Measurement Report: Optical Characterization, Seasonality, and Sources of Brown Carbon in Fine Aerosols from Tianjin, North China: Year-round Observations

3

Observations

Zhichao Dong¹, Chandra Mouli Pavuluri¹*, Peisen Li¹, Zhanjie Xu¹, Junjun Deng¹, Xueyan Zhao¹, Xiaomai Zhao¹, Pingqing Fu¹, Cong-Qiang Liu¹

¹Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University,
 Tianjin 300072, China

8 Correspondence to: Chandra Mouli Pavuluri (cmpavuluri@tju.edu.cn)

9 Abstract

To investigate the optical characteristics and sources of brown carbon (BrC) in North China, where 10 11 the atmospheric aerosol loadings are high and have severe impacts on the Earth's climate system, we collected fine aerosols (PM_{2.5}) at an urban site in Tianjin over a 1-year period. We measured 12 the ultraviolet (UV) light absorption and excitation emission matrix (EEM) fluorescence of the 13 14 water-soluble BrC (WSBrC) and the water-insoluble but methanol-soluble BrC (WI-MSBrC) in 15 the PM_{2.5} using a three-dimensional fluorescence spectrometer. Average light absorption efficiency of both WSBrC (Abs365, WSBrC) and WI-MSBrC (Abs365, WI-MSBrC) at 365 nm was found 16 to be highest in winter (10.4 \pm 6.76 Mm⁻¹ and 10.0 \pm 5.13 Mm⁻¹, respectively) and distinct from 17 season to season. Averages of fluorescence index (FI) and biological index (BIX) of WSBrC were 18 19 lower in summer than in other seasons and opposite to that of humification index (HIX), which implied that the secondary formation and further chemical processing of aerosols were intensive 20 during the summer period than in other seasons. Whereas in winter, the higher HIX together with 21 the higher FI and BIX of WI-MSBrC suggested that the BrC loading was mainly influenced by 22 primary emissions from biomass burning and coal combustion. Based on EEM, the types of 23 24 fluorophores in WSBrC were divided into humic-like substances (HULIS), including low-25 oxygenated and high-oxygenated species, and protein like compounds (PLOM), whereas mostly PLOM in the WI-MSBrC. The direct radiation absorption by both WSBrC and WI-MSBrC in the 26 range of 300–400 nm was accounted for ~40% to that (SFE_{Abs}, 4.97 ± 2.71 Wg⁻¹ and 7.58 ± 5.75 Wg⁻¹ 27 ¹, respectively) in the range, 300–700 nm. 28

29

30 1 Introduction

Brown carbon (BrC) is a part of organic aerosol (OA) and can absorb solar radiation in the near-31 ultraviolet (UV) to visible (Vis) light, ranging from 300-500 nm (Liu et al., 2013). It has been well 32 33 recognized that BrC has a significant effect on radiative forcing at both regional and global scales (Feng et al., 2013; Jo et al., 2016; Park et al., 2010). For example, the warming effect of water-34 soluble BrC in the Arctic has been reported to be accounted for $\sim 30\%$ of that exerted by the black 35 carbon (Yue et al., 2022). The BrC not only affects the direct radiative forcing, but also has a 36 potential impact on indirect radiative forcing due to its hydrophilicity, which influences the 37 formation of cloud condensation nuclei (CCN) (Andreae and Gelencs'er, 2006;Laskin et al., 38 2015b). In addition, BrC is mostly composed of highly conjugated aromatic ring compounds such 39

as a polycyclic aromatic hydrocarbons and high molecular weight substances with a polar
functional group that consists of nitrogen and/or oxygen, or humic-like substances (HULIS), which
could pose a risk to human health. *For example*, carbon-containing aromatic compounds can cause
physical weakness, decreased immunity, arteriosclerosis, etc., which will increase the mortality
due to cardiovascular and cerebrovascular diseases and a variety of cancers such as skin cancer,
pharyngeal cancer and nasal cancer (Diggs et al., 2011;Peters et al., 2008;Hecobian et al., 2010).

BrC can be emitted directly from primary sources such as biomass burning (Hoffer et al., 2006;Brown et al., 2021), fossil fuel combustion (Jo et al., 2016), and non-combustion processes such as bioaerosols (plant debris and fungi) and soil humus (Lin et al., 2014;Rizzo et al., 2013;Rizzo et al., 2011). On the other hand, BrC can also be produced from complex chemical reactions of volatile organic compounds (VOCs) emitted from both anthropogenic and biological origin in gas-pahse as well as by multiphase reactions between the gaseous, particulate and aqueous constituents (Kasthuriarachchi et al., 2020;Li et al., 2020a;Laskin et al., 2015a).

In recent times, after establishing the fact that BrC absorb the light, the researchers are paying 53 54 lot of attention to measure the physical (optical) and chemical characteristics of the BrC and 55 estimate its climatic effects (Yue et al., 2019;Choudhary et al., 2021;Hecobian et al., 2010). However, studies on BrC are still very limited due to difficulties in quantitative measurement of 56 light-absorbing organic components (Corbin et al., 2019; Wang et al., 2022b). In fact, based on the 57 58 disparity in wavelength dependence between BC and BrC, traditional optical instruments can be used to obtain the BrC absorption value, but the availability of such instruments are limited, which 59 can accurately and directly differentiate the light absorption caused by the BC and BrC. On the 60 other hand, the molecular composition and optical properties of BrC are significantly changed 61 62 when the BrC is subjected for physical and photo-chemical processing (aging) in the atmosphere. That is why, the indirect approaches have been developed to explore the molecular composition 63 including chromophores and sources of BrC through its light absorption and fluorescence 64 65 characteristics.

66 UV-Vis spectroscopy and excitation emission matrix (EEM) fluorescence spectroscopy are 67 considered to be common techniques for studying the optical absorption and fluorescence chromophore optical and structural characteristics of complex organic materials, because each 68 chromophore has its own specific excitation-emission peak in the EEM maps (Chen et al., 69 70 2016b;Coble, 2007). In recent years, combined spectrophotometric measurement and chemical 71 analysis has been applied to study the BrC in Xi'an, Northwest China (Huang et al., 2018). In fact, EEM fluorescence spectroscopy provides multiple superposed spectral data. By using parallel 72 73 factor (PARAFAC) analysis of such spectral data, the type of chromophores can be identified and 74 their types are quantified semi-quantitatively based on the range of excitation-emission 75 wavelengths (Cao et al., 2022;Zhan et al., 2022;Murphy et al., 2013). The composition of humiclike and protein-like components have been identified from the analysis of chromophores of 76 dissolved organic substances in aquatic environments (Xie et al., 2020). The fluorescence 77 technique has been widely applied to measure organics in terrestrial and oceanic systems (Murphy 78 et al., 2013;Yu et al., 2015), but has rarely been used in the study of atmospheric aerosols. Now, 79 the application of fluorescence technique has been well established in studying the molecular 80 81 composition of aerosols as well, the studies on identification of chromophores and thus the 82 molecular composition of BrC in the atmospheric aerosols are still very limited (Wu et al., 2021a;Deng et al., 2022;Li et al., 2022;Cao et al., 2022). 83

Therefore, much attention need to be paid further, particularly on long-term and continuous measurements of the optical characteristics of water-soluble BrC (WSBrC) and their temporal and

spatial variations. Moreover, the investigation of light absorption and fluorescence characteristics 86 87 of water-insoluble BrC (WIBrC) that can be extracted into a solvent with higher extraction 88 efficiency is necessary to better understand the impact of the BrC on climate change (Corbin et al., 89 2019). In fact, such studies are very scarce, because the selection of solvents and determination of extraction efficiency are difficult, although different polar chromophores could be extracted by 90 solvent extraction according to the polarity of solvent and methanol has been used as a common 91 solvent (Chen et al., 2016a). Hence, the comprehensive study of the optical properties of WSBrC 92 and WIBrC is highly necessary to better understand the types of chromophores and optical 93 properties of atmospheric aerosols, as well as the processes of oxidation and transformations of 94 95 chromophores at different locale over the world.

96 China is one of the most polluted areas in the world, and suffering from the absorption and scattering of solar radiation by atmospheric aerosols that directly affect the energy balance of the 97 Earth's climate system, especially in North China Plain (Wang et al., 2022a). As an important port 98 city in the North China Plain, Tianjin, which has a large population, has received a widespread 99 attention to address the atmospheric environmental issues. Previous studies have shown that BrC 100 101 in the atmosphere contributes significantly to the light absorption by aerosols (Deng et al., 2022). PM_{2.5} loading in the Tianjin area is extremely high, with greater abundance of organic matter (OM) 102 (Dong et al., 2023a). In such an environment, BrC is likely to become an important light-absorbing 103 104 component of atmospheric aerosols. However, the studies on physico-chemical characteristics and sources of BrC are very limited in the North China Plain, and to the best of our knowledge, the 105 long-term observations of the optical properties and molecular composition of BrC have not been 106 reported yet over the Tianjin region. 107

108 In this study, we measured the optical properties and molecular composition of WSBrC and water-insoluble but methanol-soluble BrC (WI-MSBrC) in fine aerosols (PM2.5) collected from 109 Tianjin, North China over a one-year period using the combined UV-Vis absorption and EEM 110 111 fluorescence spectroscopy technique. We discussed the seasonal variations in optical properties 112 and chromophore composition of WSBrC and WI-MSBrC in the PM2.5. We also assessed the possible sources of BrC including the potential photochemical processing of OA (aging) over the 113 Tianjin region, based on the relationships between the BrC and chemical tracers and stable carbon 114 $(\delta^{13}C)$ and nitrogen $(\delta^{15}N)$ isotope ratios of total carbon (TC) and nitrogen (TN) in the PM_{2.5}. Thus, 115 this study provides a comprehensive understanding of the optical characteristics, seasonality, and 116 sources of BrC in the Tianjin region, and warrant the need to develop the prevention and control 117 strategies for the BrC and/or its precursors emissions. 118

119 2 Materials and Methods

2.1 Aerosol sampling 120

121 Fine aerosol (PM_{2.5}) sampling was conducted in Tianjin, a coastal city located at the lower 122 reaches of the Haihe River and Bohai Sea and 150 km away from Beijing in the northern part of China. The sampling took place on the rooftop of a six-storey building at Tianjin University (ND, 123 39.11°N,117.18°E) in an urban area of Nankai District, Tianjin. A high-volume air sampler (Tisch 124 Environmental, TE-6070DX) at a flow rate of 1.0 m³ min⁻¹ and pre-combusted (6 hours at 450°C) 125 quartz fiber filters (Pallflex 2500QAT-UP) were used for continuously collecting the PM_{2.5} 126 127 samples for 3 days (~72 hours) each during 5 July 2018 to 4 July 2019 (n = 121). Filter blanks were collected twice per season during the sample campaign, following the same sampling 128 129 procedure placing the filter in hood for 10 mins without turning on the sampler pump.

Prior to and after sampling, each filter was dehumidified in a desiccator for 48 hours and determined the $PM_{2.5}$ mass by gravimetric analysis, and then stored in a pre-combusted glass jar with a Teflon-lined cap in the dark at -20° C until analysis.

133 2.2 Measurement of carbonaceous and ionic components

134 Details of the measurements of aerosol organic carbon (OC), element carbon (EC) and watersoluble organic carbon (WSOC) were described by Wang et al. (Wang et al., 2019) and Dong et 135 136 al. (Dong et al., 2023a). Briefly, concentrations of the OC and EC were measured using an aliquot of filer (1.5. cm²) and a thermal-optical carbon analyzer (Sunset Laboratory Inc, USA), following 137 138 the IMPROVE protocol of the protective visual environment. WSOC was measured using an 139 aliquot of filter (one disc of either 14 mm or 22 mm in diameter) extracted into organic-free Milli Q water and total organic carbon (TOC) analyzer (Model OI, 1030W + 1088). Concentrations of 140 K⁺ and Cl⁻ were determined using an aliquot of filer (one disc of 22 mm in diameter) extracted 141 into ultrapure water (>18.2MQ cm) and ion chromatography (ICS-5000 System, China, Dai An) 142 (Dong et al., 2023a). The analytical uncertainty in replicate analyses were within 2 % for OC and 143 5% for EC, WSOC and inorganic ions. Concentrations of all the components were corrected for 144 145 field blanks.

146 2.3 Measurement of optical properties of brown carbon (BrC)

147 2.3.1 Extraction and concentration of BrC

BrC was extracted into 30 ml ultrapure water using a sample filter disc of 22 mm in diameter placed in a glass bottle with screw cap and sealed with Teflon tape under ultrasonication for 30 min. The extracts were filtered through a 0.45 μm polytetrafluoron (PTFE) syringe filter to remove the water-insoluble particles and filter debris, and transferred into a clean glass bottle. The extracts were used for the light absorption and fluorescence measurements of WSBrC. While the concentration of WSBrC was considered as the concentration of WSOC.

After the extraction of WSBrC, the WI-MSBrC was extracted into 30 ml methanol using the 154 same filter sample left in the same glass bottle with screw cap sealed with Teflon tape under 155 156 ultrasonication for 30 min. The extracts were filtered using the same 0.45 µm PTFE syringe filter to remove the insoluble particles and filter debris and transferred into another clean glass bottle. 157 158 The methanol extracts were used for the measurements of optical properties of WI-MSBrC. The 159 concentration of water-insoluble organic carbon (WIOC) was considered as the concentration of 160 WI-MSBrC, which calculated as equation (1), presuming that all the water-insoluble organic contents are dissolved in methanol, although we do not preclude that some of organic species are 161 162 not soluble in MeOH (Shetty et al., 2019). $WI - MSBrC = OC - WSOC_{-}$ 163 (1)

164 2.3.2 Light absorption of BrC

A three-dimensional fluorescence spectrometer (Aqualog, Horiba Scientific) was used to record the excitation-emission matrices (EEM) spectra and ultraviolet-visible (UV–Vis) absorption spectra of the solution samples in 1×1 cm quartz cuvettes. The instrument parameters during sample analysis were as follows: The UV-Vis absorption spectra of extracts were recorded in the wavelength range of 240–700 nm. The UV–visible absorption spectra of the solvents were also recorded to subtract their contributions from the extract spectra. The EEM was recorded in the wavelength range of 240–700 nm for excitation and the integration time was 0.1 s with a 1 nm Deleted:

Deleted: WI-MSBrC = OC - WSOC,

Deleted: ¶

4

175 176 177	increment. An increment of 8 pixels (5.04 nm) is used as the emission wavelength interval. Prior to sample analysis, the pure solvents of water and methanol (MeOH) were used to obtain the reference signal.	
179	coefficient (Abs: m^{-1}) following equation (2) (Deng et al., 2022;Hecobian et al., 2010);	 Deleted: this
180	$Abs_{1} = (A_{1} - A_{700}) \times \frac{v_{l}}{v_{l}} \times \ln(10) $ (2)	Deleted: formula
101	where Λ_{rec} is the observation at 700 nm serving as a reference to account for baseline drift. V, is	Deleted: 1
181 182 183 184 185 186 187 188 189	where A_{700} is the absorption at /00 nm, serving as a reference to account for baseline drift; V ₁ is the volume of water or MeOH used for extraction; V _a is the volume of sampled air; L is the optical path length (0.01 m). A factor of ln(10) is utilized to convert the log base 10 to a natural logarithm to obtain a base-e absorption coefficient. To compensate for any baseline shift that may occur during analysis, absorption at wavelengths below 700 nm is compared to that of 700 nm where no absorption occurs for ambient aerosol extracts. The average absorption coefficient between 360 and 370 nm (Abs ₃₆₅) is used to represent BrC absorption in order to avoid any interferences from non-organic compounds (e.g., nitrate) and to be consistent with the literature values (Huang et al., 2018).	Deleted: $Abs\lambda = (A\lambda - A700) \times VI/ Va/L \times ln (10)$
190	Absorption Angström exponent (AAE, A) represents the spectral dependence of aerosol light	
191	described by the following equation (3):	 Deleted:
192	$Abs_{\mu} = C \times \lambda^{-AAE} $ (3)	
194	where C is a composition-dependent constant: λ is the wavelength (nm). The AAE of the filter	 Deleted: $Abs\lambda = C \times \lambda - AAE$
195	extracts is calculated by a formula in the wavelength range of 300–500 nm. The selected range	
196	serves two purposes: (1) to prevent any interferences from non-organic compounds at lower	
197	wavelengths: (2) to ensure a sufficiented signal-noise ratio for the investigating samples (Huang	
198	et al., 2018).	
199	The mass absorption efficiency (MAE: $m^2 g^{-1}$) of the filter extract at wavelength of λ can be	
200	characterized as equation (4). The ratio of MAE ₂₅₀ to MAE ₃₆₅ is denoted as E_2/E_3 to characterize	 Deleted: :
201	the relative size of molecular weight, which is inversely proportional to the molecular weight.	
202	E_2/E_3 is calculated with the method as equation (5).	
203	$MAE_{\lambda} = Abs_{\lambda}/M $ (4)	
204	$\frac{E_2}{E_2} = \frac{MAE_{250}}{E_2}$ (5)	
205	$E_3 \qquad MAE_{365}$	
203	where M (µg III *) is the concentration of W SOC for water extracts and that of WIOC for inclutation	 Deleted: $MAE\lambda = Abs\lambda/M$
200 207	The imaginary part (k) of the refractive index $(m = n+ik)$ is derived with the following	
207	equation (6) (Linet al. 2013 : Denote tal. 2022).	
200	$k_{\lambda} = (MAE \times o \times \lambda)/4\pi $ (6)	 Deleted: $k_1 = (M \Delta C \times \alpha \times \lambda)/4\pi$
210	where MAE is the mass-absorption cross section of WSBrC or WI-MSBrC ($m^2 \sigma^{-1}$) o is the	 Deleted: $M_{A} = (WAC \land p \land h)/4h$
211	effective density, λ is the wavelength for the computed MAE including WSBrC and WI-MSBrC.	
212	For this study, an effective density of 1.5 g m ⁻³ is assumed for WSBrC and WI-MSBrC in the	Deleted: MAC
213	derivation (Liu et al., 2013). MAE values are computed for 365 nm.	 Deleted: MAC
214	2.3.2 EEM of BrC and PARAFAC analysis	

The raw EEMs were first calibrated for the correction of spectrometer factors, which reflect the spectrometer deviation and light source, and then for the inner filter correction, following the procedure described elsewhere (Chen et al., 2019;Gu and Kenny, 2009). Briefly, the inner filter

5

correction of the EEMs was done based on the UV-Vis light absorbance of the extracts, which was lower than 0.7 in the calibrated wavelength range and is appropriate (Gu and Kenny, 2009). The signal intensity of the EEMs was then normalized to the Raman unit (RU) of water (Lawaetz and Stedmon, 2009). The fluorescence volume (FV, RU-nm²/m³) of extracts present in the atmosphere was estimated based on the EEMs at the excitation wavelength ranging from 240 to 700 nm, and then normalized it (i.e., NFV (RU-nm²-[mg/L]⁻¹)) by dividing the FV with the concentration of WSOC and WIOC in the aerosol [mg m⁻³]).

Various types of chromophores present in the PM_{2.5} samples were classified and identified based on the PARAFAC analysis of the EEMs using the SOLO (Eigenvector Inc.), the data analysis software. PARAFAC analysis was performed for each extraction fluid in each season. Ultimately, three EEM components were determined and assigned to different types of chromophores.

Additionally, fluorescence index (FI) was determined by calculating the ratio of emission 243 244 intensities at 450 nm and 500 nm after excitation at 370 nm_(McKnight et al., 2001). Contributions 245 from local biological sources can be characterized by biological index (BIX), which was calculated 246 using the ratio of emission intensities at 380 and 430 nm following 310 nm excitation (Gao yan and Zhang, 2018). Under the condition of Ex=255 nm, the humification index (HIX) was 247 248 determined by dividing the area of fluorescence intensity between 435 and 480 nm by that of 249 fluorescence intensity between 300 and 345 nm_(Battin, 1998). The calculation formulas (7)-9) 250 are as follows:

251	$FI = \frac{F_{450}}{F_{500}}, \lambda_{Ex} = 370 nm$	(7)
252	$BIX = \frac{F_{380}}{F_{380}}, \lambda_{Ex} = 310nm$	(8)
253	$HIX = \frac{\int_{-300-345}^{+30} \lambda_{Ex}}{\int_{-300-345}^{+300-345}}, \lambda_{Ex} = 255nm$	(9)

254 In formula (6) - (8), λ_{Ex} refers to the excitation wavelength, F_i refers to the fluorescence 255 intensity of emission wavelength at i in the emission spectrum, and ji-j refers to the integrated 256 fluorescence emission intensity in the range of 435–480 nm to 300–345 nm.

2.3.3 Simple forcing efficiency by light absorption of BrC (SFE_{Abs})

257

262

It is possible to make a rough estimate of the radiative forcing caused by aerosols using a simple forcing efficiency (SFE, W/g), which reflects the energy added to the Earth's atmospheric system per unit mass of aerosols and can be estimated as described in the literature (Bond and Bergstrom, 2006;Deng et al., 2022), using the following equation (10):

 $\frac{dSFE}{d\lambda} = -\frac{1}{4} \frac{dS(\lambda)}{d\lambda} \tau_{atm}^2(\lambda) (1 - F_c) [2(1 - a_s)^2 \beta(\lambda) \times MSE(\lambda) - 4a_s \times MAE(\lambda)]$ (10)

where dS/d λ is the solar irradiance, τ_{atm} is the atmospheric transmission (0.79), F_c is the cloud fraction (approximately 0.6), a is the surface albedo (average 0.19), β is the backscatter fraction, and MSE and MAE are the mass scattering and absorption efficiency, respectively_(Deng et al., 2022).

267 Since BrC causes the radiative effect mainly by light absorption, rather than the scattering 268 that has stronger dependency on the particle size, we limited to estimate the radiative effect caused 269 by only the absorption of the BrC in this study. Therefore, the equation (10) can be simplified to: 270 $SFE_{Abs} = \int \frac{dS(\lambda)}{d\lambda} \tau_{atm}^2 (1 - F_c) a_s MAE(\lambda) d\lambda$ (11) Deleted:

$$\frac{\text{Deleted: }\P}{\frac{dSFE}{d\lambda}} = -\frac{1}{4} \frac{dS(\lambda)}{d\lambda} \tau_{atm}^2(\lambda)(1-F_c) \Big[2(1-a_s)^2 \beta(\lambda) \Big]$$

(Deleted: only
~~~(	Deleted: direct radiative forcing due to aerosol
(	Deleted: can be ignored when estimating

#### 277 **3 Results and discussion**

#### 278 3.1 Characteristics of ultraviolet light absorption of WSBrC and WI-MSBrC

#### 279 3.1.1 Absorption coefficient (Abs)

Annual and seasonal averages of various optical properties of WSBrC and WI-MSBrC in 280 PM_{2.5} measured in this study are summarized in Table 1. Their ranges and median values are 281 provided in supplement Table S1. Temporal variations in absorption coefficient of WSBrC at 365 282 nm (Abs_{365(WSBrC)}) and that of WI-MSBrC (Abs_{365(WI-MSBrC)}) together with the concentrations of 283 284 WSOC and WIOC are depicted in Fig. 1. Because the light absorption at the wavelength of 365 nm would not be interfered by inorganic substances (Hecobian et al., 2010), the Abs at 365 nm 285 286 was selected for the analysis in this study. Abs_{365(WSBrC)}) ranged from 0.49 Mm⁻¹ to 36.7 Mm⁻¹ with an average of 4.74 Mm⁻¹ during the campaign. While the Abs_{365(WI-MSBrC)} ranged from 0.32-25.0 287 288 Mm⁻¹ (avg. 3.87 Mm⁻¹) during the campaign. Temporal trends of Abs_{365(WSBrC)} were found to be similar with those of Abs_{365(WI-MSBrC)}, with the lowest levels in summer followed by a gradual 289 increase toward autumn and peak in winter and then a gradual decrease toward spring during the 290 campaign (Fig. 1). Furthermore, those trends were highly comparable to those of the 291 292 concentrations of both WSOC and WIOC in PM2.5 (Fig. 1). The correlations between Abs365(WSBrC) and WSOC and Abs_{365(WI-MSBrC)} and WIOC were found to be strong (R = 0.93 and 0.96, 293 294 respectively) during the campaign. These results indicate that both WSBrC and WI-MSBrC might have been derived from the same or similar sources including the secondary processes, and their 295 296 light absorbance should have been significantly dependent on their abundances that varied from season to season (Fig. 1; Table 1). 297

Averages of both Abs365(WSBrC) and Abs365(WI-MSBrC) were higher in winter followed by autumn 298 and spring and the lowest in summer (Table 1). The high Abs₃₆₅ of BrC in winter might have been 299 mainly driven by the existence of large amounts of organic aerosols, whereas the lowest Abs₃₆₅ in 300 summer might be due to enhanced decomposition of BrC constituents by photobleaching under 301 302 high solar radiation and oxidants loading in the atmosphere, which is unlikely in the wintertime. 303 The seasonal variations of both Abs_{365(WSBrC)} and Abs_{365(WI-MSBrC)} in Tianjin were similar to those 304 of the Abs₃₆₅ of WSBrC reported in the southeastern United States, but their values (Table 1) were much higher than that (0.3–3.0 Mm⁻¹ in 2007) in the southeastern United States (Hecobian et al., 305 2010) as well as that in Atlanta and Los Angeles ( $0.88 \pm 0.71$  and  $0.61 \pm 0.38$  Mm⁻¹, respectively) 306 307 in summer 2010 (Zhang et al., 2011). Biomass burning was considered to be the dominant source 308 of BrC at the southeastern United States in colder period, whereas both primary emissions from fossil fuel combustion and secondary formation were significant in summertime (Hecobian et al., 309 310 2010). While the SOA formed from fresh anthropogenic and biogenic VOCs were considered to be major at Atlanta and Los Angeles, respectively (Zhang et al., 2011). 311

312 It has been reported that the solid fules (i.e., biomass or coal) combustion is dominant and the Abs₃₇₀ of BrC is reported to be high (21.8 Mm⁻¹) in North China cities (Zhang et al., 2021). It has 313 also been reported that the Abs₃₇₀ of BrC produced by residential wood burning is much higher, 314 reaching up to  $37.1 \pm 74.6$  Mm⁻¹ in Athens in winter (Liakakou et al., 2020). The maximum 315 316 Abs_{365(WSBrC)} and Abs_{365(WI-MSBrC)} in Tianjin aerosols were 36.7 and 25.0 Mm⁻¹, respectively, 317 which are comparable to those of wood combustion samples. However, their ranges found to be large during the campaign (Fig. 1; Table S1), suggesting that in addition to biomass burning, the 318 other emission sources and meteorological conditions in different seasons should have been played 319

**Deleted:** 
$$SFE = \int \frac{\mathrm{d}S(\lambda)}{d\lambda} \tau_{atm}^2 (1 - F_c) a_s MAE(\lambda) d\lambda$$

Deleted: ave

an important role in controlling the WSBrC and WI-MSBrC loadings and their optical 323 324 characteristics in the Tianjin atmosphere. Furthermore, the Abs_{365(WSBrC)} observed in this study 325 (Table 1) is slightly lower compared to that reported in Tianjin during winter 2016 (14.1  $\pm$  8.5 326  $Mm^{-1}$ ) and summer 2017 (2.1 ± 1.0 $Mm^{-1}$ ) (Deng et al., 2022) as well as that reported in Beijing 327 and Xi'an, which are considered to be highly polluted cities in northern China (Huang et al., 328 2020; Li et al., 2020b). However, the Abs365(WSBrC) and Abs365(WI-MSBrC) found in winter in this study were higher than that reported at different locations in southern China; Nanjing (Abs_{365(WSBrC)} = 329 4.84 Mm⁻¹, Abs_{365(MSBrC)} = 7.75 Mm⁻¹) (Xie et al., 2020), Guangzhou (Abs_{365(WSBrC)} = 8.8 Mm⁻¹) 330 (Li et al., 2018), and Lhasa (Abs_{365(WSBrC)} = 1.04 Mm⁻¹, Abs_{365(MSBrC)} = 1.47 Mm⁻¹) (Zhu et al., 331 2018), where the fossil fuel combustion is considered as the dominant source. Such higher Abs₃₆₅, 332 333 particularly in winter, indicates that BrC in PM_{2.5} in Tianjin might have been derived from mixed 334 sources such as biomass burning and fossil fuel (coal) combustion and has a significant effect on light absorption and thus on climate system over the region. 335





Figure 1. Temporal variations of the light absorption coefficient of water-soluble brown carbon
(BrC) at 365 nm (Abs_{365(WSBrC)}) and water-insoluble but methanol-soluble BrC (Abs_{365(WI-MSBrC)})
and the mass concentrations of WSOC and WIOC in PM_{2.5} in Tianjin, North China during 2018
and 2019. WSOC and WIOC mass concentrations data was obtained from (Dong et al., 2023b).

Figure 2 shows the seasonal average absorption spectra of WSBrC and WI-MSBrC at 341 342 wavelengths of 240-700 nm, which shows a common feature that the absorption of shorter wavelengths increases sharply and significantly. Such feature is different from the absorption 343 characteristics of BC, whose AAE is close to 1 and weakly dependent on the wavelength. Another 344 345 evident feature of BrC absorption spectra shown in Figure 2 is that the Abs of WI-MSBrC was always greater than that of WSBrC across the shorter wavelengths in winter and in the range of 346 260~300 nm in other seasons, which is consistent with the pattern reported in the literature (Huang 347 et al., 2020;Li et al., 2020b). In addition, the Abs of WI-MSBrC peaked at 280 nm, but not that of 348 349 WSBrC (Fig. 2). Such patterns can be attributed to the difference in types and amounts of

chromophores soluble in water and methanol (e.g., PAHs are soluble in methanol, but not in water). 350 It is noteworthy that,  $\pi - \pi *$  electron transitions in the double bonds of aromatic compounds are the 351 primary cause of light absorption in the wavelength range of 250-300 nm. It has been reported in 352 another study that nitroaromatics have contributed 60% to the total absorbance in the 300-400 nm 353 354 range (Hems et al., 2021). The electron transitions in phenolic arenes, aniline derivatives, polyenes and polycyclic aromatic hydrocarbons with two or more rings are responsible for the absorbance 355 356 in the bands between 270 and 280 nm (Baduel et al., 2009). Therefore, the differences observed in the Abs of WSBrC and WI-MSBrC imply that the aromatic and/or unsaturated aliphatic organic 357 358 compounds are abundant in PM_{2.5} in Tianjin, which are more soluble in MeOH than in water.

359 High correlations (R = 0.73-0.97) were found between Abs₃₆₅ of both WSBrC and WI-360 MSBrC and WSOC and WIOC in each season, except in summer (R = 0.20-0.62) (Figure S1). As noted earlier, such linearity of Abs365 with WSOC and WIOC indicate that WSBrC and WI-361 362 MSBrC might have been derived from similar sources including the secondary processes over the Tianjin region, except in summer, because the light absorption efficiency of organic compounds 363 of different origin are different and significantly depend on their secondary processes in the 364 atmosphere (Zhong and Jang, 2011). In fact, the Abs depends on the amount of BrC availability, 365 366 but not of total OC content. In summer, the BrC loading might be less due to either photobleaching under the enhanced aging and/or less availability of N and/or S species to produce N- and S-367 containing organics (BrC) in the atmosphere over the Tianjin region. 368



369

Figure 2. Seasonal averages of absorption spectra in the wavelength range of 240–700 nm of
 WSBrC and WI-MSBrC in PM_{2.5} from Tianjin, North China.

The moderate to high positive correlations (R = 0.51-0.92) found between both Abs_{365(WSBrC)} 372 and Abs365(WI-MSBrC) and K⁺ and Cl⁻ in all seasons, except between Abs365 WSBrC and Cl⁻ in summer 373 374 (R = 0.29) (Fig. S2), suggest that biomass burning and coal combustion were major sources (Dong 375 et al., 2023a) of BrC in the Tianjin region. The poor correlation between Abs₃₆₅ and K⁺ was driven by two outliers obtained in K⁺ data that might have occurred due to unknown biomass burning 376 events at local scale. In addition, the correlation between  $Abs_{365(WSBrC)}$  and K⁺ was relatively 377 stronger than that between the  $Abs_{365(WI-MSBrC)}$  and K⁺, except in summer (Fig. S2), which support 378 379 that the chromophores, like nitrophenols, derived from biomass burning are potentially more water-soluble (Li et al., 2020b). While the correlation between Abs_{365(WI-MSBrC)} and Cl⁻ was 380

 $_{\rm 381}$   $\,$  relatively stronger than that between Abs_{\rm 365(WSBrC)} and Cl $^-$  in spring and summer and comparable

in autumn, which suggest that the chromophores derived from fossil fuel (e.g., coal) combustion

are slightly more soluble in MeOH compared to that in water, and were abundant in the spring and

- 384 summer time in Tianjin.
- 385

	I-MSBrC ( <u>Avg</u> . $\pm$ SD) in PM2.5 from Tianjin, North China		
	iency of WSBrC and		
	OC and absorbance effic		4
<b>A</b>	f wsoc, wi	 	
<b>.</b>	Aass concentrations o		

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Annual         Annual         Summer         Annual         Summer         Minter         Split           tions         3.25 ± 2.18         1.88±0.53         3.45±1.71         5.06±2.99         2.48±           m ⁻³ )         1.68 ± 1.77         0.43±0.32         1.55±1.04         3.74±2.09         0.88 ±           randers         1.68 ± 1.77         0.43±0.32         1.55±1.04         3.74±2.09         0.88 ±           randers         Absse(Mm ⁻¹ )         4.74±5.10         1.47±0.77         3.71±2.83         10.4±6.76         3.45±           Absse(Mm ⁻¹ )         5.56±0.82         5.17±0.83         5.19±0.44         4.83±         5.19±0.44         4.83±           Absse(Mm ⁻¹ )         5.56±0.82         5.17±0.83         5.19±0.44         4.83±           FI         1.28±0.09         1.31±0.07         1.47±0.07         1.37±0.02         1.01±           AAE (300-500 nm)         5.66±0.82         5.11±0.67         1.147±0.01         1.37±0.02         1.04±7.6         3.75±           SFE Abssection w _{g⁻¹} 1.38±0.02         0.91±0.05         0.04±0.05         1.31±         0.055         1.00±         1.01±           FI         1.38±0.02         0.35±0.02         0.31±0.67         1.44±         0.35	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Annual         Summer         Autum         Winter         Sp           filtons $3.25 \pm 2.18$ $1.88\pm 0.53$ $3.45\pm 1.71$ $5.06\pm 2.99$ $2.4$ $(m^{-1})$ $3.25\pm 2.18$ $1.88\pm 0.53$ $3.45\pm 1.71$ $5.06\pm 2.99$ $2.4$ $m^{-1}$ $1.68\pm 1.77$ $0.43\pm 0.77$ $3.71\pm 2.83$ $10.4\pm 6.76$ $3.4$ $m^{-1}$ $1.28\pm 0.66$ $0.89\pm 0.44$ $0.96\pm 0.33$ $2.09\pm 0.44$ $4.8$ $mME_{156}(m^2 g^{-1})$ $1.28\pm 0.06$ $1.31\pm 0.07$ $1.31\pm 0.66$ $3.34\pm 0.51$ $3.35\pm 0.09$ $1.3$ $MME_{156}(m^2 g^{-1})$ $5.56\pm 0.91$ $5.36\pm 0.91$ $5.36\pm 0.02$ $0.91\pm 0.07$ $1.37\pm 0.02$ $1.32\pm 0.02$ $1.32\pm 0.02$ $1.32\pm 0.02$ $1.32\pm 0.02$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SummerAutumnWinterS $1.88\pm0.53$ $3.45\pm1.71$ $5.06\pm2.99$ $2$ $1.88\pm0.53$ $3.45\pm1.04$ $3.74\pm2.09$ $0$ $1.47\pm0.77$ $0.43\pm0.32$ $1.55\pm1.04$ $3.74\pm2.09$ $0$ $0.43\pm0.32$ $1.55\pm1.04$ $3.74\pm2.09$ $0$ $1.47\pm0.77$ $3.71\pm2.83$ $10.4\pm6.76$ $3$ $0.80\pm0.44$ $6.21\pm0.65$ $5.88\pm0.86$ $3$ $5.17\pm0.83$ $5.78\pm0.83$ $5.19\pm0.46$ $1$ $1.31\pm0.07$ $1.47\pm0.07$ $1.37\pm0.02$ $1$ $0.91\pm0.06$ $1.06\pm0.08$ $1.20\pm0.08$ $1$ $0.91\pm0.06$ $1.06\pm0.08$ $1.20\pm0.02$ $1$ $0.91\pm0.06$ $1.06\pm0.08$ $1.20\pm0.02$ $1$ $0.91\pm0.06$ $1.06\pm0.08$ $1.20\pm0.02$ $1$ $0.91\pm0.06$ $1.06\pm0.08$ $1.20\pm0.02$ $1$ $0.035\pm0.020$ $0.042\pm0.015$ $0.089\pm0.021$ $0$ $0.035\pm0.020$ $0.042\pm0.015$ $0.089\pm0.021$ $1$ $0.74\pm0.25$ $5.33\pm2.51$ $10.0\pm5.17$ $3$ $0.74\pm0.25$ $5.33\pm2.51$ $10.0\pm5.13$ $1$ $1.21\pm0.67$ $1.99\pm0.06$ $1.73\pm0.021$ $1$ $0.74\pm0.25$ $5.33\pm2.51$ $10.0\pm5.13$ $1$ $0.74\pm0.25$ $5.33\pm2.51$ $10.0\pm5.13$ $1$ $1.23\pm0.18$ $1.57\pm0.06$ $1.73\pm0.09$ $1$ $1.32\pm0.08$ $1.55\pm0.04$ $1.33\pm0.02$ $0$ $0.25\pm0.08$ $0.081\pm0.045$ $0.117\pm0.016$ $0$ $0.109\pm0.079$ $0.081\pm0.045$ $0.117\pm0.016$ <td< th=""><th>AutumnWinterSpring$3.45\pm1.71$$5.06\pm2.99$$2.48\pm0$$1.55\pm1.04$$3.74\pm2.09$$0.88\pm$$1.55\pm1.04$$3.74\pm2.09$$0.88\pm$$3.71\pm2.83$$10.4\pm6.76$$3.45\pm2$$0.96\pm0.33$$2.04\pm0.46$$1.31\pm0$$6.21\pm0.65$$5.88\pm0.58$$5.42\pm0$$5.78\pm0.07$$1.37\pm0.02$$1.37\pm0.02$$1.47\pm0.07$$1.37\pm0.02$$1.01\pm0$$1.47\pm0.015$$0.089\pm0.021$$0.057\pm0.146$$0.042\pm0.015$$0.089\pm0.021$$1.04\pm0$$3.11\pm0.511$$2.47\pm0.43$$2.76\pm0.3$$3.11\pm0.511$$2.47\pm0.43$$2.76\pm0.057\pm0$$3.11\pm0.511$$2.47\pm0.43$$2.76\pm0.3$$0.042\pm0.015$$0.089\pm0.021$$1.04\pm0.057\pm0$$1.86\pm1.02$$2.69\pm0.36$$0.057\pm0$$5.12\pm2.17$$7.60\pm2.17$$3.39\pm1$$1.86\pm1.02$$2.69\pm0.36$$2.41\pm1$$5.12\pm2.17$$7.60\pm2.17$$3.39\pm1$$1.98\pm1.02$$5.02\pm0.044$$7.60\pm2.740$$5.12\pm2.17$$7.60\pm2.17$$3.33\pm1$$2.83\pm2.51$$10.045.13$$1.46\pm0.045$$1.57\pm0.066$$1.73\pm0.11$$1.51\pm0.044$$5.77\pm1.35$$6.20\pm0.0.44$$1.51\pm0.044$$1.57\pm0.066$$1.73\pm0.011$$1.53\pm0.00$$1.57\pm0.066$$1.73\pm0.016$$1.23\pm0.040$$1.57\pm0.066$$1.73\pm0.016$$1.23\pm0.040$$1.57\pm0.066$$1.73\pm0.016$$1.23\pm0.040$$1.57\pm0.066$$1.73\pm0.016$$1.23\pm0.040$$1.57\pm0.066$$1.73\pm0.016$<td< th=""></td<></th></td<>	AutumnWinterSpring $3.45\pm1.71$ $5.06\pm2.99$ $2.48\pm0$ $1.55\pm1.04$ $3.74\pm2.09$ $0.88\pm$ $1.55\pm1.04$ $3.74\pm2.09$ $0.88\pm$ $3.71\pm2.83$ $10.4\pm6.76$ $3.45\pm2$ $0.96\pm0.33$ $2.04\pm0.46$ $1.31\pm0$ $6.21\pm0.65$ $5.88\pm0.58$ $5.42\pm0$ $5.78\pm0.07$ $1.37\pm0.02$ $1.37\pm0.02$ $1.47\pm0.07$ $1.37\pm0.02$ $1.01\pm0$ $1.47\pm0.015$ $0.089\pm0.021$ $0.057\pm0.146$ $0.042\pm0.015$ $0.089\pm0.021$ $1.04\pm0$ $3.11\pm0.511$ $2.47\pm0.43$ $2.76\pm0.3$ $3.11\pm0.511$ $2.47\pm0.43$ $2.76\pm0.057\pm0$ $3.11\pm0.511$ $2.47\pm0.43$ $2.76\pm0.3$ $0.042\pm0.015$ $0.089\pm0.021$ $1.04\pm0.057\pm0$ $1.86\pm1.02$ $2.69\pm0.36$ $0.057\pm0$ $5.12\pm2.17$ $7.60\pm2.17$ $3.39\pm1$ $1.86\pm1.02$ $2.69\pm0.36$ $2.41\pm1$ $5.12\pm2.17$ $7.60\pm2.17$ $3.39\pm1$ $1.98\pm1.02$ $5.02\pm0.044$ $7.60\pm2.740$ $5.12\pm2.17$ $7.60\pm2.17$ $3.33\pm1$ $2.83\pm2.51$ $10.045.13$ $1.46\pm0.045$ $1.57\pm0.066$ $1.73\pm0.11$ $1.51\pm0.044$ $5.77\pm1.35$ $6.20\pm0.0.44$ $1.51\pm0.044$ $1.57\pm0.066$ $1.73\pm0.011$ $1.53\pm0.00$ $1.57\pm0.066$ $1.73\pm0.016$ $1.23\pm0.040$ $1.57\pm0.066$ $1.73\pm0.016$ $1.23\pm0.040$ $1.57\pm0.066$ $1.73\pm0.016$ $1.23\pm0.040$ $1.57\pm0.066$ $1.73\pm0.016$ $1.23\pm0.040$ $1.57\pm0.066$ $1.73\pm0.016$ <td< th=""></td<>
	$ \begin{array}{c} \mbox{tons} \\ \mbox{m}^{-1} \\ \mbox{m}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} (m^{-3}) \\ (m^$	Incentrations         3.25 ± 2.18         1.88±0.53         3.45±1.71         5.06±2.           OC ( $\mu g  m^{-3}$ )         1.68 ± 1.77         0.43±0.32         1.55±1.04         3.74±2.03           OC ( $\mu g  m^{-3}$ )         1.68 ± 1.77         0.43±0.32         1.55±1.04         3.74±2.03           OC ( $\mu g  m^{-3}$ )         1.68 ± 1.77         0.43±0.32         1.55±1.04         3.74±2.03           MAE 366(m ² g ⁻¹ )         AAE (300-500 nm)         5.64±0.82         5.17±0.83         5.71±2.83         10.4±6           BrC         FI         1.38±0.09         1.31±0.07         1.47±0.77         3.71±2.83         10.4±6           BrC         BIX         138±0.09         1.31±0.07         1.47±0.07         1.37±0.03           BrC         FI         1.38±0.09         1.31±0.07         1.47±0.07         1.37±0.03           BrC         BIX         1.38±0.03         0.91±0.067         1.04±0.057         0.08±0.029           Asis         0.056±0.029         0.035±0.020         0.042±0.015         0.08±0.02         0.094±0.015         0.094±0.015           Asis         MAEsis( $m^{-1}$ )         3.37±4.69         0.74±0.25         2.83±2.51         10.06±2.04         1.760±2.           Asis         MAEsis( $m^{-1}$ )	$1.88\pm 0.53$ $3.45\pm 1.71$ $5.06\pm 2.99$ $2$ $0.43\pm 0.32$ $1.55\pm 1.04$ $3.74\pm 2.09$ $0$ $0.43\pm 0.32$ $1.55\pm 1.04$ $3.74\pm 2.09$ $0$ $1.47\pm 0.77$ $3.71\pm 2.83$ $10.4\pm 6.76$ $3$ $0.80\pm 0.44$ $0.96\pm 0.33$ $2.04\pm 0.46$ $1$ $5.17\pm 0.83$ $5.19\pm 0.44$ $1$ $1.31\pm 0.07$ $1.37\pm 0.02$ $1.31\pm 0.07$ $1.47\pm 0.07$ $1.37\pm 0.02$ $1.37\pm 0.02$ $1.33\pm 0.02$ $0.91\pm 0.06$ $1.47\pm 0.07$ $1.37\pm 0.02$ $1.37\pm 0.02$ $1.33\pm 0.02$ $0.91\pm 0.06$ $1.47\pm 0.015$ $0.089\pm 0.021$ $0$ $0.91\pm 0.067$ $1.99\pm 0.84$ $3.11\pm 0.67$ $1.22\pm 0.03$ $0.089\pm 0.021$ $0.035\pm 0.020$ $0.042\pm 0.015$ $0.089\pm 0.021$ $0$ $0.089\pm 0.021$ $0$ $0.74\pm 0.25$ $1.86\pm 1.02$ $2.69\pm 0.036$ $2.69\pm 0.036$ $2.69\pm 0.036$ $2.69\pm 0.021$ $1.12\pm 0.071$ $1.33\pm 0.071$ $1.112\pm 0.071$ $1.112\pm 0.071$ $1.112\pm 0.06$ $1.33\pm 0.021$ $0.02\pm 0.02$ $0.02\pm 0.02$ $0.02\pm 0.02$ $0.02\pm 0.02$ $0.02\pm 0.02$	$3.45\pm1.71$ $5.06\pm2.99$ $2.48\pm0$ $1.55\pm1.04$ $3.74\pm2.09$ $0.88\pm$ $1.55\pm1.04$ $3.74\pm2.09$ $0.88\pm$ $3.71\pm2.83$ $10.4\pm6.76$ $3.45\pm2$ $3.71\pm2.83$ $10.4\pm6.76$ $3.45\pm2$ $3.71\pm2.83$ $10.4\pm6.76$ $3.45\pm2$ $0.96\pm0.33$ $2.04\pm0.46$ $1.31\pm0.65$ $5.78\pm0.83$ $5.19\pm0.44$ $4.83\pm0.76$ $5.78\pm0.83$ $5.19\pm0.44$ $4.83\pm0.76$ $1.47\pm0.07$ $1.37\pm0.02$ $1.37\pm0.02$ $1.06\pm0.08$ $1.20\pm0.08$ $1.01\pm0.65$ $3.11\pm0.51$ $2.47\pm0.43$ $2.76\pm0.3$ $0.042\pm0.015$ $0.089\pm0.021$ $0.057\pm0.14$ $1.99\pm1.02$ $0.089\pm0.021$ $0.057\pm0.14$ $1.90\pm2.17$ $7.60\pm2.17$ $1.99\pm1.1$ $1.86\pm1.02$ $2.69\pm0.36$ $2.41\pm1$ $5.12\pm2.17$ $7.60\pm2.17$ $1.99\pm1.1$ $1.86\pm1.02$ $2.69\pm0.36$ $2.41\pm1$ $5.17\pm1.066$ $1.73\pm0.11$ $1.51\pm0.71$ $1.86\pm1.02$ $2.69\pm0.36$ $2.41\pm1$ $5.17\pm1.35$ $6.20\pm0.44$ $7.60\pm2$ $1.57\pm0.061$ $1.33\pm0.10$ $1.53\pm0.10$ $1.57\pm0.061$ $1.33\pm0.09$ $0.42\pm0.061$ $1.23\pm0.045$ $0.117\pm0.016$ $0.105\pm0.016$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.45±1.71       5.06±2.99       2.48±0         1.55±1.04       3.74±2.09       0.88±         3.71±2.83       10.4±6.76       3.45±2         0.96±0.33       2.04±0.46       1.31±0         5.78±0.65       5.88±0.58       5.42±0         5.78±0.65       5.88±0.58       5.42±0         5.78±0.65       5.88±0.58       5.42±0         1.47±0.07       1.37±0.02       1.37±0         1.47±0.07       1.37±0.02       1.37±0         1.47±0.07       1.37±0.02       1.37±0         1.47±0.07       1.37±0.02       1.37±0         1.00±21       2.47±0.43       2.76±0         3.11±0.51       2.47±0.43       2.76±0         3.11±0.51       2.47±0.43       2.76±0         1.99±0.84       3.12±0.71       1.46±0         1.99±0.84       3.12±0.71       1.99±1         1.99±0.84       1.00±5.13       1.99±1         1.86±1.02       2.69±0.36       2.41±1         2.77±1.35       6.20±0.44       7.60±3         1.57±0.06       1.73±0.11       1.51±0         1.05±0.14       1.33±0.30       0.42±0         1.05±0.045       0.117±0.016       0.105±
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1.55\pm1.04$ $3.74\pm2.09$ $0.88\pm$ $3.71\pm2.83$ $10.4\pm6.76$ $3.45\pm2$ $3.71\pm2.83$ $10.4\pm6.76$ $3.45\pm2$ $5.12\pm0.65$ $5.88\pm0.58$ $5.42\pm0$ $5.78\pm0.83$ $5.19\pm0.44$ $4.83\pm0.76$ $5.78\pm0.83$ $5.19\pm0.44$ $4.83\pm0.76\pm0.12$ $1.47\pm0.07$ $1.37\pm0.02$ $1.37\pm0.12$ $1.47\pm0.07$ $1.37\pm0.02$ $1.01\pm0.16$ $3.11\pm0.51$ $2.47\pm0.43$ $2.76\pm0$ $3.11\pm0.51$ $2.47\pm0.43$ $2.76\pm0$ $3.11\pm0.51$ $2.47\pm0.43$ $2.76\pm0$ $3.11\pm0.51$ $2.47\pm0.43$ $2.76\pm0.92$ $1.99\pm0.84$ $3.12\pm0.71$ $1.99\pm1.0$ $1.99\pm0.84$ $3.12\pm0.71$ $1.99\pm1.0$ $2.83\pm2.51$ $10.0\pm5.13$ $1.99\pm1$ $1.86\pm1.02$ $2.69\pm0.36$ $2.41\pm1$ $2.77\pm1.35$ $6.20\pm0.34$ $7.51\pm0$ $1.57\pm0.06$ $1.73\pm0.11$ $1.51\pm0.04$ $1.57\pm0.06$ $1.73\pm0.09$ $1.23\pm0.09$ $1.57\pm0.06$ $1.73\pm0.016$ $1.23\pm0.00$
<b>PDICAL parameters</b> Absset(Mm ⁻¹ ) $4.74\pm5.10$ $1.47\pm0.77$ $3.71\pm2.83$ $10.4\pm6.76$ AAE (300-500 nm) $5.66\pm0.82$ $5.17\pm0.83$ $6.21\pm0.65$ $5.88\pm0.58$ AAE (300-500 nm) $5.66\pm0.82$ $5.17\pm0.83$ $6.21\pm0.65$ $5.88\pm0.58$ VSBrC         FI $1.28\pm0.091$ $5.66\pm0.82$ $5.17\pm0.83$ $6.21\pm0.65$ $5.88\pm0.58$ VSBrC         FI $1.38\pm0.091$ $5.64\pm1.21$ $5.64\pm1.21$ $5.78\pm0.83$ $5.19\pm0.44$ VSBrC         FI $1.33\pm0.09$ $1.31\pm0.07$ $1.47\pm0.07$ $1.37\pm0.02$ VSBrC         FI $1.38\pm0.09$ $1.31\pm0.07$ $1.47\pm0.07$ $1.37\pm0.02$ VSBrC         FI $1.38\pm0.09$ $1.31\pm0.07$ $1.47\pm0.07$ $1.27\pm0.02$ SFE_ABS00-400 (WS ⁻¹ ) $0.95\pm0.120$ $0.91\pm0.44$ $3.11\pm0.67$ $1.29\pm0.02$ SFE_ABS00-500 nm) $8.56\pm0.25$ $5.83\pm0.25$ $5.12\pm2.17$ $7.60\pm2.17$ SFE_ABS00-500 nm $5.65\pm0.02$ $0.035\pm0.02$ $0.035\pm0.02$ $0.02\pm0.02$ $0.02\pm0.02$ <	Tanteters         Abssie(Mm ⁻¹ ) $4.74\pm5.10$ $1.47\pm0.77$ $3.71\pm2.83$ $10.4\pm6.76$ $3.45\pm.72\pm0.34$ $AAE$ ( $300-500  nm$ ) $5.66\pm0.82$ $5.17\pm0.83$ $6.21\pm0.65$ $5.88\pm0.58$ $5.42\pm0.33$ $E_2/E_3$ $5.66\pm0.82$ $5.17\pm0.83$ $6.21\pm0.65$ $5.82\pm0.36$ $5.32\pm0.36\pm0.91$ $E_2/E_3$ $5.36\pm0.91$ $5.64\pm0.82$ $5.17\pm0.83$ $5.19\pm0.44$ $4.83\pm0.37\pm0.35$ $E_2/E_3$ $5.32\pm0.921$ $5.64\pm0.33$ $5.19\pm0.44$ $4.83\pm0.37\pm0.35$ $BIX$ $1.33\pm0.09$ $1.31\pm0.07$ $1.47\pm0.07$ $1.37\pm0.44$ $4.83\pm0.38$ $BIX$ $1.05\pm0.113$ $0.91\pm0.06$ $1.04\pm0.07$ $1.37\pm0.02$ $1.01\pm0.44$ $4.83\pm0.38$ $R_{366}$ $2.87\pm0.029$ $0.35\pm0.029$ $0.35\pm0.029$ $0.042\pm0.015$ $0.082\pm0.021$ $1.04\pm0.75$ $R_{366}$	treat parameters treat parameters $MAE_{366}(Mm^{-1})$ 4.74±5.10 1.47±0.77 3.71±2.83 10.4 AAE (300-500 mm) 5.66±0.82 5.17±0.83 6.21±0.65 5.88 AAE (300-500 mm) 5.66±0.82 5.17±0.83 6.21±0.65 5.88 $E_2/E_3$ 5.78±0.05 1.31±0.07 1.37 $E_2/E_3$ 5.78±0.06 0.091±0.06 1.06±0.08 1.20 HIX 2.87±0.53 3.12±0.44 3.11±0.51 2.47 $k_{365}$ 0.035±0.029 0.035±0.020 0.042±0.015 0.08 $SFE_{\Delta 500-00}(w_g^{-1})$ 1.95±1.02 1.21±0.67 1.99±0.84 3.12 AAE (300-500 mm) 3.87±4.69 0.74±0.25 2.83±2.51 10.00 AAE (300-500 mm) 5.66±2.04 6.79±1.32 2.69 AAE (300-500 mm) 6.66±2.04 6.79±1.32 5.77±1.35 6.20 $E_2/E_3$ 0.104±0.057 0.109±0.079 0.081±0.045 0.11 $k_{365}$ 0.109±0.079 0.081±0.045 0.11	Instancters         Abssec( $m^{-1}$ )         4.74±5.10         1.47±0.77         3.71±2.83         10.4±6.76         3.4           AAE (300-500 nm)         5.66±0.82         5.17±0.83         6.21±0.65         5.88±0.58         5.4           AAE (300-500 nm)         5.66±0.82         5.17±0.83         6.21±0.65         5.88±0.58         5.4           FI         1.28±0.06         0.80±0.44         0.96±0.33         2.04±0.46         1.3           FI         1.38±0.091         5.64±0.82         5.17±0.83         6.21±0.65         5.88±0.58         5.4           FI         1.38±0.091         5.64±0.82         5.17±0.83         6.21±0.05         1.37±0.02         1.3           FI         1.05±0.13         0.91±0.06         1.042±0.07         1.37±0.02         1.3           Kats         0.056±0.029         0.35±0.020         0.042±0.07         1.37±0.02         1.0           Kats         0.056±0.029         0.34±0.05         1.947±0.07         1.20±0.03         1.0           Kats         0.056±0.029         0.34±0.025         0.042±0.015         0.089±0.02         0.0           SFE_ABStor+row (w _g ⁻¹ )         1.95±1.02         1.21±0.67         5.38±2.51         10.0±5.13         1.5           Abst	treat parameters Abs_sec(Mm ⁻¹ ) $4.74\pm 5.10$ $1.47\pm 0.77$ $3.71\pm 2.83$ $10.4\pm 6.10$ MAE_sec(M ⁻² ⁻¹ ) $1.28\pm 0.66$ $0.80\pm 0.444$ $0.96\pm 0.333$ $2.04\pm 0.535$ AAE $(300-500 \text{ mm})$ $5.66\pm 0.82$ $5.17\pm 0.83$ $6.21\pm 0.65$ $5.88\pm 0.555$ E ₂ /E ₃ $2.36\pm 0.91$ $5.66\pm 0.82$ $5.17\pm 0.83$ $6.21\pm 0.65$ $5.88\pm 0.535\pm 0.075$ HIX $2.87\pm 0.53$ $3.12\pm 0.044$ $3.11\pm 0.51$ $2.37\pm 0.020$ HIX $2.87\pm 0.53$ $3.12\pm 0.044$ $3.11\pm 0.51$ $2.47\pm 0.07$ $1.37\pm 0.020$ $k_{365}$ $0.055\pm 0.029$ $0.035\pm 0.020$ $0.042\pm 0.015$ $0.089\pm 0.025$ SFE $\Delta soc_{-00}(w_g^{-1})$ $1.95\pm 1.02$ $1.21\pm 0.67$ $1.99\pm 0.84$ $3.12\pm 0.024$ Abs_{365}(Mm^{-1}) $3.387\pm 4.69$ $0.74\pm 0.25$ $1.21\pm 0.67$ $1.99\pm 0.84$ $3.12\pm 0.62\pm 0.025$ AAE $(300-500 \text{ nm})$ $6.06\pm 1.23$ $5.49\pm 1.26$ $6.11\pm 1.86$ $6.30\pm 0.025$ AAE $(300-500 \text{ nm})$ $6.06\pm 1.23$ $5.49\pm 1.26$ $6.11\pm 1.86$ $6.30\pm 0.025$ HIX $0.12\pm 0.013$ $1.57\pm 0.06$ $1.73\pm 0.026$ AAE $(300-500 \text{ nm})$ $6.06\pm 1.23$ $5.49\pm 1.26$ $6.11\pm 1.86$ $6.30\pm 0.025$ AAE $(300-500 \text{ nm})$ $6.06\pm 0.027$ $0.72\pm 0.018$ $1.02\pm 0.061$ $1.73\pm 0.061$ HIX $0.81\pm 0.060$ $0.25\pm 0.028$ $1.23\pm 0.021$ $1.23\pm 0.061$ $1.33\pm 0.061$ AS $5.49\pm 1.26$ $5.77\pm 1.135$ $6.20\pm 0.061$ AS $5.49\pm 1.26$ $0.109\pm 0.079$ $0.081\pm 0.045$ $0.117\pm 0.065$ $1.73\pm 0.061$ AS $5.49\pm 1.20$ $0.109\pm 0.079$ $0.081\pm 0.045$ $0.117\pm 0.065$ AS $5.49\pm 1.52$ $0.100\pm 0.013$ $1.23\pm 0.061$ $1.33\pm 0.061$ AS $5.49\pm 1.52$ $0.100\pm 0.079$ $0.081\pm 0.045$ $0.117\pm 0.045$ $0.100\pm 0.045$ $0.117\pm 0.045$ $0.117\pm $	$1.47\pm0.77$ $3.71\pm2.83$ $10.4\pm6.76$ $3.71\pm2.83$ $0.80\pm0.44$ $0.96\pm0.33$ $2.04\pm0.46$ $1.3$ $5.17\pm0.83$ $6.21\pm0.65$ $5.88\pm0.58$ $5.58\pm0.58$ $5.17\pm0.83$ $6.21\pm0.65$ $5.88\pm0.58$ $5.9\pm0.44$ $1.31\pm0.07$ $1.47\pm0.07$ $1.37\pm0.02$ $1.47\pm0.02$ $1.31\pm0.07$ $1.47\pm0.07$ $1.37\pm0.02$ $1.00\pm44$ $1.31\pm0.07$ $1.47\pm0.07$ $1.37\pm0.02$ $1.02\pm0.43$ $0.035\pm0.020$ $0.042\pm0.015$ $0.089\pm0.021$ $0$ $0.035\pm0.020$ $0.042\pm0.015$ $0.089\pm0.021$ $0$ $0.12\pm0.025$ $1.99\pm0.84$ $3.12\pm0.71$ $1$ $1.21\pm0.67$ $1.99\pm0.84$ $3.12\pm0.71$ $1$ $1.22\pm0.17$ $7.60\pm2.17$ $3.02\pm0.71$ $1$ $0.74\pm0.25$ $5.12\pm2.17$ $7.60\pm2.17$ $3$ $1$ $0.74\pm0.25$ $5.12\pm2.17$ $7.60\pm2.17$ $3$ $1$ $0.74\pm0.25$ $5.0\pm1.12$ $5.0\pm0.021$ $1$ $1$ $1.23\pm0.12$ $1.1\pm0.67$ $1.5\pm0.06$ $1.3\pm0.021$ $1$ <td>$3.71\pm 2.83$$10.4\pm 6.76$$3.45\pm 2$$0.96\pm 0.33$$2.04\pm 0.46$$1.31\pm 0$$6.21\pm 0.65$$5.88\pm 0.58$$5.42\pm 0$$5.78\pm 0.83$$5.19\pm 0.44$$4.83\pm 0.72\pm 0.12$$1.47\pm 0.07$$1.37\pm 0.02$$1.37\pm 0.02$$1.47\pm 0.07$$1.37\pm 0.02$$1.37\pm 0.027$$1.47\pm 0.015$$0.28\pm 0.23$$0.057\pm 0.129\pm 0.43$$2.11\pm 0.51$$2.47\pm 0.43$$2.76\pm 0.027\pm 0.025\pm 0.027\pm 0.025\pm 0.025\pm 0.027\pm 0.025\pm 0.025\pm$</td>	$3.71\pm 2.83$ $10.4\pm 6.76$ $3.45\pm 2$ $0.96\pm 0.33$ $2.04\pm 0.46$ $1.31\pm 0$ $6.21\pm 0.65$ $5.88\pm 0.58$ $5.42\pm 0$ $5.78\pm 0.83$ $5.19\pm 0.44$ $4.83\pm 0.72\pm 0.12$ $1.47\pm 0.07$ $1.37\pm 0.02$ $1.37\pm 0.02$ $1.47\pm 0.07$ $1.37\pm 0.02$ $1.37\pm 0.027$ $1.47\pm 0.015$ $0.28\pm 0.23$ $0.057\pm 0.129\pm 0.43$ $2.11\pm 0.51$ $2.47\pm 0.43$ $2.76\pm 0.027\pm 0.025\pm 0.027\pm 0.025\pm 0.025\pm 0.027\pm 0.025\pm 0.025\pm$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$0.011-2.00$ $0.04\pm0.46$ $0.31\pm0.65$ $0.95\pm0.33$ $2.04\pm0.46$ $0.31\pm0.65$ $5.78\pm0.83$ $5.19\pm0.46$ $0.31\pm0.65$ $5.78\pm0.83$ $5.19\pm0.44$ $4.83\pm0.58$ $5.78\pm0.07$ $1.37\pm0.02$ $1.37\pm0.02$ $1.47\pm0.07$ $1.37\pm0.02$ $1.37\pm0.02$ $1.47\pm0.015$ $0.089\pm0.021$ $0.057\pm0.014+0.057$ $0.042\pm0.015$ $0.089\pm0.021$ $0.057\pm0.027$ $0.042\pm0.015$ $0.089\pm0.021$ $1.44\pm0.057$ $0.042\pm0.015$ $0.089\pm0.021$ $1.44\pm0.0957$ $0.042\pm0.015$ $0.089\pm0.021$ $1.46\pm0.057$ $0.042\pm0.015$ $0.045\pm1.7$ $3.39\pm1$ $0.042\pm0.015$ $0.045\pm1.7$ $3.39\pm1$ $2.83\pm2.51$ $10.0\pm5.1.7$ $3.39\pm1$ $1.86\pm1.02$ $2.69\pm0.36$ $6.27\pm0.6$ $5.77\pm1.35$ $6.20\pm0.2746$ $6.27\pm0.6$ $6.11\pm1.86$ $6.30\pm0.277$ $6.27\pm0.6$ $5.77\pm1.35$ $6.20\pm0.44$ $7.60\pm3.7$ $1.55\pm0.06$ $1.73\pm0.01$ $1.23\pm0.0$ $1.55\pm0.06$ $1.33\pm0.09$ $0.42\pm0.06$ <
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.17 $\pm 0.83$ 6.21 $\pm 0.65$ 5.88 $\pm 0.58$ 5.85.64 $\pm 1.21$ 5.78 $\pm 0.83$ 5.19 $\pm 0.044$ 41.31 $\pm 0.07$ 1.47 $\pm 0.07$ 1.37 $\pm 0.02$ 11.31 $\pm 0.07$ 1.47 $\pm 0.07$ 1.37 $\pm 0.02$ 10.91 $\pm 0.06$ 1.06 $\pm 0.08$ 1.20 $\pm 0.08$ 10.91 $\pm 0.06$ 1.06 $\pm 0.08$ 1.20 $\pm 0.08$ 10.935 \pm 0.0250.042 \pm 0.0150.089 \pm 0.02101.21 \pm 0.671.99 \pm 0.843.12 \pm 0.7111.21 \pm 0.671.99 \pm 0.843.12 \pm 0.7111.21 \pm 0.671.99 \pm 0.843.12 \pm 0.7113.68 \pm 2.585.12 \pm 2.177.60 \pm 2.1733.68 \pm 2.585.12 \pm 2.177.60 \pm 2.1733.68 \pm 2.585.12 \pm 2.1710.0 \pm 5.1311.21 \pm 0.671.99 \pm 0.843.12 \pm 0.7113.68 \pm 2.585.12 \pm 2.177.60 \pm 2.1735.79 \pm 1.266.11 \pm 1.866.20 \pm 0.4476.79 \pm 1.325.77 \pm 1.356.20 \pm 0.4471.58 \pm 0.121.57 \pm 0.061.73 \pm 0.0111.58 \pm 0.121.55 \pm 0.061.73 \pm 0.0911.55 \pm 0.081.05 \pm 0.141.73 \pm 0.0111.55 \pm 0.081.03 \pm 0.0450.0117 \pm 0.01600.109 \pm 0.0790.081 \pm 0.0450.117 \pm 0.0160	$6.21\pm0.65$ $5.88\pm0.58$ $5.42\pm0.56$ $5.78\pm0.83$ $5.19\pm0.44$ $4.83\pm0.68$ $1.47\pm0.07$ $1.37\pm0.02$ $1.37\pm0.02$ $1.47\pm0.08$ $1.37\pm0.02$ $1.37\pm0.02$ $1.0\pm0.08$ $1.20\pm0.08$ $1.01\pm0.11$ $3.11\pm0.51$ $2.47\pm0.43$ $2.76\pm0.057\pm0.027$ $3.11\pm0.51$ $2.47\pm0.43$ $2.76\pm0.057\pm0.057\pm0.027$ $0.042\pm0.015$ $0.089\pm0.021$ $0.057\pm0.027$ $1.99\pm0.231$ $1.0\pm0.71$ $1.44\pm0.021$ $1.99\pm0.217$ $7.60\pm2.17$ $3.39\pm1.0$ $2.83\pm2.51$ $10.0\pm5.13$ $1.99\pm1.02$ $1.86\pm1.02$ $2.69\pm0.36$ $2.41\pm1.02$ $2.83\pm2.51$ $10.0\pm5.13$ $1.99\pm1.02$ $1.86\pm1.02$ $2.69\pm0.36$ $2.41\pm1.02$ $2.77\pm0.06$ $1.75\pm0.01$ $1.57\pm0.06$ $1.57\pm0.06$ $1.73\pm0.01$ $1.53\pm0.02$ $1.57\pm0.06$ $1.33\pm0.09$ $0.42\pm0.06$ $1.23\pm0.04$ $1.33\pm0.30$ $0.42\pm0.06$ $1.23\pm0.045$ $0.117\pm0.016$ $0.125\pm0.02$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$5.78\pm0.83$ $5.19\pm0.44$ $4.83\pm0.72$ $1.47\pm0.07$ $1.37\pm0.02$ $1.37\pm0.02$ $1.66\pm0.08$ $1.20\pm0.08$ $1.01\pm0.74$ $3.11\pm0.51$ $2.47\pm0.43$ $2.76\pm0.057\pm0.021$ $3.11\pm0.51$ $2.47\pm0.43$ $2.76\pm0.057\pm0.027$ $0.042\pm0.015$ $0.089\pm0.021$ $0.057\pm0.027$ $0.042\pm0.015$ $0.089\pm0.021$ $0.057\pm0.126\pm0.027$ $1.99\pm11$ $1.26\pm2.17$ $3.39\pm11$ $1.86\pm1.02$ $2.69\pm0.36$ $2.41\pm1$ $2.83\pm2.51$ $10.0\pm5.13$ $1.99\pm1$ $1.86\pm1.02$ $2.69\pm0.36$ $2.41\pm1$ $5.77\pm1.35$ $6.20\pm0.44$ $7.60\pm3$ $6.11\pm1.86$ $6.30\pm0.27$ $6.27\pm0$ $6.11\pm1.86$ $6.30\pm0.27$ $6.27\pm0$ $6.11\pm1.86$ $6.30\pm0.27$ $6.27\pm0$ $6.11\pm1.86$ $6.30\pm0.23$ $1.9\pm1$ $1.57\pm0.06$ $1.73\pm0.11$ $1.51\pm0$ $1.57\pm0.06$ $1.33\pm0.09$ $1.23\pm0$ $1.23\pm0.61$ $1.33\pm0.30$ $0.42\pm0$ $0.081\pm0.045$ $0.117\pm0.016$ $0.105\pm0.015$
VSBrC FI I.38±0.09 I.31±0.07 I.47±0.07 I.37±0.02 HIX I.05±0.13 0.91±0.06 I.06±0.08 I.20±0.08 HIX 2.87±0.53 3.12±0.44 3.11±0.51 2.47±0.43 $k_{365}$ 0.056±0.029 0.035±0.020 0.042±0.015 0.089±0.021 SFE_{Ab500-400 (W g^{-1})} 1.95±1.02 I.21±0.67 I.99±0.84 3.12±0.71 SFE_Ab500-m0 (W g^{-1}) 3.87±4.69 0.035±0.020 0.042±0.015 0.089±0.021 Ab5 $_{365}(\text{Mm}^{-1})$ 3.87±4.69 0.74±0.25 I.99±0.84 3.12±0.71 Ab5 $_{365}(\text{m}^2 g^{-1})$ 3.87±4.69 0.74±0.25 2.83±2.51 10.0±5.13 MAE $_{365}(\text{m}^2 g^{-1})$ 3.87±4.69 0.74±0.25 2.83±2.51 10.0±5.13 AAE (300-500 m) 6.06±1.23 5.49±1.26 6.11±1.86 6.30±0.27 E ₂ /E ₃ I.160±0.13 I.58±0.12 1.57±0.06 I.73±0.11 VI-MSBrC FI I.00±0.13 I.58±0.12 1.57±0.06 I.73±0.11 HIX 0.81±0.05 0.125±0.08 1.23±0.61 1.33±0.30 k_{365} 0.10±0.05 0.109±0.079 0.081±0.045 0.117±0.06 k_{365} 0.104±0.057 0.109±0.079 0.0181±0.045 0.117±0.016	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.31 $\pm 0.07$ 1.47 $\pm 0.07$ 1.37 $\pm 0.02$ 1           0.91 $\pm 0.06$ 1.06 $\pm 0.08$ 1.20 $\pm 0.02$ 1           3.12 $\pm 0.44$ 3.11 $\pm 0.51$ 2.47 $\pm 0.43$ 2           0.035 \pm 0.020         0.042 \pm 0.015         0.089 \pm 0.021         0           1.121 \pm 0.67         1.99 \pm 0.015         0.089 \pm 0.021         0           1.21 \pm 0.67         1.99 \pm 0.015         0.089 \pm 0.021         0           1.21 \pm 0.67         1.99 \pm 0.015         0.089 \pm 0.021         0           1.21 \pm 0.67         1.99 \pm 0.015         0.089 \pm 0.021         0           1.21 \pm 0.67         1.99 \pm 0.015         0.089 \pm 0.021         0           1.21 \pm 0.67         1.99 \pm 0.024         3.12 \pm 0.71         1           1.21 \pm 0.67         1.99 \pm 0.02         1.00 \pm 0.71         1           2.50 \pm 1.78         1.86 \pm 1.02         2.69 \pm 0.36 \pm 0.27         6           0.74 \pm 0.25         5.77 \pm 1.35         6.20 \pm 0.44         7         1           1.55 \pm 0.18         1.57 \pm 0.06         1.73 \pm 0.09         1         1           1.32 \pm 0.18         1.05 \pm 0.14         1.43 \pm 0.09         1         1           1.32 \pm 0.08         1.23 \pm 0.61	$1.47\pm0.07$ $1.37\pm0.02$ $1.37\pm0.02$ $1.06\pm0.08$ $1.20\pm0.08$ $1.01\pm0.51$ $3.11\pm0.51$ $2.47\pm0.43$ $2.76\pm0.057\pm0.057\pm0.021$ $3.11\pm0.51$ $2.47\pm0.43$ $2.76\pm0.057\pm0.057\pm0.021$ $0.042\pm0.015$ $0.089\pm0.021$ $0.057\pm0.057\pm0.027$ $0.042\pm0.015$ $0.089\pm0.021$ $0.057\pm0.057\pm0.027$ $1.99\pm1.02$ $3.12\pm0.71$ $1.46\pm0.0251$ $5.12\pm2.17$ $7.60\pm2.17$ $3.39\pm1.027$ $2.83\pm2.51$ $10.0\pm5.13$ $1.99\pm1.02$ $2.83\pm2.51$ $10.0\pm5.13$ $1.99\pm1.01$ $1.86\pm0.02$ $5.9\pm0.36$ $5.24\pm1.02$ $5.77\pm1.35$ $6.20\pm0.44$ $7.60\pm3$ $6.11\pm1.86$ $6.30\pm0.27$ $6.27\pm0.06$ $5.77\pm0.06$ $1.73\pm0.01$ $1.51\pm0.042$ $1.57\pm0.06$ $1.33\pm0.00$ $1.23\pm0.00$ $1.23\pm0.045$ $0.0117\pm0.016$ $0.122\pm0.012$
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	BrC BIX $1.06\pm0.08$ $1.06\pm0.08$ $1.06\pm0.08$ $1.20$ HIX $2.87\pm0.53$ $3.12\pm0.44$ $3.11\pm0.51$ $2.47$ $k_{365}$ $0.05\pm0.029$ $0.035\pm0.020$ $0.042\pm0.015$ $0.08$ $SFE_{\Delta h 300-400 (Wg^{-1})}$ $1.95\pm1.02$ $1.21\pm0.67$ $1.99\pm0.84$ $3.12$ SFE $\Delta h 30-700 (Wg^{-1})$ $1.95\pm1.02$ $1.21\pm0.67$ $1.99\pm0.84$ $3.12$ ABES ABSOG (WT $^{-1}$ ) $3.87\pm4.69$ $0.74\pm0.25$ $2.83\pm2.51$ $10.0$ AAE $3.00-500 \mathrm{nm}$ $6.06\pm1.23$ $5.49\pm1.26$ $6.11\pm1.86$ $6.30$ AAE $(300-500 \mathrm{nm})$ $6.06\pm1.23$ $5.49\pm1.26$ $6.11\pm1.86$ $6.20$ HIX $1.26\pm0.21$ $1.53\pm0.12$ $1.57\pm0.06$ $1.73$ $AAE (300-500 \mathrm{nm})$ $6.06\pm1.23$ $5.49\pm1.26$ $6.11\pm1.86$ $6.102$ $1.73$ HIX $0.81\pm0.60$ $0.25\pm0.08$ $1.25\pm0.06$ $1.73$ $1.57\pm0.06$ $1.73$ $k_{365}$ $0.104\pm0.057$ $0.109\pm0.079$ $0.081\pm0.045$ $0.11$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1.06\pm0.08$ $1.20\pm0.08$ $1.01\pm0.51$ $2.47\pm0.43$ $2.76\pm0.057\pm0.015$ $0.089\pm0.021$ $0.057\pm0.057\pm0.0057\pm0.0089\pm0.021$ $0.057\pm0.057\pm0.0089\pm0.021$ $0.057\pm0.057\pm0.0057\pm0.0057\pm0.0057\pm0.0057\pm0.0057\pm0.0055\pm0.0012$ $5.12\pm2.17$ $2.60\pm2.17$ $0.089\pm0.021$ $0.057\pm0.0057\pm0.0051\pm0.0055\pm0.0012$ $0.057\pm0.021$ $0.025\pm0.021$ $0.057\pm0.021$ $0.057\pm0.021$ $0.057\pm0.021$ $0.052\pm0.021$ $0.052\pm0.021$ $0.052\pm0.021$ $0.025\pm0.021$ $0.0105\pm0.021$ $0.0105\pm0.025$ $0.0117\pm0.016$ $0.0105\pm0.02$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	HIX $2.87\pm0.53$ $3.12\pm0.44$ $3.11\pm0.51$ $2.47\pm0.51$ $k_{365}$ $0.055\pm0.029$ $0.03\pm0.020$ $0.042\pm0.015$ $0.089\pm0.085\pm0.020$ $0.03\pm0.015$ $0.089\pm0.089\pm0.088\pm0.008\pm0.088\pm0.008\pm0.088\pm0.008\pm0.088\pm0.008\pm0.088\pm0.008\pm0.088\pm0.008\pm0.088\pm0.008\pm0.088\pm0.008\pm0.088\pm0.008\pm0.088\pm0.008\pm0.088\pm0.008\pm0.008\pm0.088\pm0.008\pm0.008\pm0.088\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm0.008\pm$	$3.12\pm0.44$ $3.11\pm0.51$ $2.47\pm0.43$ $2$ $0.035\pm0.020$ $0.042\pm0.015$ $0.089\pm0.021$ $0$ $1.21\pm0.67$ $1.99\pm0.84$ $3.12\pm0.71$ $1$ $1.21\pm0.67$ $1.99\pm0.84$ $3.12\pm0.71$ $1$ $3.68\pm2.58$ $5.12\pm2.17$ $7.60\pm2.17$ $3$ $3.68\pm2.58$ $5.12\pm2.17$ $7.60\pm2.17$ $3$ $0.74\pm0.25$ $5.12\pm2.17$ $7.60\pm2.17$ $3$ $0.74\pm0.25$ $5.12\pm2.17$ $7.60\pm2.17$ $3$ $0.74\pm0.25$ $5.13\pm2.51$ $10.0\pm5.13$ $1$ $2.549\pm1.26$ $6.11\pm1.86$ $6.30\pm0.27$ $6$ $5.79\pm1.32$ $5.77\pm1.35$ $6.20\pm0.44$ $7$ $1.58\pm0.12$ $1.57\pm0.06$ $1.73\pm0.01$ $1$ $1.32\pm0.18$ $1.05\pm0.06$ $1.73\pm0.09$ $1$ $0.25\pm0.08$ $1.23\pm0.61$ $1.33\pm0.30$ $0$ $0.109\pm0.079$ $0.081\pm0.045$ $0.117\pm0.016$ $0$	$3.11\pm0.51$ $2.47\pm0.43$ $2.76\pm0$ $0.042\pm0.015$ $0.089\pm0.021$ $0.057\pm0.015$ $1.99\pm0.84$ $3.12\pm0.71$ $1.46\pm0.015$ $5.12\pm2.17$ $7.60\pm2.17$ $3.3\pm1.0.71$ $5.12\pm2.17$ $7.60\pm2.17$ $3.3\pm1.0.9\pm0.01$ $5.12\pm2.17$ $7.60\pm2.17$ $3.3\pm1.0.9\pm0.01$ $2.83\pm2.51$ $10.0\pm5.13$ $1.99\pm1.0.9\pm1.0.09\pm1.0.00\pm0.0.036$ $1.86\pm1.02$ $2.69\pm0.36$ $2.41\pm1.0.0\pm0.04\pm0.0.05\pm0.0.04\pm0.0.04\pm0.0.04\pm0.01\pm0.01\pm0.01\pm0.0$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1.21\pm0.67$ $1.99\pm0.84$ $3.12\pm0.71$ $1$ $3.68\pm2.58$ $5.12\pm2.17$ $7.60\pm2.17$ $3$ $0.74\pm0.25$ $5.12\pm2.17$ $7.60\pm2.17$ $3$ $0.74\pm0.25$ $5.12\pm2.17$ $7.60\pm2.13$ $1$ $2.50\pm1.78$ $1.86\pm1.02$ $2.69\pm0.36$ $2$ $2.549\pm1.26$ $6.11\pm1.86$ $6.30\pm0.27$ $6$ $5.49\pm1.26$ $6.11\pm1.86$ $6.20\pm0.44$ $7$ $1.55\pm0.12$ $1.57\pm0.06$ $1.73\pm0.11$ $1$ $1.52\pm0.18$ $1.05\pm0.14$ $1.43\pm0.09$ $1$ $0.25\pm0.08$ $1.23\pm0.61$ $1.33\pm0.30$ $0$ $0.25\pm0.08$ $1.23\pm0.61$ $1.33\pm0.30$ $0$ $0.25\pm0.08$ $1.23\pm0.61$ $1.33\pm0.30$ $0$ $0.109\pm0.079$ $0.081\pm0.045$ $0.117\pm0.016$ $0$	1:99±0.84         3.12±0.71         1.46±0           5.12±2.17         7.60±2.17         3.39±1           2.83±2.51         10.0±5.13         1.99±1           1.86±1.02         2.69±0.36         2.41±1           6.11±1.86         6.33±0.27         6.27±0           5.77±1.35         6.20±0.44         7.60±2           5.77±1.35         6.20±0.44         7.60±2           1.57±0.06         1.73±0.11         1.51±0           1.05±0.14         1.43±0.09         1.23±0           1.23±0.61         1.33±0.30         0.42±0           0.081±0.045         0.117±0.016         0.105±
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3.68\pm2.58$ $5.12\pm2.17$ $7.60\pm2.17$ $3$ $0.74\pm0.25$ $5.12\pm2.17$ $7.60\pm2.17$ $3$ $0.74\pm0.25$ $2.83\pm2.51$ $10.0\pm5.13$ $1$ $2.50\pm1.78$ $1.86\pm1.02$ $2.69\pm0.36$ $2$ $5.49\pm1.26$ $6.11\pm1.86$ $6.30\pm0.27$ $6$ $5.49\pm1.26$ $6.11\pm1.86$ $6.20\pm0.44$ $7$ $1.28\pm0.12$ $1.57\pm0.06$ $1.73\pm0.11$ $1$ $1.23\pm0.18$ $1.05\pm0.14$ $1.43\pm0.09$ $1$ $0.25\pm0.08$ $1.23\pm0.61$ $1.33\pm0.30$ $0$ $0.25\pm0.08$ $1.23\pm0.61$ $1.33\pm0.30$ $0$ $0.25\pm0.08$ $1.23\pm0.61$ $1.33\pm0.30$ $0$ $0.109\pm0.079$ $0.081\pm0.045$ $0.117\pm0.016$ $0$	5.12±2.17         7.60±2.17         3.39±1           2.83±2.51         10.0±5.13         1.99±1           2.83±2.51         10.0±5.13         1.99±1           1.86±1.02         2.69±0.36         2.41±1           6.11±1.86         6.30±0.27         6.27±0           5.77±1.35         6.20±0.44         7.60±3           1.57±0.06         1.73±0.11         1.51±0           1.05±0.14         1.43±0.09         1.23±0           1.23±0.61         1.33±0.30         0.42±0           0.081±0.045         0.117±0.016         0.105±
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c cccccc} Abs_{366}(Min^{-1}) & 3.87\pm4.69 & 0.74\pm0.25 & 2.83\pm2.51 & 10.0\pm5.\\ MAE_{366}(m^2g^{-1}) & 3.87\pm4.69 & 0.74\pm0.25 & 2.83\pm2.51 & 10.0\pm5.\\ MAE_{366}(m^2g^{-1}) & 2.36\pm1.26 & 2.50\pm1.78 & 1.86\pm1.02 & 2.69\pm0.\\ E_2/E_3 & 6.00-500\mathrm{nm}) & 6.06\pm1.23 & 5.49\pm1.26 & 6.11\pm1.86 & 6.30\pm0.\\ E_2/E_3 & 6.00\pm2.04 & 6.79\pm1.22 & 5.77\pm1.35 & 6.20\pm0.\\ HIX & 1.66\pm0.13 & 1.58\pm0.12 & 1.57\pm0.06 & 1.73\pm0.\\ HIX & 0.81\pm0.60 & 0.25\pm0.08 & 1.23\pm0.61 & 1.43\pm0.\\ A_{365} & 0.104\pm0.057 & 0.109\pm0.079 & 0.081\pm0.045 & 0.117\pm0.\\ SFE Abston-anow w^{-1} & 2.98\pm1.70 & 1.21\pm0.67 & 2.98\pm1.52 & 4.13\pm0.\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.83±2.51     10.0±5.13     1.99±1       1.86±1.02     2.69±0.36     2.41±1       6.11±1.86     6.30±0.27     6.27±0       5.77±1.35     6.20±0.44     7.60±3       1.57±0.06     1.73±0.11     1.51±0       1.05±0.14     1.43±0.09     1.23±0       1.23±0.61     1.33±0.30     0.42±0       0.081±0.045     0.117±0.016     0.105±
$ \begin{array}{c ccccc} MAE_{366}(m^2g^{-1}) & 2.36\pm 1.26 & 2.50\pm 1.78 & 1.86\pm 1.02 & 2.69\pm 0.36 \\ AAE (300-500  {\rm mm}) & 6.06\pm 1.23 & 5.49\pm 1.26 & 6.11\pm 1.86 & 6.30\pm 0.27 \\ E_2/E_3 & 6.60\pm 2.04 & 6.79\pm 1.32 & 5.77\pm 1.35 & 6.20\pm 0.44 \\ FI & 1.60\pm 0.13 & 1.58\pm 0.12 & 1.57\pm 0.06 & 1.73\pm 0.11 \\ 1.66\pm 0.21 & 1.32\pm 0.18 & 1.05\pm 0.14 & 1.43\pm 0.09 \\ HIX & 0.81\pm 0.057 & 0.109\pm 0.079 & 0.081\pm 0.045 & 0.117\pm 0.016 \\ k_{365} & 0.10\pm 0.077 & 0.10\pm 0.079 & 0.081\pm 0.045 & 0.117\pm 0.016 \\ k_{366} & 0.10\pm 0.077 & 0.10\pm 0.079 & 0.081\pm 0.045 & 0.117\pm 0.016 \\ k_{366} & k_{366} & 0.10\pm 0.077 & 0.10\pm 0.045 & 0.117\pm 0.016 \\ k_{366} & k_{366} & 0.10\pm 0.077 & 0.10\pm 0.075 & 0.117\pm 0.016 \\ k_{366} & k_{366} & 0.10\pm 0.077 & 0.10\pm 0.075 & 0.117\pm 0.016 \\ k_{366} & k_{366} & k_{366} & 0.10\pm 0.077 & 0.081\pm 0.045 & 0.117\pm 0.016 \\ k_{366} & k_{3$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c ccccc} MAE_{36}(m^2g^{-1}) & 2.36\pm 1.26 & 2.50\pm 1.78 & 1.86\pm 1.02 & 2.69\pm 0.128 \\ AAE (300-500\mathrm{nm}) & 6.06\pm 1.23 & 5.49\pm 1.26 & 6.11\pm 1.86 & 6.30\pm 0.178 \\ E_2/E_3 & 6.60\pm 2.04 & 6.79\pm 1.32 & 5.77\pm 1.35 & 6.20\pm 0.178 \\ FI & 1.66\pm 0.13 & 1.58\pm 0.12 & 1.57\pm 0.06 & 1.73\pm 0.188 \\ HIX & 0.81\pm 0.60 & 0.25\pm 0.08 & 1.23\pm 0.61 & 1.33\pm 0.188 \\ k_{365} & 0.104\pm 0.057 & 0.109\pm 0.079 & 0.081\pm 0.045 & 0.117\pm 0.045 \\ SFE Abston-anowy e^{-1} & 2.98\pm 1.70 & 1.21\pm 0.67 & 2.98\pm 1.52 & 4.13\pm 0.045 \\ \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1.86\pm 1.02$ $2.69\pm 0.36$ $2.41\pm 1$ $6.11\pm 1.86$ $6.30\pm 0.27$ $6.27\pm 0$ $5.77\pm 1.35$ $6.20\pm 0.44$ $7.60\pm 3$ $5.77\pm 1.35$ $6.20\pm 0.44$ $7.60\pm 3$ $1.57\pm 0.06$ $1.73\pm 0.11$ $1.51\pm 0$ $1.05\pm 0.061$ $1.73\pm 0.09$ $1.23\pm 0$ $1.03\pm 0.041$ $1.33\pm 0.09$ $1.23\pm 0$ $0.23\pm 0.61$ $1.33\pm 0.09$ $0.42\pm 0$ $0.081\pm 0.045$ $0.117\pm 0.016$ $0.105\pm 0.05\pm 0.05\pm 0.05\pm 0.0105$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$5.49\pm1.26$ $6.11\pm1.86$ $6.30\pm0.27$ $6$ $6.79\pm1.32$ $5.77\pm1.35$ $6.20\pm0.44$ $7$ $1.58\pm0.12$ $1.57\pm0.06$ $1.73\pm0.11$ $1$ $1.32\pm0.18$ $1.05\pm0.14$ $1.43\pm0.09$ $1$ $1.32\pm0.08$ $1.23\pm0.61$ $1.33\pm0.30$ $0$ $0.25\pm0.08$ $1.23\pm0.61$ $1.33\pm0.30$ $0$ $0.109\pm0.079$ $0.081\pm0.045$ $0.117\pm0.016$ $0$	$6.11\pm 1.86$ $6.30\pm 0.27$ $6.27\pm 0.23$ $5.77\pm 1.35$ $6.20\pm 0.44$ $7.60\pm 3.16$ $1.57\pm 0.06$ $1.73\pm 0.11$ $1.51\pm 0.12$ $1.57\pm 0.06$ $1.73\pm 0.09$ $1.23\pm 0.02$ $1.23\pm 0.61$ $1.33\pm 0.09$ $1.23\pm 0.042\pm 0.023\pm 0.01123\pm 0.0122\pm 0.01122\pm 0.01122\pm 0.01122\pm 0.0122\pm 0.01122\pm 0.01122\pm 0.01122\pm 0.01122\pm 0.01122\pm 0.01122\pm 0.01122\pm 0.0122\pm 0.01122\pm 0.01122\pm 0.01122\pm 0.01122\pm 0.01122\pm 0.01122\pm 0.01122\pm 0.01122\pm 0.0122\pm 0.01122\pm 0.01122\pm 0.0122\pm 0.01122\pm 0.0122\pm 0.01122\pm 0.0122\pm 0.01122\pm 0.0122\pm 0.01122\pm 0.0122\pm 0.0122\pm 0.0122\pm 0.01122\pm 0.0122\pm 0.0122\pm 0.0122\pm 0.0122\pm 0.01122\pm 0.0122\pm 0.0122$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccc} \mathrm{E}_{2}/\mathrm{E}_{3} & 6.60\pm2.04 & 6.79\pm1.32 & 5.77\pm1.35 & 6.20 \\ \mathrm{FI} & & & & & & & & & & & & & & & & & & &$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccc} E_2/E_3 & 6.60\pm2.04 & 6.79\pm1.32 & 5.77\pm1.35 & 6.20\pm0.40\\ FI & 1.60\pm0.13 & 1.58\pm0.12 & 1.57\pm0.06 & 1.73\pm0.40\\ BIX & 1.26\pm0.21 & 1.32\pm0.18 & 1.05\pm0.14 & 1.43\pm0.40\\ HIX & 0.81\pm0.60 & 0.25\pm0.08 & 1.23\pm0.61 & 1.33\pm0.40\\ k_{365} & 0.104\pm0.057 & 0.109\pm0.079 & 0.081\pm0.045 & 0.117\pm0.40\\ SFE Abston-400 Ave^{-1} & 2.98\pm1.70 & 1.21\pm0.67 & 2.98\pm1.52 & 4.13\pm0.40\\ \end{array} $	$6.79\pm1.32$ $5.77\pm1.35$ $6.20\pm0.44$ $7$ $1.58\pm0.12$ $1.57\pm0.06$ $1.73\pm0.11$ $1$ $1.58\pm0.12$ $1.57\pm0.06$ $1.73\pm0.11$ $1$ $1.32\pm0.18$ $1.05\pm0.14$ $1.43\pm0.09$ $1$ $0.25\pm0.08$ $1.23\pm0.61$ $1.33\pm0.30$ $0$ $0.109\pm0.079$ $0.081\pm0.045$ $0.117\pm0.016$ $0$	$5.77\pm 1.35$ $6.20\pm 0.44$ $7.60\pm 3$ $1.57\pm 0.06$ $1.73\pm 0.11$ $1.51\pm 0.14$ $1.57\pm 0.06$ $1.73\pm 0.09$ $1.23\pm 0.09$ $1.23\pm 0.61$ $1.33\pm 0.09$ $1.23\pm 0.02\pm 0.03\pm 0.0$
VI-MSBrC         F1 $1.60\pm0.13$ $1.58\pm0.12$ $1.57\pm0.06$ $1.73\pm0.11$ VI-MSBrC         BIX $1.26\pm0.21$ $1.32\pm0.18$ $1.63\pm0.14$ $1.43\pm0.09$ HIX $0.81\pm0.60$ $0.25\pm0.08$ $1.23\pm0.16$ $1.33\pm0.09$ $k_{365}$ $0.04\pm0.057$ $0.109\pm0.079$ $0.081\pm0.045$ $0.117\pm0.016$ $k_{365}$ $0.104\pm0.057$ $0.109\pm0.079$ $0.081\pm0.045$ $0.117\pm0.016$ ster $2.08\pm1.70$ $0.10.6\pm0.079$ $0.081\pm0.045$ $0.117\pm0.016$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-MSBrC FI 1.60±0.13 1.58±0.12 1.57±0.06 1.73±0. -MSBrC BIX 1.26±0.21 1.32±0.18 1.05±0.14 1.43±0. HIX 0.81±0.60 0.25±0.08 1.23±0.61 1.33±0. $k_{365}$ 0.104±0.057 0.109±0.079 0.081±0.045 0.117±C SFE Abston±00.08 $^{-1}$ 2.98±1.70 1.21±0.67 2.98±1.52 4.13±0.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1.57\pm0.06$ $1.73\pm0.11$ $1.51\pm0.15$ $1.05\pm0.14$ $1.43\pm0.09$ $1.23\pm0.12$ $1.23\pm0.61$ $1.33\pm0.30$ $0.42\pm0.02\pm0.015$ $0.081\pm0.045$ $0.117\pm0.016$ $0.105\pm0.05\pm0.05\pm0.015$
V1-M3.Brc         BIX         1.26±0.21         1.32±0.18         1.05±0.14         1.43±0.09           HIX         0.81±0.60         0.25±0.08         1.23±0.61         1.33±0.30 $k_{365}$ 0.104±0.057         0.109±0.079         0.081±0.045         0.117±0.016 $k_{365}$ 0.104±0.057         0.109±0.079         0.081±0.045         0.117±0.016	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-MSBC BIX 1.26±0.21 1.32±0.18 1.05±0.14 1.43 HIX 0.81±0.60 0.25±0.08 1.23±0.61 1.33 $k_{365}$ 0.104±0.057 0.109±0.079 0.081±0.045 0.11	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-MiSBC BIX 1.26±0.21 1.32±0.18 1.05±0.14 1.43±0. HIX 0.81±0.60 0.25±0.08 1.23±0.61 1.33±0. $k_{365}$ 0.104±0.057 0.109±0.079 0.081±0.045 0.117±C SFE Abson-400 $cv_{v}^{-1}$ 2.98±1.70 1.21±0.67 2.98±1.52 4.13±0.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1.05\pm0.14$ $1.43\pm0.09$ $1.23\pm0.12$ $1.23\pm0.61$ $1.33\pm0.30$ $0.42\pm0.042$ $0.081\pm0.045$ $0.117\pm0.016$ $0.105\pm0.015$
HIX 0.81±0.60 0.25±0.08 1.23±0.61 1.33±0.30 $k_{365}$ 0.104±0.057 0.109±0.079 0.081±0.045 0.117±0.016 SEE1, 2.08±1.70 1.11.0.67 2.08±1.52 4.15±0.57	HIX $0.81\pm0.60$ $0.25\pm0.08$ $1.23\pm0.61$ $1.33\pm0.30$ $0.42\pm0.64$ $k_{365}$ $0.104\pm0.057$ $0.109\pm0.079$ $0.081\pm0.045$ $0.117\pm0.016$ $0.105$ SFE _{Abs300400 (W g⁻¹)} $2.98\pm1.70$ $1.21\pm0.67$ $2.98\pm1.52$ $4.13\pm0.57$ $3.61\pm1.61$	HIX 0.81±0.60 0.25±0.08 1.23±0.61 1.33 $k_{365}$ 0.104±0.057 0.109±0.079 0.081±0.045 0.11	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	HIX 0.81±0.60 0.25±0.08 1.23±0.61 1.33±0. $k_{365}$ 0.104±0.057 0.109±0.079 0.081±0.045 0.117±0. SFE Abrean-400 $cvv$ $v^{-1}$ 2.98±1.70 1.21±0.67 2.98±1.52 4.13±0.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$k_{365}$ 0.104±0.057 0.109±0.079 0.081±0.045 0.117±0.016 SFE1 2.08±1.70 1.01±0.67 2.08±1.52 4.12±0.57	$ \begin{array}{c} k_{365} \\ \text{SFE}_{\Delta \text{MS}300 \rightarrow 00  (W  g^{-1})} \end{array} \qquad 0.104 \pm 0.057 \qquad 0.109 \pm 0.079 \qquad 0.081 \pm 0.045 \qquad 0.117 \pm 0.016 \qquad 0.105 \\ \text{2.98 \pm 1.52} \qquad 2.98 \pm 1.52 \qquad 4.13 \pm 0.57 \qquad 3.61 \pm 3.61 $	$k_{365}$ 0.104±0.057 0.109±0.079 0.081±0.045 0.11	$ \begin{array}{cccc} k_{3.65} & & 0.104\pm0.057 & 0.109\pm0.079 & 0.081\pm0.045 & 0.117\pm0.016 & 0.1 \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & $	$k_{365} \qquad 0.104\pm0.057 \qquad 0.109\pm0.079 \qquad 0.081\pm0.045 \qquad 0.117\pm0.015 \qquad 0.117\pm0.015 \qquad 0.117\pm0.015 \qquad 0.117\pm0.015 \qquad 0.117\pm0.015 \qquad 0.117\pm0.015 \qquad 0.008\pm0.025 \qquad 0.112\pm0.015 \qquad 0.008\pm0.025 \qquad 0.112\pm0.015 \qquad 0.008\pm0.025 \qquad 0.00$	$0.109\pm0.079$ $0.081\pm0.045$ $0.117\pm0.016$ $0$	$0.081\pm0.045$ $0.117\pm0.016$ $0.105\pm$
SEE1 2.08+1.70 1.21+0.67 2.08+1.52 2.13+0.57	$SFE_{\underline{A}\underline{b}\underline{s}30, \rightarrow 00 \text{ (W}_{g}^{-1})} 2.98\pm1.70 1.21\pm0.67 2.98\pm1.52 4.13\pm0.57 3.61\pm1.40 1.21\pm0.57 1.21\pm0.51 1.21\pm0.51\pm0.51 1.21\pm0.51\pm0.51 1.21\pm0.51\pm0.51\pm0.51\pm0.51\pm0.51\pm0.51\pm0.51\pm0.5$		$SFE_{\underline{A}\underline{b}\underline{3}00\rightarrow 400 \ (W_g^{-1})} = 2.98\pm1.70 = 1.21\pm0.67 = 2.98\pm1.52 = 4.13\pm0.57 = 3.6$	SFEAnsam $_{mn}$ w $_{n-1}^{-1}$ 2.98 $\pm$ 1.70 1.21 $\pm$ 0.67 2.98 $\pm$ 1.52 4.13 $\pm$ 0.		
$1.1 \times 10^{-1} $		SFEAbson-400 (W e ⁻¹ ) 2.98±1.70 1.21±0.67 2.98±1.52 4.13			1.21±0.67 2.98±1.52 4.13±0.57 3	2.98±1.52 4.13±0.57 3.61±1
SFE _{AM500-700 (W g⁻¹)} 7.58±5.75 3.68±2.58 8.69±9.23 9.36±4.51	$SFE_{\underline{A}\underline{M}\underline{S}00-700(W_{g}^{-1})} \qquad 7.58\pm5.75 \qquad 3.68\pm2.58 \qquad 8.69\pm9.23 \qquad 9.36\pm4.51 \qquad 8.70\pm3.245$	SEPTITION TO THE TOT TOT THE TOT TOT THE TOT TH	$SFE_{\Delta_{M5300-700}(W,g^{-1})} = 7.58\pm5.75 = 3.68\pm2.58 = 8.69\pm9.23 = 9.36\pm4.51 = 8.75$	SFE _{Ans00-700 (w $g^{-1}$) 7.58±5.75 3.68±2.58 8.69±9.23 9.36±4.}	<b>3.68±2.58 8.69±9.23 9.36±4.51 8</b>	8 40+0 23 0 36+4 51 8 70+5
DF E <u>Abs</u> 300-700 (W g ⁻ ) /.28±2./2 5.08±2.28 8.09±9.23 9.50±4.21	DFE <u>Abs</u> 300-700 (wg ⁻¹ ) /.28±5./2 3.08±2.28 8.09±9.25 9.36±4.21 8./0±		SFE <u>Abs</u> 300-700 (W g ) / 1.28±5. / 5.08±2.38 8.09±9.25 9.50±4.51 8.1	SFE <u>Ahs</u> 00-700 (wg·) /.28±2./2 3.08±2.38 8.09±9.23 9.30±4.	3.05±4.01 8.09±9.23 9.50±4.01 8.05±9.23	
SFEAb300-700 (W g ⁻¹ ) 7.58 $\pm 5.75$ 3.68 $\pm 2.58$ 8.69 $\pm 9.23$ 9.36 $\pm 4.51$	$ SFE_{Abs300-700 (W g^{-1})} \qquad 7.58\pm5.75 \qquad 3.68\pm2.58 \qquad 8.69\pm9.23 \qquad 9.36\pm4.51 $	$SFE_{\Delta MS00-400}(w_g^{-1}) = 2.98\pm1.70 = 1.21\pm0.67 = 2.98\pm1.52 = 4.13$ $SFE_{\Delta MS00-400}(w_g^{-1}) = 7.58\pm5.75 = 3.68\pm7.58 = 8.60\pm0.23 = 0.36$	$SFE_{Abs300-700 (W g^{-1})} \qquad 7.58\pm5.75 \qquad 3.68\pm2.58 \qquad 8.69\pm9.23 \qquad 9.36\pm4.51 \qquad 9.36\pm5.52 $	SFE _{Abb300-700 (w g⁻¹)} 7.58±5.75 3.68±2.58 8.69±9.23 9.36±4.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.98±1.52 4.13±0.57 8 40±0 23 0 36±4 51
$SFE_{\underline{Abs}300-700 (W g^{-1})} \qquad 7.58\pm5.75 \qquad 3.68\pm2.58 \qquad 8.69\pm9.23 \qquad 9.36\pm4.51$	$SFE_{\underline{A}\underline{b}\underline{s}}, 0, -70, (Wg^{-1}) = 7.5 \\ 8.69\pm9.23 = 9.36\pm4.51 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.69\pm9.23 \\ 8.65\pm7.51 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 \\ 8.700 $	SFF 1-200 200 20 26 2 2 68+5 75 3 68+5 58 8 69+9 23 0 36	SFE $\frac{1}{2000-700 (W g^{-1})}$ 7.58±5.75 3.68±2.58 8.69±9.23 9.36±4.51 8.7	$SFE_{\underline{Ahs}300-700 (W g^{-1})} \qquad 7.58\pm5.75 \qquad 3.68\pm2.58 \qquad 8.69\pm9.23 \qquad 9.36\pm4.$	3.68±2.58 8.69±9.23 9.36±4.51 8	8 40+0 23 0 36+4 51 8 70

387 <u>gi</u>

# 388 3.1.2 Absorption Ångström exponent (AAE)

389 The magnitude of the AAE can reflect the sources and atmospheric chemical processes of BrC (Lack et al., 2013), because the AAE of the BrC emitted from fossil fuel combustion found 390 to be  $\sim 1$  and that from biomass burning range from 1 to 3 and that derived by secondary 391 formation/transformations vary from 3-7 (Yan et al., 2018). It has also been reported that the AAE 392 393 of light-absorbing organic species (i.e., BrC) is much larger than that of soot (BC). The AAE was found to be between 2 and 4 for the particles containing both soot and BrC. Furthermore, AAE 394 value of particulate matter is closely related to its chemical composition, mixing state, particle size 395 and other factors. For example, Sun et al. (2007) reported that the average AAE of coal briquettes 396 397 is  $2.55 \pm 0.44$  whereas that of the coal chunks is  $1.30 \pm 0.32$  (Sun et al., 2017). However, it is important to note that unlike the direct measurement of AAE of the particulate matter, the light 398 399 absorption characteristics of organic components extracted into solvent are not affected by particle 400 size and mixing state of aerosols, but depend on their composition. The AAE of humic-like 401 substances (HULIS) isolated from biomass burning aerosols by water extraction followed by the separation with exchange column was reported to be 6-7 (Hoffer et al., 2006). 402

The AAE of WSBrC in PM2.5 from Tianjin ranged from 3.85 to 7.99 with an average of 5.66 403 during the campaign. The seasonal averages were highly comparable with each other, except a 404 405 little higher level in autumn (Table 1). The average AAE of WSBrC in Tianjin (Table 1) is comparable to that  $(5.1 \pm 2.0)$  reported from New Delhi, India and Beijing  $(5.3 \pm 0.4)$  in winter and 406  $5.8 \pm 0.5$  in summer) and the outflow region ( $6.4 \pm 0.6$ ) of northern China (Lesworth et al., 2010). 407 The AAE of WSBrC in Tianjin was also similar to that (range, 6-8) reported in the particulate 408 409 matter at the southeastern United States (Hecobian et al., 2010) and downtown Atlanta (Liu et al., 410 2013), where both biogenic and fossil fuel combustion emissions and secondary processes are 411 considered as significant sources. Such higher levels and comparisons of the AAE of WSBrC 412 imply that the OA in Tianjin should have been derived from mixed sources and substantially polar, 413 because the AAE of BrC is increased with its increasing polarity (Chen et al., 2016a).

414 However, the AAE of WI-MSBrC in Tianjin ranged from 2.08-12.9 (avg. 6.06) and was comparable with that of WSBrC. Furthermore, the averages of AAE of WI-MSBrC in each season 415 416 were comparable with the other, except a relatively lower level in summer, and also with those of 417 the AAE of WSBrC (Table 1). Generally, the water insoluble portion is expected to have a stronger 418 absorption and weaker wavelength dependence (Saleh, 2020). It has also been reported that the AAE values of the water extract are greater than those of the acetone and methanol extracts (Shetty 419 420 et al., 2019), and interpreted that the extraction efficiency of polycyclic aromatic hydrocarbons 421 from methanol or other organic solvents is higher than that from water, leading to a higher 422 absorption at longer wavelengths in the methanol extract and therefore a lower AAE value. However, it has also been found that the value of AAE300-600 of water extract of biomass burning 423 424 samples is lower than that extracted into acetonitrile (Lin et al., 2017), indicating that the origin of 425 the BrC is also play an important role. Such comparability between the AAE of WSBrC and WI-426 MSBrC is consistent with the pattern reported in urban Beijing during winter and Xi'an, China (Li et al., 2020b), where the emissions from fossil fuel combustion are dominant. These results and 427 their comparisons again support that the BrC might have significantly derived from mixed sources 428 429 (biomass burning and fossil fuel combustion).

Deleted:	
Deleted: ave	

**Deleted:** (Chen et al., 2016b)

**Deleted:** In fact, the AAE of the solvent (e.g., acetonitrile) extracted portion of the BrC derived from biomass burning is also large (Lin et al., 2017).

#### 436 3.1.3 Mass absorption efficiency (MAE) and imaginary refractive index (k)

437 MAE provides the light absorbing ability of BrC. The MAE₃₆₅ of WSBrC (MAE_{365(WSBrC} ranged from 0.38 m² g⁻¹ to 3.41 (avg. 1.28 m² g⁻¹) and lower by 2 times than that (range, 0.18-7.0 438 m² g⁻¹; avg. 2.36 m² g⁻¹) of WI-MSBrC (MAE_{365(WI-MSBrC})) during the campaign in Tianjin 439 Although the seasonal averages of both MAE_{365(WSBrC)} and MAE_{365(WI-MSBrC)} were higher in winter 440 441 (1.28 and 2.36 m²g⁻¹, respectively), the former showed the second most value in spring followe 442 by autumn and the lowest value in summer, whereas the latter showed second most value i summer followed by spring and the lowest value in autumn (Table 1). Furthermore, the averag 443 MAE_{365(WSBrC)} in winter was 2.5 times higher than that in summer, which is similar to that (1. 444 445 times) reported earlier in Tianjin (Deng et al., 2022), whereas the difference between the average of MAE_{365(WI-MSBrC} in winter to autumn is 1.4 times only. The seasonal variations of MAE_{365(WSBrC} 446 447 and MAE_{365(WI-MSBrC)} found in this study are similar to those reported in Xi'an (Li et al., 2020b).

The imaginary refractive index (*k*) is another important parameter that represent the light absorbing ability of carbon and applied in climate model to assess the direct radiative forcing of aerosols. The *k* of WSBrC ( $k_{365(WSBrC)}$ ) and WI-MSBrC ( $k_{365(WI-MSBrC)}$ ) in Tianjin ranged from 0.017 to 0.149, and 0.008-0.307, respectively, in Tianjin. Interestingly, the average  $k_{365(WI-MSBrC)}$ was 1.9 times to that of  $k_{365(WSBrC)}$  during the campaign (Table 1) and their seasonal patterns were also exactly similar to those of the MAE_{365(WSBrC)} and MAE_{365(WI-MSBrC)} (Table 1).

454 Both these MAE₃₆₅ and  $k_{365}$  results indicate that most of light-absorbing chromophores ar 455 insoluble in water but soluble in MeOH, and their abundances are significantly varied from seaso 456 to season. Such large seasonal differences indicate that the BrC sources and formation and/c 457 transformation including the degradation (photobleaching) processes might be different in eac season. The higher levels of MAE₃₆₅ and  $k_{365}$  in winter suggest that the contributions of OA from 458 459 coal combustion and biomass burning emissions were significantly higher than that in other 460 seasons due to increased residential heating activities. The lower MAE_{365(WSBrC)} and k_{365(WSBrC)} an 461 the second most values of MAE_{365(WI-MSBrC)} and  $k_{365(WI-MSBrC)}$  in summer imply that th contributions of OA from fossil fuel combustion emissions might be dominant and the subsequer 462 photobleaching of WSBrC might be significant under high solar radiation in the summertime. 463

The ratio of MAE₂₅₀ to MAE₃₆₅, which is inversely correlate with the molecular size an 464 aromaticity (Chen et al., 2016c), of WSBrC (E₂/E_{3(WSBrC)}) and WI-MSBrC (E₂/E_{3(WI-MSBrC)}) i 465 Tianjin ranged from 3.30 to 6.25 with an average of 4.83 and 4.50-24.1 (avg. 7.61), respectively 466 during the campaign. Interestingly, the averages of  $E_2/E_{3(WSBrC)}$  were comparable in summer an 467 468 autumn and higher than that in winter and spring (Table 1). Whereas the average  $E_2/E_{3(WI-MSBr}$ 469 was higher in spring followed by summer and winter and the lowest in autumn, and higher that 470 the  $E_2/E_{3(WSBrC)}$  in each season, except in autumn. Both  $E_2/E_{3(WSBrC)}$  and  $E_2/E_{3(WI-MSBrC)}$  in eac season were comparable or relatively higher than the  $E_2/E_3$  of HULIS (4.7 ± 0.27 for herbaceou 471 plants,  $3.6 \pm 0.18$  for shrubs,  $4.2 \pm 0.77$  for evergreen trees,  $4.0 \pm 0.82$  for deciduous trees,  $5.8 \pm 0.18$ 472 0.5 for rice straw,  $4.5 \pm 0.2$  for corn straw and  $4.4 \pm 0.3$  for pine branches) emitted from biomass 473 burning (Tang et al., 2020) and lower than that  $(14.7 \pm 0.7)$  of HULIS emitted from coal 474 475 combustion (Fan et al., 2016). Thus, the E₂/E_{3(WSBrC)} and E₂/E_{3(WI-MSBrC)} and their comparisons with source signatures indicate that both WSBrC and WI-MSBrC in PM2.5 over the Tianjin region 476 477 should have been mainly derived from biomass burning followed by coal combustion and consist 478 of high aromaticity and large in molecular size.

)	
וו ז	Deleted: ave
า	Deleted: une
1. •r	Deleted: ave
d	
u n	
11 · A	
ç Q	
0	
s	
C)	
IL C	
)İ	
n	
C)	Deleted: (ave.
e	
e	
n	
or	
h	
n	
er	
d	
e	
ıt	
d	
n	
Ι,	Deleted: ave
d	
C	
n	
h	
IS	
-	

#### 483 3.2 Direct radiative forcing of WSBrC and WI-MSBrC

484 Radiative forcing efficiency of WSBrC and WI-MSBrC were calculated by integrating the 485 wavelength dependent SFE_{Abs} from 300 nm to 700 nm (SFE_{Abs300-700(WSBrC}) and SFE_{Abs300-700(WI-} 486 MSBrC), respectively) in this study. The SFE_{Abs300-400} was also integrated to estimate the radiative forcing efficiency of WSBrC (SFE_{Abs300-400(WSBrC})) and WI-MSBrC (SFE_{Abs300-400(WI-MSBrC})), 487 because the BrC strongly absorbs light in the UV-Vis range. The temporal variations of SFEAbs of 488 489 WSBrC and WI-MSBrC in both the wavelength ranges are shown in Fig. 3. SFEAbs300-700(WSBrC) 490 and SFEAbs300-400(WSBrC) ranged from 0.98 Wg-1 to 13.1 Wg-1 with an average of 4.97 Wg-1 and 0.60-5.13 Wg⁻¹ (avg. 1.95 Wg⁻¹), respectively. Whereas the SFE_{Abs}300-700(WI-MSBrC) and SFE_{Abs}300-491 492 400(WI-MSBrC) were 0.92-51.3 Wg⁻¹ (7.58 Wg⁻¹) and 0.64-8.84 Wg⁻¹ (2.98 Wg⁻¹), respectively, and 493 were higher by 1.5 times than that of the SFE_{Abs300-700(WSBrC)} and SFE_{Abs300-400(WSBrC)} (Table 1). 494 Further both integrated average SFE_{Abs300-700(WSBrC}) and SFE_{Abs300-700(WI-MSBrC}) were higher by 2.5 495 times to that of the SFEAbs300-400(WSBrC) and SFEAbs300-400(WI-MSBrC) (Table 1). Temporal variations 496 of both the SFEAbs 300-400(WSBrC) and SFEAbs 300-700(WSBrC) were found to be quite similar with a clear seasonal pattern with the lowest levels in summer followed by a gradual increase toward autumn 497 498 to peak in winter and then a gradual decrease toward spring to the lowest levels in summer, except a sharp rise in early summer 2019 (Fig. 3). Whereas the SFEADS 300-400(WI-MSBrC) and SFEADS 300-700(WI-499 500 MSBrC) showed exactly the similar temporal pattern with each other, but different from that of the 501 SFE_{Abs300-400(WSBrC)} and SFE_{Abs300-700(WSBrC)} (Fig.3). The levels of SFE_{Abs300-400(WI-MSBrC)} and 502 SFE_{Abs300-700(WI-MSBrC)} found to be relatively stable throughout each season, except in spring, with higher level in spring followed by winter and lower levels in summer (Fig. 3). In consistent with 503 504 these seasonal patterns, the seasonal variations of  $k_{365(WSBrC)}$  and  $k_{365(WI-MSBrC)}$ , a vital parameter 505 that reflect the light absorbing ability and used in the estimation of radiative forcing by climatic 506 model (Shamjad et al., 2016), were also showed the similar pattern (Fig. S3).

507 The SFE_{Abs} of both WSBrC and WI-MSBrC in both the spectral ranges were higher in winter 508 (Table 1). However, SFEAbs300-400(WSBrC) and SFEAbs300-700(WSBrC) showed the second higher values 509 in autumn and the lowest and comparable values in summer and spring (Table 1). Whereas 510  $SFE_{\underline{Abs}300-400(WI-MSBrC)} \text{ and } SFE_{\underline{Abs}300-700(WI-MSBrC)} \text{ showed the second higher and comparable values}$ in spring and autumn and the lowest values in summer (Table 1). It is noteworthy that the 511 512 SFE_{Abs}300-400(WSBrC), SFE_{Abs}300-700(WSBrC), SFE_{Abs}300-400(WI-MSBrC) and SFE_{Abs}300-700(WSBrC) were higher by 61%, 52%, 71% and 61%, respectively, in winter than those in summer, indicating that 513 BrC abundance and strong light absorption capacity of BrC in winter led to a significant increase 514 in direct radiative forcing by the BrC. Furthermore, SFE_{Abs300-400} accounted for 40% of SFE_{Abs300-} 515 516 ₇₀₀ in both the fractions of BrC during the whole campaign period and their seasonal averages 517 varied between 33-44%, which are similar to that reported in Tianjin by Deng et al. (2022), indicating the light absorption by BrC in UV-Vis range play a significant role in the total BrC 518 radiative forcing. 519

Furthermore, it is important to note that it has been reported that direct radiative effect of WSBrC is 12.5%% and 13.5% relative to black carbon (BC) radiative forcing in the 280-4000 nm range in summer and winter, respectively, in Tianjin (Deng et al., 2022). In fact, as noted above, the annual average SFE_{Abs300-700(WI-MSBrC}) is higher by 1.5 times to that of SFE_{Abs300-700(WSBrC}) (Table 1) in Tianjin. Therefore, the direct radiative effect of total ( $\Sigma$ WSBrC+WI-MSBrC) BrC relative to BC would become ~32.5% in Tianjin, revealing that the BrC play a greater role in light absorbing aerosols in the shorter wavelength region in comparison to the entire spectrum. Deleted: ave



528

Figure 3. Temporal variations in SFE_{Abs} of WSBrC and WI-MSBrC from 300–400nm and 300–
 700nm in PM_{2.5} from Tianjin.



#### 532 3.3.1 Fluorescence indices

533 Annual and seasonal averages of the fluorescence indices: FI, BIX and HIX, of WSBrC 534 (FI_{WSBrC}, BIX_{WSBrC} and HIX_{WSBrC}, respectively) and WI-MSBrC (FI_{WI-MSBrC}, BIX_{WI-MSBrC} and HIX_{WI-MSBrC}, respectively) in PM_{2.5} at Tianjin are presented in Table 1. Their ranges and median 535 values are provided in Table S1, and temporal variations are depicted in Fig. 3. Fluorescence 536 indices are developed as indicators for the type and source of the fluorescent organic matter (OM) 537 in aquatic and soil systems and has been successfully applied to assess the sources and aging 538 processes of OA in the atmosphere in recent times (Dong et al., 2023b;Lee et al., 2013;Wu et al., 539 540 2021b). FI and BIX provide the insights in exploring the source and aging of OA and received much attention in recent times (Xie et al., 2020;Gao yan and Zhang, 2018;Qin et al., 2018;Deng 541 et al., 2022). They have been considered as indicators to assess the relative contributions of 542 543 terrestrial, biological and microbially derived OM to OA. The FI values of OM lower than 1.4 544 indicate its terrestrial origin and the values of 1.9 or higher indicate the microbial origin, and shows an inverse relationship with aromaticity of the OM (Gao yan and Zhang, 2018;Birdwell and Engel, 545 2010). The BIX values of 0.8 and 1.0 correspond to the freshly derived OM of biological or 546 microbial origin and those of ~0.6 imply the little contribution of the biological OM (Birdwell and 547 Engel, 2010; Dong et al., 2023b). HIX reflect the degree of humification of OA, and has been 548 considered as a proxy for aromaticity of OM and the HIX value is increased with the increasing 549

aromaticity and polycondensation degree (Deng et al., 2022;McKnight et al., 2001;Birdwell and
 Engel, 2010). The HIX values of >5 reflect the fresh OM derived from biomass and animal manure
 (Birdwell and Engel, 2010).

553 FI_{WSBrC} and FI_{WI-MSBrC} were ranged from 1.13 to 1.63 with an average of 1.38 and 1.29-2.24 554 (avg. 1.60), respectively, during the campaign in Tianjin. While  $BIX_{WSBrC}$  and  $BIX_{WI-MSBrC}$  were 0.79-1.39 (1.05) and 0.83-1.76 (1.26), respectively, during the campaign. Both FI and BIX of 555 WSBrC and WI-MSBrC followed a temporal pattern, but the temporal pattern of FI_{WSBrC} was 556 exactly opposite to that of the FI_{WI-MSBrC} (Fig. 4a). The FI_{WSBrC} values were slightly decreased 557 from summer to autumn followed by a gradual increase to mid-winter and then a gradual decrease 558 559 to summer through spring (Fig. 4a). While the temporal variations of BIX_{WSBrC} showed a gradual 560 decrease from summer to autumn followed by a gradual increase to winter and remained relatively stable during the wintertime followed by a gradual decrease to to summer through spring (Fig. 4b). 561 The temporal variations of BIX_{WI-MSBrC} were also found to be opposite to those of the BIX_{WSBrC}, 562 except in winter, in which the BIXwI-MSBrC values were higher compared to those in other seasons 563 564 (Fig. 4b). Interestingly, the temporal patterns of HIX_{WSBrC} and HIX_{WI-MSBrC} were found to be 565 similar with relatively stable in summer followed by a sharp increase in early autumn and then a gradual decrease to summer through winter and spring (Fig. 4c). Further the HIX_{WSBrC} was always 566 significantly higher than the HIX_{WI-MSBrC}. Such temporal differences in all the three fluorescence 567 568 indices clearly indicate that the composition and/or aromaticity of WSBrC and WI-MSBrC are substantially distinct, even though they might have been mainly derived from similar sources: 569 570 biomass burning and coal combustion, as discussed in previous section.

Average FI_{WSBrC} was found to be higher in autumn followed the similar levels in winter and 571 572 spring and the lowest in summer, whereas that of BIX_{WSBrC} was higher in winter followed by autumn, spring and the lowest in summer (Table 1). While the averages of both FIWI-MSBrC and 573 574 BIX_{WI-MSBrC} were higher in winter followed by summer, spring and the lowest in autumn (Table 1). Annual and seasonal averages of FI values of both WSBrC and WI-MSBrC were around or 575 576 higher than 1.4 and lower than 1.9 in Tianjin, indicating that the BrC in Tianjin was mainly derived 577 from terrestrial OM that should have largely consist of high aromatic compounds. In contrast, the annual and seasonal averages of BIX of both WSBrC and WI-MSBrC were higher than 1.0 (Table 578 1), indicating the predominant contributions of OM from the biological (including biomass 579 580 burning) sources. In addition, the lowest FI_{WSBrC} and BIX_{WSBrC} values in summer and those of the 581 FI_{WI-MSBrC} in spring and BIX_{WI-MSBrC} in autumn suggest that the contribution from terrestrial sources (e.g., coal combustion) might be less in spring and autumn and the photobleaching of OA 582 583 might be significant under high solar radiation in summer.

584 HIX_{WSBrC} and HIX_{WI-MSBrC} were ranged from 1.72 to 4.7 with an average of 2.87 and 585 0.11–2.38 (avg. 0.81), respectively, during the campaign, which again support that both the BrC 586 components in Tianjin should have been significantly derived from biomass burning and might consist highly humified and aromatic compounds. Average HIX_{WSBrC} was higher in summer 587 followed by autumn, spring and the lowest in winter (Table 1). In contrast, the average HIX_{WI}-588 MSBrC was higher in winter followed by autumn, spring and the lowest in summer (Table 1). It has 589 been reported that aging processes and HIX have a significant relation (Deng et al., 2022). The 590 591 higher HIX_{WSBrC} and lower HIX_{WI-MSBrC} in summer confirm that the BrC, which is more water-592 soluble, was significantly produced from aromatic compounds and subjected for significant atmospheric aging in summer over the Tianjin region. 593

594

Deleted: ave

Deleted: ave



597

Figure 4. Temporal variations in light absorption and fluorescence properties of BrC in PM_{2.5}
 Tianjin: (a) FI, (b) BIX, and (c) HIX.

600 3.3.2 Fluorophore identification

It is well established that fluorophores with different excitation emission wavelengths can distinguish their types and sources. However, the types and sources of a large number of fluorophores have not been determined due to their complex chemical composition and sources. Here, we separated several fluorescence components from the EEM data using the parallel factor analysis (PARAFAC) model, and the results are shown in Fig. 5. The fact of the value of core consistency close to 100 in PARAFAC model indicates that the more the individual components





611

612 **Figure 5**. Three-dimensional excitation-emission matrix of three fluorescent components with 613 emission in WSBrC (above) and WI-MSBrC (below) obtained by PARAFAC model analysis.

614 The types of fluoroophores of both WSBrC and WI-MSBrC identified in this study together 615 with their excitation and emission wavelengths and those reported in the literature are summarized 616 in Table 2. Among the total of three types of fluorophores obtained for WSBrC in Tianjin PM_{2.5}

by PARAFAC for EEMs, two showed the fluorescence characteristics similar to those of less 617 618 oxygenated and highly oxygenated humic-like substances (HULIS), respectively, and the third one 619 showed similar to those of protein compounds (PLOM). Fluorophore  $C1_{WSBrC}$  has a primary fluorescence peak at excitation/emission (Ex/Em): <240/393 nm, and a secondary fluorescence 620 621 peak at Ex/Em: 318/393 nm. C1_{WSBrC} can be classified as a humus-like fluorophore because the bimodal distribution of the fluorescence spectrum is usually associated with HULIS. The emission 622 wavelength of Cl_{WSBrC} was closer to the UV region than that of the second peak of C2_{WSBrC}, 623 indicating the existence of a small number of aromatic substances, conjugate systems and 624 nonlinear ring systems (Deng et al., 2022). C2_{WSBrC} (Ex/Em ~251, 363 nm/462 nm) was identified 625 as a common HULIS in aerosols, with higher oxidation, aromatization, molecular weight, 626 627 conjugation, and unsaturation due to its larger emission wavelength (Wen et al., 2021). The molecular weight of the fluorophore as well as its degree of conjugation tend to increase with the 628 excitation wavelength, and such increase in size and the conjugation degree may be attributed to 629 the presence of highly aromatic conjugated structures containing heteroatoms (Chen et al., 2019). 630 631 Compared to Cl_{WSBrC} and C2_{WSBrC}, C3_{WSBrC} also contains two peaks, with shorter wavelengths (<380 nm) emission peak, which is usually associated with protein-like organic matter (PLOM) 632 such as tryptophan and tyrosine, with low aromatic properties and small molecular size (Table 2). 633

634

**Table 2.** Description and wavelength positions of PARAFAC components in this study and other reports from the literature. (PLOM = protein compounds; HULIS = humic-like substances)

Category	Components	Ex(nm)	Em(nm)	Substances	References
	C1	<240, 318	393	low-oxygenated HULIS	
WSBrC	C2	251, 363	462	high-oxygenated HULIS	
	C3	<240, 271	356.3	PLOM, such as tryptophan and tyrosine	41. 4. 1
11/1	C1	<240, 279	306	PLOM, tyrosine-like	this study
WI-	C2	<240	379	uncertain	
MSBIC	C3	251, 294	315	PLOM, tryptophan-like	
	C1	250, 315	396	low-oxygenated HULIS	
Water-	C2	250	465	highly-oxygenated HULIS	
soluble	C3	250	385	low-oxygenated HULIS	(Deng et al., 2022)
BrC	C4	250	340	PLOM, tryptophan-like	
	C5	275	305	PLOM, tyrosine-like	
	Cl	240, 315	393	low-oxygenated HULIS	
	C2	245.360	476	highly-oxygenated HULIS	
WSOC	C3	<240, 290	361	PLOM, such as tryptophan and tyrosine	(Wen et al., 2021)
	C4	275	311	PLOM, tyrosine-like	
	Cl	255	415	HULIS-1 component	
	C2	220	340	tryptophan-like component	
WSM and	C3	255	385	HULIS-2 component	(Chen et al., 2019)
MSM	C4	210	300	tyrosine-like component	
	C5	250	355	amino acid-like component	
	C1	245	410	HULIS, photodegradation of	
				HILLIS aromatic and saturated compounds	
	C2	235	398	HOLIS, aromatic and saturated compounds	
WSOC				humic like chromophores, more aromatic	
11300				and consisted of more unsaturated	
	C3	250, 360	466	compounds produced by condensation	
				reactions	(Xie et al. 2020)
	C4	250, 285	432	terrestrial humic-like chromophore	()
	C5	~225	420	terrestrial humic-like substance,	
	05	~233	430	photochemical product	
MSOC	C6	275	408	low oxidation humic-like	
MISOC	C7	235, 275	372	protein-like chromophore	
	C8	260, 310	364	protein-like (tryptophan-like), may be related to PAHs	

637

638 However, WI-MSBrC fluorophore  $C1_{WI-MSBrC}$  might be tyrosine-like substance.  $C2_{WI-MSBrC}$ 639 is not quite certain and could be either HULIS or PLOM, because its emission wavelength <380 640 nm generally fits the profile of PLOM, but it is also close to the emission wavelength of HULIS. 641 While C3_{WI-MSBrC} is a tryptophan-like substance, which was reported to contain less aromatic and 642 small molecular weight compounds. In general, phenols contribute significantly to C3_{WI-MSBrC} 643 fluorophore as they are the products of incomplete pyrolysis of lignin and cellulose and are used 644 as indicators of biomass burning (Wen et al., 2021). Therefore, WI-MSBrC fluorophores of all 645 samples in this study can be classified as mainly PLOM.

The percent contributions of each fluorophore to WSBrC and WI-MSBrC in  $PM_{2.5}$  in Tianjin in each season are shown in Fig. 6. The compositions of WSBrC and WI-BrC clearly imply that the former contained more HULIS, whereas the later consist mostly of PLOM, and also indicate that most of the fluorophores of protein-like substances could dissolve in organic solvent, rather than in water.

According to the excitation emission wavelength, we classified the fluorescence component of WI-MSBrC substance as PLOM, but the correlation between their fluorescence intensity and BIX (R = 0.66, p < 0.05) was very small, far lower than that of WSBrC substance and BIX (R = 0.59, p < 0.05). On the contrary, the correlation between their fluorescence intensity and HIX (R = 0.74, p < 0.05) was much higher than that of WSBrC (R = -0.10, p < 0.05). Although PLOM may be associated with some polycyclic aromatic hydrocarbons (PAHs) or phenols from fossil fuel combustion and biomass burning, especially in urban aerosols, the correlation is puzzling.



Figure 6. Relative abundances of the chromophores of the WSBrC and WI-MSBrC in PM_{2.5}
 from Tianjin.

659

662 On average, the humic-like fluorophores together contributed more than 60% to the 663 fluorescence intensity in WSBrC, suggesting that humic-like fluorophores played a dominant role 664 in fluorescence properties of WSBrC in Tianjin. Generally, the low-oxygenated fluorophores 665  $C1_{WSBrC}$  made considerable contributions in each season. While  $C2_{WSBrC}$ , highly oxygenated HULIS, has a greater relative contribution in summer, which might be due to the strong solar radiation in summer. In contrast, in WI-MSBrC, the average contribution of PLOM to fluorescence intensity was higher than 70% in spring (80.2%) and summer (77.9%), but C2_{WI-MSBrC} component dominated in winter and autumn. This indicated that biological activities increased in spring and summer and the relative abundance of bioaerosols might be higher during that period.

671 3.4 Potential sources of BrC

672 To further explore the potential sources of BrC, correlations of FV with chemical components and light absorption of PM2.5 were examined. The sum of FVs of WSBrC and WI-MSBrC 673 674  $(FVs_{(WSBrC+WI-MSBrC)})$  showed a significant correlation with secondary OC (SOC) in autumn (R = 675 0.90, p < 0.05) and winter (R = 0.67, p < 0.05). Furthermore, the correlation between FVs_{(WSBrC+WI-} MSBrC) and EC in each season was insignificant. Such relations suggest that the secondary 676 formation processes should have been played an important role in controlling the loadings of BrC 677 in autumn and winter as well. A good correlation between FV and Abs365 of both WSBrC and WI-678 MSBrC was found in all seasons except winter, which indicates that most light-absorbing materials 679 680 would also have significant fluorescence characteristics.

The relative contents of different chromophores in different polar extracts depend on their 681 sources and varied significantly. The results showed that the NFVs of WSBrC were lower than 682 those the WI-MSBrC and were different from season to season in Tianjin (Fig. 7). Recently, it has 683 been reported that the aerosols derived from biomass burning and coal combustion exhibit the 684 685 highest NFV values, while SOA show the lowest NFV values (Chen et al., 2020). NFV in all samples studied in Tianjin during 2018-2019 was very similar to that of primary emissions and 686 higher than that of secondary aerosols. Such result reveal that the fluorophores in the Tianjin PM_{2.5} 687 might mainly be derived from a primary combustion sources as well. In addition, the NFVs of the 688 Tianjin  $PM_{2.5}$  were higher in winter than in summer, which is likely and can be attributed to the 689 photolysis of chromophores in summer. In addition, NFV of WI-MSBrC was much higher than 690 691 that in WSBrC, which indicate that fluorescence contribution of fluorophores was abundant in WI-MSBrC than in the WSBrC. 692



693

694 Figure 7. The normalized fluorescence volumes (NFVs) of the WSBrC and WI-MSBrC of PM_{2.5}

695 from Tianjin, North China.

696

#### 697 4. Summary and Conclusions

This study presents the temporal variations in light absorption and fluorescence properties of 698 water-soluble BrC (WSBrC) and the water-insoluble but MeOH-soluble BrC (WI-MSBrC) in 699 PM_{2.5} collected from Tianjin, North China during July 5, 2018 – July 5, 2019. Light absorption 700 properties of WSBrC and WI-MSBrC in Tianjin were investigated and found to be distinct from 701 season to season, which was lower in spring and summer, compared with that in autumn and 702 winter. The AAE of WI-MSBrC was comparable with that of WSBrC. The mass absorption 703 704 efficiency of WSBrC and WI-MSBrC (MAE₃₆₅) exhibited distinct seasonal variations, which was 705 higher in winter and lower in summer and autumn. Biologically derived or secondary BrC and/or its photobleaching might be the reasons for the lower MAE₃₆₅ values in summer and autumn. The 706 light absorption of both WSBrC and WI-MSBrC in the range of 300-400 nm to that in the whole 707 708 range (300-700 nm) was ~40%, indicating that BrC in the UV-Vis range plays an important role in climate warming. In addition, based on PARAFAC analysis model, EEM data were 709 comprehensively analyzed to identify the types and abundance of different fluorophores, and 710 obtained three types of the fluorophores: low-oxygenated HULIS, high-oxygenated HULIS and 711 712 protein-like compound (PLOM). The correlation between BrC optical properties and aerosol 713 chemical composition indicated that biomass burning, and fossil fuel (mainly coal) combustion significantly contributed to BrC content in winter, while primary biological emission and 714 subsequent aging significantly contributed to the BrC content in summer. These results illustrated 715 716 the light absorption properties of BrC in metropolis aerosols and emphasized its significant contribution to radiative forcing. 717

#### 718 Declaration of competing intertest

719 The authors declare no competing intertest in this paper.

#### 720 Data Availability Statement

- The data used in this study can be found online at <u>https://doi.org/10.5281/zenodo.7316371</u> (Dong
- 722 et al., 2022), and at <u>https://doi.org/10.5281/zenodo.5140861</u> (Dong et al., 2021).

#### 723 Supplement.

The supplement related to this article is available online at:

#### 725 Acknowledgments

This work was supported in part by National Natural Science Foundation of China (Grant No.
41775120 and 42277090) & National Key Research and Development Plan (Grant No.
2017YFC0212700), China. The author also thanks to Mr. Yunting Xiao's help for writing a code
to calculate the SFE.

#### 730 Author contribution

731 ZD and CMP conceptualized this study. ZD and PL conducted the sampling. ZD conducted the

- chemical analyses, interpreted the data and wrote the manuscript. CMP supervised the research 732
- 733 and acquired the funding for this study. XZ, ZXY and ZXM administrated the project. CMP, ZX,
- 734 DJ, PF and COL contributed in discussing the results and review and editing the manuscript.

#### 735 References

- 736 Andreae, M. O., and Gelencs'er, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous
- aerosols, Atmospheric Chemistry and Physics, 6, 3131-3148, www.atmos-chem-phys.net/6/3131/2006/, 2006. 737
- 738 Baduel, C., Voisin, D., and Jaffrezo, J. L.: Comparison of analytical methods for Humic Like Substances (HULIS) 739 measurements in atmospheric particles, Atmospheric Chemistry and Physics, 9, 5949-5962, 10.5194/acp-9-5949-
- 740 2009, 2009.
- 741 Battin, T. J.: Dissolved organic matter and its optical properties in a blackwater tributary of the upper Orinoco river, Venezuela, Organic Geochemistry, 28, 561-569, https://doi.org/10.1016/S0146-6380(98)00028-X, 1998. 742
- 743 Birdwell, J. E., and Engel, A. S.: Characterization of dissolved organic matter in cave and spring waters using UV-
- 744 Vis absorbance and fluorescence spectroscopy, Org Geochem, 41, 270-280, 10.1016/j.orggeochem.2009.11.002, 745 2010
- 746 Bond, T. C., and Bergstrom, R. W.: Light absorption by carbonaceous particles: An investigative review, Aerosol 747 Science and Technology, 40, 27-67, 10.1080/02786820500421521, 2006.
- 748 Brown, H., Liu, X., Pokhrel, R., Murphy, S., Lu, Z., Saleh, R., Mielonen, T., Kokkola, H., Bergman, T., Myhre, G.,
- 749 Skeie, R. B., Watson-Paris, D., Stier, P., Johnson, B., Bellouin, N., Schulz, M., Vakkari, V., Beukes, J. P., van Zyl, 750 P. G., Liu, S., and Chand, D.: Biomass burning aerosols in most climate models are too absorbing, Nature
- 751 Communications, 12, 277, 10.1038/s41467-020-20482-9, 2021.
- 752 Cao, T., Li, M., Xu, C., Song, J., Fan, X., Li, J., Jia, W., and Peng, P.: Technical note: Identification of chemical
- 753 composition and source of fluorescent components in atmospheric water-soluble brown carbon by excitation-
- 754 emission matrix with parallel factor analysis: Potential limitation and application, Atmospheric Chemistry and 755 Physics Discussions, 2022, 1-41, 10.5194/acp-2022-676, 2022.
- 756 Chen, Q., Fumikazu, I., Hayato, H., Daichi, A., and Michihiro, M.: Chemical structural characteristics of HULIS
- 757 and other fractionated organic matter in urban aerosols: Results from mass spectral and FT-IR analysis,
- Environmental Science & Technology, 50, 1721-1730, 10.1021/acs.est.5b05277, 2016a. 758
- 759 Chen, Q., Miyazaki, Y., Kawamura, K., Matsumoto, K., Coburn, S., Volkamer, R., Iwamoto, Y., Kagami, S., Deng, 760 Y., Ogawa, S., Ramasamy, S., Kato, S., Ida, A., Kajii, Y., and Mochida, M.: Characterization of chromophoric
- 761 water-soluble organic matter in urban, forest, and marine aerosols by HR-ToF-AMS analysis and excitation-
- 762 emission matrix spectroscopy, Environmental Science & Technology, 50, 10351-10360, 10.1021/acs.est.6b01643, 763 2016b.
- Chen, Q., Mu, Z., Song, W., Wang, Y., Yang, Z., Zhang, L., and Zhang, Y.-L.: Size-resolved characterization of the 764 765 chromophores in atmospheric particulate matter from a typical coal-burning city in China, Journal of Geophysical Research: Atmospheres, 124, 10546-10563, https://doi.org/10.1029/2019JD031149, 2019. 766
- 767 Chen, Q., Li, J., Hua, X., Jiang, X., Mu, Z., Wang, M., Wang, J., Shan, M., Yang, X., Fan, X., Song, J., Wang, Y.,
- 768 Guan, D., and Du, L.: Identification of species and sources of atmospheric chromophores by fluorescence excitation-
- 769 emission matrix with parallel factor analysis, Science of the Total Environment, 718, 137322,
- 770 10.1016/j.scitotenv.2020.137322, 2020.
- 771 Chen, Q. C., Ikemori, F., and Mochida, M.: Light Absorption and Excitation-Emission Fluorescence of Urban
- Organic Aerosol Components and Their Relationship to Chemical Structure, Environ Sci Technol, 50, 10859-10868, 772 773 10.1021/acs.est.6b02541, 2016c.
- Choudhary, V., Rajput, P., and Gupta, T.: Absorption properties and forcing efficiency of light-absorbing water-774
- 775 soluble organic aerosols: Seasonal and spatial variability, Environ Pollut, 272, ARTN 115932
- 776 10.1016/j.envpol.2020.115932, 2021.
- Coble, P. G.: Marine optical biogeochemistry: The chemistry of ocean color, Chem Rev, 107, 402-418, 777
- 778 10.1021/cr050350+, 2007.
- 779 Corbin, J. C., Czech, H., Massabò, D., de Mongeot, F. B., Jakobi, G., Liu, F., Lobo, P., Mennucci, C., Mensah, A.
- A., Orasche, J., Pieber, S. M., Prévôt, A. S. H., Stengel, B., Tay, L. L., Zanatta, M., Zimmermann, R., El Haddad, I., 780
- 781 and Gysel, M.: Infrared-absorbing carbonaceous tar can dominate light absorption by marine-engine exhaust, npj 782
- Climate and Atmospheric Science, 2, 12, 10.1038/s41612-019-0069-5, 2019.

**Field Code Changed** 

- 783 Deng, J., Ma, H., Wang, X., Zhong, S., Zhang, Z., Zhu, J., Fan, Y., Hu, W., Wu, L., Xiaodong, L., Ren, L., Pavuluri,
- 784 C. M., Pan, X., Sun, Y., Wang, Z., Kawamura, K., and Fu, P.: Measurement Report: Optical properties and sources
- of water-soluble brown carbon in Tianjin, North China: insights from organic molecular compositions, Atmospheric
   Chemistry and Physics, 22, 6449-6470, 10.5194/acp-2021-1045, 2022.
- Diggs, D. L., Huderson, A. C., Harris, K. L., Myers, J. N., Banks, L. D., Rekhadevi, P. V., Niaz, M. S., and Ramesh,
   A.: Polycyclic aromatic hydrocarbons and digestive tract cancers: a perspective, Journal of Environmental Science
- A.: Polycyclic aromatic hydrocarbons and digestive tract cancers: a perspective and Health, Part C, 29, 324-357, 10.1080/10590501.2011.629974, 2011.
- Dong, Z., Pavuluri, C. M., Xu, Z., Wang, Y., Li, P., Fu, P., and Liu, C. Q.: Measurement report: Chemical
- components and 13C and 15N isotope ratios of fine aerosols over Tianjin, North China: year-round observations,
- 792 Atmospheric Chemistry and Physics, 23, 2119-2143, 10.5194/acp-23-2119-2023, 2023a.
- 793 Dong, Z. C., Pavuluri, C. M., Xu, Z. J., Wang, Y., Li, P. S., Fu, P. Q., and Liu, C. Q.: Year-round observations of
- bulk components and 13C and 15N isotope ratios of fine aerosols at Tianjin, North China Data set. 2021.
- 795 Dong, Z. C., Pavuluri, C. M., Li, P. S., Xu, Z. J., Deng, J. J., Zhao, X. Y., and Zhao, X. M.: Year-round observations
- 796 of the optical properties of brown carbon in fine aerosols at Tianjin, North China Data set. 2022.
- 797 Dong, Z. C., Pavuluri, C. M., Xu, Z. J., Wang, Y., Li, P. S., Fu, P. Q., and Liu, C. Q.: Measurement report:
- 798 Chemical components and
- 799 C and
- N isotoperatios of fine aerosols over Tianjin, North China: year-round observations, Atmos Chem Phys, 23, 2119 2143, 10.5194/acp-23-2119-2023, 2023b.
- Fan, X. J., Wei, S. Y., Zhu, M. B., Song, J. Z., and Peng, P. A.: Comprehensive characterization of humic-like substances in smoke PM
- emitted from the combustion of biomass materials and fossil fuels, Atmos Chem Phys, 16, 13321-13340,
   10.5194/acp-16-13321-2016, 2016.
- 806 Feng, Y., Ramanathan, V., and Kotamarthi, V. R.: Brown carbon: a significant atmospheric absorber of solar
- radiation?, Atmospheric Chemistry and Physics Discussions, 10.5194/acpd-13-2795-2013, 2013.
- Gao yan, and Zhang, y.: Formation and photochemical investigation of brown carbon by hydroxyacetone reactions
   with glycine and ammonium sulfate, Royal Society of Chemistry Advances, 8, 20719-20725,
- 810 10.1039/C8RA02019A, 2018.
- 811 Gu, Q., and Kenny, J. E.: Improvement of inner filter effect correction based on determination of effective geometric
- parameters using a conventional fluorimeter, Analytical Chemistry, 81, 420-426, 10.1021/ac801676j, 2009.
- Hecobian, A., Zhang, X., Zheng, M., Frank, N., Edgerton, E. S., and Weber, R. J.: Water-Soluble Organic Aerosol
- material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States,
- Atmospheric Chemistry and Physics, 10, 5965-5977, 10.5194/acp-10-5965-2010, 2010.
  Hems, R. F., Schnitzler, E. G., Liu-Kang, C., Cappa, C. D., and Abbatt, J. P. D.: Aging of atmospheric brown carbon
- aerosol, ACS Earth and Space Chemistry, 5, 722-748, 10.1021/acsearthspacechem.0c00346, 2021.
- 818 Hoffer, A., Gelencsér, A., Guyon, P., Kiss, G., Schmid, O., Frank, G. P., Artaxo, P., and Andreae, M. O.: Optical
- 819 properties of humic-like substances (HULIS) in biomass-burning aerosols, Atmospheric Chemistry and Physics, 6, 820 3563-3570, 10.5194/acp-6-3563-2006, 2006.
- 821 Huang, R. J., Yang, L., Cao, J., Chen, Y., Chen, Q., Li, Y., Duan, J., Zhu, C., Dai, W., Wang, K., Lin, C., Ni, H.,
- 822 Corbin, J. C., Wu, Y., Zhang, R., Tie, X., Hoffmann, T., O'Dowd, C., and Dusek, U.: Brown carbon aerosol in urban
- Xi'an, Northwest China: The composition and light absorption properties, Environmental Science & Technology,
   52, 6825-6833, 10.1021/acs.est.8b02386, 2018.
- 825 Huang, R. J., Yang, L., Shen, J., Yuan, W., Gong, Y., Guo, J., Cao, W., Duan, J., Ni, H., Zhu, C., Dai, W., Li, Y.,
- 826 Chen, Y., Chen, Q., Wu, Y., Zhang, R., Dusek, U., O'Dowd, C., and Hoffmann, T.: Water-insoluble organics
- 827 dominate brown carbon in wintertime urban aerosol of China: Chemical characteristics and optical properties,
- 828 Environmental Science & Technology, 54, 7836-7847, 10.1021/acs.est.0c01149, 2020.
- Jo, D. S., Park, R. J., Lee, S., Kim, S. W., and Zhang, X.: A global simulation of brown carbon: implications for
   photochemistry and direct radiative effect, Atmospheric Chemistry and Physics, 16, 3413-3432, 10.5194/acp-16 3413-2016, 2016.
- 832 Kasthuriarachchi, N. Y., Rivellini, L.-H., Chen, X., Li, Y. J., and Lee, A. K. Y.: Effect of relative humidity on
- 833 secondary brown carbon formation in aqueous droplets, Environmental Science & Technology, 54, 13207-13216,
- 834 10.1021/acs.est.0c01239, 2020.
- 835 Lack, D. A., Bahreni, R., Langridge, J. M., Gilman, J. B., and Middlebrook, A. M.: Brown carbon absorption linked
- to organic mass tracers in biomass burning particles, Atmospheric Chemistry and Physics, 13, 2415-2422,
- 837 10.5194/acp-13-2415-2013, 2013.

- Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of Atmospheric Brown Carbon, Chem Rev, 115, 4335 4382, 10.1021/cr5006167, 2015a.
- Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of atmospheric brown carbon, Chemical Reviews, 115,
   4335-4382, 10.1021/cr5006167, 2015b.
- 842 Lawaetz, A. J., and Stedmon, C. A.: Fluorescence intensity calibration using the Raman scatter peak of water,
- 843 Applied Spectroscopy, 63, 936-940, 10.1366/000370209788964548, 2009.
- Lee, H. J., Laskin, A., Laskin, J., and Nizkorodov, S. A.: Excitation-Emission Spectra and Fluorescence Quantum
- 845 Yields for Fresh and Aged Biogenic Secondary Organic Aerosols, Environ Sci Technol, 47, 5763-5770,
- 846 10.1021/es400644c, 2013.
- Lesworth, T., Baker, A. R., and Jickells, T.: Aerosol organic nitrogen over the remote Atlantic Ocean, Atmospheric
   Environment, 44, 1887-1893, <u>https://doi.org/10.1016/j.atmosenv.2010.02.021</u>, 2010.
- Li, C., He, Q., Hettiyadura, A. P. S., Käfer, U., Shmul, G., Meidan, D., Zimmermann, R., Brown, S. S., George, C.,
- 850 Laskin, A., and Rudich, Y.: Formation of secondary brown carbon in biomass burning aerosol proxies through NO3
- radical reactions, Environmental Science & Technology, 54, 1395-1405, 10.1021/acs.est.9b05641, 2020a.
- Li, J., Zhang, Q., Wang, G., Li, J., Wu, C., Liu, L., Wang, J., Jiang, W., Li, L., Ho, K. F., and Cao, J.: Optical
- properties and molecular compositions of water-soluble and water-insoluble brown carbon (BrC) aerosols in
- northwest China, Atmospheric Chemistry and Physics, 20, 4889-4904, 10.5194/acp-20-4889-2020, 2020b.
- 855 Li, S., Zhu, M., Yang, W. Q., Tang, M. J., Huang, X. L., Yu, Y. G., Fang, H., Yu, X., Yu, Q. Q., Fu, X. X., Song,
- W., Zhang, Y. L., Bi, X. H., and Wang, X. M.: Filter-based measurement of light absorption by brown carbon in
   PM2.5 in a megacity in South China, Science of the Total Environment, 633, 1360-1369,
- 857 FM2.5 in a megacity in South China, Science of the T
   858 10.1016/j.scitotenv.2018.03.235, 2018.
- Li, X., Fu, P., Tripathee, L., Yan, F., Hu, Z., Yu, F., Chen, Q., Li, J., Chen, Q., Cao, J., and Kang, S.: Molecular
   compositions, optical properties, and implications of dissolved brown carbon in snow/ice on the Tibetan Plateau
   glaciers, Environment International, 164, 107276, https://doi.org/10.1016/j.envint.2022.107276, 2022.
- glaciers, Environment International, 164, 107276, <u>https://doi.org/10.1016/j.envint.2022.107276</u>, 2022.
   Liakakou, E., Kaskaoutis, D. G., Grivas, G., Stavroulas, I., Tsagkaraki, M., Paraskevopoulou, D., Bougiatioti, A.,
- Bakakou, E., Raskaoulis, D. G., Olivas, G., Staviolias, I., Bagkataki, M., Falaskevopoliou, D., Bolgfattou, A.,
   Dumka, U. C., Gerasopoulos, E., and Mihalopoulos, N.: Long-term brown carbon spectral characteristics in a
- Mediterranean city (Athens), Sci Total Environ, 708, 135019, 10.1016/j.scitotenv.2019.135019, 2020.
- Lin, G., Penner, J. E., Flanner, M. G., Sillman, S., Xu, L., and Zhou, C.: Radiative forcing of organic aerosol in the
   atmosphere and on snow: Effects of SOA and brown carbon, Journal of Geophysical Research: Atmospheres, 119,
   7453-7476, 10.1002/2013jd021186, 2014.
- Lin, P., Bluvshtein, N., Rudich, Y., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Molecular Chemistry of
- Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event, Environ Sci Technol, 51, 11561 11570, 10.1021/acs.est.7b02276, 2017.
- Liu, J., Bergin, M., Guo, H., King, L., Kotra, N., Edgerton, E., and Weber, R. J.: Size-resolved measurements of
- brown carbon in water and methanol extracts and estimates of their contribution to ambient fine-particle light
- absorption, Atmospheric Chemistry and Physics, 13, 12389-12404, 10.5194/acp-13-12389-2013, 2013.
- 874 McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T., and Andersen, D. T.:
- Spectrofluorometric Characterization of Dissolved Organic Matter for Indication of Precursor Organic Material and
   Aromaticity, Limnology and Oceanography, 46, 38-48, 2001.
- Murphy, K. R., Stedmon, C. A., Graeber, D., and Bro, R.: Fluorescence spectroscopy and multi-way techniques.
   PARAFAC, Analytical Methods, 5, 6557-6566, 10.1039/C3AY41160E, 2013.
- Park, R. J., Kim, M. J., Jeong, J. I., Youn, D., and Kim, S.: A contribution of brown carbon aerosol to the aerosol
- Rest, - 881 10.1016/j.atmosenv.2010.01.042, 2010.
- 882 Peters, S., Talaska, G., Jonsson, B. A., Kromhout, H., and Vermeulen, R.: Polycyclic aromatic hydrocarbon
- exposure, urinary mutagenicity, and DNA adducts in rubber manufacturing workers, Cancer Epidemiol Biomarkers Prev. 17, 1452-1459, 10,1158/1055-9965.EPI-07-2777, 2008.
- 885 Qin, J., Zhang, L., Zhou, X., Duan, J., Mu, S., Xiao, K., Hu, J., and Tan, J.: Fluorescence fingerprinting properties 886 for exploring water-soluble organic compounds in PM2.5 in an industrial city of northwest China, Atmospheric
- Environment, 184, 203-211, <u>https://doi.org/10.1016/j.atmosenv.2018.04.049</u>, 2018.
- Rizzo, L. V., Correia, A. L., Artaxo, P., Procópio, A. S., and Andreae, M. O.: Spectral dependence of aerosol light absorption over the Amazon Basin, Atmospheric Chemistry and Physics, 11, 8899-8912, 10.5194/acp-11-8899-
- 2011, 2011.
- 891 Rizzo, L. V., Artaxo, P., Müller, T., Wiedensohler, A., Paixão, M., Cirino, G. G., Arana, A., Swietlicki, E., Roldin,
- 892 P., Fors, E. O., Wiedemann, K. T., Leal, L. S. M., and Kulmala, M.: Long term measurements of aerosol optical

- 893 properties at a primary forest site in Amazonia, Atmos. Chem. Phys., 13, 2391-2413, 10.5194/acp-13-2391-2013, 894 2013.
- 895 Saleh, R.: From Measurements to Models: Toward Accurate Representation of Brown Carbon in Climate
- 896 Calculations, Current Pollution Reports, 6, 90-104, 10.1007/s40726-020-00139-3, 2020.
- 897 Shamjad, P. M., Tripathi, S. N., Thamban, N. M., and Vreeland, H.: Refractive Index and Absorption Attribution of 898 Highly Absorbing Brown Carbon Aerosols from an Urban Indian City-Kanpur, Sci Rep-Uk, 6, 10.1038/srep37735,
- 899 2016.

900 Shetty, N. J., Pandey, A., Baker, S., Hao, W. M., and Chakrabarty, R. K.: Measuring light absorption by freshly 901 emitted organic aerosols: optical artifacts in traditional solvent-extraction-based methods, Atmos. Chem. Phys., 19,

902 8817-8830, 10.5194/acp-19-8817-2019, 2019.

- 903 Sun, J., Zhi, G., Hitzenberger, R., Chen, Y., Tian, C., Zhang, Y., Feng, Y., Cheng, M., Zhang, Y., Cai, J., Chen, F.,
- 904 Qiu, Y., Jiang, Z., Li, J., Zhang, G., and Mo, Y.: Emission factors and light absorption properties of brown carbon
- 905 from household coal combustion in China, Atmos. Chem. Phys., 17, 4769-4780, 10.5194/acp-17-4769-2017, 2017.
- 906 Tang, J., Li, J., Mo, Y., Safaei Khorram, M., Chen, Y., Tang, J., Zhang, Y., Song, J., and Zhang, G.: Light
- 907 absorption and emissions inventory of humic-like substances from simulated rainforest biomass burning in
- 908 Southeast Asia, Environmental Pollution, 262, 114266, https://doi.org/10.1016/j.envpol.2020.114266, 2020.
- 909 Wang, D., Shen, Z., Zhang, Q., Lei, Y., Zhang, T., Huang, S., Sun, J., Xu, H., and Cao, J.: Winter brown carbon
- 910 over six of China's megacities: light absorption, molecular characterization, and improved source apportionment 911
- revealed by multilayer perceptron neural network, Atmospheric Chemistry and Physics, 22, 14893-14904, 912 10.5194/acp-22-14893-2022, 2022a.
- 913 Wang, Q. Q., Zhou, Y. Y., Ma, N., Zhu, Y., Zhao, X. C., Zhu, S. W., Tao, J. C., Hong, J., Wu, W. J., Cheng, Y. F.,
- 914 and Su, H.: Review of brown carbon aerosols in China: Pollution level, optical properties, and emissions, Journal of 915 Geophysical Research: Atmospheres, 127, 10.1029/2021JD035473, 2022b.
- 916 Wang, Y., Pavuluri, C. M., Fu, P., Li, P., Dong, Z., Xu, Z., Ren, H., Fan, Y., Li, L., Zhang, Y.-L., and Liu, C.-Q.:
- 917 Characterization of Secondary Organic Aerosol Tracers over Tianjin, North China during Summer to Autumn, ACS 918 Earth and Space Chemistry, 3, 2339-2352, 10.1021/acsearthspacechem.9b00170, 2019.
- 919 Wen, H., Zhou, Y., Xu, X., Wang, T., Chen, Q., Chen, Q., Li, W., Wang, Z., Huang, Z., Zhou, T., Shi, J., Bi, J., Ji,
- 920 M., and Wang, X.: Water-soluble brown carbon in atmospheric aerosols along the transport pathway of Asian dust: 921 Optical properties, chemical compositions, and potential sources, Science of the Total Environment, 789, 147971, 922 10.1016/j.scitotenv.2021.147971, 2021.
- 923 Wu, G., Fu, P., Ram, K., Song, J., Chen, Q., Kawamura, K., Wan, X., Kang, S., Wang, X., Laskin, A., and Cong, Z.: 924 Fluorescence characteristics of water-soluble organic carbon in atmospheric aerosol, Environmental Pollution, 268,
- 925 115906, 10.1016/j.envpol.2020.115906, 2021a.
- Wu, G. M., Fu, P. Q., Ram, K., Song, J. Z., Chen, Q. C., Kawamura, K., Wan, X., Kang, S. C., Wang, X. P., Laskin, 926 927 A., and Cong, Z. Y.: Fluorescence characteristics of water-soluble organic carbon in atmospheric aerosol, Environ
- 928 Pollut, 268, ARTN 115906
- 10.1016/j.envpol.2020.115906, 2021b. 929
- 930 Xie, X., Chen, Y., Nie, D., Liu, Y., Liu, Y., Lei, R., Zhao, X., Li, H., and Ge, X.: Light-absorbing and fluorescent
- 931 properties of atmospheric brown carbon: A case study in Nanjing, China, Chemosphere, 251, 126350,
- 932 10.1016/j.chemosphere.2020.126350, 2020.
- 933 Yan, J., Wang, X., Gong, P., Wang, C., and Cong, Z.: Review of brown carbon aerosols: Recent progress and
- 934 perspectives, Sci Total Environ, 634, 1475-1485, 10.1016/j.scitotenv.2018.04.083, 2018.
- 935 Yu, H., Liang, H., Qu, F., Han, Z. S., Shao, S., Chang, H., and Li, G.: Impact of dataset diversity on accuracy and 936 sensitivity of parallel factor analysis model of dissolved organic matter fluorescence excitation-emission matrix, Scientific Reports, 5, 10207, 10.1038/srep10207, 2015. 937
- Yue, S., Zhu, J., Chen, S., Xie, Q., Li, W., Li, L., Ren, H., Sihui, S., Ping, L., Ma, H., Fan, Y., Cheng, B., Wu, L., Deng, J., Hu, W., Ren, L., Lianfang, W., Zhao, W., Tian, Y., and Fu, P.: Brown carbon from biomass burning 938 939
- 940 imposes strong circum-Arctic warming, One Earth, 5, 293-304, 10.1016/j.oneear.2022.02.006, 2022.
- 941 Yue, S. Y., Bikkina, S., Gao, M., Barrie, L., Kawamura, K., and Fu, P. Q.: Sources and Radiative Absorption of 942 Water-Soluble Brown Carbon in the High Arctic Atmosphere, Geophys Res Lett, 46, 14881-14891,
- 943 10.1029/2019g1085318, 2019.
- 944 Zhan, Y., Li, J., Tsona, N. T., Chen, B., Yan, C., George, C., and Du, L.: Seasonal variation of water-soluble brown
- 945 carbon in Qingdao, China: Impacts from marine and terrestrial emissions, Environmental Research, 212, 113144,
- 946 https://doi.org/10.1016/j.envres.2022.113144, 2022.

- 947 Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Ulbrich, I. M., Ng, N. L., Worsnop, D. R., and Sun, Y.:
- Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review, Analytical 948 Chemistry and Bioanalytical Chemistry, 401, 3045-3067, 10.1007/s00216-011-5355-y, 2011. Zhang, Q., Shen, Z., Zhang, T., Kong, S., Lei, Y., Wang, Q., Tao, J., Zhang, R., Wei, P., Wei, C., Cui, S., Cheng, T., 949
- 950
- 951 Ho, S. S. H., Li, Z., Xu, H., and Cao, J.: Spatial distribution and sources of winter black carbon and brown carbon in 952
- six Chinese megacities, Science of The Total Environment, 762, 143075, 953
- https://doi.org/10.1016/j.scitotenv.2020.143075, 2021.
- 954 Zhong, M., and Jang, M.: Light absorption coefficient measurement of SOA using a UV-Visible spectrometer 955 connected with an integrating sphere, Atmospheric Environment, 45, 4263-4271, 10.1016/j.atmosenv.2011.04.082,
- 956 2011.
- 957 Zhu, C. S., Cao, J. J., Huang, R. J., Shen, Z. X., Wang, Q. Y., and Zhang, N. N.: Light absorption properties of
- 958 brown carbon over the southeastern Tibetan Plateau, Science of the Total Environment, 625, 246-251,
- 959 10.1016/j.scitotenv.2017.12.183, 2018.

960