et al. (2020)

Appendix B: non-parametric Kendall’s rank correlation tests between study duration in
days and avgMTT (A) and avgmTT (B), respectively.
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Although our theoretical understanding of the litter decomposition process is based on
the  assumption  that  plant  litter  is  chemically  and  physically  heterogeneous,  and
undergoes multiple transformations, time series of litter decomposition studies contain
only  relatively  little  information  on  litter  heterogeneity  and  its  transformation  rates.
However,  we  have  shown  that  a  multi-model  inference  approach  helps  to  reconcile
theoretical  understanding  with  information  content  in  observed  datasets  of  litter
decomposition. In particular, the combination of AIC model averaging applied to a metric
that is independent of model structure, the transit time, provides an inference framework
that is useful to understand decomposition dynamics. This framework could help us get a
better insight into the chemical transformations of organic matter in litter and soil, and
how soil organic matter respond to changes in the environment.
We recognize some limitations for modelling these complex structures arise from field
study  designs  that  do  not  capture  the  entire  decomposition  process.  This  limits  the
quantity and the quality of the information contained. We recommend that future field
decomposition studies incorporate in their designs some strategy to better capture the
dynamics  of  different  organic  matter  pools  in  litter.  This  could  be  done  by  either
measuring the proportion of each compound through time, or by increasing sampling
times and study length. The two latter can help gain a better fit and avoid collinearity
when  using  an  inverse-modelling  approach  as  in  this  study.  We  further  encourage
researchers to fit models other than the one-pool model, when possible.

76 Code and data availability

The  aridec  database  version  1.0.2  is  archived  and  publicly  available  at
https://doi.org/10.5281/zenodo.6600345  (Sarquis et al., 2022b). Result tables and code
are  stored  at  https://doi.org/10.5281/zenodo.77995857561189 (Sarquis  and  Sierra,
2023).
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