

1 **Model-based analysis of erosion-induced microplastic delivery from arable land to the
2 stream network of a mesoscale catchment**

3 Raphael Rehm^a, Peter Fiener^a

4 ^a University of Augsburg, Institute of Geography, *Alter Postweg 118, 86159 Augsburg,
5 Germany*

6 *Correspondance to:* Peter Fiener (peter.fiener@geo.uni-augsburg.de)

7

8 **Abstract**

9 Soils are generally accepted as sinks for microplastic (MP), but at the same time might be a MP source
10 for inland waters. However, little is known regarding the potential MP delivery from soils to aquatic
11 systems via surface runoff and erosion. This study provides for the first time an estimate of the extent of
12 soil erosion-induced MP delivery from an arable-dominated mesoscale catchment (390 km²) to its river
13 network within a typical arable region of Southern Germany. To do this, a soil erosion model was used
14 and combined with potential particular MP load on arable land from different sources (sewage sludge,
15 compost, atmospheric deposition and tyre wear) since 1950. The modelling resulted in an annual mean
16 MP flux into the stream network of 6.33°kg° in 2020, which was dominated by tyre wear (80%). Overall,
17 0.11–0.17% of the MP applied to arable soils between 1950 and 2020 was transported into the stream
18 network. In terms of mass, this small proportion was in the same range as the MP inputs from wastewater
19 treatment plants within the test catchment. More MP (0.5–1% of input between 1950 and 2020) was
20 deposited in the grassland areas along the stream network, and this could be an additional source of MP
21 during flood events. Most (5% of the MP applied between 1950 and 2020) of the MP translocated by
22 tillage and water erosion was buried under the plough layer. Thus, the main part of the MP added to
23 arable land remained in the topsoil and is available for long-term soil erosion. This can be illustrated
24 based on a ‘stop MP input in 2020’ scenario, indicating that MP delivery to the stream network until
25 2100 would only be reduced by 14%. Overall, arable land at risk of soil erosion represents a long-term
26 MP sink, but also a long-term MP source for inland waters.

27

hat gelöscht:

29 **1. Introduction**

30 The global microplastic (MP) contamination of different environmental compartments is currently the
31 focus of different research fields (Nasseri and Azizi, 2022; Tian et al., 2022; Zhang et al., 2022). Among
32 these, MP in soils have increasingly received scientific attention (Chia et al., 2021; Sajjad et al., 2022;
33 Zhou et al., 2020). Microplastic is mostly referred as plastic particles or fibres in a size range of 1 to
34 5000 µm, originating from the breakdown of larger plastic items or manufacturing at this scale for
35 various purposes (Frias and Nash, 2019; Kim et al., 2021). Many MP sources have been identified for
36 soil systems. Next to tyre wear (TW), stated as the main source (Knight et al., 2020a; Sommer et al.,
37 2018), littering (Scheurer and Bigalke, 2018) and atmospheric deposition (Brahney et al., 2020) also
38 serve as MP input pathways. Arable soils in particular often experience additional MP inputs associated
39 to agricultural soil management (Brandes, 2020). Mulch films (Ng et al., 2020), the use of compost and
40 sewage sludge as organic fertilizers (Braun et al., 2021; Liu et al., 2014; Zhang et al., 2020), irrigation
41 with contaminated (waste) water (Pérez-Reverón et al., 2022), as well as MP associated with coated
42 fertilizer and seeds (Accinelli et al., 2021; Lian et al., 2021), have proven to be the main input paths. MP
43 enters the soil system mostly via the surface and is mixed into the soil column via bioturbation (Heinze
44 et al., 2022; Li et al., 2021) and, in the case of small particles, via infiltration (Li et al., 2021). In arable
45 land, it is actively mixed into the plough layer via tillage operations (Weber et al., 2022; Zhao et al.,
46 2022; Zubris and Richards, 2005). Depending on the tillage technique, the MP is worked into the soil at
47 different depths and is more or less homogenized after multiple processing (Fiener et al., 2018; Weber
48 et al., 2022). Moreover, tillage potentially leads to mechanical fragmentation of macroplastic but also
49 reduces photochemical decomposition at the soil surface and reduces MP transport via water and wind
50 (Colin et al., 1981; Corcoran, 2022; Feuilloley et al., 2005).

51 Despite the known pathways into the soil, knowledge of the fate of MP particles once they enter the
52 soil system is limited (Guo et al., 2020; Hurley and Nizzetto, 2018; Tian et al., 2022). However, the

hat gelöscht: Speaking of microplastic, we refer to tiny plastic particles, less than 5 mm, that originate

hat gelöscht: are manufactured at a small scale

hat gelöscht: increased

hat gelöscht: due to agricultural management and associated additional MP sources, compared to soils not used for agricultural purposes.

hat gelöscht: Arable soils in particular often experience increased MP inputs due to agricultural management and associated additional MP sources

hat gelöscht: as a result of agricultural management

64 question arises as to whether the terrestrial MP sink releases relevant amounts of MP for water bodies
65 via water erosion. If so, the soils, as an MP sink, could represent an important MP source for water
66 bodies. Besides very slow, not very well determined processes of plastic fragmentation (Corcoran, 2022),
67 there is also only a small number of studies analysing vertical MP transport due to bioturbation (Heinze
68 et al., 2022; Li et al., 2021) and leaching (Chia et al., 2021; Viaroli et al., 2022) within the soil column,
69 or lateral losses to other ecosystems via erosion processes (Borthakur et al., 2022; Bullard et al., 2021;
70 Rehm et al., 2021).

71 The potential lateral transport via (water) erosion processes might be analysed using existing
72 modelling techniques. Such approaches face two major challenges: modelling approaches are required
73 which allow the cumulative loss of MP to adjacent ecosystems to be determined while taking spatial
74 differences in MP contamination and site-specific erosion into account. Moreover, the long-term change
75 in MP concentrations in the plough layer should be considered, following mixing with subsoil at
76 erosional sites or burial of MP below the plough layer at depositional sites.

77 In general, there are different water erosion modelling approaches available, ranging from physically-
78 oriented models (MCST, Fiener et al., 2008; e.g. EROSION3D, Schmidt et al., 1999), which might be
79 suitable for dealing with the specific particle size and density of MP during transport in the case of
80 individual erosion events, to conceptual approaches e.g. WaTEM/SEDEM, (Van Oost et al., 2000; Van
81 Rompaey et al., 2001), which are able to consider long-term cumulative MP soil contamination and the
82 associated long-term soil and MP erosion, transport and deposition. In general, models of the first type
83 are very parameter and input data intensive and are mostly applied in small catchments, while the second
84 type of model needs less detailed data and is often used for mesoscale catchments (Nunes et al., 2018).
85 Following the requirements outlined above, conceptual, long-term approaches that account for spatial
86 variability in MP soil contamination and erosion processes seemed to be more appropriate than process-
87 oriented models to simulate the magnitude of erosion-induced MP delivery to the stream network of

hat gelöscht: (

89 mesoscale catchments. As MP loss below the plough layer might be also important in reducing topsoil
90 MP contamination, such a model approach should not only simulate water erosion, but also tillage
91 erosion processes leading to a reduction of the MP concentration at erosional sites and MP burial below
92 the plough layer at depositional sites. One of the few models simulating long-term water and tillage
93 erosion in a spatial context that updates the soil properties within the soil profile is the SPEROS-C model
94 (Fiener et al., 2015; Van Oost et al., 2005b). The water and tillage erosion components of the model,
95 originating from the WaTEM/SEDEM model (Van Oost et al., 2000; Van Rompaey et al., 2001), were
96 tested in several micro- and mesoscale catchments (Krasa et al., 2005; Verstraeten and Prosser, 2008).

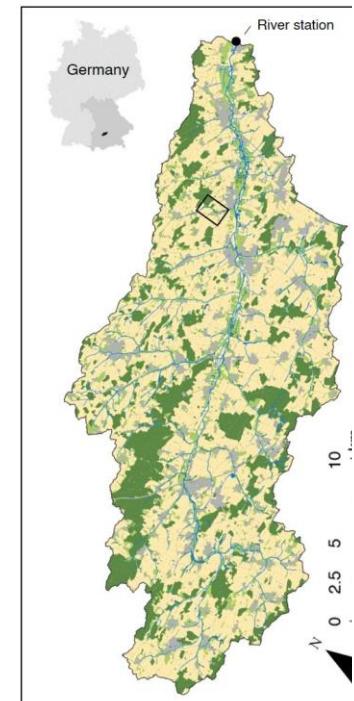
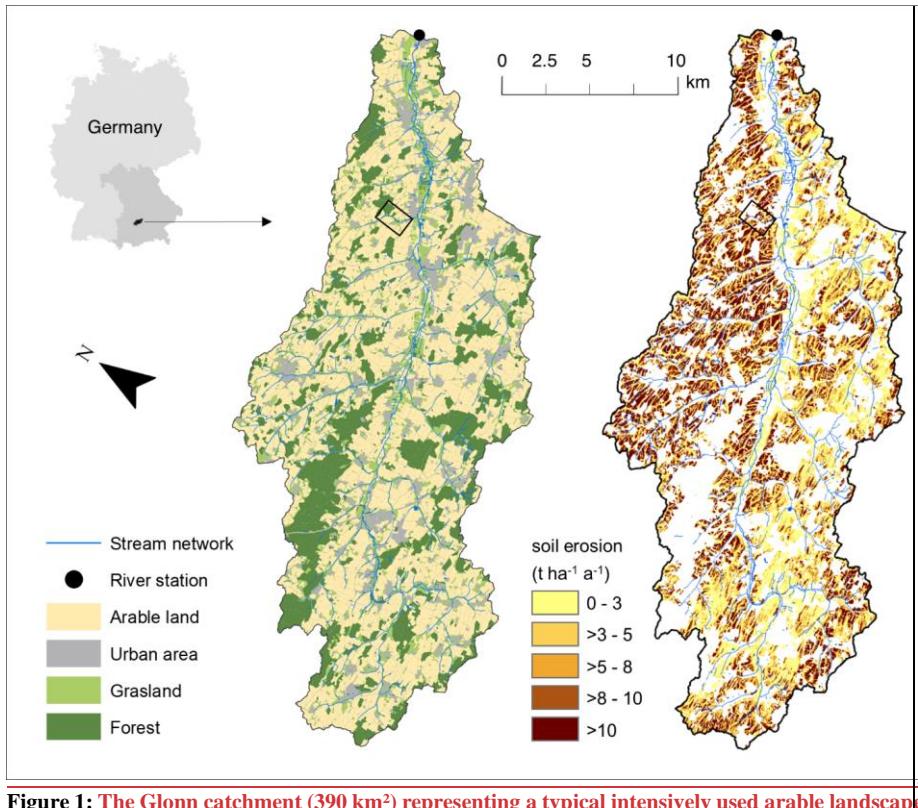
97 The general objective of this study is to investigate MP transport from arable land to the stream
98 network in an example mesoscale (390 km^2) arable catchment in Southern Germany. Therefore, the
99 model SPEROS-C was adjusted to study the importance of water and tillage erosion processes for
100 particular MP transport. Specifically, this study focuses on the following areas: (i) quantifying the
101 importance of the water erosion pathway for MP input to the stream network in an example mesoscale
102 catchment, while taking into account the large uncertainties, particularly in estimates of MP input to soil;
103 (ii) determining the importance of different erosion processes in changing the MP concentration in the
104 plough layer and burying MP below the plough layer, and (iii) using scenarios to determine future
105 pathways of diffuse MP delivery into the stream network.

106 **2. Methods**

107 **2.1. Test catchment**

108 The catchment was chosen for two main reasons: (i) it represents an intensively used arable landscape
109 in Southern Germany with hilly terrain and highly productive, loess-burden soils, and (ii) the Bavarian
110 States Office for Environment has monitored discharge and sediment delivery at the outlet since 1968,
111 which allows the erosion component of the model to be tested. The mesoscale Glonn catchment

hat gelöscht: carbon transport model



113 (48°22'N, 11°24'E) covers 390 km² and its altitude ranges from 578 m in its south-west to 447 m a.s.l.
114 at its outlet in the north-east (Fig. 1). Mean annual temperature and mean precipitation of the region are
115 7.5°C and 876 mm respectively, with the most intense rainfall events associated with convective rainfall
116 in summer. The hilly landscape (4.7±3.7° main slope) is characterized by loamy Cambisols (WRB, 2015)
117 on the elevated terrain and loamy Gleysols (WRB, 2015) in the valleys. Land cover in this area is
118 dominated by arable land (54%), followed by forest (21%), grassland (14%) and settlements (11%) (Fig.
119 1). The main crops are arranged in a corn-grain rotation. Due to the rolling topography and the erosion-
120 prone soils, a potential long-term mean soil erosion of 5.9 t ha⁻¹ a⁻¹ (based on the German version of the
121 Universal Soil Loss Equation ABAG) could be calculated for arable land within the catchment (LfL,
122 2023) with potential erosion rates up to 10 t ha⁻¹ a⁻¹ (Fig. 1).

hat gelöscht: average,

hat gelöscht: Due to the topography and the soils, erosion rates reach values of about 10 t ha⁻¹ a⁻¹ with an average erosion rate of 5.4 t ha⁻¹ a⁻¹ for the Glonn catchment

hat gelöscht:

hat gelöscht: (Auerswald et al., 2009; LfL, 2023)

129
130 **Figure 1:** The Glonn catchment (390 km^2) representing a typical intensively used arable landscape
131 in Southern Germany. The left and right maps show the land use and the soil erosion within the
132 catchment (with a potential long-term mean soil erosion of $5.9 \text{ t ha}^{-1} \text{ a}^{-1}$), respectively. The black
133 rectangle in the catchment marks the section of the detailed maps in Fig. 7.
134

135 **2.2. Model**

136 The erosion and MP transport is modelled based on a modified version of the spatially distributed
137 water and tillage erosion and carbon (C) turnover model SPEROS-C (Fiener et al., 2015; Van Oost et
138 al., 2005a). SPEROS-C was deliberately selected as (i) it allows the spatially explicit integration of yearly
139 MP inputs since 1950, (ii) it routes sediment and MP through the landscape while including deposition of

- hat gelöscht: with highly erosion rates
- hat gelöscht: illustration
- hat gelöscht: s
- hat gelöscht: in $\text{t ha}^{-1} \text{ a}^{-1}$
- hat formatiert: Hochgestellt
- hat formatiert: Hochgestellt
- hat gelöscht: The Glonn catchment (390 km^2) representing a typical intensively used arable landscape in Southern Germany. The black rectangle within the catchment marks the section of the detailed maps in Fig. 7.
- hat gelöscht: trough

150 both, and (iii) it includes water and tillage erosion as well as a yearly soil profile update (10 layers of 10
151 cm thickness) accounting for changes in MP allocation following erosion or deposition. Both, the
152 modeled deposition and the MP soil profile update allow us to analyze potential MP landscape sinks
153 either in space (e.g., in grassed areas) or in depths below the plough layer, where MP is not affected by
154 water erosion anymore.

155 The model was originally developed to analyse the long-term effect of soil erosion on landscape-scale
156 carbon balance (e.g. Nadeu et al., 2015), whereas the erosion components are based on the erosion and
157 sediment transport model WaTEM/SEDEM, which was extensively tested and validated in different
158 regions of the world (Krasa et al., 2005; Van Oost et al., 2000; Van Rompaey et al., 2001; Verstraeten
159 and Prosser, 2008). The most important model components for this study are: (i) the water erosion and
160 sediment transport component, (ii) the tillage erosion component, and (iii) the lateral redistribution and
161 the vertical mixing of MP in the soil profile following erosion and deposition processes. The model
162 component responsible for C turnover was not used and focuses exclusively on the erosion, transport,
163 and deposition of C as MP, taking into account the spatially differently distributed MP inputs from
164 different MP sources. As a result of these changes, the model is referred to as SPEROS-MP for the
165 purposes of this study. Based on the model structure it cannot account for particle size-specific selective
166 erosion, and hence, the model does not consider preferential erosion of plastic particles, depending on
167 the size, shape, density, etc. of different polymers. However, the model can account for different transport
168 pathways of different MP input sources, e.g., routing tyre wear from fields along streets throughout to
169 catchment to the stream network.

170 *Water erosion component:* The water erosion component of SPEROS-MP consists of two main parts.
171 First, the erosion potential of each raster cell (5 m x 5 m) is estimated based on the German version of
172 the Universal Soil Loss Equation ABAG (Schwertmann et al., 1987). The major advantage of this well-

hat gelöscht: modelled

hat gelöscht: allows

hat gelöscht: analyse

hat gelöscht:

hat gelöscht:

hat gelöscht: SPEROS-C was deliberately selected as a spatially and temporally explicit model for specific reasons. The use of a spatially and temporally explicit model is essential due to our assumption of spatially and temporally variable MP inputs and the consideration of MP accumulation since 1950, enabling a comprehensive integration of these spatio-temporal dynamics into the analysis. The model's ability to transport sediments and microplastics across the landscape, including deposition mechanisms, generates detailed, annually updated concentration patterns of microplastics in soil layers from 10 cm thick to one meter deep, illustrating potential scenarios for microplastic deposition to other land uses such as grasslands or burial under plow layers through erosion processes. These scenarios illustrate potential scenarios for microplastic deposition in other land uses such as grasslands or burial under the plow layer by erosion processes and allow a comprehensive analysis of microplastic behavior, including potential leaching into shallow groundwater from grasslands near streams.

hat gelöscht: As the model component addressing C turnover is not used and instead MP erosion, transport and deposition is included while considering the spatially distributed MP inputs, the model is subsequently referred to as SPEROS-MP.

hat gelöscht: The SPEROS-C model operates on a mass-balanced principle, calculating C input in mass (kg m²). For the purposes of this study, the C turnover component of SPEROS-C was not utilized, leading to the adaptation of the model as SPEROS-MP. In its MP-specific iteration, SPEROS-MP estimates MP input in mass (kg m²). Consequently,

hat gelöscht: not account for the

hat gelöscht: is able to

hat gelöscht: .

hat gelöscht: or

Kommentiert [PF1]: Muss auch im point-to-point response angepasst werden.

hat gelöscht: specific characteristics such as polymer type, particle number, size, shape, density, or chemical properties of MP particles from various sources. It treats the erodibility of MP from all input pathways equally, aligning with its approach of considering all potential microplastics without differentiation based on their properties.

hat gelöscht: As the C turnover component of SPEROS-C was not used in this study but the MP component was introduced, the model will subsequently be referred to as SPEROS-MP.

218 tested approach is that the input data to calculate the different USLE (ABAG) factors are available from
 219 the Bavarian State Office of Agriculture (Bayerische Landesanstalt für Landwirtschaft; LfL) and are
 220 regularly updated by the State Office administration. Sediment transport per raster cell, and hence
 221 deposition if transport capacity is smaller than sediment influx, is calculated using Eq. 1:

222
$$T_c = k_{tc} \cdot R \cdot C \cdot K \cdot LS_{2D} \cdot P \quad (\text{Eq. 1})$$

223 Where T_c is the transport capacity ($\text{kg m}^{-1} \text{a}^{-1}$), k_{tc} is the transport coefficient; R ($\text{N h}^{-1} \text{a}^{-1}$), C (-), K ($\text{kg h m}^{-2} \text{N}^{-1}$) and P (-) are the rainfall erosivity, soil cover, soil erodibility, and management factors of the
 224 USLE calculated for Bavaria following the approach of Fiener et al. (2020). LS_{2D} is a grid cell-specific
 225 topographic combined slope gradient and lengths factor calculated following Desmet and Govers (1996,
 226 using the digital elevation model (DEM) with a resolution of 5 m x 5 m.

228 *Tillage erosion component: Tillage erosion is calculated based on a diffusion-type equation adopted*
 229 *from Govers et al. (1994), which generally assumes that tillage erosion is proportional to slope gradient*
 230 *(Van Oost et al., 2006);*

231
$$Q_{til} = -k_{til} \frac{\Delta h}{\Delta x} \quad (\text{Eq. 2})$$

232 where Q_{til} is the soil flux in $\text{kg m}^{-2} \text{yr}^{-1}$, Δh is the elevation difference in metres, Δx is the horizontal
 233 distance in meters, and k_{til} is the tillage transport coefficient in $\text{kg m}^{-1} \text{yr}^{-1}$:

234
$$k_{til} = BD_i \cdot TD_i \cdot x_{til} \quad (\text{Eq. 3})$$

235 where x_{til} is the tillage translocation distance in meters, BD_i is the soil bulk density in kg m^{-3} , TD_i is
 236 the vertical depth of tillage depth (20 cm). It is important to note that tillage erosion has no direct effect
 237 on sediment or MP delivery into the stream network, but over time it modifies the MP concentration in

hat gelöscht: The tillage erosion module of SPEROS-MP follows a diffusion-type equation adopted from Govers et al. (1994) that derives tillage erosion based on change in topography and management-specific coefficients:

hat gelöscht: metres

hat gelöscht: r

hat gelöscht: r

hat gelöscht: For the Glonn catchment, we used a constant k_{til} value of $350 \text{ kg m}^{-1} \text{yr}^{-1}$, which was determined for another loess dominated region within Germany by Wilken et al. (2020). Consequently, tillage erosion or deposition is most prominent if slope gradient changes, with most soil loss modelled at convexities and most soil accumulation at concavities.

hat gelöscht: T

252 the plough layer of different raster cells, leading to a decrease in MP delivery, because at erosional sites
253 subsoil with little potential MP is mixed into the plough layer, while MP at depositional sites is buried
254 below the plough layer.

255 *MP redistribution and vertical mixing:* It is generally assumed that MP is entering the soil via its
256 surface and is immediately mixed into the plough layer (upper 0.2 m). The MP input to arable land is
257 estimated at field level (see input estimate below). For MP erosion the concentration in the plough layer
258 of each 5 m x 5 m raster cell was multiplied with the bulk soil erosion of this raster cell to calculate the
259 MP outflux to neighbouring cells. The MP concentration of the transported sediment is analogously used
260 to calculate potential MP deposition. After each year of modelling water and tillage erosion, the soil
261 profile is updated assuming a tillage operation to a constant depth of 0.2 m. Consequently, MP-free
262 subsoil is mixed into the plough layer at erosional sites, decreasing the topsoil MP concentration, while
263 at depositional sites the deposited MP is mixed with the underlying old plough layer, creating a new
264 topsoil MP concentration and some MP in the layer no longer reached by the plough. Over the years this
265 creates a steadily increasing variability in MP concentration within fields and transports MP into soils of
266 other land uses (e.g. grassland and forest sites) assumed not to get other MP inputs.

267 **2.3. Data**

268 **2.3.1. Soil erosion model inputs and parameters**

269 For the study area, the LfL provided a digital elevation model (DEM, raster 5 m x 5 m), land-use data
270 (field based), and a soil map (1:25,000) as well as most USLE factors (Tab. 1). For the sake of simplicity
271 and because long-term data on soil management was missing, only the rainfall erosivity (R factor of the
272 USLE) was calculated yearly. Therefore, we followed the approach of Schwertmann et al. (1987) using
273 a relation between annual rainfall erosivity and mean annual precipitation. Based on annual precipitation
274 available in a 1 km x 1 km grid resolution from the German Weather Service (DWD, 2020). yearly R

hat nach unten verschoben [1]: K_{tc} values for different land use types must be determined through calibration (Dlugob et al., 2012). A transport capacity coefficient k_c of 150 m was used as the optimum value for cropland for a 5 m x 5 m grid resolution, calibrated by Van Oost et al. (2003).

hat gelöscht: (Dlugob et al., 2012; Van Oost et al., 2003).

hat gelöscht: on a yearly basis

hat gelöscht: , following

hat gelöscht: ,

hat gelöscht: the

hat gelöscht: N (mm/a). N was available in

hat formatiert: Schriftart: Kursiv

286 factor maps were created as model input. It is therefore important to note that the variation in model
 287 sediment fluxes is solely a result of varying the annual rainfall erosivity, while changes in land
 288 management (affecting the C factor of the USLE) are not considered. However, the primary focus of the
 289 study was to showcase the potential magnitude and variation of MP delivery, also affected by varying
 290 MP input in space and time since 1950. We assumed a corn-grain crop rotation (with a mixture of small
 291 grain crops and a proportion of row crops of 25%) typically found in the region and used the USLE
 292 calculator developed by Brandhuber et al. (2018), resulting in a C factor of 0.15, which is constantly
 293 used for all arable land in the catchment (Tab. 1). Routing sediments from arable land to the stream
 294 network, requires a sediment transport through other land uses, like forest, grassland, or paved surfaces.
 295 Therefore, these land uses need to be part of the erosion modelling and hence also require a C factor. For
 296 forest and grassland, a low C factor of 0.004 and for paved surfaces a C factor of 0.001 was applied
 297 (Brandhuber et al., 2018). A K factor map was provided by the LfL (derived from the soil properties
 298 given by the soil overview map of Bavaria at a scale of 1:25,000) based on the calculation in
 299 Schwertmann et al. (1987). The LS_{2D} factor was derived from the 5 m x 5 m DEM, following the approach
 300 of Desmet and Govers (1996). Assuming some soil conservation methods to be in place, e.g. partial
 301 contour ploughing, the P factor was set to 0.85 (Fiener et al., 2020).

302 The values of the transport capacity coefficient k_{tc} for different land use types must be generally
 303 determined through calibration or taken from calibrated literature values (Dlugoß et al., 2012). Based on
 304 an extensive study of Van Oost et al. (2003), who tested the sensitivity of the transport capacity
 305 coefficient for different arable land and different raster resolutions, an optimum value in case of a 5 m x
 306 5 m grid resolution of $k_{tc} = 150$ m was determined, which is used in this study. The author (Van Rompaey
 307 et al., 2001) identified favorable k_{tc} values ranging between 0 and 60 for non-erosive landscapes at a
 308 20x20 m grid, with an optimum at 42. Given my use of a finer 5x5 m grid resolution, scaled down by a
 309 factor of 4, a k_{tc} value of 10 was estimated for forest and grassland.

hat gelöscht: T
 hat gelöscht: the
 hat gelöscht: are
 hat gelöscht: is limited to altering
 hat formatiert: Schriftart: Kursiv
 hat gelöscht: due to insufficient available input data dating back to 1950.

hat gelöscht: and to explore system behavior. The variability in annual precipitation erosivity is determined by the annual average of precipitation.

hat gelöscht: The modeling approach used works with an annual time step. Average values are used for the model input data (especially the constant coverage factor). The variation of the annual precipitation erosivity is generated by the annual average of precipitation. ...

hat gelöscht: On the way from the field to the

hat gelöscht: water body

hat gelöscht: however, the

hat gelöscht: and

hat gelöscht: has to be considered.

hat formatiert: Schriftart: Kursiv

hat gelöscht: In the case of

hat gelöscht: settlements

hat formatiert: Schriftart: Nicht Kursiv

hat verschoben (Einfügung) [1]

hat gelöscht: K

hat gelöscht: values

hat gelöscht: study

hat gelöscht: A transport capacity coefficient

hat gelöscht: of

hat gelöscht: used as the optimum value for cropland for a 5 m x 5 m grid resolution, calibrated by Van Oost et al. (2003).

338 The tillage transport coefficient k_{til} depends on the tillage implement, tillage speed, tillage depths, bulk
 339 density, texture and soil moisture at time of tillage (Van Oost et al., 2006). For the tillage erosion
 340 modeled, a constant k_{til} value of $350 \text{ kg m}^{-1} \text{ a}^{-1}$ for all fields was assumed (Tab. 1), which is a conservative
 341 estimate of a mixture of mouldboard and chisel ploughing (Van Oost et al., 2006).

hat gelöscht: modelled

342 **Table 1: Model parameters used in SPEROS-MP.**

Parameters	Value	Unit	Comment	Reference
R	0.048-0.089	$\text{N h}^{-1} \text{ a}^{-1}$	Varies annually, controls the variability of the model	DWD (2020)
C				
<i>Arable land</i>	0.15	-	Does not vary spatially within different land uses	<i>Brandhuber et al., 2018</i>
<i>Forest and grassland</i>	0.004	-		
<i>Urban area</i>	0.001	-		
K	5-55	$\text{kg h m}^{-2} \text{ N}^{-1}$	Varies spatially depending on soil texture	<i>Fiener et al., 2020</i>
P	0.85	-		<i>Fiener et al., 2020</i>
k_{tc}				
<i>Arable land</i>	150	m	Does not vary spatially within different land uses	<i>DLugob et al., 2012</i>
<i>Forest and grassland</i>	10	m		<i>Van Rompaey et al., 2001</i>
<i>Urban area</i>	0	m		
k_{til}	350	$\text{kg m}^{-1} \text{ a}^{-1}$		<i>Van Oost et al. 2006</i>

343

344 2.3.2. MP contamination of soils

345 Because sampling and sample analysis would be extremely time consuming and costly, it is not
 346 possible to determine the actual MP concentrations in a 390 km^2 catchment where estimates from MP
 347 inputs suggest large spatial heterogeneity. Hence, the potential soil-MP contamination needs to be
 348 estimated from the potential MP input from different sources. As soil erosion is dominant on arable land,
 349 an exclusive input estimate was performed for arable land. However, it is important to emphasize that
 350 except for tyre wear, estimates are based on regional means for the whole of Bavaria and that in general

hat gelöscht: ¶

hat gelöscht: USLE factors

hat gelöscht: Factors of the USLE

hat nach unten verschoben [2]: k_{tc}

Formatierte Tabelle

Formatiert: Links

hat verschoben (Einfügung) [2]

hat formatiert: Nicht Hochgestellt/ Tiefgestellt

hat gelöscht: 150

hat formatiert: Schriftart: Kursiv

hat gelöscht: m

hat gelöscht: *DLugob et al., 2012*

hat formatiert: Schriftart: Kursiv

hat formatiert: Schriftart: Kursiv

Formatiert: Links

hat formatiert: Schriftart: Kursiv

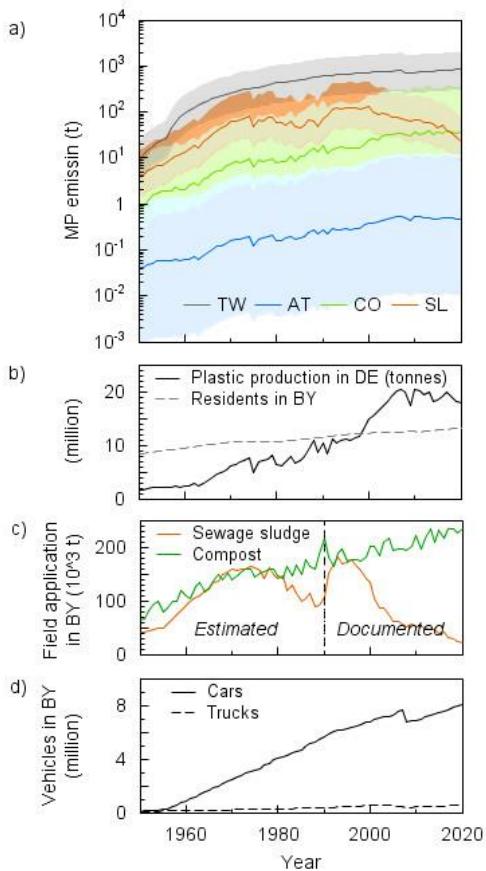
hat gelöscht:

hat gelöscht: most

361 estimates of the MP accumulated in the catchment soils since the 1950s needs a number of assumptions
362 and simplifications, resulting in large uncertainties regarding the MP concentrations in soils. To account
363 for these uncertainties in the model outputs and arrive at a robust indication of the potential contribution
364 of soil erosion as a source of MP in the stream network, we estimated the potential yearly mean,
365 minimum and maximum soil-MP input for each input pathway (see below) and did separate and
366 combined modelling runs for the different contamination estimates. As mentioned earlier, mean MP
367 inputs from sewage sludge, compost and atmospheric deposition were estimated from means for all
368 arable land in Bavaria, while input of tyre wear was derived using catchment specific road data and road
369 specific traffic data as far as possible. These represent the typical sources in the agricultural landscape
370 of Southern Germany, along with MP, applicable for SPEROS-MP. Other potential MP input pathways,
371 for instance from plastic used in agricultural management (e.g. mulch films) or from littering, were not
372 considered for two main reasons. (i) In Bavaria mulch films are mostly associated with certain regions
373 where specific crops or vegetables are grown, especially asparagus. For our test site this is not the case,
374 and using the average area of mulch cover in Bavaria to estimate the potential mean input in the
375 catchment would have resulted in very small input amounts, not comparable with other regions in the
376 world, where mulch films can be a very important source of MP (Li et al., 2022; Liu et al., 2014). (ii)
377 Larger macroplastic fragments from mulch films and littering should only be transported with severe rill
378 and ephemeral gully erosion, which are not the dominant erosion processes in the region.

379 2.3.3. *Sewage sludge and compost*

380 Sewage sludge and compost as soil amendments (organic fertilizers) contain different quantities of
381 microplastic and, in the case of compost, small macroplastic. The first step was to estimate the amount
382 of sewage sludge and compost applied on Bavarian agricultural soils since 1950. Bavarian waste reports
383 (LfU, 1990-2020) allowed us to determine the mean annual input on arable land for the time period


hat gelöscht: any

hat gelöscht: are based on

386 1990–2020. Historical application rates of compost were determined based on a linear relationship
387 between application rates and population numbers between 1990 and 2020 (the variability was continued
388 at random) (LfStaD, 2022) (Fig. 2b, c). In the case of sewage sludge, the number of residents connected
389 to the sewage system was taken into account (Schleypen, 2017). The gaps between historical individual
390 values were interpolated. The development of plant technology and the use of sewage sludge between
391 1945 and 1990 were considered, as described by Schleypen (2017). While compost was constantly used
392 as an organic fertilizer, the use of sewage sludge was quite variable over time (Fig. 2c). From 1970
393 onwards new wastewater treatment plant (WWTP) technology meant that the sewage sludge was no
394 longer allowed to accumulate dry, but rather as wet sludge (Schleypen, 2017). This led to a sharp drop
395 in the use of sewage sludge as a fertilizer and it was not until the 1990s that it became popular again
396 (Fig. 2c). Since 2017, the application of sewage sludge has been largely banned in Bavaria (Schleypen,
397 2017).

398 The second step was to estimate the MP concentrations in sewage sludge and compost. To do this,
399 current literature values were used to estimate the MP concentrations for 2020. A minimum, mean and
400 maximum MP concentration was always considered, based on the range of values from literature. For
401 sewage sludge, data from Edo et al. (2020) were used; this is, to our knowledge, one of the few studies
402 providing a mass balance of MP for a WWTP by specifying the total wastewater volume and the total
403 amount of sewage sludge per day. The sum of the MP particles filtered out (contained in sewage sludge)
404 and the delivered MP from the WWTP effluent results in the number of MP detected in the WWTP input.
405 Edo et al. (2020) consider size classes 25–104 µm, 104–375 µm and 375–5,000 µm and their data show
406 that 95% of the MP in the WWTP is retained in the sewage sludge, which is consistent with other
407 publications giving ranges of 93–98% (Habib et al., 2020; Tang and Hadibarata, 2021; Unice et al.,
408 2019). For compost, data from Braun et al. (2021) were used, which contain all essential data on MP in

409 compost from Germany. They examined MP in the size ranges $< 1,000 \mu\text{m}$, $1,000\text{--}5,000 \mu\text{m}$ and $> 5,000$
 410 μm . For the mass calculation of the MP in compost, macroplastics are also included.

411
 412 **Figure 2:** a) The MP emissions for arable land in Bavaria from the different sources, tyre wear
 413 (TW), sewage sludge (SL), compost (CO) and atmospheric deposition (AT), from 1950 to 2020. b)
 414 The development of plastics production in Germany and the population of Bavaria since 1950. c)
 415 Amount of application of sewage sludge and compost as fertilizer on Bavarian arable land. d)
 416 The number of registered cars and trucks in Bavaria since 1950.

417

418 Both publications, Edo et al. (2020) and Braun et al. (2021), provide information on the size
419 distribution of the detected MP particles. This enabled the most accurate conversion possible between
420 mass and particle number. When converting, the particle size, size distribution and shape were taken into
421 account. While a spherical shape was assumed for sewage sludge, for compost the most realistic possible
422 volume for each detected particle was calculated (individual dimensions have been provided by the
423 authors of Braun et al. (2021). Based on the type of plastic detected, an average density of 1 was assumed
424 for all particles. An average MP load of 1.14 g MP kg⁻¹ dry matter of sewage sludge (min.: 0.42 g, max.:
425 4.04 g) and 0.15 g MP kg⁻¹ dry matter of compost (min.: 0.05 g, max.: 1.36 g) was assumed.

426 Based on the known amounts of sewage sludge and compost applied, it was possible to calculate the
427 corresponding amount of MP that ends up on Bavarian agricultural soils (kg m⁻²). When calculating the
428 MP concentration back to 1950, the amount of plastic produced in Germany was considered for each
429 year, as the MP concentration depends on the level of production (Fig. 2a, b). The annual amount of MP
430 was then evenly distributed across all agricultural fields in Bavaria, since spatial allocation within the
431 study area was not possible. Due to the lack of parcel-specific information before 2015 for sewage
432 sludge, we estimated MP inputs using average values per field, similar to compost. However, primary
433 aim in this modelling exercise wasn't to precisely replicate MP delivery in the Glonn catchment. Instead,
434 to demonstrate the model's use in a system analysis, acknowledging limitations in historical data
435 availability.

436 Between 1950 and 2020, a total of 7.26 million tonnes of sewage sludge and 11.7 million tonnes of
437 compost were added as organic fertilizer on agricultural fields in Bavaria. Hence it can be estimated that
438 4,090 t (min.: 1,510 t, max.: 14,500 t) and 1,110 t (min.: 358 t, max.: 10,100 t) of MP from sewage sludge
439 and compost, respectively, was dumped on arable land in Bavaria. From that, an average input on the
440 arable land in the Glonn River catchment of 42,100 kg MP from sewage sludge (min.: 15,500 kg, max.:

hat gelöscht: s

hat gelöscht: calculated estimates

hat gelöscht: assuming stability in MP inputs over time

hat gelöscht: modeling

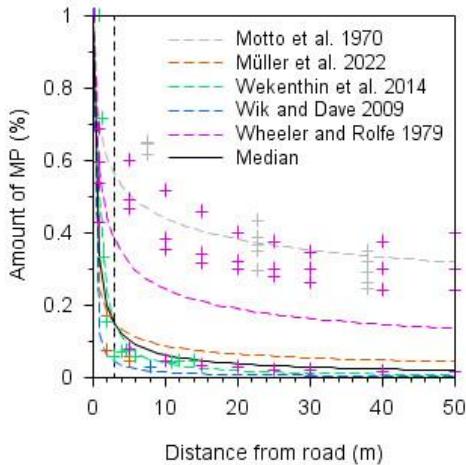
445 149,000 kg) and 11,500 kg MP from compost (min.: 3,660 kg, max.: 104,000 kg) was calculated. For
446 the arable land in the Glonn River catchment, this means an average annual MP application of 240 kg
447 MP from sewage sludge (min.: 90 kg, max.: 860 kg) and 370 kg from compost (min.: 120 kg, max.:
448 3,390 kg) in 2020 (Tab. 2). This results in a current entry rate of $1.14 \text{ mg MP m}^{-2} \text{ a}^{-1}$ (min.: 0.42 mg, 4.04
449 mg) from sewage sludge and $1.75 \text{ mg MP m}^{-2} \text{ a}^{-1}$ (min.: 0.56 mg, max.: 15.8 mg) from compost.

451 *2.3.4. Atmospheric deposition*

452 For the atmospheric deposition of MP, the data from four bulk deposition measurements (precipitation
453 and dust deposition) in Bavaria (Witzig et al., 2021) were combined with the development of plastics
454 production in Germany since the 1950s. Historically, the calculation of MP load relied on the assumption
455 that increased plastic production corresponds to higher emissions (Fig. 2a), although this approach is
456 notably simplified. This results in a mean cumulative atmospheric MP input on arable land in Bavaria of
457 18 tons of MP (min.: 0.41 t, max.: 407 t). Between 1950 and 2020, the arable land in the Glonn River
458 catchment was loaded with a total of 186 kg of MP (min.: 4.20 kg, max.: 4,200 kg). For 2020 an average
459 annual MP immission of 4.76 kg (min.: 0.11 kg, max.: 107 kg) or $0.02 \text{ mg MP m}^{-2} \text{ a}^{-1}$ (min.: 0.0005 mg,
460 max.: 0.5 mg) via atmospheric deposition was calculated (Tab. 2).

461 *2.3.5. Tyre wear*

462 To determine the tyre wear particle input in the Glonn catchment we used existing traffic counting data
463 from 2005, 2010 and 2015 for the main roads (motorways, federal roads, state roads and district roads)
464 available from the Bavarian Road Information System (BAYSIS, 2015). Traffic volume for smaller roads
465 (except farm roads) in rural areas were derived from a 1 km x 1 km population density grid following
466 Gehrke et al. (2021). Based on these data the traffic volume (number of vehicles per km) for each paved
467 road in the Glonn catchment could be estimated for the years 2005, 2010 and 2015. This was done


hat gelöscht: Table 2: MP inputs into arable soils within the test catchment, separated by different sources. All values are listed for the modelled time span 1950–2020 and separately for the year 2020. ¶

hat gelöscht: As no better data were available it was assumed that the measured atmospheric deposition of MP in 2020 is proportional to German plastics production in general (Fig. 2a)

476 separately for passenger cars (cars), heavy-duty vehicles (trucks) and motorcycles. For all other years,
477 the traffic volume (number of vehicles per km) per road was linearly extrapolated based on the traffic
478 volume in and the number of registered cars and trucks in Bavaria (LfStaD, 2022) (Fig. 2d). No emissions
479 from unpaved roads and agricultural machinery were considered.

480 A minimum, medium and maximum scenario was considered, based on the quantity of released tyre
481 particles specified in the literature. A mean tyre wear emission factor of 90 mg TW km⁻¹ (min.: 53 mg,
482 max.: 200 mg) was assumed for cars (a motorcycle represents half a car) and 700 mg TW km⁻¹ (min.:
483 105 mg, max.: 1,7*10³ mg) for trucks, based on the reviews of Hillenbrand et al. (2005) and Wagner et
484 al. (2018). Based on the length (km) and traffic volume (number of cars, motorbikes and trucks), the
485 released TW was calculated for each section of road.

486 The transport of TW from roads into the surrounding soil systems was estimated based on literature
487 information, assuming that the TW concentration exponentially declines with increasing distance from
488 the road (Fig. 3). However, we could only identify one study (Müller et al., 2022) that directly measured
489 TW contamination of soils with distance from the road, while most other studies (Motto et al., 1970;
490 Werkenthin et al., 2014; Wheeler and Rolfe, 1979; Wik and Dave, 2009) used chemical markers and the
491 distance from the road to estimate TW distribution. From all these different approaches we calculated a
492 median behaviour (Fig. 3). As the modelling is performed in a 5 m x 5 m grid, the land-use map may not
493 show all grass or vegetation strips often found along roads, which might lead to an overestimation of
494 TW input to arable land. Hence, we decided to use a conservative estimate, assuming that at least a 3 m
495 wide grass strip can be found on both sides of any road. Consequently about 85% of the TW produced
496 on any road (Fig. 3) cannot reach arable fields. The remaining 15% of TW that could potentially reach
497 arable land mostly settles within a 50 m distance from the road, whereas background MP concentrations
498 are reached in about 130 m distance (Fig. 3).

499
500
501 **Figure 3: The distribution of tyre wear in the soil relative to the distance from the road. Literature**
502 **values are based on direct detection of tyre wear (Müller *et al.* 2022) or on the estimated**
503 **concentrations of tyre wear particles based on chemical markers (Motto *et al.* 1970, Wheeler and**
504 **Dave 2009; Wik and Dave 2009; Wekenthin *et al.* 2014). The markers show the individual values,**
505 **the dashed lines show the mean of the respective reference. The black line represents the**
506 **median of all literature values used for modelling in this study.**

507
508 In comparison to the other MP sources considered (sewage sludge, compost and atmospheric deposition),
509 the estimate for TW was calculated on a field-by-field basis. To identify all agricultural fields affected
510 by road-borne TW deposits within a distance of 130 m, a land-use map was overlaid on the road network.
511 For each field, the area share of the associated road section and the distance to the road were considered
512 when calculating the TW load. The only limitation is that on fields affected by TW, in the model the
513 amount of TW was then distributed evenly over the entire field and not just on the affected field section
514 near the road (within 130 m).

515 Between 1950 and 2020, 120×10^3 kg tyre wear (min.: 44×10^3 kg, max.: 289×10^3 kg) ended up on
516 arable land in the Glonn catchment (Tab. 2). In 2020 the average annual MP application amounts to

hat gelöscht: field by field

518 3.1*10³ kg of tyre wear (min.: 1.1*10³ kg, max.: 7.5*10³ kg) (Tab. 2). The load from TW in 2020 can
 519 reach maximum concentrations of 2.5*10³ mg TW m⁻² a⁻¹ on roads with heavy traffic use; the average
 520 over all affected fields in the Glonn catchment area is 19.7 mg TW m⁻² a⁻¹ (Tab. 2).

521 **Table 2: MP inputs into arable soils within the test catchment, separated by different sources. All**
 522 **values are listed for the modelled time span 1950–2020 and separately for the year 2020.**

523

	Tyre wear	Sewage sludge	Compost	Atmospheric deposition	Unit
1950–2020					
MP application to arable land	120,256	42,100	11,500	186	kg
min	43,969	15,500	3,660	4.30	-
max	288,614	14,9000	104,000	4200	-
2020					
MP application to arable land	3,109	240	370	4.76	kg
min	1,137	90	120	0.11	-
max	7,462	860	3,390	107	-
MP application rate	19.67	1.14	1.75	0.02	mg MP m⁻² a⁻¹
min	7.19	0.43	0.56	5*10-4	-
max	47.2	4.08	16.03	0.45	-

524

525 2.4. Model validation

526 It is obviously impossible to validate the modelled MP delivery to the stream network against measured
 527 MP loads, as this would call for a continuous monitoring of MP delivery for several years at least.
 528 However, the modelled sediment delivery can be validated against measured data from the Bavarian
 529 State Office for Environment (Bayerisches Landesamt für Umwelt, LfU), which operated a discharge
 530 and sediment monitoring gauge in Hohenkammer (Fig. 1) between 1968 and 2020. At this gauge with a
 531 defined river cross-section, daily discharge was derived from continuous runoff depth measurements in
 532 combination with a stage discharge rating curve, while the stationarity of this rating curve at the
 533 measuring cross-section was randomly checked once or twice every year. At the gauging station a weekly

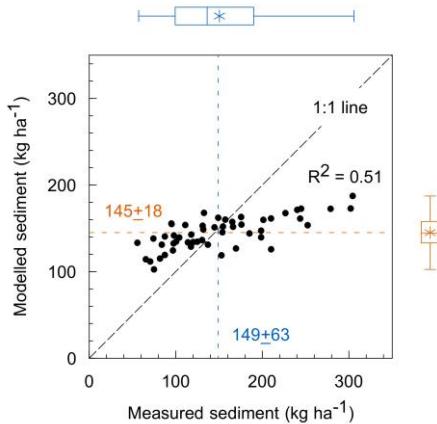
534 water sample was collected (1968–2020) and its sediment concentration was determined in the
535 laboratory. From 2011 onwards a turbidity probe (Solitax ts-line; Hach Lange GmbH; Germany) was
536 installed and regularly calibrated against the samples taken by hand. Based on the continuous discharge
537 and the weekly to continuous sediment concentration measurements, the LfU provided daily sediment
538 load data for the time span 1968 to 2020, which were aggregated to yearly values for this study.

539 *2.5. Modelled scenarios*

540 Apart from modelling and analysing the MP delivery to the stream network via the erosion pathway
541 for the period from 1950 to 2020, we also modelled three scenarios (S1 to S3) to discuss potential future
542 pathways up to 2100.

543 *Scenario S1 – business-as-usual scenario:* In this scenario it is assumed that the MP input to arable
544 land continues until 2100 with the same input rates estimated for 2020. Given the ongoing increase in
545 plastics production (Chia et al., 2021; Lwanga et al., 2022) [and rising traffic numbers](#) (StMB, 2023), this
546 may even be a conservative estimate of a business-as-usual scenario pathway.

547 *Scenario S2 – spatially targeted application of soil amendments:* This scenario addresses two aspects.
548 (i) A potential reduction of MP delivery to the stream network due to a targeted application of soil
549 amendments, keeping a distance of at least 100 m from the stream network in the case of compost and
550 sewage sludge application. (ii) More generally illustrating the sensitivity of MP delivery to the stream
551 network in the case of non-homogenous MP inputs in the catchment. For the latter, soil amendments
552 were solely applied in the vicinity of the stream network (max distance 100 m).


553 *Scenario S3 – stop MP input:* This scenario is set up to determine the extent to which soils function
554 as a long-term source for MP with regard to soil erosion, assuming the MP applied before 2020 remains
555 stable in the soil until 2100. Therefore, a potential decline in MP concentration in the plough layer either

556 results from a lateral loss to neighbouring land uses (grassland or forest) or the stream network, or is
557 buried below the plough layer due to deposition processes (here deposition due to water and tillage
558 erosion).

559 **3. Results**

560 *3.1. Sediment delivery*

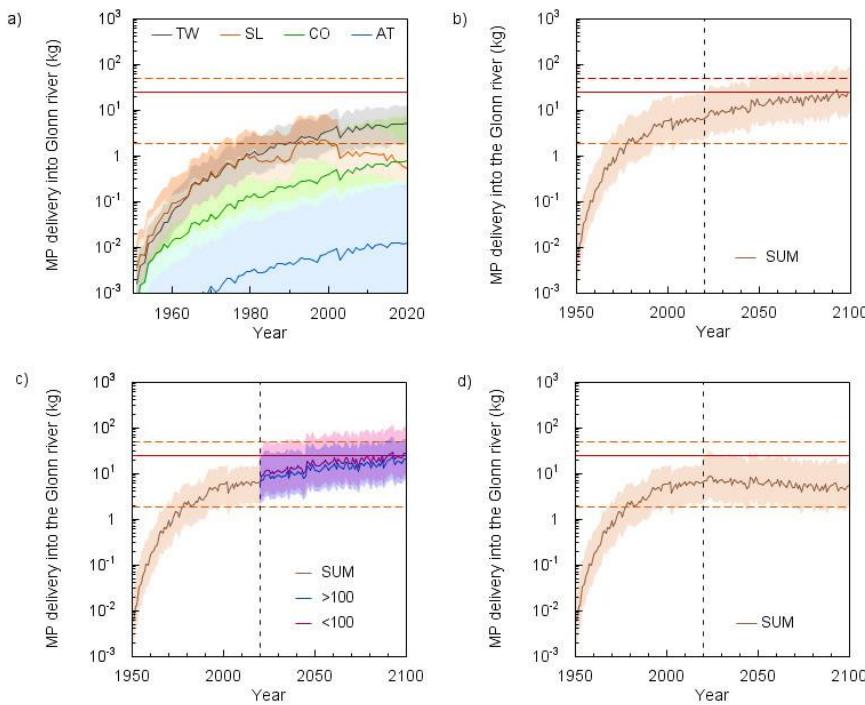
561 Without any calibration, the model satisfactorily reproduced the measured long-term mean sediment
562 delivery of the Glonn outlet (Fig. 4). The modelled sediment deliveries resulted in a mean of $145 \pm 18 \text{ kg}$
563 ha^{-1} , the measured mean contained $149 \pm 63 \text{ kg ha}^{-1}$ (Fig. 4). The model was obviously not able to
564 capture the full variability in the measured yearly sediment delivery ($R^2 = 0.51$; Fig. 4). It underestimates
565 years with high erosion rates, while it overestimates years with low erosion rates. However, we conclude
566 that the model performance (especially in reproducing the long-term mean) gives a solid basis for
567 modelling lateral MP fluxes due to erosion processes. Here it is important to note that our modelling
568 approach aims to estimate the magnitude of the MP erosion transport pathway, which was not analysed
569 in earlier studies, and that the estimated MP inputs contribute significantly to model uncertainty.

570
 571 **Figure 4: Measured and modelled sediment delivery (1968 to 2020) at the outlet of the Glonn**
 572 **catchment. The blue and orange lines represent the measured and modelled means, respectively.**
 573 **The boxplots show the variability of the data. They show the median (line) and mean (star) and**
 574 **the 1st and 3rd quartile, whiskers give the minimum and maximum.**

575
 576 *3.2. MP erosion and delivery to stream network*

577 The constantly rising MP input to arable soils from different sources (Fig. 2) since 1950 is reflected
 578 in the steadily increasing, erosion-induced MP delivery into the stream network (Fig. 5a). Due to the
 579 long-term fertilization of arable land with sewage sludge, on average $0.51 \text{ kg of MP a}^{-1}$ entered the Glonn
 580 stream network in 2020 (Tab. 3). For compost it is $0.77 \text{ kg of MP a}^{-1}$, with $0.01 \text{ kg of MP a}^{-1}$ from
 581 atmospheric deposition (Tab. 3, Fig. 5a). With compost, sewage sludge and atmospheric deposition as
 582 potential MP inputs to arable land, SPEROS-MP generated a total MP input into the stream network of
 583 1.29 kg MP via the soil erosion pathway in 2020. Deliveries to the stream network have also steadily
 584 increased in terms of TW (Fig. 5a), with an average $5.04 \text{ kg of MP a}^{-1}$ delivered to the stream network
 585 in 2020 (Tab. 3).

586


587 **Table 3: Soil erosion-induced MP delivery to the Glonn stream network, as well as redistribution**
 588 **to grassland and forest. The MP vertical loss below the plough layer is also given. All values are**
 589 **listed for the modelled time span 1950–2020 and separately for the year 2020.**

590

	Tyre wear	Sewage sludge	Compost	Atmospheric deposition	Unit
1950–2020					
MP delivery into stream network	134	57	17	0.32	kg
min	49.0	21	5	0.01	
max	322	200	155	9	
<i>Percentage of MP application</i>	<i>0.11</i>	<i>0.14</i>	<i>0.15</i>	<i>0.17</i>	<i>%</i>
MP delivery into grassland	604	442	82	1.5	kg
min	221	163	24	0	
max	1,450	1,551	748	42	
<i>Percentage of MP application</i>	<i>0.50</i>	<i>1.05</i>	<i>0.71</i>	<i>0.81</i>	<i>%</i>
MP delivery into forest	108	97	18	0.34	kg
min	39.5	36	5	0	
max	259	340	164	10	
<i>Percentage of MP application</i>	<i>0.09</i>	<i>0.23</i>	<i>0.16</i>	<i>0.18</i>	<i>%</i>
MP loss below plough layer	4,703	2605	489	14.8	kg
min	1,720	961	144	6	
max	11,287	9,414	4,458	386	
<i>Percentage of MP application</i>	<i>3.91</i>	<i>6.19</i>	<i>4.25</i>	<i>8</i>	<i>%</i>
2020					
MP delivery into stream network	5.04	0.51	0.77	0.01	kg MP a⁻¹
min	1.84	0.2	0.2	0.0003	
max	12.1	1.8	7	0.3	

591

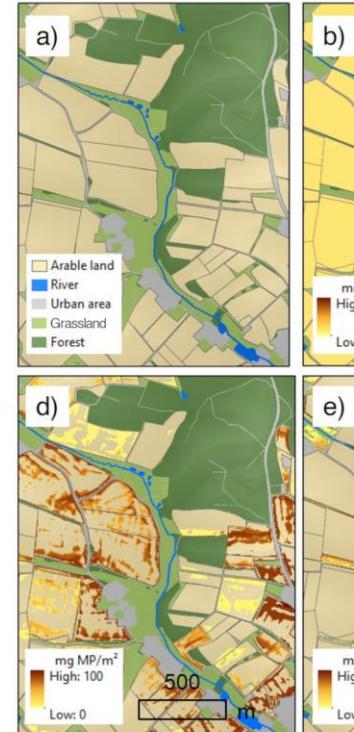
592

593

594 **Figure 5: MP delivery into the Glonn shown individually for tyre wear (TW), sewage sludge (SL),
595 compost (CO) and atmospheric deposition (AT) or the sum of TW, SL, CO and AT (SUM). The
596 dashed line gives the year 2020 as the starting point for different scenarios. For comparison,
597 the amount of MP delivery through wastewater treatment plants (WWTP) in 2020 is shown as a red
598 line (min. and max. as dotted lines). a) MP delivery into the Glonn river between 1950 and 2020.
599 b) Result of scenario S1 with the assumption that the MP input will continue as in 2020. For
600 comparison, the amount of MP delivery through wastewater treatment plants (WWTP) in 2020.
601 c) Result of scenario S2. Compost and sewage sludge are applied to arable land at a distance of >
602 100 m and < 100 m from water streams. d) Result of scenario S3 with no MP input at all from 2020
603 onwards.**

605 Between 1950 and 2020, 208.3 kg of MP (134 kg TW, 57 kg sewage sludge, 17 kg compost and 0.32
606 kg atmospheric deposition) entered the Glonn stream network (Tab. 3), while overall a sediment load of
607 3.0×10^8 kg was delivered to the catchment outlet. TW was the main MP source, accounting for 64.3%,
608 followed by sewage sludge with 27.4%, compost with 8.2% and atmospheric deposition with 0.1%.
609 Taking into account the MP delivery relative to the MP input (i.e. total amount of MP input into soil in
610 1950–2020 vs. total MP delivery into the stream network from 1950–2020), only 0.14% of the MP
611 released to arable land was transported into the Glonn stream network. This differs slightly for the
612 different MP sources, ranging from 0.17% for atmospheric deposition to 0.11% for tyre wear (Tab. 3).

613 The spatially distributed model also allowed us to quantify the relocation of MP between different
614 land uses (an example is shown in Fig. 6f). The amount of MP delivered between 1950 and 2020 from
615 arable land to grassland and forest is 1.1×10^3 and 0.2×10^3 kg, respectively (Table 3). The larger delivery
616 to grasslands is particularly interesting, as these are mostly located along the stream network (see
617 discussion).


618 SPEROS-MP not only gives information about the MP relocation between arable land and other land
619 uses. The model also determines the amount of MP allocated below the plough layer (and thus out of
620 reach of water erosion) at depositional sites (an example is shown in Fig. 6e). Between 1950 and 2020,
621 3.9% of the TW supplied to arable land was moved below the plough layer (Tab. 3). This corresponds
622 to 4.7×10^3 kg MP or 35 times the amount reaching the stream network via water erosion. For sewage
623 sludge it is 6.19% (2.6×10^3 kg), for compost 4.25% (489 kg) and for atmospheric deposition 8% (14.8
624 kg). Consequently, much more MP was translocated into the subsoil than was transported into the Glonn.
625 This transport into the subsoil was caused by water erosion (48.5%) and tillage erosion (51.5%).
626 Conversely, up to 95% of the MP applied to arable soil over the past 70 years remains in the plough layer
627 (infiltration and bioturbation excluded).

628

629
630 **Figure 6:** Example of catchment segment (for location see Figure 1) illustrating microplastic (MP)
631 input on arable land and results of erosion modelling between 1950 and 2020. The maps show the
632 situation in 2020. a) Field-based land use. b) Total MP input from sewage sludge, compost and
633 atmospheric input (without TW) as mean value over all arable land. c) MP input from TW,
634 spatially distributed to individual arable fields. d) MP concentration below plough layer. e) MP
635 transported to other land uses via soil erosion. f) MP distribution after water and tillage erosion
636 on arable land. (DEM © Bayerische Vermessungsverwaltung)

Kommentiert [RR2]: Straßenetzwerk in c) einfügen

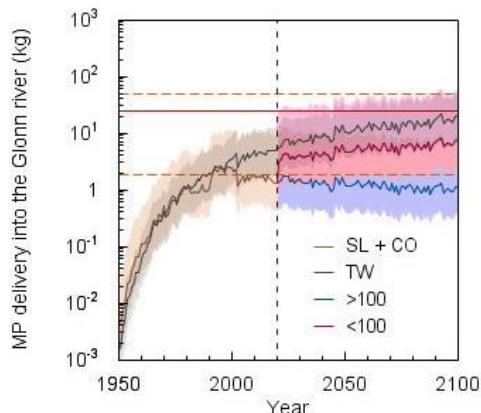
hat gelöscht:

638 *3.3. Scenario S1 – business-as-usual*

639 If arable soils continue to be loaded with MP the same as in 2020, the annual MP delivery rate into the
640 Glonn stream network will increase by a factor of 4 by 2100. In 2100, $25.2 \text{ kg MP a}^{-1}$ (min.: 9.03 kg;
641 max.: 84.1 kg) through TW, compost, sewage sludge and atmospheric deposition would end up in the
642 stream network (Fig. 5b). Between 1950 and 2100, this would make a total MP input of $1.32 * 10^3 \text{ kg MP}$
643 (min.: 511 kg; max.: $4.7 * 10^3 \text{ kg}$) into the stream network.

644 *3.4. Scenario S2 – spatially targeted application of soil amendments*

645 In S2 MP inputs from atmospheric deposition and TW accumulation continued like in S1. However, the
646 location where the organic fertilizer (sewage sludge and compost) was applied in the catchment was
647 changed. All organic fertilizers were either applied at a distance of at least 100 m from the stream network
648 or within a distance smaller than 100 m along the stream network.


649 With an application at a distance of $> 100 \text{ m}$, the MP delivery in the stream network would be reduced
650 to a total of 21.2 kg (min.: 7.72 kg; max.: 55.9 kg) in 2100 (Fig. 5c). That would correspond to a reduction
651 of 16% compared to S1. In the case of application at a distance of $< 100 \text{ m}$, on the other hand, it would
652 be 27.9 kg (min.: 10 kg; max.: 102 kg) in 2100 and thus an increase of 10.7% compared to S1 (Fig. 5c).

653 The result becomes clearer if we consider TW and the organic fertilizers separately. If the distance is $>$
654 100 m, the annual MP delivery rate from organic fertilizer (sewage sludge and compost) without TW is
655 1.1 kg MP a^{-1} (min.: 0.4 kg, max.: 7.8 kg) in 2100 (Fig. 7). For 2100, this would result in a 78% reduction
656 of the annual MP delivery rate from organic fertilizer into water bodies compared to S1. In total from

657 1950 to 2100, 173 kg MP (min.: 60 kg; max.: 1.0×10^3 kg), or 46% less MP, from organic fertilizer would
658 end up in the stream network until 2100 (the effect of atmospheric input is negligible).

659 If organic fertilizer is applied along the stream network (max. distance < 100 m), a MP delivery of 7.8
660 kg a⁻¹ (min.: 2.6 kg, max.: 54 kg) is modelled in 2100 (Fig. 7). Between 1950 and 2100 a total of 493 kg
661 MP (min.: 168 kg; max.: 3.25×10^3 kg) would be delivered to the river system by organic fertilizer
662 (without TW).

663

664 **Figure 7: Result of scenario S2 individually shown for tyre wear (TW) and for sewage sludge
665 (SL) plus compost (CO) together as organic fertilizer applied to arable land at a distance of > 100
666 m and < 100 m from water streams. For comparison, the amount of MP delivery through
667 wastewater treatment plants (WWTP) in 2020 as red lines (min and max as dotted lines).**
668
669

670 3.5. Scenario S3 – stop MP input:

671 In scenario S3 MP input stops from 2020 onwards. This abrupt stop in plastic immission is not reflected
672 in the MP delivery rates after 2020 (Fig. 5d). However, in the year 2100, 5.43 kg of MP a⁻¹ (min.: 1.98
673 kg, max.: 18.2 kg) would still end up in the stream network from arable land due to soil erosion (Fig.

674 5d). This corresponds to a decrease in the annual MP delivery rate of 14% between 2020 and 2100, with
675 80 MP-free years (since 2020). Since 1950, a total of 684 kg MP (min.: 246 kg; max.: $2 \cdot 10^3$ kg) would
676 have ended up in the Glonn stream network.

677

678 **4. Discussion**

679 *4.1. Modelled erosion rates (sediment delivery)*

680 The modelling approach used, with a yearly time step and the missing temporal and spatial variability
681 of most model input data (especially the constant crop cover factor), while only varying yearly rainfall
682 erosivity, leads to model outputs that do not capture the full temporal dynamics of the measured yearly
683 sediment delivery (Fig. 4). It is well documented that averaging model input variables over space and
684 time generally leads to the overestimation of years with low sediment delivery and underestimation of
685 years with high sediment delivery (Keller et al., 2021; Meinen and Robinson, 2021). The reduced
686 temporal variability in modelled sediment delivery is expected for two main reasons: (1) the annual
687 model time step averages out years where individual extreme events dominate the yearly sediment
688 delivery, and (2) varying only the annual rainfall erosivity, while all other input parameters (especially
689 cropping dynamics) are kept constant, cannot capture the temporal dynamics. However, without any
690 model calibration the model is able to reflect the long-term mean sediment delivery between 1968 and
691 2020 (Fig. 4), explaining 51% of the variability in the measured data. Hence, we conclude that SPEROS-
692 MP is robust enough for this modelling study which focusses on MP delivery to the stream network in
693 the Glonn catchment, especially as uncertainties associated with the erosion modelling are in any case
694 smaller than the uncertainties associated with estimates of MP immissions to the arable soils in the
695 catchment.

hat gelöscht: almost perfectly
hat gelöscht: s

698 *4.2. Plausibility of MP soil input estimates*

699 Estimating the cumulative MP-soil immissions from different sources for a period starting from 1950
700 is of course associated with large uncertainties. To account for these uncertainties, we deliberately used
701 large ranges of possible inputs in our semi-virtual catchment approach which in the following discussion
702 are compared with literature values for Germany or Bavaria as a whole.

703 *4.2.1. MP from sewage sludge, compost and atmospheric deposition*

704 Brandes et al. (2021) calculated mean MP inputs into agricultural soils in Germany for compost
705 (1990–2016) and for sewage sludge (1983–2016). For Bavaria, their calculation results in compost-MP
706 input rates of between 15 and 80 mg MP m⁻² a⁻¹ and sewage sludge-MP input rates between 0 and 190
707 mg MP m⁻² a⁻¹. Bertling et al. (2021) also determined MP immissions (TW excluded) to agricultural soils
708 in Germany, resulting in much higher input rates for 2021 for compost and sewage sludge, with up to
709 702 mg MP m⁻² a⁻¹ and 2.1*10³ mg MP m⁻² a⁻¹, respectively. In contrast to the first authors, Braun et al.
710 (2021) calculate the possible MP load for the legally permissible amount of compost applied to fields in
711 Germany. This maximum permissible amount of compost application results in maximum possible entry
712 rates ranging from 34 to 4.7*10³ mg MP m⁻² a⁻¹ into agricultural soils via compost.

713 For this study, an MP emission to arable soils of between 0.42 and 4 mg MP m⁻² a⁻¹ for sewage sludge
714 and between 0.56 and 15.8 mg MP m⁻² a⁻¹ for compost were calculated for Bavaria. Our values are not
715 based on the maximum possible limits, but on the most realistic estimates possible. Therefore, our MP
716 loads remain well below the literature values. Nevertheless, the MP input from compost is likely to be
717 underestimated, based on optical detection of MP > 1 mm (Bläsing and Amelung, 2018; Braun et al.,
718 2021; Weithmann et al., 2018). Currently, much more compost (21*10⁷ t in 2020) is spread on fields in
719 Bavaria than sewage sludge (24*10⁴ t in 2020), causing higher MP emissions from compost (Fig. 2a).

720 This results from the reduction in sewage sludge application, which has been largely banned in Bavaria
721 since 2017 (Schleypen, 2017) (Fig. 2c). However, regional policy strategies regarding the use of sewage
722 sludge differ substantially within Germany, making comparisons within the country somewhat difficult
723 (Brandes et al., 2021).

724 For atmospheric deposition, an average of 771 and 395 MP particles $\text{m}^{-2} \text{ d}^{-1}$ were measured at rural
725 locations in London and Hamburg (Klein and Fischer, 2019; Wright et al., 2019). Brahnay et al. (2020) show that airborne microplastic particles accumulate at minimum concentrations of 48 ± 7 MP particles
726 $\text{m}^{-2} \text{ d}^{-1}$ even in the most isolated areas of the United States (national parks and national wilderness areas).
727 Even in Antarctic snow up to 29 MP particles per melted litre were found (Aves et al., 2022). In this
728 study, the values of Witzig et al. (2021) were used to estimate the MP contribution via atmospheric
729 deposition. They made MP measurements at different locations in Bavaria, ranging from 74 ± 19 to
730 109 ± 16 MP particles $\text{m}^{-2} \text{ d}^{-1}$. Even if the transfer of such particle numbers to mass inputs is associated
731 with additional uncertainties, these amounts are orders of magnitude smaller than the inputs from sewage
732 sludge and compost. [In general, taking the considerable uncertainty in the data on MP inputs via the atmosphere into account, the results show that this magnitude is negligible compared to other sources investigated. This finding is important in a scientific context as it provides a better understanding of the magnitude of these inputs. The modelling analysis clearly shows that in comparison to other MP sources the atmospheric inputs are of minimal importance.](#)

738 4.2.2. Tyre wear

739 The large MP mass resulting from tyre wear is noticeable in both the TW input data and the TW
740 delivery rates into the stream network. With modelled mean TW delivery of 5 kg MP a^{-1} in 2020 into the
741 river system, the equivalent of half a car tyre ends up as MP in the Glonn (flow length of 50 km) each
742 year. However, the calculated mean TW input to the Glonn catchment of 200 mg MP m^{-2} in 2020 is in

hat gelöscht: and hence less important

hat gelöscht: In general, taking the considerable uncertainty in the data on MP inputs via the atmosphere into account, the results show that this magnitude is negligible compared to other sources investigated. This finding is important in a scientific context as it provides a better understanding of the magnitude of these inputs. The modeling analysis emphatically shows that atmospheric inputs are of minimal importance in comparison

751 same the range as the estimates in other studies. For example, annual values of between 180 and 370 mg
752 TW m⁻² were reported for Germany (Baensch-Baltruschat et al., 2020; Kocher et al., 2010; Wagner et
753 al., 2018). The modelled MP input (see Fig. 3) to arable land in the Glonn catchment was substantially
754 smaller, with a mean of 19.7 mg TW m⁻².

755 Most of the TW remains on the roads or in the immediate vicinity. Some of the TW is expected to be
756 transported directly into surface waters via runoff from the road. Baensch-Baltruschat et al. (2020)
757 estimated that 12–20% of the tyre wear released on German roads ends up in surface water via road
758 runoff. The hydrological model estimates of Unice et al. (2019) indicated that 18% of released tyre wear
759 was transported to freshwater in the Seine River catchment. In comparison, focusing on erosion of MP
760 which was mixed into the plough layer, only 0.11% of the applied TW to arable soils from 1950 to 2020
761 reached the river system. Although TW is the largest source of entry in our study, the MP flow to the
762 stream network is overall a conservative estimate. This mostly results from our assumption that all roads
763 are surrounded by a 3 m grass buffer strip (even if this was not shown in the 5 m x 5 m land-use raster
764 map used), always trapping at least 85% of the TW emissions (Fig. 3). Yet even this conservative
765 assumption is associated with high uncertainties. The width of the grass strip between the road and the
766 field has an enormous impact on the MP emission. A 2 m wide buffer strip would still retain
767 approximately 80% and a 1 m wide buffer strip approximately 65% of the TW emission (Fig. 3). Without
768 any assumed grass buffer strips, the MP emission from TW would be 8 times higher. Ultimately, the
769 spatially distributed tyre wear is still associated with uncertainties. The level of TW emissions into the
770 environment (not just arable land) makes other MP sources almost negligible, especially in terms of MP
771 saving strategies.

772 Overall, it can be concluded that our estimates of MP input to the Glonn catchment are in the same
773 order of magnitude, or somewhat smaller, compared to most other studies, and hence should be more or

774 less reasonable, even if any estimates are associated with large uncertainties (e.g. extrapolating back to
775 1950; the small number of studies available for estimating MP concentrations in sewage sludge and
776 compost; errors when transferring particle numbers in particle mass etc.). However, an error in modelling
777 the MP delivery into the stream network of the test catchment most likely results from the fact that mean
778 application rates (sewage sludge, compost) for the whole of Bavaria were used (Fig. 6b), while only TW
779 input was calculated on a catchment-specific basis (Fig. 6c). Again, it is important to note that the Glonn
780 catchment was used as an example to address and discuss the potential magnitude of the MP/soil erosion
781 pathway in such mesoscale catchments determined by arable land use.

hat gelöscht: exemplar

782 It should be noted that TW as not-agriculture MP-source is of paramount importance compared to
783 other MP sources, especially with respect to MP reduction measures. Not only for soil, but also for water
784 bodies and probably all other environmental compartments. Measures to prevent MP in soil will have
785 little noticeable effect if TW remains unchanged. This problem should be given more consideration in
786 future studies and interpretation of results (Knight et al., 2020a; Knight et al., 2020b; Mennekes and
787 Nowack, 2022).

788 4.3. *The modelled fate of MP*

hat gelöscht: 1

789 As a mass-balanced model, SPEROS-MP calculates the MP input in mass (kg m^{-2}) and not in particle
790 numbers. Hence, the model does not consider the type, shape, density, size or chemical properties of the
791 MP particles from different MP sources. It thus treats the erodibility of MP from all input pathways
792 equally. However, it can be assumed that particle properties play a decisive role for the erosion-induced
793 lateral transport, as well as for the potential vertical transport. Small MP particles should be translocated
794 faster below the plough layer due to bioturbation and maybe infiltration (Li et al., 2021; Rehm et al.,
795 2021; Waldschläger and Schüttrumpf, 2020). A subsequent reduction in MP concentration in the plough

798 layer will also reduce MP erosion. On the other hand, smaller MP particles might more strongly interact
799 with soil organic or mineral particles, or might even be included in soil aggregates, hence are more likely
800 transported as bulk soil. For example, Rehm et al. (2021) were able to demonstrate in a long-term plough
801 experiment that smaller PE particles (53–100 μm) are less strongly enriched in delivered sediments
802 compared to larger PE particles (250–300 μm). Such behaviour might change again with increasing
803 particle size, because if particles transported with sheet flow are larger than the flow depths (mostly < 1
804 mm), transport in suspension is no longer possible.

805 In general, the potential decrease in topsoil MP concentration due to infiltration and bioturbation is
806 not accounted for in SPEROS-MP. Vertical MP transport via infiltration and bioturbation has been
807 widely discussed and partially observed in earlier studies, e.g. (Rillig et al., 2017), while earthworms
808 play an especially important role in directly transporting MP via digestion and excretion (Huerta Lwanga
809 et al., 2017) or in preparing preferential flow pathways for MP leaching (Yu et al., 2019). Ignoring these
810 processes of vertical movement below the plough layer will potentially lead to a slight overestimation of
811 the topsoil MP concentration in the modelling approach presented here.

812 SPEROS-MP not only delivers MP into the stream network, but also redistributes MP within the
813 catchment and within the soil profile. As arable land in the catchment is mostly found on the upper
814 slopes, and grassland in the flood plains, large amounts of MP are transported from arable land to
815 grassland (Tab. 3). No tillage takes place in grassland, leading to high MP concentration in the topsoil.
816 Along the main river in particular, grassland contaminated with MP (example shown in Fig. 6f) offers a
817 high potential for MP loss during flood events. In the flood plains, the groundwater level is regularly
818 close to the surface, hence the chance of MP leaching to the groundwater increases (Chia et al., 2021;
819 Singh and Bhagwat, 2022; Viaroli et al., 2022).

820 This analysis not only sheds light on the model's impact on MP distribution in varied landscape
821 contexts but also underscores the potential environmental repercussions. The study significantly
822 advances scientific understanding and practical relevance by emphasizing long-term field experiments
823 and meso-scale model analyses. Nevertheless, gaps persist in MP research, particularly concerning
824 standardized detection methods and quantification of terrestrial MP pollution. Addressing these gaps
825 requires extensive additional research to comprehensively grasp the scope of MP pollution across diverse
826 environmental media and the entirety of the MP cycle. Substantial measurements and fundamental
827 research in this domain are imperative to enhance process comprehension and refine model applications.

828 *4.4. Soil erosion as a potential MP source for inland waters*

829 Comparing the annual MP input to arable land and the annual MP loss through soil erosion indicates
830 that only a very small proportion ($\leq 0.17\%$ since 1950) is delivered to the stream network. The loss rate
831 of TW (0.11%) was the smallest compared to sewage sludge, compost and atmospheric deposition (Tab.
832 3). This is because the TW was not applied to all fields, but only to the fields next to a road. The low
833 percentage of input lost to the streams should not lead to the fallacy that MP transport via soil erosion is
834 negligibly small (Schell et al., 2022; Weber et al., 2022). This becomes clearer when comparing the MP
835 input from soil erosion with the MP input from wastewater treatment plants (WWTP) in the study area
836 (Fig. 5). Based on the known number and size of the WWTPs in the study area and MP loads in German
837 WWTPs from literature (Mintenig et al., 2014), the MP delivery into the Glonn through WWTP outlets
838 can be estimated at an average of 25 kg MP a^{-1} (min.: 1.9 kg, max.: 49 kg) in 2020 (Fig. 5). These values
839 represent a maximum scenario since the calculations were based on the possible full capacities of the
840 WWTPs. Within the test catchment, the MP delivery into the stream network was 6.3 kg MP a^{-1} (min.:
841 2.2 kg, max.: 21 kg) in 2020, but (S1, Fig. 5b) could reach 25.2 kg MP a^{-1} (min.: 9 kg, max.: 84.3 kg) by
842 the end of the century (Fig. 5b).

843 Rehm et al. (2021) have shown that due to its low density, MP is preferentially eroded and is enriched
844 by up to a factor of four in delivered sediments. These potential enrichment effects were not included in
845 SPEROS-MP. In addition, other MP input sources such as plastic used in agriculture (e.g. mulch films)
846 and littering were not considered in this study. In this respect, the modelled MP delivery is therefore a
847 conservative estimate. Overall, our results are in line with other, larger-scale model estimates for the
848 Bavarian section of the Danube catchment, showing that the MP input via soil erosion into water bodies
849 in rural areas outweighs the MP input of WWTP outlets (Witzig et al., 2021). It should therefore not be
850 claimed that soil erosion for MP transport is negligible (Schell et al., 2022) while wastewater treatment
851 plants are treated as a major MP source for inland waters (Cai et al., 2022; Eibes and Gabel, 2022;
852 Murphy et al., 2016).

853 *4.5. The MP sink function of soil results in a long-term MP source*

854 Today's MP pollution of arable land represents a long-term MP source for inland waters. With the
855 model scenarios S1 and S3, this study was able to show that the MP discharge from arable soils into
856 inland waters via soil erosion will still affect many generations to come, even if MP entry into the
857 terrestrial environment could be avoided. Because of low MP loss rates ($\leq 0.17\%$) via soil erosion and
858 the stability of conventional plastic materials over centuries (Ng et al., 2018), the MP particles
859 accumulate in the soil over the years. As most of the MP stays in the plough layer (Tab. 3), it is made
860 available to surface runoff and erosion processes on a regular basis. After 80 years without MP input in
861 S3, MP delivery from the soil decreased only by 14%. The MP concentration in the topsoil of arable land
862 decreases over time due to lateral MP loss into the stream network or into neighbouring grassland and
863 forest areas (example shown in Fig. 6f). The MP concentration in the topsoil also decreases since erosion
864 incorporates MP-free subsoil and, on the other hand, MP gets below the plough layer at depositional sites

hat gelöscht: therefore,

866 (outside the range of water erosion). It is important to note that tillage erosion plays an important role,
867 as it supports the burial of MP below the plough layer (example shown in Fig. 6e).

868 S3 is reminiscent of other well-known environmental problems of long-term diffuse pollution, e.g.
869 with phosphorus (Daneshgar et al., 2018; Vaccari, 2009), where a pollutant accumulates in soils but
870 slowly find its way into inland waters through soil erosion. In this respect, it is important to note that it
871 will be easier to reduce MP inputs to stream networks coming from point sources, e.g. WWTP, whereas
872 the diffuse input will continue for centuries.

873 *4.6. Targeted application of MP-laden organic fertilizer*

874 The predicted increase in plastics production means that more MP inputs into the environment can be
875 expected in the future (Borrelle et al., 2020; Horton, 2022). Because of this, it is necessary to consider
876 what measures can be taken to reduce or avoid the entry of MP into the various environmental
877 compartments. The results of S2 have shown that the application of organic fertilizer (without TW)
878 containing MP at a distance of more than 100 m from the stream network can reduce MP entry into
879 surface waters via soil erosion by up to 46% compared to S1 (Fig. 7). By contrast (unplanned) application
880 of MP-laden soil amendments in the proximity of the stream network increase MP supply (by 53% in
881 our scenario).

882 This highlights the potential impact of optimized landscape management taking into account the
883 location of any agricultural management activity. It also shows that, in addition to soil conservation in
884 the field to prevent soil erosion, general changes in catchment management affecting hydrological and
885 sedimentological connectivity have important implications for the transport of sediments and pollutants.
886 Therefore, the location of soil additives, which are usually used to close production cycles, should be

887 considered for future use. This consideration can have a significant influence on the subsequent erosion
888 transport and redistribution of, for example, MP within a whole river catchment.

889 **5. Conclusion**

890 In this study, the transport of MP eroded from arable land was modelled across a mesoscale landscape.
891 Sewage sludge, compost, atmospheric deposition and tyre wear were considered as MP sources. Tyre
892 wear not only represented the largest MP input to arable land. It also generated the largest MP delivery
893 rates to the stream network, ~~although tyre wear is not widespread on arable land, only occurring on fields~~ —
894 near the roads. In percentage terms, only a small fraction (< 0.2%) of all MP applied to arable land ended
895 up directly in the stream network via soil erosion. However, the MP mass delivered into the stream
896 network represented a serious amount of MP input. The modelled MP delivery into the stream network
897 was in the same range of potential MP inputs from wastewater treatment plants from this rural area.

898 In addition, ~~it~~ was shown that most of the MP applied to arable soils remains in the topsoil (0–20 cm)
899 for decades. Tillage produces a regular homogenization, and the MP stays available for surface runoff
900 and water erosion in the long term. Based on a series of scenarios modelled up to 2100 with no more MP
901 input from 2020 onwards, similar MP delivery rates (compared to 2020) could still be identified. This
902 implies that arable land represents an MP sink on the one hand and a long-term MP source for inland
903 waters on the other.

904 Using the soil profile update component included in the SPEROS-MP model, the MP concentrations
905 along the soil profile could be determined to a depth of 1 m. It was modelled that 5% of the MP applied
906 to arable land is translocated into the subsoil (> 20 cm) by tillage and water erosion. Located below the
907 plough horizon, the MP is out of reach for future lateral surface runoff erosion processes. Based on the
908 spatially distributed erosion model, it was also demonstrated that most of the eroded MP leaving arable

910 land is deposited in grassland (1% of applied MP). Especially in areas of the river valleys, these
911 accumulations could represent a concentrated MP entry into the stream network in the event of a flood.

912 The most effective protection for arable land would probably be to limit or ban the application of MP-
913 contaminated organic fertilizers. The following measures would be conceivable to protect water bodies
914 from MP inputs through soil erosion. Our model scenario showed that the targeted application of MP-
915 contaminated organic fertilizer at a distance of at least 100 m from the water body led to a significantly
916 lower MP delivery rate from this MP source. The deliberate creation of grass strips in the landscape to
917 protect against erosion would also be an option. However, it is important to consider that all calculated
918 and modelled cases were dominated by tyre wear, which is difficult to manage, especially in regions with
919 a high population and dense road network. Therefore, in order to preserve soil as a valuable resource, as
920 well as to protect the terrestrial and aquatic ecosystem from MP pollution and its effects, we should focus
921 on limiting MP emissions to the environment in general as much as possible.2

922

923 **Competing interests**

924 Some authors are members of the editorial board of journal SOIL. The peer-review process
925 was guided by an independent editor, and the authors have also no other competing interests
926 to declare.

927 **Acknowledgments**

928 The authors would like to acknowledge the financial support from the Federal Ministry of Education
929 and Research towards this research as part of the initiative Plastics in the Environment (funding number
930 02WPL1447A-G). In addition, we would like to thank the Bavarian State Office of Agriculture (LfL)
931 and the Bavarian State Office for the Environment (LfU) for providing and accessing Bavaria-wide data,
932 as well as providing the modelling data for the Glonn catchment area. Finally, special thanks go to the
933 members of the Soil and Water Resources Research Group in Augsburg for supporting this work.

934

935 **References**

936

937 Accinelli C, Abbas HK, Bruno V, Vicari A, Little NS, Ebelhar MW, et al. Minimizing abrasion losses from film-
938 coated corn seeds. *Journal of Crop Improvement* 2021; 35: 666-678.

939 Aves AR, Revell LE, Gaw S, Ruffell H, Schuddeboom A, Wotherspoon NE, et al. First evidence of microplastics
940 in Antarctic snow. *The Cryosphere* 2022; 16: 2127-2145.

941 Baensch-Baltruschat B, Kocher B, Kochleus C, Stock F, Reifferscheid G. Tyre and road wear particles-A
942 calculation of generation, transport and release to water and soil with special regard to German roads.
943 *Science of The Total Environment* 2020; 752: 141939.

944 BAYSIS BS. *Straßenverkehrszählungen (SVZ)*, 2015.

945 Bertling J, Zimmermann T, Rödig L. *Kunststoffe in der Umwelt: Emissionen in landwirtschaftlich genutzte Böden*.
946 *Fraunhofer UMSICHT* 2021: 220.

947 Bläsing M, Amelung W. Plastics in soil: Analytical methods and possible sources. *Science of the Total
948 Environment* 2018; 612: 422-435.

949 Borrelle SB, Ringma J, Law KL, Monnahan CC, Lebreton L, McGivern A, et al. Predicted growth in plastic waste
950 exceeds efforts to mitigate plastic pollution. *Science* 2020; 369: 1515-1518.

951 Borthakur A, Leonard J, Koutnik VS, Ravi S, Mohanty SK. Inhalation risks of wind-blown dust from biosolid-
952 applied agricultural lands: Are they enriched with microplastics and PFAS? *Current Opinion in
953 Environmental Science & Health* 2022; 25: 100309.

954 Brahney J, Hallerud M, Heim E, Hahnenberger M, Sukumaran S. Plastic rain in protected areas of the United States.
955 *Science* 2020; 368: 1257-1260.

956 Brandes E. *Die Rolle der Landwirtschaft bei der (Mikro-) Plastik-Belastung in Böden und Oberflächengewässern*.
957 2020.

958 Brandes E, Henseler M, Kreins P. Identifying hot-spots for microplastic contamination in agricultural soils—a
959 spatial modelling approach for Germany. *Environmental Research Letters* 2021; 16: 104041.

960 Brandhuber R, Auerswald K, Lang R, Müller A, Treisch M. *ABAG interaktiv*, Version 2.0. Bayerische
961 Landesanstalt für Landwirtschaft, Freising. 2018.

962 Braun M, Mail M, Heyse R, Amelung W. Plastic in compost: Prevalence and potential input into agricultural and
963 horticultural soils. *Science of The Total Environment* 2021; 760: 143335.

964 Bullard JE, Ockelford A, O'Brien P, Neuman CM. Preferential transport of microplastics by wind. *Atmospheric
965 Environment* 2021; 245: 118038.

966 Cai Y, Wu J, Lu J, Wang J, Zhang C. Fate of microplastics in a coastal wastewater treatment plant: Microfibers
967 could partially break through the integrated membrane system. *Frontiers of Environmental Science &
968 Engineering* 2022; 16: 1-10.

969 Chia RW, Lee J-Y, Kim H, Jang J. Microplastic pollution in soil and groundwater: a review. *Environmental
970 Chemistry Letters* 2021; 19: 4211-4224.

971 Colin G, Cooney J, Carlsson D, Wiles D. Deterioration of plastic films under soil burial conditions. *Journal of
972 Applied Polymer Science* 1981; 26: 509-519.

973 Corcoran PL. Degradation of microplastics in the environment. *Handbook of Microplastics in the Environment*.
974 Springer, 2022, pp. 531-542.

975 Daneshgar S, Callegari A, Capodaglio AG, Vaccari D. The potential phosphorus crisis: resource conservation and
976 possible escape technologies: a review. *Resources* 2018; 7: 37.

977 Desmet P, Govers G. A GIS procedure for automatically calculating the USLE LS factor on topographically
978 complex landscape units. *Journal of soil and water conservation* 1996; 51: 427-433.

979 Dlugob V, Fienet P, Van Oost K, Schneider K. Model based analysis of lateral and vertical soil carbon fluxes
980 induced by soil redistribution processes in a small agricultural catchment. *Earth Surface Processes and
981 Landforms* 2012; 37: 193-208.

982 DWD DW. *Klimadaten direkt zum Download. 3. Rasterfelder für Deutschland*. 2020.

983 Edo C, González-Pleiter M, Leganés F, Fernández-Piñas F, Rosal R. Fate of microplastics in wastewater treatment
984 plants and their environmental dispersion with effluent and sludge. *Environmental Pollution* 2020; 259:
985 113837.

hat formatiert: Deutsch (Deutschland)

hat formatiert: Deutsch (Deutschland)

hat formatiert: Deutsch (Deutschland)

986 Eibes PM, Gabel F. Floating microplastic debris in a rural river in Germany: Distribution, types and potential
 987 sources and sinks. *Science of The Total Environment* 2022; 816: 151641.

988 Feuilloley P, César G, Benguigui L, Grohens Y, Pillin I, Bewa H, et al. Degradation of polyethylene designed for
 989 agricultural purposes. *Journal of Polymers and the Environment* 2005; 13: 349-355.

990 Fiener P, Dlugoß V, Van Oost K. Erosion-induced carbon redistribution, burial and mineralisation - Is the episodic
 991 nature of erosion processes important? *Catena* 2015; 133: 282-292.

992 Fiener P, Dostál T, Krásá J, Schmaltz E, Strauss P, Wilken F. Operational USLE-Based Modelling of Soil Erosion
 993 in Czech Republic, Austria, and Bavaria—Differences in Model Adaptation, Parametrization, and Data
 994 Availability. *Applied Sciences* 2020; 10: 3647.

995 Fiener P, Govers G, Van Oost K. Evaluation of a dynamic multi-class sediment transport model in a catchment
 996 under soil-conservation agriculture. *Earth Surface Processes and Landforms* 2008; 33: 1639-1660.

997 Fiener P, Wilken F, Aldana-Jague E, Deumlich D, Gómez J, Guzmán G, et al. Uncertainties in assessing tillage
 998 erosion—how appropriate are our measuring techniques? *Geomorphology* 2018; 304: 214-225.

999 Frias JP, Nash R. Microplastics: Finding a consensus on the definition. *Marine pollution bulletin* 2019; 138: 145-
 1000 147.

1001 Gehrke I, Dresen B, Blömer J, Sommer H, Lindow F, Röckle R. TyreWearMapping. *Digitales Planungs- und
 1002 Entscheidungsinstrument zur Verteilung, Ausbreitung und Quantifizierung von Reifenabrieb in
 1003 Deutschland. Schlussbericht.* 2021.

1004 Govers G, Vandaele K, Desmet P, Poesen J, Bunte K. The role of tillage in soil redistribution on hillslopes.
 1005 *European Journal of Soil Science* 1994; 45: 469-478.

1006 Guo J-J, Huang X-P, Xiang L, Wang Y-Z, Li Y-W, Li H, et al. Source, migration and toxicology of microplastics
 1007 in soil. *Environment International* 2020; 137: 105263.

1008 Habib RZ, Thiemann T, Al Kendi R. Microplastics and wastewater treatment plants—a review. *Journal of Water
 1009 Resource and Protection* 2020; 12: 1.

1010 Heinze WM, Mitrano DM, Cornelis G. Bioturbation-driven transport of microplastic fibres in soil. *Copernicus
 1011 Meetings*, 2022.

1012 Hillenbrand T, Toussaint D, Boehm E, Fuchs S, Scherer U, Rudolphi A, et al. Discharges of copper, zinc and lead
 1013 to water and soil. Analysis of the emission pathways and possible emission reduction measures; *Eintraege
 1014 von Kuper, Zink und Blei in Gewaesser und Boeden. Analyse der Emissionspfade und moeglicher
 1015 Emissionsminderungsmassnahmen.* 2005.

1016 Horton AA. Plastic pollution: When do we know enough? *Journal of Hazardous Materials* 2022; 422: 126885.

1017 Huerta Lwanga E, Thapa B, Yang X, Gertsen H, Salanki T, Geissen V, et al. Decay of low-density polyethylene
 1018 by bacteria extracted from earthworm's guts: A potential for soil restoration. *Sci Total Environ* 2017; 624:
 1019 753-757.

1020 Hurley RR, Nizzetto L. Fate and occurrence of micro(nano)plastics in soils: Knowledge gaps and possible risks.
 1021 *Current Opinion in Environmental Science & Health* 2018; 1: 6-11.

1022 Keller B, Centeri C, Szabó JA, Szalai Z, Jakab G. Comparison of the applicability of different soil erosion models
 1023 to predict soil erodibility factor and event soil losses on loess slopes in Hungary. *Water* 2021; 13: 3517.

1024 Kim Y-N, Yoon J-H, Kim K-HJ. Microplastic contamination in soil environment—a review. *Soil Science Annual*
 1025 2021; 71: 300-308.

1026 Klein M, Fischer EK. Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg,
 1027 Germany. *Science of the Total Environment* 2019; 685: 96-103.

1028 Knight LJ, Parker-Jurd FN, Al-Sid-Cheikh M, Thompson RC. Tyre wear particles: an abundant yet widely
 1029 unreported microplastic? *Environmental Science and Pollution Research* 2020a; 1-10.

1030 Knight LJ, Parker-Jurd FN, Al-Sid-Cheikh M, Thompson RC. Tyre wear particles: an abundant yet widely
 1031 unreported microplastic? *Environmental Science and Pollution Research* 2020b; 27: 18345-18354.

1032 Kocher B, Brose S, Feix J, Görg C, Peters A, Schenker K. *Stoffeinträge in den Straßenseitenraum-Reifenabrieb.
 1033 BERICHTE DER BUNDESANSTALT FUER STRASSENWESEN. UNTERREIHE
 1034 VERKEHRSTECHNIK* 2010.

1035 Krasa J, Dostál T, Van Rompaey A, Vaska J, Vrana K. Reservoirs' siltation measurements and sediment transport
 1036 assessment in the Czech Republic, the Vrchlice catchment study. *Catena* 2005; 64: 348-362.

1037 LfL BLfL. *Erosionsatlas Bayern.* 2023.

hat formatiert: Deutsch (Deutschland)

hat formatiert: Deutsch (Deutschland)

hat formatiert: Deutsch (Deutschland)

1038 LfStaD BLfSuD. Statistisches Jahrbuch für Bayern. 2022.

1039 LfU BLfU. Abfallwirtschaft–Hausmüll in Bayern–Bilanzen 2002. Bayerisches Landesamt für Umweltschutz,

1040 Augsburg 1990-2020.

1041 Li H, Lu X, Wang S, Zheng B, Xu Y. Vertical migration of microplastics along soil profile under different crop

1042 root systems. *Environmental Pollution* 2021; 278: 116833.

1043 Li S, Ding F, Flury M, Wang Z, Xu L, Li S, et al. Macro-and microplastic accumulation in soil after 32 years of

1044 plastic film mulching. *Environmental Pollution* 2022; 300: 118945.

1045 Lian J, Liu W, Meng L, Wu J, Zeb A, Cheng L, et al. Effects of microplastics derived from polymer-coated fertilizer

1046 on maize growth, rhizosphere, and soil properties. *Journal of Cleaner Production* 2021; 318: 128571.

1047 Liu EK, He WQ, Yan CR. ‘White revolution’ to ‘white pollution’—agricultural plastic film mulch in China.

1048 *Environmental Research Letters* 2014; 9.

1049 Lwanga EH, Beriot N, Corradini F, Silva V, Yang X, Baartman J, et al. Review of microplastic sources, transport

1050 pathways and correlations with other soil stressors: a journey from agricultural sites into the environment.

1051 *Chemical and Biological Technologies in Agriculture* 2022; 9: 1-20.

1052 Meinen BU, Robinson DT. Agricultural erosion modelling: Evaluating USLE and WEPP field-scale erosion

1053 estimates using UAV time-series data. *Environmental Modelling & Software* 2021; 137: 104962.

1054 Mennekes D, Nowack B. Tire wear particle emissions: Measurement data where are you? *Science of The Total*

1055 *Environment* 2022; 830: 154655.

1056 Mintenig S, Int-Veen I, Löder M, Gerds G. Mikroplastik in ausgewählten Kläranlagen des Oldenburgisch-

1057 Ostfriesischen Wasserverbandes (OOWV) in Niedersachsen. 2014.

1058 Motto HL, Daines RH, Chilko DM, Motto CK. Lead in soils and plants: its relation to traffic volume and proximity

1059 to highways. *Environmental Science & Technology* 1970; 4: 231-237.

1060 Müller A, Kocher B, Altmann K, Braun U. Determination of tire wear markers in soil samples and their distribution

1061 in a roadside soil. *Chemosphere* 2022; 294: 133653.

1062 Murphy F, Ewins C, Carbonnier F, Quinn B. Wastewater Treatment Works (WwTW) as a Source of Microplastics

1063 in the Aquatic Environment. *Environ Sci Technol* 2016; 50: 5800-8.

1064 Nadeu E, Gobin A, Fiener P, Van Wesemael B, Van Oost K. Modelling the impact of agricultural management on

1065 soil carbon stocks at the regional scale: the role of lateral fluxes. *Global Change Biology* 2015: DOI:

1066 10.1111/gcb.12889.

1067 Nasseri S, Azizi N. Occurrence and Fate of Microplastics in Freshwater Resources. *Microplastic Pollution*.

1068 Springer, 2022, pp. 187-200.

1069 Ng E-L, Lwanga EH, Eldridge SM, Johnston P, Hu H-W, Geissen V, et al. An overview of microplastic and

1070 nanoplastic pollution in agroecosystems. *Science of the total environment* 2020; 627: 1377-1388.

1071 Ng EL, Lwanga EH, Eldridge SM, Johnston P, Hu HW, Geissen V, et al. An overview of microplastic and

1072 nanoplastic pollution in agroecosystems. *Science of the Total Environment* 2018; 627: 1377-1388.

1073 Nunes JP, Wainwright J, Bielders CL, Darboux F, Fiener P, Finger D, et al. Better models are more effectively

1074 connected models. *Earth Surface Processes and Landforms* 2018; 43.

1075 Pérez-Reverón R, González-Sálamo J, Hernández-Sánchez C, González-Pleiter M, Hernández-Borges J, Díaz-Peña

1076 FJ. Recycled wastewater as a potential source of microplastics in irrigated soils from an arid-insular

1077 territory (Fuerteventura, Spain). *Science of The Total Environment* 2022; 817: 152830.

1078 Rehm R, Zeyer T, Schmidt A, Fiener P. Soil erosion as transport pathway of microplastic from agriculture soils to

1079 aquatic ecosystems. *Science of The Total Environment* 2021; 795: 148774.

1080 Rillig MC, Ziersch L, Hempel S. Microplastic transport in soil by earthworms. *Sci Rep* 2017; 7: 1362.

1081 Sajjad M, Huang Q, Khan S, Khan MA, Yin L, Wang J, et al. Microplastics in the soil environment: A critical

1082 review. *Environmental Technology & Innovation* 2022: 102408.

1083 Schell T, Hurley R, Buenaventura NT, Mauri PV, Nizzetto L, Rico A, et al. Fate of microplastics in agricultural

1084 soils amended with sewage sludge: Is surface water runoff a relevant environmental pathway?

1085 *Environmental Pollution* 2022; 293: 118520.

1086 Scheurer M, Bigalke M. Microplastics in Swiss Floodplain Soils. *Environmental science & technology* 2018.

1087 Schleypen P. Abwasserbehandlung (nach 1945). Historisches Lexikon Bayerns 2017.

1088 Schmidt J, v.Werner M, Michael A. Application of the EROSION 3D model to the CATSOP watershed, The

1089 Nederlands. *Catena* 1999; 37: 449-456.

hat formatiert: Deutsch (Deutschland)

hat formatiert: Deutsch (Deutschland)

hat formatiert: Deutsch (Deutschland)

1090 Schwertmann U, Vogl W, Kainz M. Bodenerosion durch Wasser. Ulmer Verlag, 64 p 1987. |
 1091 Singh S, Bhagwat A. Microplastics: A potential threat to groundwater resources. *Groundwater for Sustainable*
 1092 *Development* 2022; 100852.
 1093 Sommer F, Dietze V, Baum A, Sauer J, Gilge S, Maschowski C, et al. Tire abrasion as a major source of
 1094 microplastics in the environment. *Aerosol and Air Quality Research* 2018; 18: 2014-2028.
 1095 StMB. Verkehrsentwicklung. 2023.
 1096 Tang KHD, Hadibarata T. Microplastics removal through water treatment plants: Its feasibility, efficiency, future
 1097 prospects and enhancement by proper waste management. *Environmental Challenges* 2021; 5: 100264.
 1098 Tian L, Jinjin C, Ji R, Ma Y, Yu X. Microplastics in agricultural soils: sources, effects, and their fate. *Current*
 1099 *Opinion in Environmental Science & Health* 2022; 25: 100311.
 1100 Unice KM, Weeber MP, Abramson MM, Reid RCD, van Gils JAG, Markus AA, et al. Characterizing export of
 1101 land-based microplastics to the estuary - Part I: Application of integrated geospatial microplastic transport
 1102 models to assess tire and road wear particles in the Seine watershed. *Science of the Total Environment*
 1103 2019; 646: 1639-1649.
 1104 Vaccari DA. Phosphorus: a looming crisis. *Scientific American* 2009; 300: 54-59.
 1105 Van Oost K, Govers G, De Alba S, Quine T. Tillage erosion: a review of controlling factors and implications for
 1106 soil quality. *Progress in Physical Geography* 2006; 30: 443-466.
 1107 Van Oost K, Govers G, Desmet P. Evaluating the effects of changes in landscape structure on soil erosion by water
 1108 and tillage. *Landscape ecology* 2000; 15: 577-589.
 1109 Van Oost K, Govers G, Quine TA, Heckrath G, Olesen JE, De Gryze S, et al. Landscape-scale modeling of carbon
 1110 cycling under the impact of soil redistribution: The role of tillage erosion. *Global Biogeochemical Cycles*
 1111 2005a; 19.
 1112 Van Oost K, Govers G, Van Muysen W. A process-based conversion model for caesium-137 derived erosion rates
 1113 on agricultural land: An integrated spatial approach. *Earth Surface Processes and Landforms: The Journal*
 1114 of the British Geomorphological Research Group 2003; 28: 187-207.
 1115 Van Oost K, Quine T, Govers G, Heckrath G. Modeling soil erosion induced carbon fluxes between soil and
 1116 atmosphere on agricultural land using SPEROS-C. In: Roose EJ, Lal R, Feller C, Barthes B, Stewart BA,
 1117 editors. *Advances in soil science. Soil erosion and carbon dynamics*. CRC Press, Boca Raton, 2005b, pp.
 1118 37-51.
 1119 Van Rompaey AJ, Verstraeten G, Van Oost K, Govers G, Poesen J. Modelling mean annual sediment yield using
 1120 a distributed approach. *Earth Surface Processes and Landforms* 2001; 26: 1221-1236.
 1121 Verstraeten G, Prosser IP. Modelling the impact of land-use change and farm dam construction on hillslope
 1122 sediment delivery to rivers at the regional scale. *Geomorphology* 2008; 98: 199-212.
 1123 Viaroli S, Lancia M, Re V. Microplastics contamination of groundwater: Current evidence and future perspectives.
 1124 A review. *Science of The Total Environment* 2022; 153851.
 1125 Wagner S, Hüffer T, Klöckner P, Wehrhahn M, Hofmann T, Reemtsma T. Tire wear particles in the aquatic
 1126 environment-a review on generation, analysis, occurrence, fate and effects. *Water research* 2018; 139: 83-
 1127 100.
 1128 Waldschläger K, Schütttrumpf H. Infiltration Behavior of Microplastic Particles with Different Densities, Sizes,
 1129 and Shapes—From Glass Spheres to Natural Sediments. *Environmental Science & Technology* 2020; 54:
 1130 9366-9373.
 1131 Weber CJ, Santowski A, Chiffiard P. Investigating the dispersal of macro-and microplastics on agricultural fields
 1132 30 years after sewage sludge application. *Scientific reports* 2022; 12: 1-13.
 1133 Weithmann N, Möller JN, Löder MG, Piehl S, Laforsch C, Freitag R. Organic fertilizer as a vehicle for the entry
 1134 of microplastic into the environment. *Science Advances* 2018; 4: eaap8060.
 1135 Werkenthin M, Kluge B, Wessolek G. Metals in European roadside soils and soil solution—A review.
 1136 *Environmental Pollution* 2014; 189: 98-110.
 1137 Wheeler G, Rolfe G. The relationship between daily traffic volume and the distribution of lead in roadside soil and
 1138 vegetation. *Environmental Pollution (1970) 1979*; 18: 265-274.
 1139 Wik A, Dave G. Occurrence and effects of tire wear particles in the environment—A critical review and an initial
 1140 risk assessment. *Environmental pollution* 2009; 157: 1-11.

hat formatiert: Deutsch (Deutschland)

141 Witzig C, Wörle K, Földi C, Rehm R, Reuwer A-K, Ellerbrake K, et al. Mikroplastik in Binnengewässern.
142 Untersuchung und Modellierung des Eintrags und Verbleibs im Donaugebiet als Grundlage für
143 Maßnahmenplanung. MICBIN Abschlussbericht. 2021.

144 WRB IWG. World reference base for soil resources 2014, update 2015. Internation soil classification sstem for
145 naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO 2015.

146 Wright S, Ulke J, Font A, Chan K, Kelly F. Atmospheric microplastic deposition in an urban environment and an
147 evaluation of transport. *Environment International* 2019; 105411.

148 Zhang L, Xie Y, Liu J, Zhong S, Qian Y, Gao P. An overlooked entry pathway of microplastics into agricultural
149 soils from application of sludge-based fertilizers. *Environmental science & technology* 2020; 54: 4248-
150 4255.

151 Zhang Y, Gao T, Kang S, Shi H, Mai L, Allen D, et al. Current status and future perspectives of microplastic
152 pollution in typical cryospheric regions. *Earth-Science Reviews* 2022; 226: 103924.

153 Zhao S, Zhang Z, Chen L, Cui Q, Cui Y, Song D, et al. Review on migration, transformation and ecological impacts
154 of microplastics in soil. *Applied Soil Ecology* 2022; 176: 104486.

155 Zhou Y, Wang J, Zou M, Jia Z, Zhou S. Microplastics in soils: A review of methods, occurrence, fate, transport,
156 ecological and environmental risks. *Science of The Total Environment* 2020; 141368.

157 Zubris KA, Richards BK. Synthetic fibers as an indicator of land application of sludge. *Environ Pollut* 2005; 138:
158 201-11.

159