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Abstract 12 

Cooking is an important but understudied source of urban anthropogenic fine particulate matter 13 

(PM2.5). Using a mobile laboratory, we measured PM size and composition in urban restaurant 14 

plumes. Size distribution measurements indicate that restaurants are a source of urban ultrafine 15 

particles (UFPs, particles <100 nm mobility diameter), with a mode diameter <50 nm across 16 

sampled restaurants and particle number concentrations (PNC, a proxy for UFPs) that were 17 

substantially elevated relative to the urban background. In our observations, PM mass emitted 18 

from restaurants was almost entirely organic aerosol (OA). Aerosol mass spectra show that while 19 

emissions from most restaurants were similar, there were key mass spectral differences. All 20 

restaurants emit OA at m/z 41, 43, and 55, though the composition (e.g., the ratio of oxygenated 21 

to reduced ions at specific m/z) varied across locations. All restaurant emissions included 22 

reduced nitrogen species detected as CxHyN
+ fragments, making up ~15% of OA mass measured 23 

in plumes, with reduced molecular functionalities (e.g., amines, imides) that were often 24 

accompanied by oxygen-containing functional groups. The largest reduced nitrogen emissions 25 

were observed from a commercial bread bakery (i.e., 30-50% of OA mass), highlighting the 26 
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marked differences between restaurants and their importance for emissions of both urban UFPs 27 

and reduced nitrogen.  28 

 29 

Introduction 30 

Concentrations of most air pollutants, including fine particulate matter (PM2.5) and 31 

ultrafine particles (UFPs; particles with diameter <100 nm), are typically higher in urban areas 32 

compared to rural or suburban areas (Cheng et al., 2019; Chow et al., 2006; Lenschow et al., 33 

2001; Louie et al., 2005; Renzi et al., 2021; Wang et al., 2020). Elevated urban concentrations 34 

lead to higher human exposure, and in turn, contribute to the health impacts of air pollution. 35 

PM2.5 exposures are associated with cardiovascular disease, lung cancer, and asthma and 36 

contribute to up to 100,000 deaths annually in the US (Castillo et al., 2021). Although health 37 

effects of UFP exposure are less extensively studied compared to PM2.5 (Schraufnagel, 2020) and 38 

are an area of ongoing research, there is growing evidence that UFPs can enhance acute health 39 

effects because of their small size and high surface area (Ali et al., 2022; Ibald-Mulli et al., 2002; 40 

Kwon et al., 2020). 41 

The PM2.5 and UFP concentration enhancements in many urban areas are strongly 42 

influenced by anthropogenic emissions (Apte et al., 2017; Li et al., 2018; Mohr et al., 2011; Saha 43 

et al., 2019). Among a wide variety of contributing sources to air quality in the US, two notable 44 

urban sources are mobile sources (e.g., motor vehicles) and cooking. These two sources 45 

contribute to urban enhancements relative to the non-urban areas and to intra-urban spatial 46 

variations in PM2.5 and UFP concentrations (Klompmaker et al., 2015). In prior work, mobile 47 

sources and cooking emissions have led to neighborhood-scale enhancements of ~0.5-1 μg m-3 of 48 
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PM2.5 in North American cities and a factor of two enhancement in UFPs (Rose Eilenberg et al., 49 

2020; Song et al., 2021a). 50 

Motor vehicle emissions are well studied and have seen dramatic reductions as a result of 51 

effective regulations on PM emissions across Europe and the US (Font et al., 2019; Keuken et 52 

al., 2012). In contrast, there has been less attention to cooking sources as contributors of PM and 53 

UFP emissions. As such, there have been fewer direct measurements and regulations dedicated 54 

to cooking-related emissions, including everyday sources such as restaurants and home kitchens. 55 

For comparison, two studies conducted in Pasadena, California revealed that organic PM2.5 56 

attributed to cooking decreased from approximately 2.4 µg/m3 to 1.2 µg/m3 between 1982 and 57 

2010, while the contribution from traffic sources dropped from about 6.8 µg/m3 to 0.82 µg/m3 58 

(Hayes et al., 2013; Schauer et al., 1996). This means that while total PM2.5 and vehicular-related 59 

primary PM2.5 have decreased, the fraction of urban PM2.5 attributed to cooking has increased. 60 

Aerosol mass spectrometry (AMS) measurements worldwide further indicate the 61 

importance of cooking PM. Factor analysis utilizing PMF (Positive Matrix Factorization) on 62 

AMS data routinely identifies a Cooking Organic Aerosol (COA) factor that represents between 63 

6 - 25% of the total organic aerosol (OA) within PM1 in urban settings. Specifically, a study in 64 

Athens and Patras, Greece, showed that the COA contribution increased to 75% of organic PM1 65 

during mealtime in Patras (Florou et al., 2017). While the COA factor is routinely identified, 66 

there can be significant variation in its composition from city to city (Bozzetti et al., 2017; 67 

Crippa, El Haddad, et al., 2013; R. Hu et al., 2021; X.-F. Huang et al., 2010; Lee et al., 2015; 68 

N. Pandis et al., 2016; Sun et al., 2012). 69 

Many potential factors could produce variability in the composition and size distribution 70 

of cooking PM.  While the UFPs from cooking can contribute to ~ 80% of the total particle 71 
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number concentrations indoors (Wan et al., 2011), there are multiple of factors—such as indoor-72 

outdoor air exchange rates (Wallace et al., 2004) and types of cooking oils used (Torkmahalleh 73 

et al., 2012)—that can determine the size distribution of particles as well as the PM2.5 74 

concentrations from cooking activities. There is some evidence that the chemical composition of 75 

cooking emissions may vary with the cooking style and the food cooked (Omelekhina et al., 76 

2020; Reyes-Villegas et al., 2018a; Takhar et al., 2019). For example, the cooking temperature, 77 

ingredients, and methods used can alter chemical pathways that lead to the generation of 78 

nitrogen-containing functional groups, including amides, within COA (Ditto et al., 2022). 79 

Multiple studies found that nitrogen-containing components have been observed while 80 

charbroiling (Rogge et al., 1991a) or deep-frying hamburgers (Reyes-Villegas et al., 2018b; 81 

Rogge et al., 1991a). Masoud et al., (2022) found that nitrogen-containing compounds 82 

contributed 12-19% of the signal measured by a chemical ionization mass spectrometer for 83 

emissions from typical in-home cooking. Overall, this variability across diverse cooking styles 84 

and conditions is relevant but poorly understood. This implies a significant need for real-world 85 

measurements to characterize and understand particle size and composition of cooking emissions 86 

in urban environments.  87 

This study aimed to characterize cooking emissions from real-world restaurant sources in 88 

the US. We used a mobile laboratory to measure cooking emissions from nine restaurants in 89 

Pittsburgh, PA and Baltimore, MD. Four of these restaurants were visited twice, making for a 90 

total of thirteen cooking sites. Several analytical instruments, including an AMS and FMPS (Fast 91 

Mobility Particle Sizer), were used at each site for online measurements, with supplemental PM 92 

collection on Teflon filters for offline analysis. The measurements are used to examine variations 93 

in UFP concentrations and cooking OA composition measured outside of restaurants with a 94 
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focus on contributions from reduced nitrogen components across restaurant sites visited during 95 

the field campaign.   96 

 97 

2. Methods  98 

2.1 Measurement locations 99 

Table 1. Summary of restaurant locations and average concentration enhancements measured in 100 

the cooking emission plumes over the entire sampling duration. Several restaurants were 101 

sampled on two separate days, as indicated by the number following the restaurant identifier. 102 

AMS high-resolution analysis of mean OA enhancement (CE=1), mean BC enhancement from 103 

aethalometer, O:C ratio, Mode Dp (nm) measured by the FMPS, mean f41 (the fraction of mass-104 

to-charge ratio at 41 to the total organic mass signal), f43, and f55. 105 

 106 

Field samples were collected from 13 visits to 9 urban cooking sites in Pittsburgh and 107 

Baltimore during July and August 2019 (Table 1). Candidate restaurants were identified using 108 

Google maps. We first identified an initial list of candidate restaurants by searching Google 109 

maps for restaurants located adjacent to a public road that seemed to have a horizontal exhaust 110 

vent pointed towards the road (Figure S1). We then visited each candidate restaurant location in 111 

 
City Mean 

Δ OA 

(µg/m3) 

Mean  

Δ BC 

(µg/m3) 

Mean 

O:C  

ratio 

Mode  

Dp  

(nm) 

f41 f43 f55 

Island Cuisine Pittsburgh 65 0.83 0.24 17 0.066 0.052 0.091 

Pizza Pittsburgh 100 3.2 0.18 29 0.066 0.056 0.092 

BBQ Baltimore 1.2 0.38 0.26 11 0.059 0.056 0.067 

Café Baltimore 2.3 0.35 0.40 8.1 0.043 0.081 0.043 

Beef Baltimore 15 4.2 0.34 11 0.081 0.072 0.10 

Diner 1 Pittsburgh 77 1.4 0.24 11 0.064 0.044 0.076 

Diner 2 Pittsburgh 84 2.0 0.12 11 0.075 0.052 0.089 

Bakery 1 Baltimore 12 0.091 0.33 8.1 0.011 0.023 0.009 

Bakery 2 Baltimore 4.6 0.41 0.29 8.1 0.023 0.047 0.020 

Fast Food 1 Baltimore 1.7 1.4 0.39 29 0.029 0.062 0.023 

Fast Food 2 Baltimore 3.8 0.36 0.29 11 0.053 0.065 0.055 

Bar/Restaurant 1 Baltimore 69 2.4 0.28 11 0.085 0.065 0.099 

Bar/Restaurant 2 Baltimore 140 5.0 0.30 26 0.075 0.075 0.12 
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person to determine whether our mobile laboratory could be parked near the restaurant exhaust 112 

for emissions sampling. 113 

Table 1 indicates the type of cuisine prepared at each restaurant. We tried to sample 114 

across a range of cuisines and price points. For example, one sampling location was a major fast-115 

food chain that primarily serves hamburgers (Fast Food 1 and 2). Another location 116 

(Bar/Restaurant 1 and 2) was a more expensive restaurant where many entrees cost more than 117 

$30. Lastly, we sampled twice outside of a large commercial bread bakery (Bakery 1 and 2). 118 

Our procedure for identifying candidate restaurants has two important implications for 119 

our results. First, it means that the set of sampled restaurants represents a convenience sample 120 

and may therefore not be completely representative of the types of restaurants found in 121 

Pittsburgh or Baltimore. Second, since we did not coordinate with restaurant owners or operators 122 

during our sampling, we do not have detailed information about cooking fuel (though we assume 123 

that most restaurants used either gas or electricity), the specific cooking methods used, or the 124 

volume of food cooked during our sampling periods. 125 

At each location, we parked a mobile laboratory near the restaurant's exhaust plume (SI 126 

Fig. 1). The selected restaurants represent a mix of accessible locations with visible emission 127 

plumes or exhaust vents. The sampling inlet on the mobile laboratory was typically within a few 128 

meters of the exhaust vent. However, this distance varied due to several uncontrollable external 129 

factors, such as the availability of parking and the height of the restaurants’ exhaust vents. As a 130 

result, the measured emission plumes went through varying degrees of dilution before reaching 131 

our sampling inlet. At all locations we measured a mixture of fresh emissions and the ambient 132 

background air, though the fresh emissions were dominant. Nonetheless, it is important to 133 
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recognize that some of the variability we observe between restaurants could be the result of 134 

dilution-driven changes in UFP and OA concentrations. 135 

Several of the restaurants were sampled on multiple visits to examine day-to-day 136 

variations in emissions. These variations could be due to differences in activity (e.g., how many 137 

customers ordered food), the type of food ordered, and differences in dilution conditions. Each 138 

visit to a restaurant site lasted approximately 30-60 minutes. The sampling periods targeted 139 

expected times for lunch (~11 am – 1 pm) and dinner (~6 – 8 pm). 140 

 141 

2.2 Mobile laboratory and measurements 142 

Instruments were loaded into a gasoline-powered mobile laboratory. At each location, we 143 

oriented the mobile laboratory so that the vehicle tailpipe was located downwind of the sample 144 

inlet to minimize self-contamination from the vehicle exhaust.  145 

We use total particle number concentration (PNC) as our proxy for UFPs. Particle 146 

number counts were measured by a MAGICTM water CPC (Moderated Aerosol Growth with 147 

Internal water Cycling Condensation Particle Counter, Aerosol Devices Inc, Model 148 

MAGIC200P). MAGIC CPC uses water condensation to enlarge particles through a 3-149 

temperature stage growth tube. The enlarged particles are counted with a laser sensor up to 150 

400,000 particles cm-3 with a particle size range between 5 nm and 2.5 µm in diameter (Hering et 151 

al., 2019). Saha et al., (2019) previously observed that the MAGIC CPC undercounts relative to a 152 

butanol CPC. Thus, the raw CPC output was adjusted using a correction factor determined from 153 

the co-location of the MAGIC CPC with a TSI 3772 butanol CPC. 154 

Particle size distributions and total number concentrations were measured with FMPS 155 

(Fast Mobility Particle Sizer, TSI Inc, Model 3091) for particles with diameters from 6.04 nm to 156 
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523.3 nm. The FMPS reported systematically lower particle counts than the MAGIC CPC (factor 157 

of 3.5, SI Section 2 and Fig. S2). FMPS data were utilized in lieu of the CPC data due to high 158 

particle number concentrations in restaurant plumes that exceeded the upper counting limit of the 159 

CPC (400,000 particles cm-3), resulting in error flags. To ensure consistency with the MAGIC 160 

CPC, all FMPS data were corrected by integrating the FMPS size distribution, which was scaled 161 

by the FMPS:CPC ratio.  162 

A High-Resolution AMS (HR-AMS, Aerodyne), which measures non-refractory particles 163 

with a diameter less than 1 µm (NR-PM1), was used to identify mass spectra of PM components 164 

(Organics, NH4
+, NO3

-, SO4
2-, and Cl-) in real-time. Squirrel (SeQUential Igor data RetTriEvaL) 165 

toolkit 1.62G and Pika (Peak Integration by Key Analysis) toolkit 1.22G in Igor Pro 166 

(Wavemetrics, Lake Oswego) were used for the HR-AMS data analysis. For the baseline and 167 

peak fitting correction procedures of the HR-AMS data, the high-resolution range of m/z (mass-168 

to-charge ratios) 12 to 140 was selected. All AMS analysis presented here assumes a collection 169 

efficiency (CE) of one. 170 

An aethalometer (Magee Scientific, Model AE33), CO analyzer (Teledyne API T300), 171 

and CO2 analyzer (LiCor LI-820, Biosciences) measured black carbon (BC), CO, and CO2 172 

concentration, respectively. 173 

PM2.5 samples were collected at ~70 L/min on 47 mm PTFE membrane filters (47 mm, 174 

2.0 µm pores, Tisch Scientific) through a separate inlet mounted close to the online 175 

instrumentation inlet outfitted with a cyclone (2.5 µm cut point with a flow rate of 92 LPM, 176 

URG-2000-30EH, URG cyclone). At each restaurant site where plumes were observed via AMS, 177 

a filter sample was collected for at least 30 minutes and Table S3 shows details for each filter 178 

sample. Filter samples were transported on ice packs from the mobile lab and kept in sample 179 
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storage freezers. Additional filter collection details can be found in the Supporting Information. 180 

All samples were analyzed via liquid chromatography (LC) using an Agilent Infinity LC and an 181 

Agilent Poroshell 120 SB-Aq reverse-phase column (2.1×50 mm, 2.7 µm particle size). The LC 182 

was coupled to an electrospray ionization (ESI) source, operated in positive and negative modes 183 

for each sample, and connected to a high-resolution mass spectrometer (Agilent 6550 Q-TOF). 184 

These instruments were operated following previously described methods (Ditto et al., 2018, 185 

2020).  186 

Selected samples showing unique AMS spectra with nitrogen-containing compounds 187 

underwent further analysis via MS/MS (tandem mass spectrometry) with the objective of 188 

identifying the distribution of functional groups within the reduced nitrogen species that were 189 

observed via LC-TOF, similar to prior work (Ditto et al., 2020, 2022). LC-TOF mode data 190 

processing and QC/QA have previously been described (Ditto et al., 2018), and details of 191 

compound selection for MS/MS analysis in this study can be found in the Supporting 192 

Information (Section S3). MS/MS spectra analysis used SIRIUS with CSI:FingerID for 193 

molecular structure prediction (Dührkop et al., 2015, 2019), and the APRL Substructure Search 194 

Program was used for functional group identification from the predicted SMILES formula for 195 

atmospherically-relevant groups (Ruggeri & Takahama, 2016). Further details on LC-MS/MS 196 

analysis, processing, and associated limitations of ESI and MS/MS spectra analysis can be found 197 

in Ditto et al., (2020), with brief comments on relevant SIRIUS updates in the Supporting 198 

Information (Section S3).  199 

 200 

 201 

 202 
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3. Results and Discussion  203 

3.1 Typical measurements of restaurant emission 204 

Figure 1 demonstrates observations collected during a typical sampling day via the 205 

mobile lab in Baltimore. On this day, the mobile laboratory was initially (~15:36 – 16:49 EDT) 206 

parked in an urban park, here noted as background. Sampling was then conducted on-road, 207 

driving on various streets in urban Baltimore, from 16:49 to 18:20. At 18:20 the mobile 208 

laboratory was parked outside a restaurant (Bar/Restaurant 2). 209 

           The data in Figure 1 show clear variations in pollutant concentrations between the 210 

background, on-road, and restaurant portions of sampling. In general, concentrations were the 211 

lowest and least variable in urban background locations and the highest and most variable for the 212 

restaurant sampling periods. 213 

Nearby vehicles significantly impacted the measured concentrations during the on-road 214 

sampling period, thus differentiating it from the background period, where direct observations of 215 

on-road emissions were minimal. Concentrations of CO, CO2 (Fig. 1a), organic aerosol (OA), 216 

black carbon (BC, Fig. 1b), and particle number (Fig. 1d) were all elevated in the on-road 217 

samples compared to the urban background. 218 

In order to quantify concentrations differences between microenvironments (e.g., on-road 219 

versus background), we compute the enhancement of all species above the urban background 220 

(e.g., OA). We did this by defining the background concentration as the 5th percentile of 221 

measurements made in the background location on each sampling day. This background 222 

concentration is then subtracted from the measurements to determine local concentration 223 

enhancements. Background concentrations for BC and OA are listed in Table S1 of the SI. While 224 

many other background correction methods have been proposed in the literature (Actkinson et 225 
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al., 2021), the overall results presented in Figure 1 are not sensitive to our specific choice of 226 

background correction method. 227 

The mean organic aerosol concentrations are 5.8 µg/m3 (ΔOA: 2.46 µg/m3) during on-228 

road sampling versus 4.2 µg/m3 (ΔOA: 0.85 µg/m3) in the urban background (Fig. 1b). Similarly, 229 

the BC concentration was 0.5 µg/m3 higher on-road than in the urban background, and PNC was 230 

approximately a factor of three higher on-road than in the urban background. These 231 

enhancements in organic aerosol, black carbon, and PNC are broadly consistent with 232 

enhancements seen in high-traffic areas by our previous sampling in Pittsburgh and Oakland 233 

(Saha et al., 2020; Shah et al., 2018).  234 

In addition to the overall increase in pollutant concentrations on-road, there are 235 

occasional, coincident spikes in CO, BC, OA, and PNC during the on-road sampling. The 236 

particle size distribution also changes during these spikes (Fig. 1c), with higher concentrations of 237 

particles in the 20-100 nm size range. These are likely plumes from nearby high-emitting 238 

vehicles, potentially diesel trucks and buses (Dallmann et al., 2013; Tan et al., 2016).  239 

The highest and most variable concentrations are observed in the restaurant plume. In this 240 

near-source environment, organic aerosol concentrations averaged 146 µg/m3. This is 35 times 241 

higher than the urban OA background. Particle number counts were also 35 times higher in 242 

concentration than background levels. CO, CO2, and BC enhancements were also observed when 243 

the mobile lab was parked near the restaurant. The enhancement of CO was 5.9 times the 244 

background, CO2 and BC were 1.15 and 5.42 times higher, respectively.  245 

During the restaurant sampling period, there are several clear and concurrent spikes in 246 

OA (Fig. 1b) and particle number count (Fig. 1d). These seem to be associated with specific 247 

events, such as preparing a customer's new order (restaurant kitchens had varying activity levels 248 
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during the sampling periods). The size distributions in Figure 1c show that these emissions span 249 

a wide range in particle size, from <10 nm up to a few hundred nm, demonstrating that 250 

restaurants may be a source of urban ultrafine particles.   251 

 252 

 253 
 254 

Figure 1. Urban background, on-road, and restaurant plumes observed during a typical sampling 255 

day (Bar/Restaurant 2) in Baltimore, showing: (a) CO and CO2, (b) background corrected 256 

organic aerosol (OA) and black carbon (BC) concentrations, (c) particle size distribution from 257 

FMPS, and (d) background-corrected total particle number concentrations. All concentrations 258 

were significantly higher and more variable in restaurant emissions plume than in the urban 259 

background or on-road period. Numbers in (a), (b), and (d) indicate the mean  standard 260 

deviation for each sampling period. 261 
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 262 

While average BC concentrations were about a factor of five higher than background 263 

during the restaurant sampling period, BC seems to be a relatively smaller component of PM 264 

emissions from the restaurant. The OA/BC ratio in the urban background and on-road sampling 265 

periods was ~4. In the restaurant plume, the mean OA/BC ratio was 28. Despite occasional 266 

periods of very high BC concentrations reaching up to 58 µg/m3, the OA/BC ratio during the 267 

spike was 230 (Fig. S3). Other PM components (e.g., sulfate and nitrate) show no discernable 268 

enhancement during the restaurant sampling period (Fig. S4). This indicates that the PM 269 

emissions from the restaurant were dominated by organic aerosol.  270 

We also observed elevated concentrations of CO and CO2 in the restaurant exhaust. We 271 

do not have information about each restaurant's cooking practices or fuels (i.e., whether the 272 

restaurants used natural gas or electricity). Jung & Su (2020) showed that food cooking emits 273 

CO, so the CO spikes observed here may also be from the food rather than fuel combustion. 274 

Other recent measurements in Pittsburgh by Song et al (Song et al., 2021b) also showed 275 

enhancements in CO during mealtimes in a restaurant-rich area. 276 

 277 

3.2 Summary of organic aerosol enhancements at restaurant sites 278 

Figure 1 shows the OA enhancement at a single restaurant. Enhancements in OA because 279 

of emissions from restaurants were similarly observed across all other sampling sites that we 280 

visited. Figure 2 is a box-plot visualization of the OA enhancement (ΔOA) for each restaurant 281 

visit. The data are split into two main groups for visual clarity: high concentration (mean ΔOA > 282 

50 g m-3, Fig. 2a) and low concentration (mean ΔOA < 30 g m-3, Fig. 2b). Because of the 283 

variation in distance from the exhaust of each restaurant and our sampling inlet, the 284 
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concentration enhancements shown in Figure 2 are the result of both the emissions from each 285 

restaurant and dilution of the emission plume before sampling.  286 

 287 

 288 

Figure 2. Organic aerosol enhancement (ΔOA) at each restaurant site with (a) high (mean ΔOA 289 

> 50 µg/m3) and (b) low (mean ΔOA < 30 µg/m3) enhancements grouped in each for 290 

comparison. The sample names in (a) and (b) are ordered by decreasing mean concentration. 291 

 292 

There is significant variability in measured ΔOA between and within each restaurant 293 

(Fig. 2 and Fig. S4). For nearly every location sampled, the emissions varied over time, as shown 294 

in Figure 1, and this contributes to wide interquartile ranges (IQRs) in Figure 2. It also means 295 

that at nearly every restaurant, there were periods when the concentration was near the urban 296 

background level, as indicated by the whiskers reaching (or even going slightly below) zero.  297 

The temporal variability of the concentrations measured at each restaurant contributed to 298 

an upward skew in ΔOA, with a mean concentration greater than the 75th percentile at many 299 

locations. This suggests that the measurements were dominated by short, intense bursts of 300 

emissions rather than sustained high concentrations. Visualizations of this trend are noticeable in 301 
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Figure 1b, where there is a large spike in emissions so that OA goes above 1000 µg/m3 for 302 

several minutes. The temporal variability seems to be associated with the quantity of cooking 303 

that spikes amid busy mealtimes.  304 

Four restaurants were sampled on multiple days (Bar/Restaurant, Fast Food, Bakery, and 305 

Diner). While there were day-to-day differences in the mean ΔOA at each location, each of these 306 

locations fell into the same group (i.e., ΔOA < 30 g m-3 or ΔOA > 50 g m-3) on both sampling 307 

days. This suggests that the day-to-day variations in emissions are smaller than within-day 308 

emissions for each location and that high-emitting restaurants are consistently high emitters. 309 

However, due to the limitation of a single visit to each sampling location during the campaign, it 310 

may be challenging to conclusively ascertain that the classification assigned to the sampled 311 

restaurants is not indicative of all similar cooking operations.   312 

 313 

3.3 OA composition across restaurants 314 

 315 

Figure 3. Mass spectrum from the entire sampling period at Bar/Restaurant 2 and comparison 316 

with the COA mass spectrum for Paris determined from PMF by Crippa et al. High-resolution 317 
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mass spectra are grouped into sticks of the unit mass resolution, which colors indicating mass 318 

fraction of chemical families.  319 

 320 

 321 

In this section, we compare the composition of cooking OA across the restaurants and to 322 

previous laboratory measurements and ambient factor analysis. Figure 3 shows the mean mass 323 

spectrum of OA measured at Bar/Restaurant 1 in Baltimore; mass spectra from other restaurants 324 

are shown in Figure S5. The mass spectrum contains a mixture of hydrocarbon (CxHy) and 325 

oxygenated (CxHyO) ions. This is consistent with the composition of cooking OA, which is often 326 

dominated by long-chain fatty acids from heated cooking oils and from meat cooking (Crippa, 327 

DeCarlo, et al., 2013; D. D. Huang et al., 2021a; Liu et al., 2017; Mohr et al., 2009; Takhar et al., 328 

2019; Z. Zhang et al., 2021). Several lab experiments from seed oil cooking detected fatty acids 329 

or degradation fragments such as n-alkanoic acid, n-alkenoic acid, oleic acid, and carbonyls 330 

(Allan et al., 2010; Liu et al., 2018; Schauer et al., 2002). Unlike oils, which are entirely 331 

comprised of fats, meats contain proteins and fats, although the composition can vary depending 332 

on the type of meat. Cooking meat generally emits cholesterol and fatty acids like palmitic acid, 333 

stearic acid, and oleic acid (Rogge et al., 1991a; Schauer et al., 1996), which have all been used 334 

as chemical markers of meat cooking emissions. This mixture of hydrocarbon and oxygenated 335 

ions is also identified in PMF factor analysis of ambient datasets, as indicated by the mass 336 

spectrum from Crippa , et al., (2013) shown in Figure 3. 337 

The most abundant peaks in the mass spectrum were at m/z 41 (mostly C3H5
+), 43 338 

(C2H3O
+ and C3H7

+), and 55 (C3H3O
+ and C4H7

+). These peaks have been used as COA markers 339 

for tracing cooking sources in previous studies (Allan et al., 2010; Dall’Osto et al., 2015; 340 

Kaltsonoudis et al., 2017; Mohr et al., 2009). Table 1 summarizes the mean contribution (f41, f43, 341 

and f55) at these m/z to each restaurant's overall OA mass spectrum. 342 
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 343 

 344 

 345 

Figure 4. Fraction of (a) m/z 41, (b) 43, and (c) 55 to the total organic aerosol mass 346 

concentrations and comparison to COA mass spectra from prior PMF studies (Äijälä et al., 2017; 347 

Crippa, DeCarlo, et al., 2013; Jeong et al., 2016; Lanz et al., 2007) and laboratory-generated 348 

cooking emissions (Kaltsonoudis et al., 2017; Liu et al., 2018; Z. Zhang et al., 2021). Only f43 349 

and f55 were shown in (Jeong et al., 2016) (f41 was not provided in the paper). Fast Food and 350 

Bakery samples are grouped in a box as they showed lower abundances of f41 and f55．  351 

 352 

Figure 4 compares f41 (OA mass fraction at m/z 41), f43, and f55 across the restaurants 353 

sampled here to previously published COA mass spectra. We compared two types of previous 354 

studies: COA mass spectra derived from factor analysis of ambient data using PMF and 355 
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laboratory measurements of cooking emissions. The laboratory measurements shown here 356 

include a combination of heating palm and olive oils (Liu et al., 2018) and various cooking 357 

experiments using meats (chicken and pork), vegetables, beans, and Asian cuisine (Kaltsonoudis 358 

et al., 2017; Z. Zhang et al., 2021). 359 

For m/z 41, our data were dominated by the hydrocarbon ion (C3H5
+), which was 360 

approximately 4-8% of OA mass for most of the restaurants. The exceptions were Fast Food 1 361 

and the two samples collected at the Bakery location. These had lower f41 (1-5%) and are shown 362 

inside the dashed box. f41 fractions from our study were generally lower than from the PMF 363 

COA factors. Three of the four COA factors have f41 of ~9% (Äijälä et al., 2017; Crippa, 364 

DeCarlo, et al., 2013; Jeong et al., 2016). The COA factor from Lanz et al., 2007 has f41 ~ 4% 365 

and is lower than most of the restaurants we sampled here. There is a wide range in f41 from the 366 

laboratory experiments. The two oil heating experiments (palm and olive oil, Liu et al., 2018) 367 

generated higher f41 than most of our measurements (8-10%). There was a wider range in f41 for 368 

food cooking experiments (5-8%), and there is a strong overlap with our measurements.  369 

For f43 and f55, both oxidized (e.g., C2H3O
+ and C3H3O

+) and hydrocarbon (e.g., C3H7
+ 370 

and C4H7
+) ion fragments showed significant contributions across the urban cooking sites. There 371 

were also minor contributions from nitrogen-containing ions (e.g., C2H5N
+ and C2HNO+). Except 372 

for Bakery 1, f43 was ~5-8% in our measurements. However, there was variation in the relative 373 

abundance of the hydrocarbon and oxygenated ions. For most sites, the contribution of the 374 

hydrocarbon ion (C3H7
+) was larger than the oxygenated ion (C2H3O

+). However, the sites with 375 

low f41, Bakery and Fast Food 1, m/z 43 fragments were mostly oxygenated (mean = 3.5%). 376 

The mean f43 in the PMF profiles was 6.3% with a range of 4-8.7%, which is similar to 377 

the mean and range observed in our dataset. Similarly, the laboratory emissions data cluster 378 



 

19 

around f43 of 8%, with slightly lower f43 in the heated oil experiments. This is slightly higher 379 

than the f43 measured in the restaurant emissions. 380 

The pattern in f55 is similar to f43; contributions are dominated by the hydrocarbon and 381 

oxygenated ion, with minor contributions from N-containing ions. For most sites, including the 382 

Bakery and Fast Food sites, the contributions of hydrocarbon and oxygenated ions at m/z 55 are 383 

similar. The largest difference is that the Bakery and Fast Food sites have significantly lower f55 384 

(1-6%) than the other sites (4-12%). Additionally, for many of the sites, f55 is larger than the 385 

PMF factors and the laboratory experiments. 386 

The variations in f41, f43, and f55, as well as variations in the ratios between these m/z’s, 387 

may indicate the food cooked at the different restaurants. For example, f41 appears to be larger 388 

than f43 for cooking emissions from oil, as observed in the oil heating experiments by Liu et al. 389 

(2018) and in laboratory oil cooking emissions by Allan et al. (2010). Meat cooking emissions 390 

seem to have the opposite relationship, with f43 > f41. Both oil cooking and meat cooking have 391 

high f55, and meat cooking may have f55 > f43 (Mohr et al., 2009). 392 

For most restaurants sampled here (except for both Bakery and Fast Food), m/z 55 is the 393 

most abundant signal in the aerosol mass spectrum. Additionally, f41 is slightly higher than f43 for 394 

these sites. This suggests a mixture of meat and oil cooking at these locations. For Bakery and 395 

Fast Food, f43 is typically the most abundant ion, with f41 > f55. This may suggest a different mix 396 

of food being cooked, or a difference in the cooking style. However, there is insufficient 397 

evidence in the mass spectra to conclusively explain the differences. 398 
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 399 

Figure 5. Comparison of the AMS UMR (unit mass resolution spectra) in two urban areas using 400 

correlation coefficients (R) and cosine similarity (, in degrees). R values close to 1 and  values 401 

close to 0 mean strong correlations of mass spectra. Both R and  values are presented such that 402 

darker colors correspond to higher similarity.  403 

 404 

Figure 4 compares the cooking OA mass spectra for specific marker ions. Figure 5 405 

compares the full cooking OA mass spectra. We use two metrics: the Pearson correlation (R) and 406 

cosine similarity. The statistical approach, correlation coefficient R, has been widely used in 407 

many studies, such as the analysis of air quality, to show an association between any two 408 

variables (Devarakonda et al., 2013; Giorio et al., 2012; Kiendler-Scharr et al., 2009; 409 

Raatikainen et al., 2010). Cosine similarity treats pairs of mass spectra as vectors and computes 410 

the angle () between them (Kaltsonoudis et al., 2017; Kostenidou et al., 2009).  is a measure of 411 

the similarities between two mass spectra, with a value of 0º meaning that both spectra are 412 
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identical and >30o indicating considerable differences between the spectra. Cosine similarity is 413 

more sensitive to smaller differences in mass spectra than R, as the correlation coefficient can be 414 

dominated by ions with large abundance (Kaltsonoudis et al., 2017). Figure 5 also compares the 415 

cooking emissions to PMF factors retrieved from Paris during winter (Crippa, DeCarlo, et al., 416 

2013) for biomass burning (BBOA), combustion emissions (HOA), and secondary OA 417 

(LVOOA) obtained from the Jimenez Research Group website. 418 

(http://cires1.colorado.edu/jimenez-group/AMSsd/). 419 

Overall, the COA measured from most of the restaurants is similar. Of the 78 restaurant-420 

restaurant pairs, 33 have R > 0.8 and 49 have  < 30o. These metrics underscore a notable 421 

similarity in mass spectra across a significant proportion of the sampling sites. The exceptions 422 

are the Bakery samples and, to a lesser extent, the Fast Food samples. These sites contribute the 423 

majority of the cases where R < 0.8 and  > 30o.  424 

Bakery samples had R < 0.3 and  > 50o when compared to most of the other restaurants. 425 

This suggests that the emissions from the bakery site were fundamentally different than 426 

emissions from the other restaurants. While we do not have details on the specific activities at 427 

the bakery on the two days when we sampled, the bakery clearly prepares different food than 428 

many of the restaurants. For example, the bakery does not cook meat. The following section 429 

discusses key mass spectral differences in more detail. 430 

The other location where the mass spectrum was different from other restaurants was Fast 431 

Food. There were day-to-day differences in the Fast Food mass spectrum, with one day (Fast 432 

Food 1) being similar to other restaurants (R = 0.7-0.8,  < 30o), and the other day (Fast Food 2) 433 

having lower R and higher .   434 

http://cires1.colorado.edu/jimenez-group/AMSsd/
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There is also a high correlation of most restaurants with the COA PMF factor from 435 

Crippa et al., (2013) (R > ~0.75,  < ~30o). This suggests that PMF analysis of ambient datasets 436 

yields a COA factor that is similar to fresh cooking emissions from many restaurants. There is a 437 

high R between our COA and the PMF HOA (hydrocarbon-like OA) factor, which is 438 

representative of primary combustion-related emissions. Even though m/z 41, 43, and 55 are 439 

useful COA markers to resolve cooking-related factors, there are diverse sources of m/z 41, 43, 440 

and 55. In general, there is a high correlation between HOA and COA because the major HOA 441 

peaks like m/z 55 and 57 are prominent in both factors (Milic et al., 2016; Sun et al., 2013; D. 442 

Yao et al., 2021).  443 

One key difference between HOA and COA is that the HOA mass spectrum is dominated 444 

by hydrocarbons (CxHy), whereas the cooking OA has a mixture of hydrocarbon and oxygenated 445 

ions, as shown in Figure 4. For example, m/z 43 in HOA is almost entirely due to C3H7
+ (Ng et 446 

al., 2010), whereas cooking OA contains both C3H7
+ and C2H3O

+ (Fig. 4). Similarly, for m/z 55, 447 

COA has contributions from both hydrocarbon (C4H7
+) and oxidized (C3H3O

+) fragments 448 

(Canonaco et al., 2013; Lalchandani et al., 2021), whereas the reduced ion dominates HOA. 449 

Lastly, while m/z 55 and 57 are important signals for both COA and HOA, COA typically has f55 450 

> f57, whereas HOA has the reverse (W. Hu et al., 2016; D. D. Huang et al., 2021a; Mohr et al., 451 

2009; Shah et al., 2018; Y. Zhang et al., 2015; Zhu et al., 2018). 452 

Figure 5 also compares our cooking emissions measurements to PMF factors for biomass 453 

burning (BBOA) and secondary organic aerosol (LVOOA). The majority of restaurant sites 454 

exhibited weak correlations with BBOA and LVOOA. BBOA has prominent peaks at m/z 60 and 455 

73, and the largest peak in the LVOOA mass spectrum is m/z 44; none of these peaks are 456 

particularly large in the cooking mass spectra from the restaurant sites sampled here. 457 



 

23 

3.4 Cooking as a source of urban reduced nitrogen 458 

Cooking OA from all of the restaurant sites had a significant contribution from AMS ions 459 

containing reduced nitrogen. The mean contribution of nitrogen-containing fragments to the total 460 

cooking OA mass was 15.8% (median = 10.7%; Table S2). The bulk of these N-containing ions 461 

(95% by mass) did not contain oxygen (Fig. S6), though oxygen could still be present on the 462 

parent molecule prior to fragmentation. These CxHyN
+ fragments include C2H5N

+ (m/z 43) and 463 

C3H5N
+ (m/z 55), shown in Figure 4. For example, in the mass spectrum presented for 464 

Bar/Restaurant 1 (Figure 3), the collective contribution of the CHN family peaks is 9.2% of the 465 

total signal mass. The nitrogen-containing fragment at m/z 41, denoted as CHN2
+, has a 2.1% 466 

contribution. Other significant peaks include m/z 43 (C2H5N
+) at 0.77%, m/z 79 (C5H5N

+) at 467 

0.68%, and m/z 68 (C4H6N
+) at 0.49%. For nearly all restaurants sampled here, the most 468 

abundant CHN group ion was C3H8N
+, with fC3H8N typically > 1%. 469 

We took several steps to verify the presence of these reduced nitrogen peaks in our mass 470 

spectra. These quality assurance checks, including examples of peak fitting, are shown in section 471 

3 of the SI. For example, Figuire S8 shows the fitting of C3H8N
+ for the Bakery samples. Figure 472 

S8 shows that the CHN family peaks are not present when the AMS chopper is closed. This 473 

indicates that these signals arise from particles, and are not instrument artifacts. One potential 474 

source of reduced-N peaks is surface ionization, where atoms are ejected from a heated surface 475 

and subsequently ionized. Figure S9 shows that our peak shapes remain Gaussian, and are 476 

therefore unlikely to be influenced by surface ionization. 477 

Previous studies have reported the existence of nitrogen compounds or fragments from 478 

cooking experiments. These nitrogen-containing compounds can originate from the food itself or 479 

reactions with the types of gas used during cooking (Abdullahi et al., 2013). Reyes-Villegas et 480 
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al., 2018 measured gas- and particle-phase emissions and found 14 different nitrogen-containing 481 

compounds using chemical ionization mass spectrometry. Rogge et al., 1991 measured amides in 482 

cooking emissions, including palmitamide and steramide. Amides were also identified from both 483 

Chinese cooking (Zhao et al., 2007a) and Western-style cooking (Zhao et al., 2007b) using GC-484 

MS. Ditto et al., (2022) recently demonstrated that amides can be formed from the reaction of 485 

ammonia formed by amino acid thermal degradation with triglyceride ester linkages. In contrast 486 

to the reduced nitrogen in our samples, these nitrogen-containing compounds, including amides, 487 

have at least one oxygen in their formula.  488 

 The Bakery 1 and Bakery 2 samples had the largest contributions from reduced N. Figure 489 

6 shows the aerosol mass spectrum from Bakery 1. The two most abundant ions in the mass 490 

spectrum are C3H8N
+ (m/z 58) and C5H12N

+ (m/z 86); together these two ions make up ~48% of 491 

the AMS-measured OA mass spectra. There is also a large contribution from C6H14N
+ at m/z 100. 492 

The large abundance of these reduced N-containing peaks contributes to the low correlation 493 

between the Bakery samples and other sites in Figure 5. 494 

 495 
Figure 6. The aerosol mass spectrum from Bakery 1 with prominent peaks at m/z 58, 86, and 100 496 

that are in the CHN family. 497 
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 498 

Though fast food sites have a lower correlation with other cooking sites in Figure 5, it is 499 

not primarily due to higher CHN levels like the bakery samples. The most abundant signals of 500 

Fast Food 1 and Fast Food 2 were in the category of CHO and CH groups, where their sum 501 

accounts for 73.3 % and 82.0 % of the total mass, respectively. Two samples from Fast Food 502 

sites show moderate to slightly large proportions of CHN family peaks (14% and 7%) and 503 

fC3H8N+ (2.15 and 2.33).  504 

While the C3H8N
+ fragment has been observed in all of our cooking site data, there is 505 

almost no contribution of m/z 86 (C5H12N
+) and 100 (C6H14N

+) in our samples except for the two 506 

bakery visits (Table S2), which were collected adjacent to a large commercial bread bakery. It is 507 

thus possible that m/z 86 and 100 are more associated with commercial bakeries than restaurant 508 

cooking. The underlying source of the reduced nitrogen ions, especially m/z 86 and 100 observed 509 

at the bakery, is unknown. One potential source could be the use of azodicarbonamide 510 

(C2H4N4O2, ADA), which is used as an aging and bleaching ingredient in bread baking. To test 511 

whether ADA contributed to nitrogen-containing emissions from bread baking, we baked bread 512 

with and without ADA addition. We used the AMS to measure the composition of PM emissions 513 

during fermentation (i.e., while the bread dough rose) and baking. While we observed OA 514 

emissions during baking, none of our experiments showed the CHN signals with C3H8N
+, 515 

C5H12N
+, and C6H14N

+. As a result, we cannot conclude that the presence of ADA leads to high 516 

proportions of CHN ions (SI Fig. 7). 517 

Abundant reduced nitrogen was also observed in the particle phase via LC-TOF and LC-518 

MS/MS measurements. To supplement the online measurements of functionalized aerosol-phase 519 

compounds, especially those containing nitrogen, offline analysis using LC-TOF was employed 520 
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for organic compound speciation for each restaurant site with sufficient mass loading, with soft 521 

ionization allowing for the molecular formula-level speciation of observed organic species. 522 

Based on the online AMS data showing differences in OA enhancement (Fig. 2), the samples 523 

were split into three sample groups, the six high-emitting restaurants (Bar/Res 1, Diner 2, Pizza, 524 

Bar/Res 2, Diner 1, Island Cuisine), the lower enhancement near-source cooking samples 525 

(Bakery 1, Bakery 2, Fast Food 1, Fast Food 2, Cafe), and urban samples excluding near-source 526 

cooking samples (i.e., samples taken in different neighborhoods and parks), though this likely 527 

includes cooking-related contributions to the urban background.  528 

Figure 7a shows the ion abundance volatility distribution of the different functionalized 529 

compound classes in the 6 samples with the highest PM concentrations (Fig. 2, see Fig. S10 for 530 

other samples). Compound volatilities were estimated from the generated formulas, assuming all 531 

species were at 300 K (Y. Li et al., 2016) from each sample, and all ion abundances were 532 

normalized by the sample volume for comparison across samples. Figure 7b shows the volatility 533 

distributions of ion abundances from the three sample groups, with the six more enhanced near-534 

source cooking samples demonstrating high ion abundance consistent with the higher mass 535 

concentrations of PM2.5 sampled. The six enhanced cooking samples in Figure 7a show a greater 536 

abundance of I/SVOCs compared to the other two sample groups, suggestive of fresh emissions. 537 

The observed mixtures are highly functionalized, with observed species containing nitrogen, 538 

oxygen, and sulfur, but we note that the LC-TOF employed here has poor ionization efficiencies 539 

for CH and CHS compounds, which are thus not considered for this analysis of functionalized 540 

compounds.  541 

While urban particulate matter has been shown to contain many functionalized species 542 

(Ditto et al., 2018; Ye et al., 2021), recent work has also shown cooking to be a source of 543 
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nitrogen and sulfur-containing species, which can be emitted in the gas-phase from foods such as 544 

vegetables (Marcinkowska & Jeleń, 2022) or formed through cooking (Ditto et al., 2022; Takhar 545 

et al., 2019). The urban background samples excluding cooking samples and the five lower 546 

enhanced near-source cooking samples have similar volatility distributions with nitrogen-547 

containing compounds (Fig. 7b, S11), which suggests a role for cooking emissions in the 548 

background functionalized OA composition in urban areas.  549 
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 550 

Figure 7. Averaged chemical composition of functionalized particle-phase organic compounds 551 

from (a) filters collected from the top six near-source cooking samples showing the highest 552 

enhancement in OA from the AMS measurements and (b) average ion abundance volatility 553 

distributions for the three sample groups, top six enhanced cooking samples, lower five near-554 

source cooking samples, and the urban samples excluding near source cooking samples. 555 

Volatility bins were defined for the same reference temperature in (a) and (b) (i.e., 300 K, as all 556 

samples were collected during summertime).  557 

 558 
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While all samples contained nitrogen-containing compounds, LC-MS/MS was used on 559 

select samples (Bakery 1, Pizza, background sample 5) from each sample group to compare the 560 

functionalities of observed nitrogen. After compounds observed via LC-TOF (i.e., Fig. 7a) 561 

underwent QC/QA, those compounds were selected for MS/MS analysis in a targeted mode 562 

similar to prior work (Ditto et al., 2020).  563 

Most nitrogen-containing compounds observed had an oxygen to nitrogen ratio (O/N) of 564 

less than 3, but other nitrogen-containing compound classes were present (Fig. 7, S11). Figure 8 565 

shows the observed nitrogen-containing functional groups for the three samples run on MS/MS, 566 

split by O/N ratio less than 3 or greater than or equal to 3. Here, the Bakery 1 compounds 567 

analyzed by MS/MS were dominated by reduced nitrogen features, with prominent amine and 568 

amide functional groups, especially for compounds with O/N ratios lower than 3, which in itself 569 

is indicative of the presence of reduced nitrogen structural features.   570 
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 571 

Figure 8. The relative abundance of nitrogen-containing functionalities in the Bakery 1, 572 

background sample 5, and Pizza MS/MS compounds are shown, separated by O/N ratio <3 on 573 

the left and ≧ 3 on the right, with prominently reduced nitrogen functionalities in the bakery 574 

sample. See Figure S13 for the complete range of functional groups and structural features 575 

observed in these samples. Enamine, nitrophenol, and nitrile functionalities were also searched 576 

for but were not detected in these three samples. 577 

 578 

 579 

 580 

 581 
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3.5. Particle size distributions and UFP enhancements in restaurant plumes 582 

To expand upon Figure 1’s observations of UFPs in an example restaurant plume, we 583 

examined UFP enhancements across the sampled restaurants and the size distribution of those 584 

emissions. 585 

 586 

Figure 9. Particle number enhancement (ΔPNC) at each restaurant site (with IQR). The sample 587 

names in (a) and (b) are placed in the same order as in Figure 2.  588 

 589 

 590 

Figure 9 summarizes the particle number concentrations above the background (ΔPNC) 591 

measured by the FMPS and scaled to the CPC. Similar to our ΔOA distribution in Figure 2, there 592 

are notable site-to-site differences in particle number concentrations with the sites breaking down 593 

into the higher and lower-emitting groups (high ΔPNC group mean ΔPNC > 105 #/cm3, low 594 

ΔPNC group mean ΔPNC < 105 #/cm3).  595 
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All of the high ΔPNC sites were also high ΔOA sites, but most sites do not have a strong 596 

correlation between mean ΔOA and mean ΔPNC (Fig. S8). A moderate positive correlation was 597 

observed in the time series of PNC and OA at Diner 1 (R2 = 0.64), Beef (0.63), Bar/Restaurant 2 598 

(0.60), and Bakery 1 (0.57); most other sites had poor correlations between ΔOA and ΔPNC (R2 599 

< 0.4).  This poor correlation may indicate that the emissions of OA and PNC are decoupled 600 

during cooking so that different activities boost emissions of OA mass versus particle number. 601 

For example, the PNC time series in Figure 1 has several spikes that do not have associated 602 

spikes in OA. 603 

 The PNC enhancements are less skewed than the OA enhancements. For PNC, the 604 

mean is always inside the IQR except for the BBQ sample, unlike several sites that had mean 605 

OA > 75th percentile. This implies that PNC emissions are less dominated by intense spikes 606 

than OA emissions. Figure 2 and Figure S4 show that OA concentrations often fell close to the 607 

background between spikes. PNC, on the other hand, was consistently elevated during the 608 

restaurant sampling. One possible explanation is that OA spikes are associated with cooking, 609 

whereas the consistently high PNC is associated with the heating of the cooking surface by either 610 

a natural gas flame or electricity (Amouei Torkmahalleh et al., 2018; Dennekamp et al., 2001; 611 

Wu et al., 2012). 612 

 613 
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 614 

Figure 10. Mean particle size distribution comparison of on-road, background, and high PNC 615 

restaurants observed at Bar/Restaurant, Diner, Pizza, and Island cuisine measured from the 616 

FMPS (Fast Mobility Particle Sizer). To fit the size distributions onto the same scale, all are 617 

normalized to the total particle number of each sampling period. Thus the integral over each of 618 

the normalized size distributions is 1. 619 

 620 

Figure 10 shows the mean particle size distributions for the “high PNC” restaurants 621 

from Figure 7a and the mean on-road and background particle size distributions from the period 622 

shown in Figure 1. All the restaurants emitted UFPs. The mode particle diameter from all 623 

sampled restaurants was less than 50 nm (Table 1), and the size distributions in Figure 10 clearly 624 

peak in the ultrafine size range. However, there is variability across the restaurants as some sites 625 

had bimodal size distributions, while others are closer to unimodal. For example, Bar/Restaurant 626 

1 has distinct modes at ~10 and 40 nm, whereas Island Cuisine has a single broad mode centered 627 

around 20 nm. There is also variability within sites. For example, Bar/Restaurant 2 has a 628 

unimodal distribution with a mode around 40 nm, and the size distribution differs from the other 629 
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sample at the same location, while the two samples at the Diner have nearly identical size 630 

distributions.  631 

In addition to being enhanced in terms of concentrations, the size distributions in the 632 

restaurant plumes are distinct from the average background size distributions, which have a 633 

bimodal distribution with a nucleation mode peak around 10 nm and an accumulation mode peak 634 

around 100 nm. Emissions from nearby vehicles dominate the on-road periods, with a bimodal 635 

size distribution around 10 nm and 20-40 nm, which is similarly observed in previous studies  636 

(Sturm et al., 2003; Wang et al., 2008; X. Yao et al., 2005).   637 

 638 

4. Conclusions and Atmospheric Relevance 639 

Using mobile measurements across a range of commercial cooking operations in two 640 

cities, our real-world sampling of cooking plumes from restaurants demonstrates substantial 641 

cooking-associated aerosol emissions with variability in the concentrations, chemical 642 

composition, and size distribution of PM and UFP emissions. Overall, emissions from most 643 

restaurants had similar mass spectra both to each other and to COA factors determined from 644 

factor analysis of ambient datasets. Aerosol mass spectra of cooking emissions were generally 645 

dominated by a mix of reduced (CxHy
+) and oxygenated (CxHyO

+) ions. 646 

There were significant site-to-site differences in the OA enhancement attributable to 647 

restaurant emissions. This variability is due to a combination of differences in the emission rate 648 

from each restaurant and in dilution between the restaurant exhaust and our sampling inlet, 649 

though we cannot quantify the importance of each process. Since at all locations our inlet was 650 

only a few meters from the restaurant exhaust, it is likely that differences in the emission rate 651 

dominate site-to-site variability. Previous research by Louvaris et al., 2017 investigated meat 652 
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charbroiling emissions diluted within a chamber and reported that approximately 80% of the 653 

COA persisted following isothermal dilution at ambient temperature (25 °C) by a factor of 10. 654 

This is consistent with much of the cooking OA being in the LVOC or ELVOC volatility range. 655 

Reduced nitrogen (N) was prevalent across all restaurant samples, contributing 656 

approximately 15% of the cooking organic aerosol (OA) mass at the sampled sites, with a 657 

diversity of reduced N functional groups observed. The presence of these reduced nitrogen 658 

species is confirmed with offline analysis of filter samples, which identified multiple N-659 

containing species with O/N < 3, indicating that these nitrogen containing species were unlikely 660 

to be organic nitrates. A notable finding of this study was the distinct composition of emissions 661 

collected from a commercial bakery, marked by the elevated presence of reduced nitrogen. 662 

Numerous studies have investigated cooking aerosol compositions, demonstrating that different 663 

cooking techniques and ingredients can elevate nitrogen content levels in cooking PM (Ditto et 664 

al., 2022; Masoud et al., 2022; Reyes-Villegas et al., 2018b; Rogge et al., 1991b). Nitrogen 665 

found in cooking emissions has diverse origins, including from the food itself with both natural 666 

(e.g., protein-rich and plant-based products) (Bak et al., 2019; Han et al., 2020) and 667 

anthropogenic sources (e.g., fertilizers and food additives like nitrates and nitrites) (Dimkpa et 668 

al., 2020; Karwowska & Kononiuk, 2020). Nitrogen in cooking PM can also be formed from 669 

heterogenous reactions with thermal degradation products formed during cooking (Ditto et al., 670 

2022). 671 

To further examine potential sources of the nitrogen features identified from the bakery 672 

emissions, we conducted an experiment with the AMS measuring bread baking emissions both 673 

with and without the dough stabilizer azodicarbonamide (C2H4N4O2) as a potential source of N-674 

containing peaks. While the reduced nitrogen peaks were not observed, this result implies the 675 
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challenge in determining specific sources of nitrogen-containing species, particularly in real-676 

world cooking environments, emphasizing the need for further investigation.  677 

This study also highlights that cooking emissions are substantial contributors to urban 678 

UFPs. Variability between sites was observed, with some sites displaying unimodal and others 679 

displaying bimodal size distributions. There are uncertainties in identifying the characteristics of 680 

UFPs from cooking emissions, such as their origin from cooking processes or natural gas usage, 681 

and potential changes in particle size distributions during dilution due to the evaporation of semi-682 

volatile components. Uncontrolled dilution in this study may have contributed to differences in 683 

UFP concentration and size distribution between sites (Lipsky & Robinson, 2006).  684 

In order to gain a deeper understanding of the factors influencing UFP size distribution 685 

from real-world cooking sources, further investigation is warranted, taking into account aspects 686 

such as restaurant proximity, food type, and order frequency. Consequently, subsequent research 687 

can identify the prevalent molecular features of reduced nitrogen in cooking emissions by setting 688 

constraints on specific parameters, providing a more comprehensive analysis. 689 

Overall, this study underscores the importance of comprehensively understanding 690 

cooking emissions, including their contribution to the PM2.5 mass, composition, and exposure 691 

variability across urban areas, in order to develop effective strategies for mitigating their impact 692 

on air quality and human health. Specifically, further research is needed to better understand the 693 

role of reduced nitrogen in atmospheric emissions from cooking activities. 694 

 695 
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