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ABSTRACT 16 

This study explores coupled land-atmosphere data assimilation (DA) for improving 17 

weather and hydrological forecasts by assimilating soil moisture (SM) data. This study 18 

integrates a land DA component into a global atmospheric DA system of the Nonhydrostatic 19 

ICosahedral Atmospheric Model and the Local Ensemble Transform Kalman Filter and 20 

performs both strongly and weakly coupled land-atmosphere DA experiments. We explore 21 

various types of coupled DA experiments by assimilating atmospheric observations and SM 22 

data simultaneously. The results show that analyzing atmospheric variables by assimilating SM 23 

data improves the SM analysis and forecasts and mitigates a warm bias in the lower troposphere 24 

where a dry SM bias exists. On the other hand, updating SM by assimilating atmospheric 25 

observations has detrimental impacts due to spurious error correlations between the 26 

atmospheric observations and land model variables. We also find that assimilating SM by 27 

strongly coupled DA is beneficial in the Sahel and equatorial Africa from May to October. 28 

These regions are characterized by seasonal variations in the precipitation patterns and benefit 29 

from updates in the atmospheric variables through SM DA during periods of increased 30 

precipitation. Additionally, these regions coincide with those identified in the previous studies, 31 

where a global initialization of SM would enhance the prediction skill of seasonal precipitation. 32 

1. Introduction  33 

The Earth’s natural environment can be considered a unified system in which several 34 

subsystems (e.g., atmosphere, hydrosphere, cryosphere, and biosphere) interact with each 35 

other. Coupled models consider at least two of the Earth’s subsystems and have been developed 36 

to emulate such interactions within unified systems. For example, coupled land–atmosphere 37 

models consider land–atmosphere interactions by passing the output data from the land 38 

subsystem to the atmospheric subsystem and vice versa during model time integrations. 39 

Coupled models represent more realistic physical processes and provide improved predictions 40 

of Earth's phenomena compared to those models that consist of only a single component. 41 

Data assimilation (DA) plays an important role in numerical weather prediction (NWP) by 42 

providing accurate initial conditions. Some studies investigated coupled DA for ocean–43 

atmosphere interactions (e.g., Zhang et al., 2007; Sugiura et al., 2008; Fujii et al., 2009; Frolov 44 

et al., 2016; Laloyaux et al., 2016; Sluka et al., 2016; Browne et al., 2019; Penny and Hamill 45 

2017; Penny et al., 2019) and land-atmosphere interactions (e.g., de Rosnay et al., 2012; Lea 46 
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et al., 2015; Suzuki et al., 2017; Sawada et al., 2018; Draper and Reichle, 2019; Fairbairn et 47 

al., 2019).  48 

In this study, we focus on experiments to evaluate the potential benefits of assimilating 49 

synthetic soil moisture (SM) data from the Global Land Data Assimilation System (GLDAS; 50 

Rodell et al., 2004), within a controlled experimental setup through the effective use of land-51 

atmosphere interactions via data assimilation. Specifically, this study investigates whether 52 

assimilating atmospheric (land) observational data into land (atmospheric) models is beneficial 53 

for their subsequent forecasts. We employ SM data from GLDAS, a comprehensive and 54 

reliable dataset which facilitates simple data handling and is suitable and sufficient for this 55 

study (cf. Section 2d). SM is particularly important among land variables because it controls 56 

the exchange of water and energy between the atmosphere and land surface (Bateni and 57 

Entekhabi, 2012). For example, SM has a profound impact on the evolution of boundary layers 58 

and precipitation during the warm season,  a time characterized by high incoming radiation and 59 

evapotranspiration (Betts, 2009; Dirmeyer and Halder, 2016; Drusch and Viterbo, 2007). 60 

Moreover, improving SM data is essential for enhancing seasonal-scale climate predictions 61 

(Dirmeyer, 2000; Douville and Chauvin, 2000; Drusch, 2007; Hauser et al., 2017). With a 62 

regional NWP system, Santanello et al. (2019) showed that SM DA changed surface fluxes, 63 

evolution, and entrainment of the planetary boundary layer, and ambient weather.  64 

Two well-known coupled DA methods are weakly coupled DA and strongly coupled DA 65 

(cf. section 2.b). As one argument, Lawless (2012) noted that strongly coupled DA is preferable 66 

for environmental prediction, as discussed at the 2012 International Workshop on Coupled 67 

Data Assimilation. A follow-up workshop in Toulouse in 2016 further elaborated on the need 68 

for coupled DA. As for ocean-atmosphere models, Penny et al. (2019) explored a method to 69 

improve the initialization process using a simplified model. They estimated ocean conditions 70 

with atmospheric observations and vice versa, and found strongly coupled DA approaches were 71 

generally superior to weakly coupled approaches when using the simple toy model. As Tang 72 

et al. (2021) stated, however, regarding more complex models, it is unclear whether strongly 73 

coupled DA generally outperforms weakly coupled DA. When it comes to land-atmosphere 74 

models, several studies have demonstrated the benefits of strongly coupled DA approaches for 75 

medium-range NWP (Suzuki et al., 2017; Sawada et al., 2018). In terms of assimilation of land 76 

observations, while weakly coupled land–atmosphere DA is still the mainstream in NWP 77 

systems (e.g., Zhang et al., 2007; Lea et al., 2015; Draper and Reichle, 2019), several studies 78 
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have already examined the benefits of strongly coupled DA on land observations. For example, 79 

Lin and Pu (2019, 2020) assimilated surface SM, 2-m temperature and humidity, and 80 

conventional atmospheric observations, showing advantages of strongly coupled DA. They 81 

also showed that SM had crucial impacts on the temperature field rather than the other 82 

variables. Thus, it is already known that SM DA is beneficial for the coupled land-atmosphere 83 

models, but updates of cross-components have not yet been explored enough. Therefore, this 84 

study aims at exploring better strategies to assimilate SM data in a strongly coupled land-85 

atmosphere DA system. 86 

This study uses a global atmospheric DA system known as the NICAM-LETKF (Terasaki 87 

et al., 2015), which consists of the Nonhydrostatic Icosahedral Atmospheric Model (NICAM; 88 

Satoh et al., 2008, 2014) and the Local Ensemble Transform Kalman Filter (LETKF; Hunt et 89 

al., 2007). NICAM incorporates the Minimal Advanced Treatments of Surface Interaction and 90 

RunOff model (MATSIRO; Takata et al., 2003) as the land surface subsystem. We implement 91 

coupled land–atmosphere DA in NICAM-LETKF to assimilate SM observations using either 92 

the weakly or strongly coupled DA methods. Our primary scientific question is whether the 93 

assimilation of synthetic observational data from one model into another can improve 94 

compatibility between the two models in the NICAM-LETKF system. In addition to 95 

conventional atmospheric observations and AMSU-A radiances in NICAM-LETKF, this study 96 

assimilates SM data as land observations. 97 

This article is organized as follows. Section 2 describes the newly developed coupled land–98 

atmosphere DA system. The experimental settings are described in Sec. 3. The results are 99 

presented and discussed in Sec. 4. Finally, a summary is provided in Sec. 5. 100 

2. Methodology  101 

a. NICAM and MATSIRO models 102 

NICAM is an icosahedral-grid-based atmospheric model that has been widely used for 103 

NWP (e.g., Kotsuki et al., 2019b, 2019c) and climate-scale predictions (e.g., Kodama et al., 104 

2015; Kikuchi et al., 2017). We use NICAM with a 112-km horizontal resolution and 38 105 

vertical layers to a height of approximately 40 km. Due to the relatively coarse horizontal 106 

resolution, the Arakawa and Schubert scheme (Arakawa and Schubert, 1974) and Berry’s 107 

parameterization (Berry, 1967) are employed for cumulus parameterization and the large-scale 108 
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condensation scheme, respectively. See Satoh et al. (2008) and Satoh et al. (2014) for further 109 

details about NICAM. 110 

MATSIRO represents all the major processes of water and energy exchange between land 111 

and atmosphere. MATSIRO consists of five vertical layers used for simulating soil temperature 112 

and moisture: 0−0.05, 0.05−0.25, 0.25−0.5, 0.5−0.75, and 0.75−2 meters. Surface energy and 113 

water fluxes are computed from their budgets at the ground and canopy surfaces in snow-free 114 

and snow-covered regions, considering the subgrid-scale snow distribution (Takata et al., 115 

2003). SM is calculated in each soil layer and is representative of the entire land component of 116 

a model grid area, whether snow-covered or not. Note that, in general, SM in NWP models has 117 

been updated using 2-m temperature and humidity observations for decades (e.g. Mahfouf et 118 

al., 2000; de Rosnay et al., 2014; Gomez et al., 2020). 119 

b. LETKF and coupled data assimilation implementations  120 

LETKF is a type of ensemble Kalman filter (EnKF; Evensen, 2003) that has been used 121 

for atmospheric, hydrological, and oceanic DA. LETKF solves the analysis equations at every 122 

model grid point by assimilating the subset of observations within its localization influence 123 

radius. The analysis equations of LETKF are based on the ensemble transform Kalman filter 124 

(Bishop et al., 2001):  125 

𝐱"! = 𝐱"" + 𝛿𝐗"𝐰(!,                                                     (1)  126 

𝐰( ! = 𝐏*!(𝐇𝛿𝐗")#𝐑$%(𝐲& −𝐇𝐱""),                            (2)  127 

𝛿𝐗! = 𝛿𝐗"𝐖!,                                             (3)  128 

𝐖! = [(𝑚 − 1)𝐏*!]
!
",                                       (4)  129 

where 𝐱" is the ensemble-mean model state, δX is the ensemble perturbation matrix, H is the 130 

linear observation operator, R is the observation error covariance matrix, y is the observation 131 

data, and 𝐏*!is the model state error covariance matrix in ensemble space, while superscript 132 

letters a, f, and o denote analysis (posterior), forecast (prior), and observation, respectively. 133 

Here, P is used for the error covariance in model space, and 𝐏* is used for the error covariance 134 

in the ensemble space. m is the ensemble size. 𝐰(  is the (m × 1) ensemble transform vector for 135 

the ensemble mean updates, and W is the (m × m) ensemble transform matrix for ensemble 136 

perturbation updates. The analysis error covariance matrix 𝐏*! is given by  137 

𝐏*! = [(𝑚 − 1)𝐈 + (𝐇𝛿𝐗")#𝐑$%𝐇𝛿𝐗"]$%,                    (5)  138 



6 

File generated with AMS Word template 2.0 

where I is the identity matrix. In practice, since the error covariance matrix 𝐏*!  is often 139 

underestimated, and filters eventually become unstable, the introduction of the model error or 140 

variance inflation is necessary for stable filtering. The theoretical explanation of the model 141 

error can partially be attributed to the model nonlinearity under the perfect model assumption. 142 

In this study, instead of adding random noise as the model error, we use a relaxation method at 143 

the end of the DA process, as described in section 3.   144 

The analysis equation of the ensemble mean (Eqs. 1 and 2) is equivalent to the original 145 

analysis equation of the Kalman filter: 146 

𝐱"! = 𝐱"" + 𝛿𝐗"𝐏*!(𝐇𝛿𝐗")#𝐑$%(𝐲& −𝐇𝐱"") 147 

= 𝐱"" + 𝐏"𝐇#(𝐇𝐏"𝐇# + 𝐑)$%(𝐲& −𝐇𝐱"").                          (6)  148 

Here,	𝐏"is the model state error covariance matrix in model space. The EnKF uses an 149 

ensemble-based approximation to the forecast error covariance: 150 

𝐏" ≈ %
'$%

𝛿𝐗"(𝛿𝐗")#.                                  (7)  151 

For coupled models, Eq. (7) is approximated by 152 

(𝐏")() ≈
%

'$%
𝛿𝐗(

"(𝛿𝐗)
")#,                    (8)      153 

where α and β are the model variables updated in the coupled DA. Thus, for coupled land–154 

atmosphere models, 𝐏" is represented by: 155 

𝐏" = ;
(𝐏")** (𝐏")*+
(𝐏")+* (𝐏")++

<.                      (9)  156 

In Eq. (9), 'A' and 'L' represent the variables of the atmosphere and land, respectively. In the 157 

current study, for example, (𝐏")** represents the covariance between atmospheric variables, 158 

and (𝐏")*+  represents that between atmospheric variables and SM. This study employs the 159 

ensemble-based estimation of cross-component error covariance ((𝐏")*+ and (𝐏")+*) using 160 

Eq. (8). Here each ensemble member represents a coupled forecast where the atmospheric and 161 

land variables interact each other. Specifically, the MATSHIRO variables are driven by forcing 162 

from NICAM, and the upward flux from MATSHIRO feeds back into NICAM. This coupling 163 

captures the essential interactions between the atmosphere and land variable, leading to 164 

physically derived cross-component error covariance during the forecasts. Note that the state 165 

variable 𝐱" does not include the land component when the land variables are not updated (cf. 166 



7 

File generated with AMS Word template 2.0 

Figs. 2 a and d). For such cases, the forecast error covariance matrix also has the inverse matrix 167 

since the land component is also excluded in the background error covariance. 168 

In practice, since some observations have nonlinear observation operators, the following 169 

approximation is required: 170 

𝐇𝛿𝐗" ≈ 𝐻 >𝐱"𝟏𝐓 + 𝛿𝐗"@ − 𝐻 >𝐱"𝟏𝐓 + 𝛿𝐗"@ 𝟏𝐓,                           (10)  171 

where H is the nonlinear observation operator, and 1 denotes a column vector with all m 172 

elements being equal to 1.  173 

For the weakly coupled DA (hereafter, WCDA) method, atmospheric observations are 174 

used only for updating NICAM state variables, and land observations are used for those of 175 

MATSIRO (Fig. 1a). That is, the cross-component error covariance between atmospheric and 176 

land variables is assumed to be 0 in WCDA (i.e., (𝐏")*+ = 0 and 	(𝐏")+* = 0). Thus, impacts 177 

of atmospheric observations can propagate to land model states, and vice versa, only through 178 

interactions between NICAM and MATSIRO during model forecasts. For the strongly coupled 179 

DA (hereafter, SCDA) method, the cross-component covariance is estimated based on 180 

ensemble forecasts (i.e., (𝐏")*+ ≠ 0,	(𝐏")+* ≠ 0 , or both are nonzero matrices). Therefore, 181 

atmospheric or land observations are used to update both NICAM and MATSIRO variables 182 

based on the cross-component covariance (Fig. 1b). SCDA extracts more information than 183 

WCDA from the same observations if an appropriate forecast error covariance (𝐏")()  is 184 

applied. 185 

 186 

 187 

Figure 1. Schematic images of (a) weakly coupled and (b) strongly coupled land–188 

atmosphere data assimilation (DA) methods. Thin black arrows indicate model state updates 189 

through DA. Cyan double-headed arrows indicate land–atmosphere interactions between 190 
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NICAM and MATSIRO during subsequent model forecasts. Here, panel (b) shows the full 191 

strongly coupled DA method (cf. Fig. 2g). The image for NICAM was adapted from Satoh et 192 

al. (2014). 193 

This study considers seven coupled DA experiments (Fig. 2). Referring to Penny and 194 

Hamill (2017), we classify these experiments into five categories: Quasi-WCDA, WCDA, 195 

Quasi-SCDA, SCDA, and Fully SCDA. Here we introduce identifiers (IDs) indicating which 196 

observation type is assimilated for each model. This study defines 'A' and 'L' as representations 197 

of the atmospheric and land, respectively. The IDs are defined as follows: 'A*×' represents that 198 

assimilating only atmospheric observations to update the atmospheric model; 'A*+' signifies 199 

that assimilating both atmospheric and land observations to update the atmospheric model; 200 

'L*×' denotes that assimilating only land observations to update the land model; 'L×+' indicates 201 

that assimilating only land observations to update the land model; 'L*+' corresponds to that 202 

assimilating both atmospheric and land observations to update the land model; finally, 'L××' 203 

represents that no observation is assimilated to update the land model. 204 

For example, 'A*×L××' indicates that atmospheric observations are used to update the 205 

NICAM variables, while no observations are assimilated for the land model (Fig. 2a). This 206 

experiment is considered quasi-WCDA and is equivalent to the standard NICAM-LETKF 207 

system without SM DA, or the control case (hereafter CTRL).  'A*×L×+' stands for WCDA 208 

(Fig. 2b), while 'A*+L*+' signifies Fully SCDA (hereafter Full-SCDA; Fig. 2g). The remaining 209 

four experiments are treated as Quasi-SCDA (Figs. 2c and d) and SCDA (Figs. 2e and f). 210 

This study designs specific configurations of SCDA and WCDA to investigate whether 211 

updating MATSIRO variables through assimilating particular atmospheric observations has a 212 

beneficial impact. This investigation aims at finding the best-performing coupled land-213 

atmosphere DA that consists of updates with a beneficial effect for the experimental setting of 214 

the present study. The best-performing approach might be different if we use different DA 215 

configurations or change the experimental settings, such as resolution and DA frequency.  216 
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 217 

 218 

Figure 2. Schematic plots of seven DA experiments for (a) A*×L××  (CTRL; quasi-219 

WCDA), (b) A*×L×+  (WCDA), (c) A*×L*×  (quasi-SCDA), (d) A*+L××  (quasi-SCDA), (e) 220 

A*×L*+  (SCDA), (f) A*+L×+  (SCDA), and (g) A*+L*+  (Full-SCDA). The vertical axis 221 

represents atmospheric or land variables, and the horizontal axis shows observations. The 222 

shading of variables matches that of the observations used for their updates. White areas with 223 

‘no’ indicate error correlations that are assumed to be zero in DA. Gray areas with ‘yes’ indicate 224 

error correlations that are included in DA. 225 

 226 

c. Atmospheric data 227 

The original NICAM-LETKF system assimilates conventional observations from the 228 

NCEP operational system (a.k.a. NCEP PREPBUFR), satellite radiance from Advanced 229 

Microwave Sounding Unit-A (AMSU-A), and the near-real-time version of Global Satellite 230 

Mapping of Precipitation (GSMaP_NRT). The data set includes a number of different types of 231 

data: radiosondes, wind profilers, aircraft reports, surface pressure, atmospheric motion vectors 232 

and surface winds derived from satellite observations. The channel selections for satellite 233 

radiances are 6, 7, and 8 for AMSU-A. The stratospheric sensitive channels are not assimilated 234 

in this study, considering relatively low top level of the NICAM in this study (40 km). The 235 

satellite radiance scans and airmass biases are adaptively estimated and corrected at each data 236 
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assimilation cycle. This experimental setting followed the operationally running NICAM-237 

LETKF system.  In this study, we use these data as atmospheric observations (cf. Table 1 of 238 

Kotsuki et al., 2019a). For further details of the assimilation methods used for these 239 

observations, we refer readers to previous studies (Terasaki et al., 2015; Kotsuki et al., 2017a; 240 

Terasaki and Miyoshi, 2017). 241 

D. Soil moisture data 242 

Satellite instruments can measure several land variables, including SM, surface skin 243 

temperature, and snow depth. Previous studies have found that land surface models tend to 244 

overestimate SM relative to SM data derived from satellite observations (Bindlish et al., 2018). 245 

GLDAS also shows larger SM values than satellite-based data (Bi et al., 2016). The significant 246 

bias between the model-based estimate and observation is unfavorable for DA. Prior to DA 247 

experiments, we compare spatial distributions of climatological SM for NICAM and satellite-248 

based observations from the Soil Moisture and Ocean Salinity (SMOS; https://smos-249 

diss.eo.esa.int/oads/access/) and the Advanced Microwave Scanning Radiometer 2 of Global 250 

Change Observation Mission – Water (GCOMW/AMSR-2; 251 

https://lance.nsstc.nasa.gov/amsr2-science/). We can see that NICAM SM is greatly biased 252 

compared to these satellite-based data (Figs. 3a, c, and d). In contrast, the bias of SM in NICAM 253 

relative to GLDAS is much smaller than that relative to SMOS and GCOMW/AMSR-2.  254 

	255 
 256 
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Figure 3. Spatial patterns of soil moisture (m3/m3) for NICAM, GLDAS, 257 

SMOS_L2_NRT_NN, and GCOM_W/AMSR2, averaged over February to June in 2015 (a, b) 258 

and 2016 (c, d). 259 

 260 

Hoover and Langland (2017) assimilated pseudo-radiosonde observations from an 261 

independent atmospheric reanalysis system. They mentioned that assimilating reanalysis data 262 

from an advanced system significantly reduced biases in atmospheric temperature and 263 

geopotential height. As a first step, this study takes a similar approach and assimilates SM from 264 

GLDAS to avoid using satellite observation data which usually contain significant bias.  265 

It is generally known that satellite, remote sensing, and model data sets have different 266 

mean SM values. Since we do not know the true mean values in remote sensing or model 267 

outputs, we cannot attribute these differences in these mean to bias in any specific data source. 268 

Satellite retrieval and model averages are determined by the parameters used in the retrieval 269 

and surface models, but we also do not know what those parameters should be. Therefore, the 270 

standard approach in SM data assimilation is to remove the difference between modeled and 271 

observed SM averages, and then assimilate only the temporal anomalies in the observed SM 272 

values. Since it is crucial to have unbiased model and observation states to ensure the DA 273 

assumption is correct, several processes are proposed (Dee, 2005). For example, Reichle and 274 

Koster (2004) suggest a simple method to remove strong biases between satellite-based and 275 

model-based data, in which they match the cumulative distribution functions (CDF) of the 276 

satellite and model data (a.k.a. CDF matching approach). On the other hand, several previous 277 

studies have successfully performed data assimilation without bias correction (e.g., De Lannoy 278 

et al., 2007; Bosilovich et al., 2007; Reichle et al., 2010; Honda et al., 2018). For example, 279 

Honda et al. (2018) demonstrated that assimilating geostationary satellite infrared radiance 280 

observations without bias correction every 10 minutes reduced the bias between the forecast 281 

and observations, leading to improved analysis without causing inconsistencies in the model 282 

states. Following the success of these previous studies, the present study assimilates SM data 283 

without bias correction. As shown later in Section 4a, the bias between the forecast and 284 

observation becomes negligible after a one-month spin-up period when SM from GLDAS is 285 

assimilated every 6 hours. Consequently, assimilating SM data without bias correction yields 286 

improvements in prediction accuracy of atmospheric variables. Since employing bias 287 
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correction techniques and assimilating real satellite-sensed SM data could potentially lead to 288 

further enhancements, such endeavors are important subjects for future studies. 289 

We perform QC using flags provided with the satellite observation data. In addition, as 290 

applied for PREPBUFR and GSMaP_NRT observations, we simply apply a gross error check 291 

for SM in which observations are rejected when the observation-minus-forecast value is greater 292 

than 10 times the observation error standard deviation (Terasaki et al. 2015). 293 

 GLDAS is a research-oriented land surface reanalysis system that produces 294 

spatiotemporally continuous global SM data. The GLDAS system integrates a suite of land 295 

surface models, which include the Noah, Community Land Model, Variable Infiltration 296 

Capacity, Mosaic, and Catchment. These land surface models provide physically-based 297 

simulations of surface conditions, and each model has strengths and weaknesses depending on 298 

the applications. Among them, this study uses Noah model-based SM data (GLDAS Noah Land 299 

Surface Model L4 Version 2.1; Chen et al., 1996; Koren et al., 1999). We assimilate only first-300 

layer SM since satellite measurements cannot observe deep-layer SM. GLDAS provides 3-301 

hourly SM at a spatial resolution of 0.25o × 0.25o. As these data are denser than those of 302 

NICAM (112-km and 6-hourly resolution), we reduce the data density spatially and temporally. 303 

The original SM data are averaged within a NICAM model grid so that each observation 304 

corresponds to one model grid point. The original 3-hourly data are also averaged over 6 hours. 305 

These spatial and temporal data aggregation processes are carried out simultaneously prior to 306 

data assimilation. 307 

The GLDAS Version 2.1 simulation is forced with National Oceanic and Atmospheric 308 

Administration (NOAA)/ Global Data Assimilation System (GDAS) atmospheric analysis 309 

fields (Derber et al., 1991), the disaggregated Global Precipitation Climatology Project (GPCP) 310 

V1.3 Daily Analysis precipitation fields, and the Air Force Weather Agency’s AGRicultural 311 

METeorological modeling system (AGRMET) radiation fields. Because GLDAS uses 312 

observed precipitation of GPCP, SM in GLDAS is considered better than that of MATSIRO, 313 

which uses precipitation forecasts from NICAM to drive the land surface model. Since SM in 314 

NICAM has a large bias against the satellite-based product (Fig. 3), this study assimilates SM 315 

from GLDAS as pseudo-observations as Hoover and Langland (2017) and verifies forecasted 316 

SM compared to GLDAS. 317 

 318 
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3. Experimental setting 319 

This study performs 40-member NICAM-LETKF experiments. NICAM ensemble 320 

forecasts are performed for 9-hour intervals, and observation data from the last 6-hour period 321 

are assimilated. The initial ensemble members of the experiments are obtained from the 1st-322 

40th members of a long-term 128-member NICAM-LETKF experiment (Terasaki et al. 2019). 323 

This means the initial ensemble spread of SM relies on initial conditions perturbed by the 324 

ensemble NICAM forecasts. Covariance localization in LETKF is applied to the observation 325 

error covariance R so that distant observations have smaller impacts on the analysis (Hunt et 326 

al., 2007; Miyoshi and Yamane, 2007). Gaussian functions are used for horizontal and vertical 327 

localization, given by: 328 

𝑓 = exp	[− %
.
{(𝑑//𝜎/). + (𝑑0/𝜎0).}],                    (11) 329 

where f is the localization function and dh and dv are the horizontal distance (km) and vertical 330 

difference (log(Ps)) between the analysis model grid point and the observation, respectively. 331 

Standard deviations (SDs) 𝜎/ and 𝜎0 are 400 km and 0.4 natural log pressure as Terasaki et al. 332 

(2019) implemented. The localization function is replaced by zero beyond 2O10/3 ∙ 𝜎/,0. Land 333 

(atmospheric) observations are assimilated into the atmospheric (land) model using the same 334 

vertical localization scale. For land observations, surface pressure (Ps) is assigned for the 335 

observed height. This study uses relaxation to prior spread (RTPS; Whitaker and Hamill, 2012) 336 

for covariance inflation. For atmospheric variables, the relaxation parameter is set to 0.90, 337 

which is determined through sensitivity tests (Kotsuki et al., 2017b). As mentioned in Sec. 2 b, 338 

the original NICAM-LETKF method, which assimilates only atmospheric observations, is 339 

referred to as the control experiment. These experimental settings have been widely applied in 340 

previous NICAM-LETKF experiments (e.g., Kotsuki et al., 2018, 2019a). In addition to 341 

atmospheric observations, this study assimilates SM data as hydrological land observations. 342 

The observation error SD of SM is estimated at 0.05 (m3 m−3) based on the innovation statistics 343 

of Desroziers (2005) (cf. appendix A). We perform one control experiment and six SM DA 344 

experiments, as shown in the schematic images of Fig. 2. 345 

 Maintaining the ensemble spread is important in the EnKF. We initially expected that 346 

ensemble forecasts could sufficiently maintain the ensemble spreads of MATSIRO variables 347 

due to physical coupling with NICAM. However, the ensemble spread of SM in MATSIRO 348 

decreased rapidly after initiating assimilation of SM from GLDAS in our preliminary 349 
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experiment (not shown). We were unable to mitigate this rapid reduction of ensemble spreads 350 

even by applying RTPS with relaxation parameter α=0.90. This outcome seems to be related 351 

to two fundamental challenges: (1) the land models are typically more dependent on external 352 

forcing, rather than being modeled as a chaotic dynamical system dependent on initial 353 

conditions, and (2) the timescales for dynamical changes in land models are much longer than 354 

those in atmospheric models. The latter implies that the land model is likely to have a long 355 

memory beyond 6 hours for SM. In the case of assimilating SM with atmosphere-land coupled 356 

models, SM observations correspond to the slow mode, and atmospheric variables correspond 357 

to the fast mode. Therefore, offline land DA systems usually inflate the ensemble spread by 358 

adding random noise to atmospheric forcing or observational data. For example, Reichle et al. 359 

(2002) added perturbations to the ensemble forecasting system, specifically to forcing and to 360 

the model states variables, to account for sources of model error in the land model forecast to 361 

generate an ensemble representative of the model forecast uncertainty. In the current study, we 362 

use RTPS to maintain the ensemble spread of SM in MATSIRO to avoid the ensemble 363 

becoming too confident. In addition, land DA experiments with the land-atmosphere system 364 

would represent model errors to some extent since each land model is driven by different 365 

forcing. The relaxation parameter for SM is set to α=1.00 so that the analysis ensemble spread 366 

is equivalent to the forecast ensemble spread. For further details on creating ensemble spreads 367 

for land models, we encourage readers to review the summary presented in Draper (2021). 368 

Further, since satellite-borne microwave sensors can measure only surface layer SM, 369 

we explore better DA strategies that will be applicable to satellite observations. Thus, we only 370 

use SM data in the surface layer (0-0.1 meters) provided by GLDAS. In our experiments, 371 

GLDAS SM data are assimilated into the topmost layer of MATSIRO (0−0.05 meters). 372 

Although analyzing deeper layers of SM is essential to take advantage of land-atmosphere 373 

coupling, this study focuses on the surface layer where feedbacks to the atmosphere would be 374 

more pronounced than in deeper layers. Note that the present experimental setting for 375 

assimilating GLDAS SM data may result in more significant impacts than the experiments with 376 

actual satellite observation intervals.  377 

 We first perform a spin-up NICAM-LETKF experiment from June to September 2014 378 

by assimilating only atmospheric observations. The initial NICAM ensemble conditions are 379 

taken from the long-term NICAM-LETKF experiment of Terasaki et al. (2019). DA 380 

experiments are performed for 13 months, from 0000 UTC 1 October 2014 to 1800 UTC 30 381 
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November 2015. The first month (October 2014) is considered as a spin-up period, and the 382 

results for the latter 12 months are used for validation.  383 

In Sec. 4 a, the data are used for validation to check if the assimilation behaves as 384 

expected (i.e., the analysis departures of SM are reduced by the assimilation). In addition, we 385 

also use SM from ERA5 reanalysis data (Hersbach et al., 2020) as an independent dataset for 386 

validation scores. We evaluate atmospheric variables against the ERA5 reanalysis data in Sec. 387 

4 b. The analysis of land variables is performed separately from the atmospheric analysis in 388 

the ERA5 by assimilating screen-level temperature, dewpoint, and synoptic observations with 389 

the optimal interpolation. While the ERA5 assimilates no SM observation, the ERA5 390 

assimilates many more satellite observations than the NICAM-LETKF, such as Microwave 391 

Humidity Sounder and Advanced Technology Microwave Sounder. Therefore, validating 392 

NICAM-LETKF atmospheric fields relative to the ERA5 is reasonable. Furthermore, as 393 

described, SM of GLDAS can be considered better than the NICAM-LETKF because it is 394 

derived by observed precipitation. Hence, in the following sections, we demonstrate that the 395 

assimilation of SM from GLDAS has a beneficial effect on atmospheric fields in NICAM-396 

LETKF, as verified by comparison with ERA5. 397 

4. Results and discussion 398 

a. Impacts on soil moisture 399 

We first examine the impacts of SM assimilation on MATSIRO. Figure 4 compares the 400 

global bias patterns for the prior state of SM at the near-surface layer (i.e., 0-0.05m) relative to 401 

GLDAS, averaged over a 12-months period from November 2014 to October 2015. Three 402 

panels show the results for A*×L×× (CTRL; quasi-WCDA), A*×L×+ (WCDA), and A*+L*+ 403 

(Full-SCDA). A*×L×× (CTRL) shows dry biases relative to GLDAS in general, especially in 404 

the continents of Africa, South America, Australia, and Central Eurasia (Fig. 4a). Assimilating 405 

SM into MATSIRO successfully mitigates these SM biases (Figs. 4b and c). Furthermore, 406 

assimilating SM mitigates the wet SM bias in regions where SM is overestimated in A*×L×× 407 

(CTRL). Therefore, the newly developed coupled land–atmospheric DA system successfully 408 

assimilates SM data into MATSIRO, and we confirm the developed DA system works well. 409 

These results are expected and not surprising because forecasts are validated using the same 410 

data as observations. No notable differences are observed in global bias patterns between 411 

A*×L×+ (WCDA) and A*+L*+ (Full-SCDA) in global bias patterns (Figs. 4b and c).  412 
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 413 

 414 

Figure 4. Global patterns of 6-hour forecast bias for soil moisture (SM; m3 m-3) relative to 415 

GLDAS for (a) A*×L×× (CTRL; quasi-WCDA), (b) A*×L×+ (WCDA), and (c) A*+L*+ (Full-416 

SCDA), averaged over 12 months from November 2014 to October 2015. The blue and brown 417 
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colors represent overestimated and underestimated SM values relative to GLDAS, respectively.  418 

 419 

 420 

 421 

 422 

Figure 5. Time series of global-mean forecast root mean square differences (RMSDs) for 423 

soil moisture (SM; m3 m-3) relative to GLDAS. The black, blue, cyan, magenta, green, red, and 424 

yellow lines indicate (a) A*×L×× (CTRL; quasi-WCDA), (b) A*×L×+ (WCDA), (c) A*×L*× 425 

(quasi-SCDA), (d) A*+L×× (quasi-SCDA), (e) A*×L*+ (SCDA), (f) A*+L×+ (SCDA), and (g) 426 

A*+L*+ (Full-SCDA) experiments, respectively. Experiments (a)−(g) correspond to the DA 427 

patterns (a)−(g) shown in Fig. 2. 428 

 429 

Figure 5 shows the time series of global-mean root mean square differences (RMSDs) for 430 

SM relative to GLDAS. All experiments that assimilate SM have smaller errors in SM than 431 

those in A*×L××  (CTRL; Fig. 5a). Although A*×L×+  (WCDA; Fig. 5b) and A*+L*+  (Full-432 

SCDA; Fig. 5g) show reduced errors, no clear difference is apparent between the two 433 

experiments. Among the seven experiments, A*+L×+ (SCDA; Fig. 5f) results in the smallest 434 

SM error. In this experiment, SM observations are used for updating both NICAM and 435 

MATSIRO, whereas atmospheric observations are used only for updating NICAM and not for 436 

MATSIRO. Since A*+L×+ (SCDA) results in better SM estimation than A*+L*+ (Full-SCDA; 437 
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Fig. 5g), we can see that updating SM in MATSIRO through assimilation of atmospheric 438 

observations have a detrimental impact on SM in the experimental settings of this study.  439 

Such detrimental impacts are also found by comparing other cases, such as A*×L×+ 440 

(WCDA; Fig. 5b) and A*×L*+ (SCDA; Fig. 5e). The larger error in A*×L*+ (SCDA) than in 441 

A*×L×+  (WCDA) arises from inaccurate covariance estimates between atmospheric 442 

observations and land variables due to insufficient ensemble size. Ensemble-based DA can 443 

provide spurious error correlations when the ensemble size is small. Assimilating observations 444 

based on spurious error covariances generally degrades the analysis results (cf. variable 445 

localization of Kang et al. 2011). Moreover, the difference in timescale between the 446 

atmospheric and terrestrial models may have a dominant influence, which could be verified by 447 

experiments using a short assimilation window. Such further investigation of the assimilation 448 

window is essential for future studies of land-atmosphere coupled DA.  449 

A*×L*× (quasi-SCDA; Fig. 5c) shows similar RMSDs to those of A*×L×× (CTRL; quasi-450 

WCDA), which implies that atmospheric observations have neither beneficial nor detrimental 451 

impacts on updating SM. Because many types of atmospheric observations are assimilated in 452 

this study, clarifying impacts of individual observation type is complicated. The results might 453 

be changed if we assimilate only one kind of atmospheric observation, such as precipitation 454 

data, with the variable localization. Accurate estimation of (𝐏")*+ by increasing the number 455 

of ensembles might reduce the RMSD of A*×L*× (quasi-SCDA). Penny et al. (2019) also faced 456 

this kind of problem when assimilating slower ocean observation data into an atmosphere-457 

ocean model with coupled DA. Penny et al. (2019) found that it was more difficult to use slow-458 

mode observations (from the ocean) to update the fast-mode (atmosphere). They overcame this 459 

problem by using larger ensembles and increasing the analysis update and observation 460 

frequency. As discussed for maintaining ensemble spreads for SM, SM observations 461 

correspond to the slow mode and atmospheric variables correspond to the fast mode in our 462 

experimental settings. Therefore, applying Penny et al. (2019)’s approach may further improve 463 

SCDA.  464 

 We can say that Fig. 5 represents the error correlation between the SM observations 465 

and the atmospheric model variables, showing that it is more reliable than the correlation 466 

between the atmospheric observations and the SM variable from the land model.  In terms of 467 

reducing the errors in SM, the optimal coupled DA method in our experimental setting is 468 

A*+L×+ (SCDA). The errors in SM can be reduced by updating atmospheric and land variables 469 
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through the assimilation of SM. Several previous studies have found that it is important to 470 

correct the "upstream" dynamics in the coupled system (e.g., by Sluka et al., 2016). In other 471 

words, since the atmosphere strongly drives the land via surface forcing, correcting the 472 

atmospheric variables would improve forecasts of the coupled land surface model. From the 473 

point of view of the land model, the SM can be updated accurately by assimilating the observed 474 

SM directly. Attempting to use fast-varying atmospheric observations for updating SM would 475 

lead to suboptimal analysis because of the non-perfect ensemble-based error covariance 476 

estimate between atmospheric observations and modelled SM. In contrast, the detrimental 477 

impacts of updating atmospheric variables by (𝐏")*+  cancel out the beneficial impacts of 478 

updating SM by (𝐏")+*. Therefore, for our model configuration and DA design, A*+L*+ (Full-479 

SCDA) is less effective than A*+L×+  (SCDA). This problem might occur because the DA 480 

approach degrades the analysis when assimilating atmospheric data into the land model. The 481 

approaches for atmosphere-ocean coupled DA suggested by Penny et al. (2019) could solve 482 

the problem, which will be an important future subject to improve SCDA even more.  483 

Figure 6 shows the time series of ensemble spread of SM. Since RTPS is used with a 484 

relaxation parameter of 1.0 for land variables, the ensemble spread does not change during DA. 485 

Because no significant difference is observed in the ensemble spreads among experiments, the 486 

difference in RMSDs relative to GLDAS must originate from the difference in the update 487 

strategy. The ensemble spread of A*×L*× (quasi-SCDA; Fig. 6c) is the smallest among these 488 

cases, which means the atmospheric observations have collapsed the spread more than any 489 

other configurations. By assimilating the atmospheric observations into the land model, the 490 

impact of the land observations becomes less, leading to the detrimental effect observed in 491 

those cases. This could also be related to the balance between the errors on the atmospheric 492 

observations and the spread of the land model variables. This indicates that the atmospheric 493 

observation error should be inflated when applied to the land DA via SCDA. The process filters 494 

out the impact of high variability in the atmosphere, similar to adding errors of 495 

representativeness in the spatial dimension. 496 

 497 
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 498 

Figure 6. Similar to Fig. 5, but showing forecast ensemble spreads of SM (m3 m-3). 499 

 500 

 Figure 7 shows the global patterns of differences in analysis RMSDs for SM, averaged 501 

over a 12-month period from November 2014 to October 2015. Here, we discuss three 502 

experiments: A*×L×+  (WCDA), A*+L*+  (Full-SCDA), and A*+L×+  (SCDA), which are the 503 

best three experiments in terms of errors in SM, as shown in Fig. 5. First, we compare A*×L×+ 504 

(WCDA) and A*+L×+ (SCDA). Figure 7 (a) suggests that updating atmospheric variables with 505 

SM DA generally has beneficial impacts on SM. In South America, the Arabian Peninsula, and 506 

India, beneficial impacts are seen in regions where A*×L××	(CTRL) shows a dry bias in SM in 507 

Fig. 4. Additionally, beneficial impacts are apparent in Central Africa, where A*×L××	(CTRL) 508 

has a wet bias in SM. In contrast, SM DA has moderate impacts in North America and Eurasia. 509 

In these areas, A*+L*+  (Full-SCDA) performs worse than A*×L×+  (WCDA; Fig. 7b), 510 

suggesting that assimilating atmospheric observations to update SM in MATSIRO would be 511 

detrimental in the experimental settings of this study. Therefore, eliminating the updates of 512 

MATSIRO with atmospheric observations has beneficial impacts for SCDA (Fig. 7c).  513 

 514 
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 515 

Figure 7. Global patterns of soil moisture analysis RMSD (m3 m-3) relative to GLDAS 516 

averaged over 12 months from November 2014 to October 2015: (a) difference between 517 

A*×L×+ (WCDA) and A*+L×+ (SCDA), (b) difference between A*×L×+ (WCDA) and A*+L*+ 518 

(Full-SCDA), and (c) difference between A*+L*+ (Full-SCDA) and A*+L×+ (SCDA). Warm 519 

colors indicate that the latter experiments providing smaller scores than the former 520 

experiments, whereas cool colors indicate larger scores of the latter methods.  521 
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 522 

We also investigate the SM correlations between GLDAS and the results of the 523 

experiments (Fig. 8). We can see that the correlation to GLDAS is larger in the regions where 524 

positive impacts are observed in Fig. 7. Figure 9 shows the results of the two-sample t-test. 525 

Time series of absolute bias of SM analysis relative to GLDAS are sampled from November 526 

2014 to October 2015. When the P-values at a point are smaller than 5%, the null hypothesis 527 

at the 95% confidence level is rejected, implying a significant difference. By the significance 528 

test, we can see the significant differences between the experiments over broad regions. The 529 

significant differences between methods  A*×L×+ (WCDA) and A*+L×+ (SCDA) are mainly 530 

located in the areas where the bias was relatively substantial in Fig. 4a (Fig. 9a). From Fig. 8 531 

and Fig. 9, we can reconfirm the points described in the comments about Fig. 7: (1) using SM 532 

to update atmospheric variables has positive effects, especially in areas where there are dry 533 

biases, (2) areas where there are wet biases are mitigated by SM DA, and (3) updating SM with 534 

atmospheric observations has detrimental effects, leading to the results of A*+L*+  (Full-535 

SCDA) experiments. 536 
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	537 

 538 

Figure 8. Global patterns of soil moisture analysis correlation relative to GLDAS sampled 539 

over 12 months from November 2014 to October 2015: (a) difference between A*×L×+ 540 

(WCDA) and A*+L×+ (SCDA), (b) difference between A*×L×+ (WCDA) and A*+L*+ (Full-541 

SCDA), and (c) difference between A*+L*+ (Full-SCDA) and A*+L×+ (SCDA). Warm colors 542 

indicate that the latter experiments providing smaller scores than the former experiments, 543 

whereas cool colors indicate larger scores of the latter methods.  544 

 545 
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	546 

 547 

Figure 9. Global patterns of soil moisture analysis absolute bias (m3 m-3) relative to 548 

GLDAS: (a) difference between A*×L×+  (WCDA) and A*+L×+  (SCDA), (b) difference 549 

between A*×L×+  (WCDA) and A*+L*+  (Full-SCDA), and (c) difference between A*+L*+ 550 

(Full-SCDA) and A*+L×+  (SCDA). Only the areas where the T-test gives significant 551 

differences (the P-value < 5%) are colored, sampling with time series of soil moisture analysis 552 

from November 2014 to October 2015. Areas without significant differences are grayed out.  553 
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 554 

We also investigate the seasonal differences in the relationship between precipitation 555 

and SM. Figure 10 compares the difference of SM analysis RMSD relative to GLDAS between 556 

A*×L×+ (WCDA) and A*+L×+ (SCDA; Figs. 10a, c, e, and g), with observed precipitation of 557 

GPCP version 1.3 (Figs. 10b, d, f, and h). The SCDA experiment shows improvements in the 558 

Sahel and equatorial Africa from May to October (Figs. 10e and g) compared to the period 559 

from November to April (Figs. 10a and c). These regions are known to be “hotspots” where 560 

SM affects precipitation during June−August (Koster et al. 2004). SM assimilation by SCDA 561 

would benefit from updating atmospheric variables in the hotspot regions. On the other hand, 562 

the distribution of precipitation from November to April tends to shift slightly southwards, 563 

resulting in decreased precipitation in previously defined hotspots (Figs. 10b and d). Therefore, 564 

the advantages of updating atmospheric variables using SM data are not as evident in these 565 

areas in our experiments (Figs. 10a and c). This period includes the summer season in the 566 

Southern Hemisphere. For instance, we can confirm a notable increase in precipitation in South 567 

America (Figs. 10b and d). Correspondingly, the advantages of using SCDA in that area 568 

become more pronounced. The Arabian Peninsula is another region where the advantages of 569 

SCDA stand out during this season, despite being an area with scarce rainfall throughout the 570 

year and minimal seasonal differences. Therefore, comparison of results from November to 571 

April (Figs. 10a-d) with those from May to October (Figs. 10e-h) implies that the locations of 572 

the “hotspots” may vary depending on the season. 573 

From the above results, it is clear that precipitation and SM are closely related. Given 574 

the seasonal variation in precipitation distribution, the regions that would benefit from updating 575 

atmospheric variables using SM data shift accordingly. 576 
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 577 

 578 

Figure 10. Global patterns of soil moisture analysis RMSD (m3 m-3) relative to GLDAS 579 

(panels a, c, e, g) and spatial patterns of observed precipitation of GPCP version 1.3 (mm/day; 580 

panels b, d, f, h). Results are averaged over 3 months: (a, b) November 2014 to January 2015, 581 

(c, d) February to April 2015, (e, f) May to July 2015, and (g, h) August to October 2015. Panels 582 

(a, c, e, g) show the difference between A*×L×+ (WCDA) and A*+L×+ (SCDA). In panels (a, 583 

c, e, g), warm colors indicate that A*+L×+ (SCDA) performing better than A*×L×+ (WCDA), 584 

whereas cool colors indicate worse performance of A*+L×+ (SCDA).  585 

  586 
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We also use ERA5 SM as an independent dataset for the validation scores, although so far, 587 

we have been using GLDAS to verify that the experimental setup works as expected. Fig. 11 588 

compares the global patterns of 6-h forecast bias in SM at near-surface layer as in Fig. 4, but 589 

relative to ERA5. We can see that A*×L×× (CTRL) shows large dry biases relative to ERA5 in 590 

South America and Central Eurasia (Fig. 11a). The dry biases appear mitigated by updating 591 

MATSIRO with the SM of GLDAS. Furthermore, NICAM has a large dry bias in the center of 592 

the African continent relative to ERA5, which is not the case when compared to GLDAS in 593 

Fig. 4. There is a wet bias at the southern and northern ends of the African continent, which 594 

increases with the assimilation of SM, but the global-averaged scores show improvements 595 

compared to A*×L×× (CTRL; Figs. 11b and c). No notable differences are observed between 596 

A*×L×+ (WCDA) and A*+L*+ (Full-SCDA) in global bias patterns (Figs. 11b and c). 597 

Figure 12 shows the time series of global-mean RMSDs for SM as in Fig. 5, but relative to 598 

ERA5. Similar to the results in Fig. 5, we can find the following features: all experiments that 599 

assimilate SM have smaller errors in SM than in A*×L××	(CTRL). A*×L*× (quasi-SCDA; Fig. 600 

12c) shows larger RMSDs to that of A*×L××	(CTRL) whereas A*+L××  (quasi-SCDA; Fig. 601 

12d) shows smaller RMSDs than A*×L××	(CTRL). This validation against ERA5 SM also 602 

support the previously identified findings: updating atmospheric variables by SM DA is 603 

beneficial to improve SM forecasts whereas updating the SM variable by assimilation of 604 

atmospheric observations results in detrimental impacts. The differences between the other four 605 

experiments, in which SM observations update the MATSIRO variables, are unclear, but they 606 

show a significant decrease in RMSDs compared to A*×L××	(CTRL).   607 

Lastly, Fig. 13 compares the differences in analysis RMSD of SM relative to ERA5. We 608 

can see a meaningful benefit of having atmospheric model variables updated by SM 609 

observations where there was a robust dry bias, e.g., in the South American continent (Figs. 610 

13a and b). On the other hand, there was originally a wet bias against ERA5, i.e., the Arabian 611 

Peninsula and North of the African continent, resulting in a modification effect. Furthermore, 612 

a feature not seen in Fig. 7 is that with ERA5 as reference data, there is no significant worsening 613 

of the MATSIRO variables by updating them with atmospheric observations (Fig. 13c).   614 

The validation results using an independent dataset suggest that the experiments conducted 615 

in this study are functioning reasonably well. These findings support the notion that our 616 

experiments, which assimilate SM data from GLDAS without bias correction, can perform 617 

satisfactorily without violating the underlying assumptions of data assimilation.  In this section, 618 
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the results show that the assimilation of atmospheric observations can lead to detrimental 619 

effects on soil moisture analysis. It is crucial to note that this issue stems from the experimental 620 

setup rather than statistical aspects. The primary cause of these adverse effects would be the 621 

weak dynamical relationship between the lower troposphere and SM. We will explore the 622 

issues related to this physical relationship in the subsequent section.  623 

 624 
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 625 

Figure 11. Similar to Fig. 4, but showing 6-hour forecast bias for soil moisture relative to 626 

ERA5 (m3 m-3). 627 

 628 
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 629 

 630 

Figure 12. Similar to Fig. 5, but showing RMSDs for soil moisture relative to ERA5 (m3 631 

m-3). 632 

 633 
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 634 

Figure 13. Similar to Fig. 7, but showing Global patterns of soil moisture analysis RMSD 635 

relative to ERA5 (m3 m-3). 636 

  637 
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b. Impacts on atmospheric field 638 

Here, we investigate the impacts of assimilation of SM on atmospheric variables. Fig. 639 

14 shows the global patterns of forecast biases for temperature (K) in the lower troposphere 640 

(850 hPa) relative to the ERA5 reanalysis data averaged over 12 months from November 2014 641 

to October 2015. Hereafter, we discuss the results of A*×L××	(CTRL) and three coupled DA 642 

experiments: A*×L×+  (WCDA), A*+L×+  (SCDA), and A*+L*+  (Full-SCDA). Figure 14 (a) 643 

shows that A*×L××	(CTRL) has a warm temperature bias in regions with dry SM biases, as 644 

illustrated in Fig. 4 (e.g., South America, Africa, and Australia). In these regions, increasing 645 

SM values after assimilation of SM decreases temperature estimates in the lower troposphere 646 

(Figs. 14b−d), since more of the incoming solar and longwave radiation is converted to latent 647 

heat flux, and less to sensible heat flux with greater SM. Compared to A*×L×+	(WCDA), 648 

however, A*+L×+  (SCDA) and A*+L*+  (Full-SCDA) show an overcooling effect for 649 

temperature in the continents of Africa and Australia (Figs. 14c and d). This overcooling effect 650 

is caused by the assimilation of SM into atmospheric variables in NICAM. The condition and 651 

type of soil determine the allocation of energy to latent and sensible heat flux. In areas with 652 

sufficient SM, evaporation is limited by the amount of available water, even though more 653 

evaporation is energetically possible. In such a case, the ratio of latent heat to sensible heat (i.e., 654 

Bowen ratio) will be determined by the surface temperature. In contrast, in a dry area, the ratio 655 

becomes smaller. In addition, the energy balance is led by the turbulent fluxes of sensible, 656 

latent heat, and the ground heat flux. The energy transfer from the surface to the atmosphere 657 

creates spatial pressure gradients that drive atmospheric circulation at various scales. Due to 658 

the factors above, the most appropriate setting was A*×L×+	(WCDA) in our experiments. There 659 

are no remarkable changes in temperature over the ocean among the DA methods. 660 
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 661 

Figure 14. Global patterns of forecast bias for temperature (K) at 850 hPa relative to ERA5 662 

reanalysis values for (a) A*×L××	(CTRL), (b) A*×L×+ (WCDA), (c) A*+L×+ (SCDA), and (d) 663 

A*+L*+ (Full-SCDA), averaged over 12 months from November 2014 to October 2015. Red 664 

and blue colors represent warm and cold biases, respectively.   665 

 666 

Table 1 summarizes the global-mean scores for bias, RMSD, and mean absolute 667 

difference (MAD) in temperature. Tables 1 (a) and (b) show these values averaged over the 668 

ocean and land, respectively. The errors in Table 1 (a) differ less strongly than those in Table 669 

1 (b), showing that assimilation of SM changes the temperature field mainly over land. The 670 

bias values in Table 1 (b) show that A*×L××	(CTRL) has a warm temperature bias over land 671 

in general. Assimilating SM leads to a cooling effect, thereby mitigating the warm temperature 672 

bias. However, A*+L×+  (SCDA) and A*+L*+  (Full-SCDA) decrease temperature too much, 673 

resulting in a cold bias. Consequently, A*×L×+ (WCDA) results in the best temperature field 674 

among the four experiments in terms of temperature bias at 850 hPa. Assimilating SM with 675 

A*×L×+ (WCDA) decreases the average temperature bias by 0.26 K over land. These changes 676 

over land do not propagate significantly to the temperature bias over the ocean. 677 

 678 

 679 
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 680 

Table 1. Averaged scores for bias, mean absolute difference (MAD), and RMSD for 681 

temperature at 850 hPa in Fig. 14. The biases and errors in (a) and (b) are averaged only over 682 

the ocean and only over land, respectively. The smallest errors are indicated by the bold font. 683 

 684 

(a)  over the ocean 685 

Temperature 

[K] 

(i) 

A*×L××	 

(CTRL) 

(ii)  

A*×L×+  

  (WCDA) 

(iii)  

A*+L×+  

(SCDA) 

(iv)  

¶ A*+L*+  

 (Full-SCDA) 

BIAS -0.352 -0.382 -0.434 -0.443 

MAD 1.366 1.363 1.379 1.375 

RMSD 1.590 1.583 1.600 1.595 

 686 

(b) over land 687 

Temperature 

[K] 

(i) 

A*×L××	 

(CTRL) 

(ii)  

A*×L×+  

  (WCDA) 

(iii)  

A*+L×+  

(SCDA) 

(iv)  

¶ A*+L*+  

(Full-SCDA) 

BIAS 0.200 -0.060 -0.266 -0.268 

MAD 1.320 1.287 1.326 1.334 

RMSD 1.564 1.510 1.544 1.555 

 688 

 689 

  690 
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 691 

We also investigate changes in the precipitation field, focusing on the continent of 692 

Africa, where large changes in SM occurs due to SM DA (Fig. 4). Figures 15 (a)−(c) show the 693 

spatial patterns of analysis increments for precipitation amount, averaged over 12 months from 694 

November 2014 to October 2015. Note that DA can be used for analyzing not only model 695 

diagnosed variables (i.e., model state variables) but also other outputs from the model. For 696 

example, Kotsuki et al. (2017a) analyzed precipitation using NICAM-LETKF, where 697 

precipitation is not part of the initial condition. Here, we compare analysis increments of 698 

model-like precipitation (cf. Fig. 3 of Kotsuki et al., 2017a). Since precipitation is classified as 699 

an atmospheric diagnosed variable, we observe increments in precipitation during the 700 

assimilation of atmospheric observations. The difference in precipitation analysis increments 701 

between A*×L×× (CTRL) and A*×L×+ (WCDA) is insignificant (Figs. 15 a and b). In contrast, 702 

precipitation in A*+L×+ (SCDA) can be affected by the assimilation of atmospheric and SM 703 

observations (Fig. 15 c). In central Africa, where precipitation amount changes significantly 704 

with SM DA, the analysis increments shift noticeably. We observe negative analysis 705 

increments where SM in A*×L××	(CTRL) is drier, and positive increments when it is wetter. 706 

This suggests that coupled land–atmospheric DA performs reasonably, as assimilating SM data 707 

increases (decreases) precipitation in areas where NICAM has a dry (wet) bias (Fig. 4a). 708 
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 709 

Figure 15. Spatial patterns of analysis increments for precipitation (mm 6h−1; panels a−c), 710 

and precipitation forecast biases (panels d−f) and analysis biases (panels g−i) relative to GPCP 711 

version 1.3 (mm 6h−1), averaged over 12 months from November 2014 to October 2015. 712 

Magenta and cyan colors in (a−c) represent increased and decreased precipitation with DA, 713 

respectively. The green and brown colors in (d−i) represent overestimated and underestimated 714 

precipitation values, respectively, relative to GPCP. Panels (a, d, g), (b, e, h), and (c, f, i) show 715 

the	A*×L××	(CTRL), A*×L×+ (WCDA), and A*+L×+ (SCDA) experiments, respectively. 716 

 717 
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 Spatial patterns of forecast and analysis biases in precipitation relative to GPCP version 718 

1.3 estimates are shown in Figs. 15 (d)−(i). GPCP, which provides global precipitation data 719 

through the merging of various satellite and gauge datasets, is considered to include the best 720 

global precipitation estimates in the climate research community (Kotsuki et al., 2019c). First-721 

guess precipitation in A*×L××	(CTRL) has a positive bias relative to GPCP (Fig. 15d; +0.159 722 

mm 6h‒1), and this overestimation is intensified in A*×L×+  (WCDA; +0.184 mm 6h‒1). In 723 

contrast, the first-guess precipitation bias in A*+L×+ (SCDA; +0.176 mm 6h‒1) is smaller than 724 

that in A*×L×+  (WCDA), although both experiments assimilate SM (Figs. 15e and f). In 725 

A*×L××	(CTRL) and A*×L×+ (WCDA), atmospheric variables are not updated through SM 726 

DA. Therefore, differences between the precipitation biases of forecasting and analysis occur 727 

due to assimilation of GSMaP_NRT in A*×L××	(CTRL) and A*×L×+ (WCDA). These two 728 

experiments result in differing precipitation biases due to biases in their precipitation forecasts 729 

(Figs. 15g and h). Assimilation of GSMaP_NRT slightly reduces the bias in precipitation 730 

relative to GPCP (from 0.159 to 0.157 in A*×L××	(CTRL), and from 0.184 to 0.177 in A*×L×+ 731 

(WCDA).  In contrast, SM DA changes the analysis precipitation in A*×L×+ (WCDA). A*+L×+ 732 

(SCDA) shows the smallest bias in analysis precipitation. That is, updating atmospheric 733 

variables with SM data plays an important role in improving the accuracy of precipitation. 734 

Compared to A*×L××	(CTRL), one of the reasons for the larger bias in the A*×L×+ (WCDA) 735 

and A*+L×+  (SCDA) is due to increased rainfall in areas where NICAM has the dry bias. 736 

Originally, NICAM overestimates precipitation (Kotsuki et al., 2019; Fig. 6). Improvements in 737 

soil moisture may have reinforced the bias, which leads to worse scores in those cases. It can 738 

be said that an improvement of the model bias contained in NICAM is necessary to solve this 739 

problem. 740 

Figure 16 compares the forecast biases in precipitation relative to GPCP averaged over 741 

3 months from June to August 2015. We selected this period to explore SM-atmosphere 742 

coupling, as suggested by Koster et al. (2004). Figure 16 (a) shows that NICAM tends to 743 

overestimate precipitation in convergence regions at low latitudes (0°N−10°N) and 744 

underestimate precipitation in South America and Southeast and East Asia. Figures 16 (b) and 745 

(c) show changes in the precipitation forecasts of A*×L×+ (WCDA) and	A*+L×+ (SCDA). The 746 

assimilation of SM affects precipitation mainly at low latitudes. As mentioned in Fig. 10, 747 

Koster et al. (2004) found “hotspots” where SM affects precipitation during June−August. 748 

Koster et al. (2004) noted that the initial condition of SM was sensitive to rainfall predictability 749 
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over the North American Great Plains, equatorial Africa, and India (cf. Fig. 1 of Koster et al., 750 

2004). These areas correspond to the locations where forecast precipitation differed sharply 751 

from SM DA, as shown in Figs. 16 (b) and (c), particularly for the Sahel, equatorial Africa, 752 

and India. When comparing A*+L×+  (SCDA) with A*×L×+  (WCDA), coupled DA shows 753 

stronger impacts in hotspots where the precipitation field is sensitive to the initial condition of 754 

SM. 755 

 756 

 757 
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Figure 16. Spatial patterns of changes in precipitation (mm 6h−1) averaged over 3 months 758 

from June to August 2014. Panels (a), (b), and (c) show the difference between 759 

A*×L××	(CTRL) and GPCP, A*×L××	(CTRL) and A*×L×+  (WCDA), and A*×L××	(CTRL) 760 

and A*+L×+ (SCDA), respectively. The green and brown colors in (a) represent overestimated 761 

and underestimated precipitation values relative to GPCP, and the red and blue colors in (b, c) 762 

represent increased and decreased precipitation values with SM DA, respectively.  763 

 764 

Figure 17 shows vertical cross-sections of forecast biases for temperature and vapor 765 

mixing ratio (Qv) relative to ERA5 reanalysis data along 20°E over the continent of Africa, 766 

averaged over 12 months from November 2014 to October 2015. A*×L××	(CTRL) generally 767 

shows a warm temperature bias and a dry humidity bias near the land surface (1000−800 hPa). 768 

With the assimilation of SM, A*×L×+  (WCDA) and A*+L×+  (SCDA) show decreases in 769 

temperature of the lower troposphere at latitudes where A*×L××	(CTRL) has a warm bias (Figs. 770 

17 b and c). Since the vertical layers of NICAM are almost the same as those of the ERA5, the 771 

cooling impacts would not be attributed to the difference in vertical resolutions between 772 

NICAM and ERA5. A*×L×+  (WCDA) propagates the impacts of SM DA for atmospheric 773 

variables through the interaction between NICAM and MATSIRO during model time 774 

integrations. In addition, A*+L×+ (SCDA) updates atmospheric variables directly through SM 775 

DA, which means A*+L×+ (SCDA) alters atmospheric variables both directly and indirectly. 776 

Therefore, A*+L×+ (SCDA) lowers temperature too much due to the strong interaction between 777 

SM and atmospheric variables (Fig. 17 c). Figure 17 (d) shows that most land surface areas 778 

have dry Qv biases relative to the ERA5. This corresponds to the locations where 779 

A*×L××	(CTRL) exhibits a moist bias against GLDAS (Fig. 4 a). As shown in Fig. 4, the 780 

coupled DA improves this in those areas, which also leads to an enhancement in the Qv bias in 781 

that region. As the moist bias relative to GLDAS in that area is improved through the SM DA, 782 

the bias in Qv relative to ERA5 in that area is also improved by coupled assimilation. A*×L×+ 783 

(WCDA) and A*+L×+ (SCDA) correct for the bias caused by increased or decreased Qv near 784 

the surface using SM DA (Figs. 17 e and f). The change for Qv in A*+L×+ (SCDA) is larger 785 

than that in A*×L×+  (WCDA). This is because, as previously mentioned, A*+L×+  (SCDA) 786 

make larger adjustments to atmospheric variables compared to A*×L×+ (WCDA). 787 

 788 
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 789 

Figure 17. Vertical cross-sectional plots of differences in (a−c) temperature (K) and (d−f) 790 

water vapor mixing ratio (g kg-1) averaged over 12 months from November 2014 to October 791 

2015 along 20°E over the continent of Africa. Panels (a, d), (b, e), and (c, f) show the 792 

differences between A*×L××	(CTRL) and the ERA5 reanalysis, A*×L××	(CTRL) and A*×L×+ 793 

(WCDA), and A*×L××	(CTRL) and A*+L×+ (SCDA), respectively. The vertical and horizontal 794 

axes show the pressure level from 1000 to 100 hPa and the latitude, respectively. 795 

 796 

5. Conclusions 797 

This study aims to explore the optimal coupled land–atmospheric DA method for 798 

improving weather forecasts through the assimilation of hydrological observations. We 799 

implement a coupled land–atmospheric DA into the NICAM-MATSIRO model and 800 

assimilated SM data from GLDAS. We perform a series of coupled DA experiments, including 801 

weakly and strongly coupled DA, and reach the following conclusions.  802 

The assimilation of SM successfully mitigates SM biases. Updating SM by assimilating 803 

atmospheric observations can have detrimental impacts on SM, due to spurious error 804 

correlations between atmospheric observations and land model variables caused by insufficient 805 

ensemble size, and the difference in timescale between the atmospheric and land models. In 806 

contrast, updating the atmospheric model variables by assimilating SM observations has 807 

beneficial impacts on SM, implying that the error correlation between SM observations and 808 
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atmospheric model variables is more reliable. Consequently, the optimal coupled DA method 809 

in this study is	A*+L×+ (SCDA), in which atmospheric and SM data are used to update the 810 

atmospheric variables in NICAM, but only SM data are used to update the SM variable in 811 

MATSIRO. The results of this study indicate that A*+L*+ (Full-SCDA) is less effective than 812 

A*×L×+ (WCDA), which is caused by sampling errors and/or insufficient localization of the 813 

ensemble background-error covariance matrix. As Penny et al. (2019) have shown, 814 

experiments with a simple model to examine several factors in detail, such as the number of 815 

ensemble members, the scale of localization, the spread of the ensemble of initial members, 816 

and the frequency of coupling intervals, would yield very important information. With 817 

adequate settings, such as proposed by Penny et al. (2019), the experiments with A*+L*+ (Full-818 

SCDA) might give a superior performance. In addition, the difference in dynamical timescales 819 

between the atmospheric and land models may possibly have a dominant influence. Using a 820 

shorter DA window with more linear cross-domain dynamics could be useful to investigate if 821 

this would help improve the impact of the 	A*+L*+ (Full-SCDA). This will be an important 822 

future study. Further, one possible reason why A*+L*+  (Full-SCDA) did not always show 823 

optimal results in the current study could be due to the poor and complex physical linkages 824 

between the lower troposphere and soil moisture. This problem has reasonably positive effects 825 

on the atmospheric field but often results in poor soil moisture analysis. The results presented 826 

in this study seem to indicate that this may be the case for	A*+L*+ (Full-SCDA).  827 

We demonstrate that precipitation and SM are closely related. Given the seasonal 828 

variation in precipitation distribution, the regions that would benefit from updating atmospheric 829 

variables using SM data shift accordingly. Assimilating SM provides a proper temperature 830 

estimation for the lower troposphere in areas with a dry SM bias and a warm atmospheric bias. 831 

This effect occurs because more incoming solar and longwave radiation was converted to latent 832 

heat flux and less converted to sensible heat flux with increased SM. However, assimilating 833 

SM into atmospheric model variables lead to overcooling effects in regions such as the 834 

continents of Africa and Australia. Furthermore, estimating precipitation based on SCDA is 835 

beneficial in Africa. Coupled DA has stronger impacts on precipitation forecasts in hotspots 836 

where the precipitation field is sensitive to the initial condition of SM.  837 

This study demonstrates the potential for improving SM prediction using the NICAM-838 

LETKF system by assimilating SM in strong coupled DA. SM is an important variable in land 839 

surface models, and its improvement can lead to better hydrological predictions such as 840 
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droughts and floods. However, it is still unclear what atmospheric variables should be updated 841 

using each land observation. Therefore, future studies will further investigate the effect of 842 

variable localization for other land observations. When updating SM in MATSIRO with 843 

atmospheric observations, we obtain unfavorable results due to errors in estimating the error 844 

covariance between land model variables and atmospheric observations. The issue is thought 845 

to be caused by experimental settings, rather than statistical aspects, due to the poor physical 846 

relationships between the lower troposphere and SM. SM behavior is often highly localized 847 

due to spatial differences such as soil texture, topography, and vegetation. Therefore, most 848 

NWP centers use a point-wise analysis of SM, without considering the horizontal background 849 

error covariance between grid points. The 40 ensemble members used in this study are close to 850 

the number used in operational NWP centers, but using a larger number of ensembles could 851 

lead to useful conclusions by evaluating the differences in performance between WCDA and 852 

SCDA. Furthermore, using a large ensemble could be beneficial for understanding variable 853 

localization more accurately by improving covariance estimation between components. In this 854 

study, land observations are assimilated into the atmospheric model using the same vertical 855 

localization scale as the assimilation of atmospheric observations. Using a smaller localization 856 

scale in a limited ensemble size could help update atmospheric variables with SM assimilation 857 

by reducing errors in the error covariance estimates. Furthermore, while this study uses SM 858 

data based on GLDAS, assimilating satellite-derived SM data is an important direction for 859 

future research. When actual GCOMW/AMSR-2 satellite observation data are assimilated, the 860 

atmospheric field deteriorates significantly due to the assimilation of SM (not shown). This 861 

suggests that limitations exist in the data assimilation method used in this study and that 862 

technical measures, such as CDF matching preprocessing, may be necessary to assimilate 863 

actual observation data successfully. Finally, it is found that resolution of about 100 km is very 864 

coarse to simulate SM accurately. Note that the assimilation of GLDAS pseudo soil moisture 865 

data is not a realistic operational setting, as it is likely to have much better spatial and temporal 866 

coverage than real satellite observations. When actual observation data are assimilated at this 867 

resolution, the representation error becomes large and can cause a problem. In addition to using 868 

actual satellite observation data, using higher-resolution models is an important future 869 

direction. 870 

 871 

 872 
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APPENDIX 904 

Appendix A 905 

This study diagnoses the observation error SD of SM by using innovation statistics 906 

(Desroziers et al., 2005). The innovation statistics is given by:  907 

(𝜎2345'!45&6& ). = 〈(y& − Hx"!)(y& − Hx"")〉,                     (A1)  908 

where, 𝜎&  is the observation error SD. Subscript estimation means the estimation by the 909 

innovation statistics. The bracket 〈∙〉 denotes the statistical expectation. Here, we assumed the 910 

observations error SD is globally constant and time independent for SM (Rodríguez-Fernández 911 

et al., 2019). With NICAM-LETKF, we performed preliminary WCDA and SCDA 912 

experiments over two months from October to November 2014, and used later one month 913 

period data for the innovation statistics. Here we introduce a measure factor, given by 914 

𝐹𝑎𝑐𝑡𝑜𝑟 = 	𝜎2345'!45&6& /𝜎7823985:2;& ,                     (A2)  915 

where the subscript prescribed denotes the prescribed observation error SD of SM used in the 916 

preliminary experiments. If the prescribed SD is optimal, then the diagnosed factor approaches 917 

1.0. Table A1 summarizes the prescribed observation error SD and factor values for five 918 

different observation SDs with assimilation of GLDAS SM.  As noted by Ménard et al. (2009), 919 

when the prescribed observation error SD is too small, the estimated observation error SD is 920 

underestimated, whereas large SDs can lead to overestimation. Based on these preliminary 921 

experiments, this study set the SM observation error SD at 0.05 (m3 m−3), which gave the factor 922 

value closest to 1.0 among the preliminary experiments. 923 

 924 

Table A1. Observation error SD diagnosed using innovative statistics. “Factor” is the ratio 925 

of estimated error SD to the prescribed value (Eq. A2). The diagnostic values from A$×L×$  926 

(WCDA) and A××L××  (SCDA) averaged over 2 months are shown. 927 

 928 

 929 

Prescribed Obs.  

Error SD (m3 m-3) 

Factor 

A$×L×$  (WCDA) A××L××  (SCDA) 
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0.01 9.263 5.716 

0.03 1.881 1.515 

0.05 0.898 0.775 

0.07 0.543 0.509 

0.09 0.373 0.359 
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