
Zhichao Dong¹, Chandra Mouli Pavuluri¹*, Peisen Li¹, Zhanjie Xu¹, Junjun Deng¹, Xueyan Zhao¹, Xiaomai Zhao¹, Pingqing Fu¹, Cong-Qiang Liu¹

¹Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China

Correspondence to: Chandra Mouli Pavuluri (cmpavuluri@tju.edu.cn)

Abstract

To investigate the physicochemical characteristics and sources of brown carbon (BrC) in North China, we collected fine aerosols (PM$_{2.5}$) at an urban site in Tianjin over a 1-year period. We measured the ultraviolet (UV) light absorption and excitation emission matrix (EEM) fluorescence of the water-soluble BrC (WSBrC) and the water-insoluble but methanol-soluble BrC (WI-MSBrC) in the PM$_{2.5}$ using a three-dimensional fluorescence spectrometer. Average light absorption efficiency of both WSBrC ($\text{Abs}_{365, \text{WSBrC}}$) and WI-MSBrC ($\text{Abs}_{365, \text{WI-MSBrC}}$) at 365 nm was found to be highest in winter and distinct from season to season. Averages of biological index (BIX) and fluorescence index (FI) of WSBrC were lower in summer than in other seasons and opposite to that of humification index (HIX), which implied that the secondary formation and further chemical processing of aerosols were intensive during the summer period than in other seasons. Whereas in winter, the higher HIX together with the higher BIX and FI of WI-MSBrC suggested that the BrC loading was mainly influenced by primary emissions and was relatively water-soluble. Based on EEM, the types of chromophores in BrC were divided into humic-like substances (HULIS), including low-oxygenated and high-oxygenated species, and protein like compounds (PLOM). The direct radiation absorption caused by WSBrC and WI-MSBrC combinedly in the range of 300–400 nm was accounted for about 40% to the total radiation (range, 300–700 nm), which emphasizes that the radiation balance of the Earth’s climate system is substantially affects by the BrC and should be considered in the radiative forcing models.

1 Introduction

Brown carbon (BrC) is a part of organic aerosol (OA) and has the ability to absorb solar radiation in the near-ultraviolet (UV) to visible spectrum (Liu et al., 2013). In the range of near-UV/Vis light (300–500 nm), BrC has a significant effect on radiative forcing in both regional and global climate (Feng et al., 2013; Jo et al., 2016; Park et al., 2010). However, the warming effect of water-soluble BrC in the Arctic has been reported to be accounted for about 30% of that of the black carbon (Yue et al., 2022). BrC not only affects the direct radiative forcing by OA, but also has a potential impact on indirect radiative forcing due to its hydrophilicity, which influences the formation of cloud condensation nuclei (CCN) (Andreae and Gelencser, 2006; Laskin et al., 2015). In addition, BrC is mostly composed of highly conjugated aromatic ring compounds (such as a polycyclic aromatic hydrocarbons) and high molecular weight substances with a polar functional...
group such as oxygen or nitrogen, or a humic-like substances (HULIS), which can cause a risk to human health. For example, carbon-containing aromatic compounds can cause physical weakness, decreased immunity, arteriosclerosis, etc., which will increase the mortality due to cardiovascular and cerebrovascular diseases and a variety of cancers such as skin cancer, pharyngeal cancer and nasal cancer (Diggs et al., 2011; Peters et al., 2008; Hecobian et al., 2010).

BrC can be emitted directly from primary sources and produced by chemical reactions of volatile organic compounds (VOCs) in the atmosphere (Chakrabarty et al., 2010; Jacobson, 1999; Sareen et al., 2010). Primary sources of BrC are combustion processes such as biomass burning (Hoffer et al., 2006; Brown et al., 2021), fossil fuel combustion (Jo et al., 2016), automobile exhaust (Liu et al., 2015) and non-combustion processes such as bioaerosols (plant debris and fungi) and soil humus (Lin et al., 2014; Rizzo et al., 2013; Rizzo et al., 2011). On the other hand, secondary BrC can be produced from complex chemical reactions of VOCs emitted from both anthropogenic and biological origin (Kasthuriarachchi et al., 2020; Li et al., 2020a).

After establishing the fact that organic compounds also absorb the light in recent times, the researchers are paying significant attention to the estimations of physical (optical) and chemical properties of the BrC. Excitation emission matrix (EEM) fluorescence spectroscopy and ultraviolet spectroscopy are common techniques for studying the optical absorption and fluorescence chromophore optical and structural characteristics of complex organic materials (Chen et al., 2016b). Combined spectrophotometric measurement and chemical analysis has been applied to study the BrC in Xi’an, Northwest China from July 2008 to June 2009 (Huang et al., 2018). Recently, the absorption spectroscopy of BrC has been used as a tool for understanding broader composition and characteristics of the BrC (Satish and Rastogi, 2019).

EEM provides some information about the chromophores responsible for the light absorption of organic matter. The fluorescence technique has been widely applied to measure organics in terrestrial and oceanic systems (Murphy et al., 2013; Yu et al., 2015), but has not been widely used in the study of atmospheric aerosols. The composition of humic-like and protein-like components have been identified from the analysis of chromophores of dissolved organic substances in aquatic environments (Xie et al., 2020). Fluorescence measurements with higher detection sensitivity are more useful in classifying BrC compared to absorption measurements, which rely on the shape of absorption spectra (Laskin et al., 2015). In recent times, the application of fluorescence technology has been well established to study the chemical composition of atmospheric aerosols (Wu et al., 2021; Deng et al., 2022; Li et al., 2022; Cao et al., 2022).

However, the studies on BrC are very limited because of difficulties in quantitative measurement of organic components and the optical properties of the BrC (Corbin et al., 2019; Wang et al., 2022b). In addition, traditional optical instruments do not provide any distinction between the light absorption by black and brown carbon. Therefore, the indirect approach to explore the nature and sources of BrC has been developed through its light absorption characteristics. Of course, such research is just at preliminary stages, and much attention need to be paid further such as long-term and continuous observations of light absorption characteristics of water-soluble BrC (WBrC) and their temporal and spatial variations (Izhar et al., 2020). Moreover, the investigation of light absorption characteristics of water-insoluble BrC (WIBrC) that can be extracted into a solvent with higher extraction efficiency is necessary to better understand the impact of the BrC on climate change (Corbin et al., 2019). In fact, such studies are very scarce because the selection of solvents and determination of extraction efficiency are difficult, although different polar chromophores could be extracted by solvent extraction according to the polarity of solvent and methanol has been used as a common solvent (Chen et al., 2016a).
Therefore, the comprehensive study of the optical properties of WSBrC and WIBrC is highly necessary to better understand the types of chromophores and optical properties of atmospheric aerosols, as well as the processes of oxidation and transformation of chromophores at different locales over the world.

China is one of the most polluted areas in the world, and suffering from the absorption and scattering of solar radiation by atmospheric aerosols that directly affect the energy balance of the Earth’s climate system, especially in North China Plain (Wang et al., 2022a). As an important port city in the North China Plain, Tianjin, which has a large population, has received a widespread attention to address the atmospheric environmental issues. Previous studies have shown that BrC in the atmosphere contributes significantly to the light absorption by aerosols (Deng et al., 2022). PM$_{2.5}$ in the Tianjin area are extremely high and contain a lot of organic matter (OM) (Dong et al., 2023). In such an environment, BrC is likely to become an important light-absorbing component of atmospheric aerosols. However, the studies on physicochemical characteristics and sources of BrC are very limited in the North China Plain, and to the best of our knowledge, the long-term observations have not been reported yet in the Tianjin region.

In this study, we measured the optical properties of WSBrC and water-insoluble but methanol-soluble BrC (WI-MSBrC) in fine aerosols (PM$_{2.5}$) collected from Tianjin, North China over a one year period during 2018–2019. We discuss the seasonal variations in optical properties of WSBrC and WI-MSBrC and their chromophore composition assessed by three-dimensional fluorescence spectroscopy. We also assess the relationship between BrC and chemical composition in PM$_{2.5}$, the possible sources of BrC and the influence of photochemical reaction processes on the BrC. Thus, this study provides a comprehensive understanding of the optical characteristics, seasonality and sources of BrC in the Tianjin region, and the need to develop the prevention and control strategies for the BrC emissions.

2 Materials and Methods

2.1 Aerosol sampling

Fine aerosol (PM$_{2.5}$) sampling was conducted in Tianjin, a coastal city located at the lower reaches of the Haihe River and Bohai Sea and 150 km away from Beijing in the northern part of China. The sampling took place on the rooftop of a six-storey building at Tianjin University (ND, 39.11°N,117.18°E) in an urban area of Nankai District, Tianjin. A high-volume air sampler (Tisch Environmental, TE-6070DX) at a flow rate of 1.0 m3/min$^{-1}$ and pre-combusted (6 hours at 450°C) quartz fiber filters (Pallflex 2500QAT-UP) were used for continuously collecting the PM$_{2.5}$ samples for 3 days (~72 hours) each during 5 July 2018 to 4 July 2019 (n = 121). Filter blanks were collected twice per season during the sample period, using the same procedure as regular sampling, but without turning on the sampler pump. The blank filters were left in the filter hood for 10 minutes. Prior to and after sampling, each filter was dehumidified in a desiccator for 48 hours, and then stored in a pre-combusted glass jar with a Teflon-lined cap in the dark at ~20°C until analysis.

2.2 Chemical analysis

Details of the measurements of aerosol OC, EC, total carbon (TC), and WSOC were described by Wang et al. (Wang et al., 2019) and Dong et al. (Dong et al., 2023). Briefly, concentrations of the OC and EC were measured with a thermal-optical transmission analyzer (Sunset Laboratory...
Inc, USA) following the IMPROVE protocol of the protective visual environment. Stable carbon and nitrogen isotope ratios of total carbon and nitrogen were measured with an elemental analyzer (EA, Flash 2000HT) coupled with stable isotope ratio mass spectrometer (IrMS, 253 Plus). Concentrations of K⁺ and Cl⁻ were determined using ion chromatography (ICS-5000 System, China, Dai An).

BrC was extracted into 30 ml ultrapure water (>18.2 MΩ cm) using a sample filter disc of 22 mm in diameter under ultrasonication for 30 min. The extracts were filtered through a 0.45 μm polytetrafluoron (PTFE) syringe filter to remove the water-insoluble compounds, and then transferred into another clean glass bottle. The extracts were used for the light absorption and fluorescence measurements of WSBrC. While the concentration of WSBrC was considered as the concentration of water-soluble organic carbon (WSOC).

After the extraction of WSBrC, the WI-MSBrC was extracted into 30 ml methanol using the same filter sample under ultrasonication for 30 min. The extracts were filtered using the same 0.45 μm PTFE syringe filter to remove the insoluble particles and filter debris. The methanol extracts were used for the measurements of optical properties of WI-MSBrC. The concentration of water-insoluble organic carbon (WIOC) was considered as the concentration of WI-MSBrC, which is calculated as: WI-MSBrC = OC – WSOC.

2.3 Optical properties of brown carbon (BrC) analysis

2.3.1 Light absorption analysis

A three-dimensional fluorescence spectrometer (Aqualog, Horiba Scientific) was used to record the excitation-emission matrices (EEM) spectra and ultraviolet-visible (UV–Vis) absorption spectra of the solution samples in 1×1 cm quartz cuvettes. The instrument parameters during sample analysis were as follows: The UV-Vis absorption spectra of extracts were recorded in the wavelength range of 240–700 nm. The UV–visible absorption spectra of the solvents were also recorded to subtract their contributions from the extract spectra. The EEM was recorded in the wavelength range of 240–700 nm for excitation and the integration time was 0.1 s with a 1 nm increment. An increment of 8 pixels (5.04 nm) is used as the emission wavelength interval. Prior to sample analysis, a fluorescence spectrometer was used to analyze the pure solvents of water and MeOH to obtain the reference signal.

Based on the light absorption spectra, the absorption data are converted to the absorption coefficient (Abs: m⁻¹) following this formula:

\[\text{Abs}_{\lambda} = (A_{\lambda} - A_{700}) \times V_1 / V_2 / L \times \ln(10) \]

where \(A_{700} \) is the absorption at 700 nm, serving as a reference to account for baseline drift; \(V_1 \) is the volume of water or MeOH used for extraction; \(V_2 \) is the volume of sampled air; \(L \) is the optical path length (0.01 m). A factor of ln(10) is utilized to convert the log base 10 to a natural logarithm to obtain a base-e absorption coefficient. To compensate for any baseline shift that may occur during analysis, absorption at wavelengths below 700 nm is compared to that of 700 nm where no absorption occurs for ambient aerosol extracts. The average absorption coefficient between 360 and 370 nm (Abs365) is used to represent BrC absorption in order to avoid any interferences from non-organic compounds (e.g., nitrate) and to be consistent with the literature values (Huang et al., 2018).

Absorption Ångström exponent (AAE, Å) represents the spectral dependence of aerosol light absorption, indicating that BrC has a great contribution to aerosol Absorption. The spectral
dependence of light absorption by chromophores in solution can be described by the following equation:

\[\text{Abs}_\lambda = C \times \lambda^{-\text{AAE}} \]

where \(C \) is a concentration of extract; \(\lambda \) is the wavelength (nm). The AAE of the filter extracts is calculated by a formula in the wavelength range of 300–500 nm. The selected range serves two purposes: (1) to prevent any interferences from non-organic compounds at lower wavelengths; (2) to ensure a sufficiented signal-noise ratio for the investigating samples (Huang et al., 2018).

The mass absorption efficiency (MAE: \(\text{m}^2 \text{g}^{-1} \)) of the filter extract at wavelength of \(\lambda \) can be characterized as:

\[\text{MAE}_\lambda = \text{Abs}_\lambda / M \]

where \(M (\mu \text{g m}^{-3}) \) is the concentration of WSOC for water extracts and that of WIOC for methanol extracts.

The imaginary part \((k)\) of the refractive index \((m = n+ik)\) is derived with the following equation:

\[k = \frac{(\text{MAC} \times \rho \times \lambda)}{4\pi} \]

where MAC is the mass-absorption cross section of WSBrC or WI-MSBrC \((\text{m}^2 \text{g}^{-1})\), \(\rho \) is the effective density, \(\lambda \) is the wavelength for the computed MAC including WSBrC and WI-MSBrC.

For this study, an effective density of 1.5 \(\text{g m}^{-3} \) is assumed for WSBrC and WI-MSBrC in the derivation (Liu et al., 2013). MAC values are computed for 365 nm.

2.3.2 EEM and PARAFAC analysis

The raw EEMs were first calibrated for the correction of spectrometer factors, which reflect the spectrometer deviation and light source, and then for the inner filter correction, following the procedure described elsewhere (Chen et al., 2019; Gu and Kenny, 2009). Briefly, the inner filter correction of the EEMs was done based on the UV-Vis light absorbance of the extracts, which was lower than 0.7 in the calibrated wavelength range and is appropriate (Gu and Kenny, 2009). The signal intensity of the EEMs was then normalized to the Raman unit (RU) of water (Lawawetz and Stedmon, 2009). The fluorescence volume \((\text{FV, RU-nm}^2/\text{m}^3)\) of extracts present in the atmosphere was estimated based on the EEMs at the excitation wavelength ranging from 240 to 700 nm, and then normalized it \((\text{i.e., NFV (RU-nm}^2-\text{[mg/L]}^{-1})\) by dividing the FV with the concentration of WSOC and WIOC in the aerosol \([\text{mg m}^{-3}]\).

Various types of chromophores present in the PM\(_{2.5}\) samples were classified and identified based on the PARAFAC analysis of the EEMs using the SOLO, the data analysis software. PARAFAC analysis was performed for each extraction fluid in each season. Ultimately, three EEM components were determined and assigned to different types of chromophores.

Additionally, fluorescence index (FI) was determined by calculating the ratio of emission intensities at 450 nm and 500 nm after excitation at 370 nm. Contributions from local biological sources can be characterized by biological index (BIX), which was calculated using the ratio of emission intensities at 380 and 430 nm following 310 nm excitation (Gao yan and Zhang, 2018).

2.3.3 Simple forcing efficiency (SFE)

It is possible to make a rough estimate of the radiative forcing caused by aerosols using a simple forcing efficiency \((\text{SFE, W/g})\), which was assessed as described in the literature (Bond and Bergstrom, 2006; Deng et al., 2022):
where $dS/d\lambda$ is the solar irradiance, τ_{atm} is the atmospheric transmission (0.79), F_c is the cloud fraction (approximately 0.6), a is the surface albedo (average 0.19), β is the backscatter fraction, and MSE and MAE are the mass scattering (can be ignored) and absorption efficiency, respectively.

3 Results and discussion

3.1 Characteristics of ultraviolet light absorption of BrC

The annual and seasonal concentrations and optical properties of BrC are summarized in Table 1. Temporal variations in absorption coefficient of WSBrC and WI-MSBrC at 365 nm (i.e., $\text{Abs}_{365,\text{WSBrC}}$ and $\text{Abs}_{365,\text{WI}-\text{MSBrC}}$) together with their concentrations are depicted in Fig. 1. Averages of all measured parameters peaked in winter ($\text{Abs}_{365,\text{WSBrC}} = 10.4 \pm 6.76 \text{ Mm}^{-1}$, $\text{Abs}_{365,\text{MSBrC}} = 10.0 \pm 5.13 \text{ Mm}^{-1}$), followed by a decrease to autumn and spring and the lowest in summer ($\text{Abs}_{365,\text{WSBrC}} = 1.47 \pm 0.77 \text{ Mm}^{-1}$, $\text{Abs}_{365,\text{WI}-\text{MSBrC}} = 0.74 \pm 0.25 \text{ Mm}^{-1}$). The lower absorbance in summer might have been caused by extensive oxidation of organics and thus, the enhanced decomposition of some BrC substances, due to high solar light intensity and ambient temperatures. While the increase in the absorption coefficient of BrC in winter might be mainly due to the existence of large amounts of organic aerosols under the unfavorable meteorological conditions.

The seasonal variations of Abs_{365} in Tianjin were similar to those reported in the southeastern United States, but the Abs_{365} was much higher than that (0.3–3.0 Mm$^{-1}$ in 2007) in the southeastern United States (Hecobian et al., 2010) and that in Atlanta and Los Angeles (0.88 ± 0.71 and 0.61 ± 0.38 Mm$^{-1}$, respectively) in summer 2010 (Zhang et al., 2011). However, compared with the Abs_{365} of WSBrC (14.1 ± 8.5 Mm$^{-1}$) in winter 2016 and summer 2017 (2.1 ± 1.0 Mm$^{-1}$) in Tianjin (Deng et al., 2022), the Abs_{365} has slightly decreased in this study. Spatially, the value and contribution of Abs_{365} in this study ($\text{Abs}_{365,\text{WSBrC}} = 10.4 \text{ Mm}^{-1}$, $\text{Abs}_{365,\text{WI}-\text{MSBrC}} = 10.0 \text{ Mm}^{-1}$) in winter were higher than those reported at different locations in southern China; Nanjing (Abs$_{365,\text{WSBrC}} = 4.84 \text{ Mm}^{-1}$, Abs$_{365,\text{MSBrC}} = 7.75 \text{ Mm}^{-1}$) (Xie et al., 2020), Guangzhou in autumn (Abs$_{365,\text{WSBrC}} = 8.8 \text{ Mm}^{-1}$) (Li et al., 2018), and Lhasa in winter (Abs$_{365,\text{WSBrC}} = 1.04 \text{ Mm}^{-1}$, Abs$_{365,\text{MSBrC}} = 1.47 \text{ Mm}^{-1}$) (Zhu et al., 2018). Interestingly, the Abs_{365} in Tianjin in winter is lower than that in Beijing, Xi’an, which are heavily polluted cities in northern China (Huang et al., 2020; Li et al., 2020b). The higher Abs_{365} in winter indicates that the light absorption of BrC in PM$_{2.5}$ may have more significant effect on the climate and the photochemical reactions in the atmosphere over Tianjin in winter than in other seasons.
Figure 1. Time series of the light absorption coefficient of water-soluble brown carbon (WSBrC) and water-insoluble but methanol-soluble BrC (WI-MSBrC) at 365nm (Abs$_{365}$, WSBrC and Abs$_{365}$, WI-MSBrC, respectively) and their concentrations in Tianjin, North China during 2018 and 2019.

Figure 2a shows the seasonal average absorption spectra of WSBrC and WI-MSBrC at wavelengths of 240–700 nm, which shows the common feature of BrC, i.e., the absorption of shorter wavelengths increases sharply and significantly. Such feature is different from the absorption characteristics of BC, whose AAE is close to 1 and weakly dependent on the wavelength. Another evident feature of BrC absorption spectra shown in Figure 2a is that the absorption coefficient of WI-MSBrC was always greater than that of WSBrC across the shorter wavelengths, which is consistent with the previous studies (Huang et al., 2020; Li et al., 2020b). This can be attributed to the difference in types and amounts of chromophores extracted, i.e., more chromophores were soluble in methanol (e.g., PAHs from biomass burning and fossil fuel combustion), but not in water. It is worthy to note that, π−π* electron transitions in the double bonds of aromatic compounds are the primary cause of light absorption in the wavelength range of 250–300 nm. Nitroaromatic compounds contribute 60% of absorbance in the 300–400 nm range (Hems et al., 2021). According to most of the studies, the absorption of hydroxylation and ring cleavage products formed from nitrophenol exceeds 400 nm and nitroaromatics have strong light absorption in the visible region (Vidović et al., 2020; Satish and Rastogi, 2019). The electron transitions in phenolic arenes, aniline derivatives, polyenes and polycyclic aromatic hydrocarbons with two or more rings are responsible for the absorbance in the bands between 270 and 280 nm (Baduel et al., 2009). There was a peak of light absorption at 280 nm in WI-MSBrC spectra, but not in that of WSBrC, probably because some polycyclic aromatic chromophores were insoluble in water but soluble in MeOH.

Figs. 3 and 4 show the seasonal variations in the correlations between Abs$_{365}$ and chemical components, including WSBrC and WI-MSBrC, K$^+$, and Cl$^-$, which are possibly emitted from biomass burning. In this study, the light absorption at the wavelength of 365 nm would not be
interfered by inorganic substances, so Abs at 365 nm was selected for analysis (Hecobian et al., 2010). High correlations were found between Abs$_{365}$ and WSBrC, WI-MSBrC, except in summer, indicating that WSBrC and WI-MSBrC might have been derived from similar sources, except in summer, because the light absorption efficiency of organic compounds from different sources were significantly different. For example, precursors and reaction processes affect the light absorption capacity of SOA in the atmosphere (Zhong and Jang, 2011).

In fact, the Abs depends on the amount of BrC availability, but not of total OC content. The BrC content increases with increasing level of nitrogen containing organics (with aging in presence of NO$_3^-$/NH$_3$ etc.). So, the higher levels of OC or WSOC might occur due to enhanced primary emissions and/or secondary formation on those particular days, but the BrC content in that high amount of OC or WSOC might be less due to either aging and/or less availability of N species to produce N containing organics in summer.
<table>
<thead>
<tr>
<th></th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
<th>Winter</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range</td>
<td>Ave ± SD</td>
<td>Range</td>
<td>Ave ± SD</td>
<td>Range</td>
</tr>
<tr>
<td>Concentrations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WSOC (µg m⁻³)</td>
<td>0.69–4.03</td>
<td>2.48±0.82</td>
<td>1.14–3.12</td>
<td>1.88±0.53</td>
<td>1.16–7.68</td>
</tr>
<tr>
<td>WIOC (µg m⁻³)</td>
<td>0.23–2.62</td>
<td>0.88±0.63</td>
<td>0.00–1.33</td>
<td>0.43±0.32</td>
<td>0.21–5.07</td>
</tr>
<tr>
<td>Optical parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ab_{300-400} m⁻³</td>
<td>0.66–13.3</td>
<td>3.45±2.29</td>
<td>0.49–3.16</td>
<td>1.47±0.77</td>
<td>0.55–13.5</td>
</tr>
<tr>
<td>MAA_{300-400} g⁻³</td>
<td>0.52–3.41</td>
<td>1.31±0.55</td>
<td>0.38–1.98</td>
<td>0.80±0.44</td>
<td>0.40–1.76</td>
</tr>
<tr>
<td>AAE_{300-500}</td>
<td>3.85–7.57</td>
<td>5.42±0.74</td>
<td>3.90–6.88</td>
<td>5.17±0.83</td>
<td>5.12–7.99</td>
</tr>
<tr>
<td>FL</td>
<td>1.13–1.63</td>
<td>1.37±0.09</td>
<td>1.16–1.49</td>
<td>1.31±0.07</td>
<td>1.36–1.61</td>
</tr>
<tr>
<td>BIX</td>
<td>0.82–1.24</td>
<td>1.01±0.11</td>
<td>0.79–1.04</td>
<td>0.91±0.06</td>
<td>0.83–1.26</td>
</tr>
<tr>
<td>HIX</td>
<td>1.84–3.76</td>
<td>2.76±0.47</td>
<td>2.47–3.98</td>
<td>3.12±0.44</td>
<td>2.11–4.17</td>
</tr>
<tr>
<td>k_{300}</td>
<td>0.02±0.19</td>
<td>0.07±0.04</td>
<td>0.017±0.006</td>
<td>0.005±0.020</td>
<td>0.006±0.007</td>
</tr>
<tr>
<td>SFE_{300-400}</td>
<td>0.62–2.71</td>
<td>1.46±0.52</td>
<td>0.60–2.99</td>
<td>1.21±0.67</td>
<td>0.85–1.53</td>
</tr>
<tr>
<td>SFE_{300-700}</td>
<td>0.98–6.36</td>
<td>3.39±4.2</td>
<td>1.22–10.5</td>
<td>3.68±2.58</td>
<td>1.48–12.5</td>
</tr>
<tr>
<td>Ab_{300-400} m⁻³</td>
<td>0.44–11.3</td>
<td>1.99±4.95</td>
<td>0.40–1.26</td>
<td>0.74±0.25</td>
<td>0.32–11.0</td>
</tr>
<tr>
<td>MAA_{300-400} g⁻³</td>
<td>0.42–5.81</td>
<td>2.41±1.28</td>
<td>0.89–7.05</td>
<td>2.50±1.78</td>
<td>0.18–4.70</td>
</tr>
<tr>
<td>WIS-MSBrC</td>
<td>3.94–8.38</td>
<td>6.27±0.90</td>
<td>4.27–9.19</td>
<td>5.49±1.26</td>
<td>2.08–12.9</td>
</tr>
<tr>
<td>FI</td>
<td>1.29–1.77</td>
<td>1.51±0.11</td>
<td>1.34–1.92</td>
<td>1.58±0.12</td>
<td>1.48–1.73</td>
</tr>
<tr>
<td>BIX</td>
<td>0.94–1.76</td>
<td>1.23±0.18</td>
<td>0.92–1.65</td>
<td>1.32±1.8</td>
<td>0.83–1.36</td>
</tr>
<tr>
<td>HIX</td>
<td>0.11–1.26</td>
<td>0.42±0.28</td>
<td>0.11–0.49</td>
<td>0.25±0.08</td>
<td>0.30–2.38</td>
</tr>
<tr>
<td>k_{300}</td>
<td>0.01±0.025</td>
<td>0.01±0.057</td>
<td>0.009±0.017</td>
<td>0.010±0.031</td>
<td>0.001±0.058</td>
</tr>
<tr>
<td>SFE_{300-400}</td>
<td>0.64–8.84</td>
<td>3.61±1.91</td>
<td>0.60–2.99</td>
<td>1.21±0.67</td>
<td>0.75–7.01</td>
</tr>
<tr>
<td>SFE_{300-700}</td>
<td>2.48–21.8</td>
<td>8.70±5.03</td>
<td>1.22–10.5</td>
<td>3.68±2.58</td>
<td>0.92–51.3</td>
</tr>
</tbody>
</table>
Figure 2. Seasonal averages of (a) absorption spectra in the wavelength range of 240–700 nm plotted on a linear scale, (b) absorption Ångström exponent (AAE), (c) ratio of MAE at 250 nm to that at 365 nm (E_2/E_3) and (d) mass absorption efficiency (MAE: $m^2 \text{g}^{-1}$) of WSBrC and WI-MSBrC in PM$_{2.5}$ from Tianjin, North China.
Figure 3. Scatter plots of Abs_{365}, WSBrC and Abs_{365}, WI-MSBrC with WSBrC and WI-MSBrC in PM$_{2.5}$ from Tianjin in each season during 2018–2019. The WSOC and WIOC data is obtained from (Dong et al., 2023).

As shown in Fig. 4, considerable positive correlations were found between Abs_{365} and K^+ and Cl^- in autumn and spring, indicating that biomass burning was a major source of BrC in those seasons. In addition, the correlation between WSOC chromophores and K^+ in autumn was stronger than that between methanol-soluble photogenic groups, which again confirmed that most of the chromophores generated by biomass burning were water-soluble photogenic groups. However, the correlation between WI-MSBrC and Cl^- was stronger than that between WSBrC and Cl^- in spring, which might be due to enhanced contribution of a large number of BrC chromophores, which were insoluble in water, from dust in spring.
Figure 4. Scatter plots of $\text{Abs}_{365, \text{WSBrC}}$ and $\text{Abs}_{365, \text{WI-MSBrC}}$ with K^+ and Cl^- in PM$_{2.5}$ from Tianjin in each season during 2018–2019. The concentration of K^+ and Cl^- from (Dong et al., 2023).

3.1.2 Absorption Ångström exponent (AAE)

The magnitude of the AAE can reflect the difference in BrC sources and atmospheric chemical processes (Lack et al., 2013). It has been reported that the AAE of light-absorbing organic species (i.e., BrC) is much larger than that of soot (BC). The AAE was found to be between 2 and 4 for the particles containing both soot and BrC. AAE value of particulate matter was closely related to its chemical composition, mixing state, particle size and other factors.
It is important to note that the solvent extractant light absorption characteristics of organic components do not be affected by particle size and chemical composition of aerosols. The AAE value of the extract mainly depends on the types of absorbable components in the extract. Hoffer et al. (2006) isolated humic-like substances (HULIS) from particulate matter emitted by combustion substances by combining water extraction with exchange column, and measured its AAE value as 7 (Hoffer et al., 2006). As shown in Fig. 2b, the seasonal average AAE of WSBrC varied slightly between 3.85 and 7.99 with an average of 5.66, which was comparable to those reported from New Delhi, Beijing and the outflow region of northern China (Lesworth et al., 2010). The AAE of WSBrC in Tianjin was also similar to that (range, 6–8) reported in the off-line particulate matter samples collected from the southeastern United States (Hecobian et al., 2010) and downtown Atlanta (Liu et al., 2013). The AAE of WI-MSBrC (6.06 ± 1.23) was comparable with that of WSBrC, consistent with a previous study in urban Beijing during winter and Xi’an, China. It has been reported that the AAE of BrC is increased with the increase in polarity (Chen et al., 2016a). The higher AAE of the BrC implies that the OA is mostly polar in Tianjin.

3.1.3 Mass absorption efficiency (MAE: m² g⁻¹)

The average MAE₃₆₅ of both WSBrC and WI-MSBrC were higher in winter (1.28 and 2.36 m² g⁻¹, respectively). It is interesting to note that minimum value of MAE₃₆₅ of WSBrC appeared in summer (0.80 ± 0.44), which was opposite to that of WI-MSBrC, the least value was appeared in autumn (1.86 ± 1.02), which was similar with that reported in Xi’an (Li et al., 2020b). Such large seasonal differences indicated that the BrC sources might be different in each season. During winter, contributions of aerosols from coal and biomass burning were significantly higher than other seasons due to increased residential heating activities. The lower MAE₃₆₅ values observed in summer and autumn may be attributed to biogenic sources and/or aged secondary BrC. Whereas the largest MAE₃₆₅ appeared in cold period, which result in severe air pollution in the cold period.

3.2 Direct radiative forcing of BrC

Radiative forcing efficiency is calculated by integrating wavelengths from 300 nm to 700 nm. In this study, SFE₃₀₀–₄₀₀ was integrated to estimate the radiative forcing efficiency of BrC, because the BrC strongly absorbs light in the UV range. The temporal variations of SFE in different wavelength ranges in the two solvents were shown in Fig. 5. SFE₃₀₀–₄₀₀ and SFE₃₀₀–₇₀₀ showed similar seasonal trend in both the solvents, which was the same as the seasonal variation of the k. In WSBrC, it was 61% and 52% larger in winter than those in summer, respectively, indicating that BrC abundance and strong light absorption capacity in winter led to a significant increase in direct radiative forcing of the BrC. The integrated average SFE for 300–400 nm (SFE₃₀₀–₄₀₀) of WSBrC and WI-MSBrC were 1.95 ± 1.02 and 2.98 ± 1.70, respectively. The average SFE₃₀₀–₇₀₀ of both WSBrC (4.97 ± 2.71) and WI-MSBrC (7.58 ± 5.75) were about 2.5 times larger than that of the SFE₃₀₀–₄₀₀. The SFE of WSBrC (0.98–13.1) and WI-MSBrC (0.92–51.3) in the range of 300–700 nm varied widely, which was much larger than the maximum SFE obtained in the range of 300–400 nm. Furthermore, SFE₃₀₀–₄₀₀ accounted for 40% of SFE₃₀₀–₇₀₀ in the two extractants, which are similar to that reported in Tianjin by Deng et al. (2022), which indicates that the light absorption by BrC in UV range play a significant role in the radiative forcing. The imaginary part (k) is a significant parameter indicating the direct radiative forcing of aerosols in climate model. The k of WSBrC and WI-MSBrC in Tianjin showed the similar variation tendency in seasons, with
the largest value in winter with the averages of 0.089 and 0.117, respectively. The values are shown in Table 1 and the k of WI-MSBrC was larger than WSBrC in all seasons, which indicate that most of light-absorbing chromophores are soluble in MeOH.

![Figure 5](https://doi.org/10.5194/egusphere-2023-895)

Figure 5. Temporal variations in SFE of WSBrC and WI-MSBrC from 300–400nm and 300–700nm in PM$_{2.5}$ from Tianjin.

3.3 Fluorescence characteristics of BrC

3.3.1 Fluorescent properties

The fluorescent properties of WSBrC and WI-MSBrC are presented in Table 1. The composition of chromophores in WSBrC and WI-MSBrC was analyzed by their fluorescence spectrum. By comparing the fluorescence intensity of chromophores in WSBrC and WI-MSBrC (Fig. 6), it was found that the proportion of water-soluble chromophores in Tianjin PM$_{2.5}$ was...
higher in autumn (35%), followed by summer (29%), winter (22%) and spring (22%). Previous studies have shown that biomass combustion produces more water-soluble chromophores (Budisulistiorini et al., 2017; Lin et al., 2016; Song et al., 2018). The relative content of water-soluble chromophores in Tianjin samples was higher in autumn than that in winter, suggesting that the BrC might mainly derived from biomass butning (BB) in autumn. Furthermore, the relative proportion of water-soluble chromophores in SOA is increased with the increase in oxidation degree (Updyke et al., 2012; Wong et al., 2017) and can reach up to 70% (Chen et al., 2020). The content of SOA in Tianjin was relatively high due to enhanced aging in summer. Therefore, the content of water-soluble chromophore in BrC in summer was higher than that in spring and winter. We also calculated the humification index (HIX) and fluorescence index (FI), which further supported that the water-soluble chromophores of BrC were significantly influenced by primary emissions in autumn and the aging in summer.

The fluorescence spectrum of WSBrC was similar to that of HULIS, and the humification index (HIX) is measured to reflect the degree of humification of the OA. It has been established that HIX and aromaticity show a consistent change law, that is, the value of HIX is higher, the substance has a high condensation degree (Deng et al., 2022). The average HIX of WSBrC and WI-MSBrC were 2.87 ± 0.53 (1.72–4.17) and 0.81 ± 0.60 (0.11–2.38) respectively, which indicate that the BrC in Tianjin might be either humified or aromatic, more apparently soluble in water. Besides, the temporal variation of HIX of WSBrC was completely different to that of WI-MSBrC. The higher molecular weight and aromatic organic compounds contribute more to WSBrC in summer and autumn while the contents of WI-MSBrC (winter > autumn > spring > summer) were opposite. This phenomenon was comparable to that in Nanjing (WSOC: 7.07 ± 2.41; MSOC: 4.84 ± 2.47) (Xie et al., 2020). This phenomenon demonstrates that the influence of molecular composition on changes in optical properties. Interestingly, it has been reported that aging processes and HIX have a significant relation (Deng et al., 2022). HIX of WSBrC confirms the BrC was significantly produced from aromatic compounds and subjected for significant atmospheric aging in summer.

Fluorescence index (FI) plays an important role in exploring the source and aging of OA and attracted much attention in recent times (Xie et al., 2020; Gao yan and Zhang, 2018; Qin et al., 2018; Deng et al., 2022). On the other hand, FI has been considered as an indicator to assess the terrestrially derived fulvic acids contribution to OA, the FI lower than 1.4 is associated with higher aromaticity (Gao yan and Zhang, 2018). The FI of WSBrC ranged from 1.13 to 1.63 with an average of 1.38, which was comparable to that reported from Lanzhou, China (1.2 in summer and 1.7 in winter) (Gao yan and Zhang, 2018). Both FI and BIX of WSBrC in autumn have higher values, indicating that the BrC was mainly derived from terrestrial organic matter that should have largely consist of aromatic compounds. On the other hand, the variation of FI was related to photobleaching. With the increase of aromatic substances during the aging of OA, FI decreased with light strength. In contrast, the FI of WI-MSBrC ranged from 1.29 to 2.24 (ave. 1.60), with the lowest in spring (1.51 ± 0.11) and the highest in winter (1.73 ± 0.11), which were higher than that of WSBrC. The variation of HIX and FI of WSBrC and WI-MSBrC indicated that the fluorescence substance contains mainly aromatic species and significantly subjected for the aging in summer, whereas in autumn, that must have mainly derived from terrestrial organics, which were highly water-soluble.

The BIX showed an obvious seasonal variations and the average value was 1.20 ± 0.08 for WSBrC and 1.43 ± 0.09 for WI-MSBrC in Tianjin PM$_{2.5}$, which were higher than those reported in the forest environment (1.01 ± 0.23) (Zhao et al., 2019). Furthermore, the BIX of WSBrC in
Tianjin PM$_{2.5}$ was 1.20 ± 0.08 (1.03–1.39) in winter, 1.06 ± 0.08 (0.83–1.26) in autumn, 1.01 ± 0.11 (0.82–1.24) in spring and 0.91 ± 0.06 (0.79–1.04) in summer. Whereas the BIX of WI-MSBrC peaked in winter (1.43 ± 0.09) and showed the minimum value in autumn (1.05 ± 0.14). The slightly rise in summer indicated that biological OM was more soluble in MeOH, which was different from BrC contributed by biological matter in autumn. Such results indicate that the chromophoros generated by primary sources in autumn were mostly soluble in water, while the chromophoros generated in summer were mostly water-insoluble, which was closely related to their molecular structure. Fig. 7 shows the seasonal variations of HIX, BIX and FI in WSBrC and WI-MSBrC.

Figure 6. Relative contributions of the fluorescent volumes of the WSBrC and WI-MSBrC in PM$_{2.5}$ from Tianjin.
3.3.2 Chromophore identification

It has been reported that chromophores with different excitation emission wavelengths can distinguish the types and sources of chromophores, but the types and sources of a large number of chromophores have not been determined due to their complex chemical composition and sources. Here, we successfully separated several fluorescence components from the EEM data using the parallel factor analysis (PARAFAC) method, and the results are shown in Fig. 8. The fact of the

Figure 7. Temporal variations in light absorption and fluorescence properties of BrC in PM$_{2.5}$ Tianjin: (a) HIX, (b) BIX, and (c) FI.
value of core consistency is close to 100 in PARAFAC indicates that the more the individual components that are analyzed together, the more they make up 100% of the mixture, with no unexplained residues. The core consistency of BrC extract in water was 89%, but the value can reach 95% together with that in MeOH.

Figure 8. Three-dimensional excitation-emission matrix of three fluorescent components with emission and excitation spectra of each fluorescent component at peak emission and excitation wavelengths in WSBrC (above) and WI-MSBrC (below) obtained by PARAFAC model analysis.
Table 2. Description and wavelength positions of PARAFAC components in this study and other reports. (PLOM = protein compounds; HULIS = humic-like substances)

<table>
<thead>
<tr>
<th>Category</th>
<th>Components</th>
<th>Ex(nm)</th>
<th>Em(nm)</th>
<th>Substances</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSBRC</td>
<td>C1</td>
<td><240, 318</td>
<td>393</td>
<td>low-oxygenated HULIS</td>
<td>this study</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>251, 363</td>
<td>462</td>
<td>high-oxygenated HULIS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td><240, 271</td>
<td>356.3</td>
<td>PLOM, such as tryptophan and tyrosine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td><240, 279</td>
<td>306</td>
<td>PLOM, tryptophane-tyrosine</td>
<td></td>
</tr>
<tr>
<td>WI-MSBrC</td>
<td>C2</td>
<td><240</td>
<td>379</td>
<td>PLOM, tryptophane-like</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>251, 294</td>
<td>315</td>
<td>PLOM, such as tryptophane-like</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td>250, 315</td>
<td>396</td>
<td>low-oxygenated HULIS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>250</td>
<td>465</td>
<td>highly-oxygenated HULIS</td>
<td>(Deng et al., 2022)</td>
</tr>
<tr>
<td>BrC</td>
<td>C3</td>
<td>250</td>
<td>385</td>
<td>low-oxygenated HULIS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C4</td>
<td>250</td>
<td>340</td>
<td>PLOM, tryptophane-like</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C5</td>
<td>275</td>
<td>305</td>
<td>PLOM, tryptophane-like</td>
<td></td>
</tr>
<tr>
<td>WSOC</td>
<td>C1</td>
<td>240, 315</td>
<td>393</td>
<td>low-oxygenated HULIS</td>
<td>(Wen et al., 2021)</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>245, 360</td>
<td>476</td>
<td>highly-oxygenated HULIS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td><240, 290</td>
<td>361</td>
<td>PLOM, such as tryptophane-tyrosine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C4</td>
<td>275</td>
<td>311</td>
<td>PLOM, typtophane-like</td>
<td></td>
</tr>
<tr>
<td>WSM and</td>
<td>C1</td>
<td>255</td>
<td>415</td>
<td>HULIS-1 component</td>
<td>(Chen et al., 2019)</td>
</tr>
<tr>
<td>MSM</td>
<td>C2</td>
<td>220</td>
<td>340</td>
<td>tryptophane-like component</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>255</td>
<td>385</td>
<td>typtophane-like component</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C4</td>
<td>210</td>
<td>300</td>
<td>amino acid-like component</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C5</td>
<td>250</td>
<td>355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WSO C</td>
<td>C1</td>
<td>245</td>
<td>410</td>
<td>HULIS, photodegradation of macromolecules</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>235</td>
<td>398</td>
<td>HULIS, aromatic and saturated compounds were presented</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>250, 360</td>
<td>466</td>
<td>humic-like chromophors, more aromatic and consisted of more unsaturated compounds produced by condensation reactions</td>
<td>(Xie et al., 2020)</td>
</tr>
<tr>
<td></td>
<td>C4</td>
<td>250, 285</td>
<td>432</td>
<td>terrestrial humic-like chromophore</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C5</td>
<td><235</td>
<td>430</td>
<td>terrestrial humic-like substance, photoschemical product</td>
<td></td>
</tr>
<tr>
<td>MSOC</td>
<td>C6</td>
<td>275</td>
<td>408</td>
<td>low oxidation humic-like</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C7</td>
<td>235, 275</td>
<td>372</td>
<td>protein-like chromophore</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C8</td>
<td>260, 310</td>
<td>364</td>
<td>protein-like (tryptophane-like), may be related to PAHs</td>
<td></td>
</tr>
</tbody>
</table>
However, MeOH-soluble chromophore C1 might be tyrosine-like substance. C2 could be HULIS or PLOM, it's not quite certain because its emission wavelength <380nm fits the profile of PLOM, but it is also close to the emission wavelength of HULIS. While C3 is a tryptophan-like substance, which was reported to contain low aromatic and small molecular weight. In general, phenols contribute significantly to C3 chromophore as they are the products of incomplete pyrolysis of lignin and cellulose and are used as indicators of biomass burning (Wen et al., 2021). The water-insoluble chromophores of all samples in this study can be classified as PLOM. This indicates that the chromophores of protein substances mainly dissolve in solvents with high polarity. As shown in Fig. 9, the water-soluble extracts contained more HULIS. In contrast, the MeOH extracts contained more PLOM chromophores than those in the water-soluble extracts. Surprisingly, according to the excitation emission wavelength, we classified the fluorescence component of WI-MSBrC substance as PLOM, but the correlation between their fluorescence intensity and BIX ($R^2 = 0.06, p < 0.05$) was very small, far lower than that of WSBrC substance and BIX ($R^2 = 0.18, p < 0.05$). On the contrary, the correlation between their fluorescence intensity and HIX ($R^2 = 0.54, p < 0.05$) was much higher than that of WSBrC ($R^2 = 0.01, p < 0.05$). Although PLOM may be associated with some polycyclic aromatic hydrocarbons (PAHs) or phenols from fossil fuel combustion and biomass burning, especially in urban aerosols, the correlation is puzzling.

Figure 9. Relative abundances of the chromophores of the WSBrC and WI-MSBrC in PM$_{2.5}$ from Tianjin.

Fig. 9 displays the average relative contributions of the fluorescent components of WSBrC and WI-MSBrC during different periods. On average, the humic-like chromophores together contributed more than 60% to the fluorescence intensity in WSBrC, suggesting that humic-like chromophores played a dominant role in fluorescence properties of WSBrC in Tianjin. Generally, the low-oxygenated chromophores C1 made considerable contributions in each season. C2, as highly oxygenated HULIS, has a greater relative contribution in summer, which might be due to the strong solar radiation in summer, which made some HULIS with little oxygen photodegraded and form highly oxygenated HULIS through a series of oxidation reactions. In contrast, in WI-
MSBrC, the average contribution of PLOM to fluorescence intensity was higher than 70% in spring (80.2%) and summer (77.9%), but C2 component dominated in winter and autumn. This indicated that biological activities increased in spring and summer and the relative abundance of bioaerosols was higher during that period.

3.4 Potential sources of BrC

The types of chromophores present in aerosols are numerous and their sources are complex. A chromophore may originate from a single source or may be contributed by multiple sources. To explore the potential sources of BrC, correlations of FV with chemical components and light absorption of PM$_{2.5}$ were studied. The total FVs of WSBrC and WI-MSBrC with SOC showed a significant correlation in autumn ($R^2 = 0.80$, $p < 0.05$) and spring ($R^2 = 0.52$, $p < 0.05$). Furthermore, the correlation between FVs and EC in each season was insignificant. Such relations suggest that the secondary formation processes contributed more in autumn and spring. A good correlation between FVs and Abs$_{365}$ of WSBrC and WI-MSBrC was found in all seasons, except in winter, which indicate that most of light-absorbing materials would also have fluorescence character.

The relative contents of different chromophores in different polar extracts were also different. The results showed that the overall optical properties of the different samples were different (Fig. 10). Recently, it has been reported that the aerosols derived from biomass burning and coal combustion exhibit the highest NFV values, while SOA show the lowest NFV values (Chen et al., 2020). NFV in all samples studied in Tianjin during 2018–2019 was very similar to that of POA and higher than that of SOA. Such result reveal that the chromophores in the Tianjin PM$_{2.5}$ might mainly be derived from a primary combustion sources. In addition, the NFVs of the Tianjin PM$_{2.5}$ were higher in winter than in summer, which is likely and can be attributed to the photolysis of chromophores in summer. In addition, NFV in MeOH-soluble OC was much higher than that in WSBrC, which indicated that chromophores were abundant in WI-MSBrC than in the WSBrC.

Extraction of BrC by variety of solvents is a subject of our future research.

Figure 10. The normalized fluorescence volumes (NFVs) of the WSBrC and WI-MSBrC of PM$_{2.5}$ from Tianjin, North China.

In order to further identify the sources of the chromophores, the correlation between δ^{13}C$_{TC}$ as well as δ^{15}N$_{TN}$ and the optical parameters of BrC were analyzed. As shown in Fig. 11, δ^{15}N$_{TN}$ in Tianjin PM$_{2.5}$ showed a negative correlation with Abs$_{365,\ WSBrC}$ in autumn ($R^2 = 0.61$) and summer ($R^2 = 0.55$), whereas the δ^{13}C$_{TC}$ showed a significant relation neither with Abs$_{365,\ WSBrC}$ nor with Abs$_{365,\ WI-MSBrC}$ in all seasons. Such relations indicated that some of N-containing substances
derived from biomass burning emissions, biological emissions and subsequent aging of aerosols in summer and autumn might contain BrC chromophores and were soluble in water (Satish and Rastogi, 2019).

Figure 11. Scatter plots between $\delta^{13}C_{TC}/\delta^{15}N_{TN}$ and optical parameters (Abs$_{365}$, AAE, MAE) in WSBrC and WI-MSBrC in PM$_{2.5}$ from Tianjin. The $\delta^{13}C_{TC}/\delta^{15}N_{TN}$ data is obtained from (Dong et al., 2023).

4. Summary and Conclusions

This study presents the temporal variations in light absorption and fluorescence properties of water-soluble BrC (WSBrC) and the water-insoluble but MeOH-soluble BrC (WI-MSBrC) in
PM$_{2.5}$ collected from Tianjin, North China during July 5, 2018 – July 5, 2019. Based on correlation between BrC and aerosol chemical composition, the possible sources of BrC were comprehensively analyzed. Light absorption properties of WSBBrC and WI-MSBrC in Tianjin were investigated and found to be distinct from season to season, which was lower in spring and summer, compared with that in autumn and winter. The AAE of WI-MSBrC was comparable with that of WSBBrC and indicated that Tianjin PM$_{2.5}$ contains more polar BrC. The Mass absorption efficiency of WSBBrC and WI-MSBrC (MAE$_{365}$) exhibited distinct seasonal variations, which was higher in winter and lower in summer and autumn. Biologically derived or secondary BrC might be one of the reasons for the lower MAE$_{365}$ values in summer and autumn. The light absorption of BrC in the range of 300–400 nm to the light absorption of WSBBrC and WI-MSBrC in whole range (300–700 nm) was close to 40%, indicating that BrC plays an important role in climate warming and atmospheric photochemical reactions. In order to better assess its impact on climate, further work is needed through observations and laboratory simulations of BrC generation and aging.

In addition, based on PARAFAC analysis model, EEM data were comprehensively analyzed to compare the types and abundance of different color clusters in different aerosol samples, and a portion of source of BrC chromophore was determined by different excitation-emission wavelengths. In this study, BrC chromophore was divided into three categories: low-oxygenated HULIS, high-oxygenated HULIS and protein-like compound (PLOM). The high-oxygenated HULIS was more reactive than other categories in the atmospheric photooxidation. By comparing the fluorescence fluxes of different polar extraction solutions, it was found that WI-MSBrC substances contributed more than half of the fluorescence, indicating that there were more polar BrC substances in Tianjin aerosol, which attributed from anthropogenic emissions. The correlation between BrC optical properties and aerosol chemical composition indicated that fossil fuel combustion significantly contributed to BrC content in winter, while primary biological emission and aging reaction significantly contributed to the BrC content in summer. These results illustrated the light absorption properties of BrC in metropolis aerosols and emphasized its significant contribution to radiative forcing.

Declaration of competing interest

The authors declare no competing interest in this paper.

Data Availability Statement

The data used in this study can be found online at https://doi.org/10.5281/zenodo.7316371 (Dong et al., 2022), and at https://doi.org/10.5281/zenodo.5140861 (Dong et al., 2021).

Acknowledgments

This work was supported in part by National Natural Science Foundation of China (Grant No. 41775120 and 42277090) & National Key Research and Development Plan (Grant No. 2017YFC0212700), China. The author also thanks to Mr. Yunting Xiao’s help for writing a code to calculate the SFE.
Author contribution
ZD and CMP conceptualized this study. ZD and PL conducted the sampling. ZD conducted the chemical analyses, interpreted the data and wrote the manuscript. CMP supervised the research and acquired the funding for this study. XZ, ZXY and ZX administrated the project. CMP, ZX, DJ, PF and CQL contributed in discussing the results and review and editing the manuscript.

References

Jo, D. S., Park, R. J., Lee, S., Kim, S. W., and Zhang, X.: A global simulation of brown carbon: implications for photochemistry and direct radiative effect, Atmospheric Chemistry and Physics, 16, 3413-3432, 10.5194/acp-16-3413-2016, 2016.

Satish, R., and Rastogi, N.: On the use of brown carbon spectra as a tool to understand their broader composition and characteristics: A case study from crop-residue burning samples, American Chemical Society Omega, 4, 1847-1853, 10.1021/acsomega.8b02637, 2019.

