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Abstract. The Single Field-of-view (SFOV) Sounder Atmospheric Product (SiFSAP) retrieval algorithm has been developed 10 

to address the need to retrieve high spatial resolution atmospheric data products from hyper-spectral sounders and ensure the 

radiometric consistency between the retrieved properties and measured spectral radiances. It is based on an integrated optimal 

estimation inversion scheme that processes data from the satellite based synergistic microwave (MW) and infrared (IR) spectral 

measurements from advanced sounders. The retrieval system utilizes the principal component radiative transfer model 

(PCRTM) which performs radiative transfer calculations monochromatically and includes accurate cloud scattering 15 

simulations. SiFSAP includes temperature, water vapor, surface skin temperature and emissivity, cloud height and 

microphysical properties, and concentrations of essential trace gases for each SFOV at a native instrument spatial resolution. 

Error estimations are provided based on a rigorous analysis for uncertainty propagation from the Top-Of-Atmosphere (TOA) 

spectral radiances to the retrieved geophysical properties.  As a comparison, the spatial resolution for the traditional hyper-

spectral sounder retrieval products is much coarser than the native resolution of the instruments due to common use of the 20 

‘cloud clearing’ technique to compensate for the lack of cloud scattering simulation in the forward model.  The degraded 

spatial resolution in traditional cloud-clearing sounder retrieval products limits their applications for capturing meteorological 

or climate signals at finer spatial scales. Moreover, rigorous uncertainty propagation estimation needed for long-term climate 

trend studies cannot be given due to the lack of direct radiative transfer relationships between the observed TOA radiances and 

the retrieved geophysical properties. With advantages of the higher spatial resolution, the simultaneous retrieval of 25 

atmospheric, cloud, and surface properties using all available spectral information, and the establishment of ‘radiance closure’ 

in the sounder spectral measurements, the SiFSAP provides additional information needed for various weather and climate 

studies and applications using sounding observations. This paper gives an overview of SiFSAP retrieval algorithm, and 

assessment of SiFSAP atmospheric temperature, water vapor, clouds, and surface products derived from the Cross-track 

Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) data. 30 
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1. Introduction 

Since the launch of the first space-borne hyper-spectral infrared (IR) sounder, the Atmospheric Infrared Sounder (AIRS), the 

value of spectrally-resolved IR measurements for weather forecasting (LeMarshall et al., 2006, Chahine et al., 2006, Jones et 

al., 2012), environmental monitoring (Chahine et al., 2008, Warner et al., 2017, Ribeiro et al., 2018, Nalli et al., 2020), and 

the study of climate forcing and feedbacks (Gettelman and Fu, 2018, McCoy et al., 2019, Liu et al., 2018) has been widely 35 

recognized. Hyper-spectral IR sounders like AIRS, Cross-track Infrared Sounder (CrIS), and the Infrared Atmospheric 

Sounding Interferometer (IASI) measure the outgoing longwave radiation using thousands of spectral channels. They are 

designed to achieve high vertical resolution sounding of atmospheric temperature and humidity profiles, to provide spectral 

information for the retrieval of cloud phase, height, and microphysical properties, and to capture spectral signatures of key 

trace gases. Multiple operational retrieval algorithms have been developed to generate Level-2 products of geophysical 40 

properties from Level-1 spectral radiance data. Examples of operational algorithms include the regression based algorithms 

such as the dual-regression algorithm (Smith et al., 2012, Smith and Weisz, 2017), the physical algorithms such as the Climate 

Heritage AIRS Retrieval Technique (CHART, Susskind et al., 2017), the Community Long-term Infrared Microwave 

Combined Atmospheric Product System (CLIMCAPS, Smith and Barnet, 2019), and  the NOAA-Unique Combined 

Atmospheric Processing System (NUCAPS, Barnet, 2021),  and the hybrid algorithms that perform physical retrieval for clear 45 

sky cases and regression for cloudy sky retrievals, e.g., the Level 2 IASI Product Processing Facility (PPF, August et al., 2012).  

There are ongoing efforts to exploit the use of hyper-spectral sounder measurements for new applications with requirements 

that have yet to be met by the operational sounder products mentioned above. The limits on the applications of these Level-2 

products come from two perspectives: the degradation of spatial resolution as compared with the native resolution of the 

instruments and the lack of radiative closure between the retrieved geophysical properties and the TOA spectral measurements.  50 

Specifically, operational Level-2 data products from physical retrieval schemes including CHART (Susskind et al., 2017), 

CLIMCAPS (Smith and Barnet, 2019), NUCAPS (Barnet et al., 2021) uses 3 × 3 IR sounder field of views (FOVs) (along 

track × across track) to construct a ‘cloud-cleared’ single spectrum that is reregistered with one sounder field of regard (FOR). 

As a result, the spatial resolution of the Level-2 properties is reduced by a factor of 3, i.e. 9 times less retrieved data. The 

degradation of spatial resolution limits the applications of these operational sounder products in various studies, such as tracing 55 

the source and propagation of gravity waves (Sato et al., 2016, Ern et al., 2017, Perrett et al., 2021), studying the impact of 

convection on Planetary Boundary Layer (PBL) thermodynamics (Elsaesser et al., 2019), and constructing vertical profiles of 

winds using temperature, humidity, and ozone profiles, etc. As compared with cloud-clearing based results, existing SFOV 

products (e.g. dual-regression and IASI PPF for cloudy-sky cases) are beneficial for data assimilation and now- and forecasting 

operations because of the higher sptial resolution. Smith (et al., 2020) have demonstrated that combining multiple polar 60 

overpasses of IASI and CrIS dual-regression retrieval with geostationary satellite Advanced Baseline Imager retrieval to 

improve not only the spatial resolution but also the temporal resolution of hyperspectral retrievals. Those retrieval schemes do 

not use optimal estimation based physical retrieval methodology and therefore do not establish radiative closure by their nature. 
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Establishing radiative closure, i.e. the radiometric consistency of the TOA spectra from radiative forward modelling using 

retrieved geophysical properties with respect to the observations, is critical to studies of climate trends and anomalies. The 65 

accuracy of climate trends derived from hyper-spectral IR observations depends on the radiometric accuracy of the 

measurements and a rigorously defined relationship that links the measurements to the climate variables of interest (e.g. Liu 

et al., 2017). The closure in physical retrieval schemes including CHART, CLIMCAPS, NUCAPS and the hybrid IASI PPF 

can only be established for clear sky observations which just account for a small percentage of the global measurements. 

Without including cloud scattering in the forward simulations, the impact of radiometric uncertainty on the retrieved climate 70 

variables cannot be directly characterized. Estimation for radiometric errors and/or discontinuities and the corresponding 

impact on climate variables retrieved is critical for the construction of long-term climate anomalies and/or trends data record. 

From this perspective, a physical retrieval algorithm that establishes radiative closure by simulating cloud scattering in the 

radiative transfer process is more suitable to produce accurate, long-term climate data records. Therefore, there is a growing 

demand to develop SFOV physical retrieval schemes for hyper-spectral sounder data applications. The SFOV physical retrieval 75 

methodology was first introduced to process airborne campaign data from the National Airborne Sounder Testbed-

Interferometer (NAST-I) onboard the NASA suborbital ER-2 aircraft (Cousins and Smith, 1997). Atmospheric profiles 

together with cloud microphysical properties and surface properties can be retrieved under all sky conditions (Zhou et al., 

2005, 2007, Liu et al., 2007). The study of using SFOV methodology for satellite based hyper-spectral IR sounder 

measurements has been eventually carried out (Liu et al., 2009, Zhou et al., 2009, Wu et al., 2017, Irion et al., 2018, DeSouza-80 

Machado et al., 2018). As the SFOV methodology matures, its operational application for hyper-spectral IR sounder missions 

has become very promising. 

The SiFSAP retrieval algorithm has been developed to supplement other operational products by sustaining the hyperspectral 

sounder’s spatial resolution and establishing the radiative closure. The principal component radiative transfer model (PCRTM, 

Liu et al., 2006) is used for the forward simulation of the hyper-spectral IR sounder spectra in the SiFSAP system.  PCRTM 85 

uses empirical orthogonal functions (EOFs) to compress the spectral information so that the complete spectrum of hyper-

spectral sounder measurements from the full set of channels can be efficiently used. It facilitates an accurate multiple cloud 

scattering calculation by using lookup tables constructed via 32-stream Discrete Ordinates Radiative Transfer (DISORT) 

simulations (Stamnes et al., 1988). The SiFSAP algorithm simultaneously retrieves profiles of temperature, moisture, and trace 

gases of interest, surface properties, and cloud parameters including visual optical depth, particle size, phase, and height. The 90 

solution is obtained by fitting the TOA spectrum for each single FOV observation via an iterative minimization process 

following the optimal estimation method (Liu et al., 2007, Liu et al., 2009, Wu et al., 2017). Compared to other retrieval 

algorithms, the radiative relationships between the retrieved geophysical properties and the measured TOA radiances are 

rigorously and consistently defined for both clear and cloudy sky conditions in the SiFSAP scheme, therefore the radiative 

closure is established.  95 

Leroy et al. (2018) found that erroneous priors used in AIRS retrievals introduce systematic biases in the anomalies of 

stratospheric temperature over Antarctica. Using stringent a priori reduces the uncertainty in individual retrievals but can make 
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the results more prone to systematic errors if a priori is not properly established. The SiFSAP algorithm uses the climatology-

based a priori for two important considerations: 1) uncertainty of individual measurements is less a concern as compared with 

systematic bias in long-term climate variability studies, and 2) the climatological a priori constraint constructed from globally 100 

distributed data maximizes the information determined from the radiances and minimizes the impact from a priori errors. The 

final solutions of SiFSAP usually deviate significantly from the first guess, i.e., the global mean of the climatological data, 

used in the retrieval (see Figure 1). This is very different from CHART and CLIMCAPS that constrain the results around the 

first guess, e.g., the deviation of retrieved temperature from its first guess value is less than 1 K (Wang et al., 2020, Yue et al., 

2020). Avoiding the use of auxiliary data products as prerequisites enables the SiFSAP system to meet the primary latency 105 

requirements imposed on near real-time algorithms. Therefore, the SiFSAP algorithm is suitable for both climate and weather 

applications. 

This paper gives a detailed introduction on the data content, the data processing scheme, and the physical retrieval methodology 

of SiFSAP. Validation of retrieval performance for SiFSAP key products is also presented. 

2. Overview of the data content and the retrieval system 110 

The SiFSAP system is designed to process data from major hyper-spectral sounders including AIRS, IASI and CrIS. It can be 

easily extended to process future sounders like IASI-Next Generation once the requisite PCRTM module is correspondingly 

updated. The system depends upon PCRTM’s capability to simulate various hyper-spectral sounder measurements using a 

common forward model module. Previous forward model comparison studies have validated PCRTM’s capability in 

simulating hyper-spectral sounder measurements with a high degree of radiometric fidelity (Aumann et al., 2018).  Figure 2 115 

demonstrates the use of SiFSAP to simulate sample TOA spectral radiances measured by three major hyper-spectral sounder 

instruments: IASI, CrIS, and AIRS. Benefiting from its modular design, the SiFSAP system is capable of using the collocated 

microwave (MW) observations to supplement IR retrievals under thick cloud conditions. Currently the SiFSAP system 

provides three retrieval schemes to meet different application needs based on the observation data availability: IR-only, MW-

only, and IR+MW retrievals. The MW retrieval unit uses the Community Radiative Transfer Model (CRTM) to simulate the 120 

measurements by major MW sounders including the Advanced Technology Microwave Sounder (ATMS), the Advanced 

Microwave Sounding Unit (AMSU-A), and the Microwave Humidity Sounder (MHS). Details about CRTM can be found in 

CRTM user’s guide (Han et al., 2020) and its general introduction paper (Liu et al., 2012). SiFSAP products are generated 

using the synergistic IR+MW retrievals with IR and MW spectra being fitted simultaneously during the combined retrieval 

process. SiFSAP products include temperature, water vapor, and trace gas profiles at 98 pressure levels, surface skin 125 

temperature, IR surface emissivity at native mono-frequency bins defined by the PCRTM, MW surface emissivity for all MW 

sounder channels, effective cloud top pressure, cloud optical depth (at 550 nm), cloud particle size, and cloud liquid water 

content. Table 1 lists the major geophysical properties included in SiFSAP. 

Figure 3 illustrates the flow diagram of the SiFSAP system. The SiFSAP processing starts with a pre-processor that loads the 

Level-1B data of the IR and MW sounders and the surface pressure values from the National Centers for Environmental 130 
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Prediction (NCEP) Global Forecast System (GFS) model fields. The MW sounder data are spatially resampled to overlap with 

IR sounder observations of single FOVs via nearest neighbour gridding. The GFS surface pressure data are interpolated in 

time and space to the IR sounder footprints. At the synergetic data processing stage, the SiFSAP system includes three modular 

units: the initialization unit, the synergetic retrieval unit, and the post-processing unit. The initialization unit loads static data 

bases including PCRTM and CRTM forward model parameters, lookup tables (LUTs), climatological background fields, a 135 

priori covariance matrices, measurement uncertainties covariance matrices, and pre-trained spectral bias correction 

coefficients. The synergetic retrieval unit includes a two-step process: MW only retrieval followed by IR + MW combined 

retrieval. The temperature, water vapor, and surface skin temperature from the first step MW-only retrieval, once passed the 

MW radiance convergence test, are used as the first guess for the combined IR+MW retrieval. If the MW retrieval does not 

pass the first step convergence test, the climatological first guess is used for the combined retrieval. If the geophysical 140 

properties retrieved for one FOV pass the quality control (QC), they are used as the first guess values for the next FOV. Again, 

the climatological first guess will be used for the next FOV if the retrieval of the current FOV does not converge. The MW 

and the IR+MW combined retrieval results are passed to the QC and post-processing unit where QC flags are assigned, 

auxiliary data such as the tropopause height and the surface temperature are derived based on the retrieved atmospheric 

parameters, and the results are written to output files.   145 

3. Inversion Methodology 

3.1 Optimal Estimation 

Both the MW-only retrieval and the IR + MW combined retrieval are optimal estimation-based physical inversion processes. 

They are used to find the geophysical state vector 𝒙 for a given measurement 𝒓 with 

    𝒓 = 𝐹(𝒙) + 𝜖,                                                                (1) 150 

where F represents the radiative transfer forward model, 𝜖	represents the total error term that includes contributions from the 

measurement error, the forward model error, and the representation error. A solution 𝒙 is given by minimizing the cost function 

J, being defined as  

																		𝐽(𝒙) = +𝒓 − 𝐹(𝒙)-!𝑺"#𝟏+𝒓 − 𝐹(𝒙)- + (𝒙 − 𝒙%)!𝑺%#&(𝒙 − 𝒙%).                        (2) 

where 𝑺" is the covariance of the error term 𝜖. 𝑿% and 𝑺% are the background and covariance of a priori constraint in the 155 

geophysical state vector domain. The nonlinearity of the radiative transfer function defined in Equation (1) requires an iterative 

minimization process to find a solution. Following the Gauss-Newton method suggested by Rodgers [2000], a solution can be 

given as, 

		𝒙'(& − 𝒙' = (𝑲!𝑺"#𝟏𝑲+ 𝑺%#&)#&2𝑲!𝑺"#𝟏(𝒓 − 𝒓') − 𝑺%#&(𝒙 − 𝒙%)3 .                  (3) 

Here 𝑲 is the Jacobian, i.e., the first derivative which defines the sensitivity of the measurement to the input parameters, 160 

𝑲 =	 )*(𝒙)
)𝒙

4
𝒙.𝒙!

	.                                                            (4) 
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The Gauss-Newton approach works well when the degree of nonlinearity is small. The step size of the iterative process must 

be optimally controlled to ensure it is still within the linear region. This is achieved in SiFSAP following the method described 

in Wu et al. 2017 and Lynch et al., 2009. The method uses the radiance residual between the observation and simulation at 

each step as a proxy to control the step size. Specifically, the solution is obtained by, 165 

   𝒙'(& − 𝒙' = (𝑲!𝑺/#𝟏𝑲+ 𝑺%#&)#&2𝑲!𝑺/#𝟏(𝒓 − 𝒓') − 𝑺%#&(𝒙 − 𝒙%)3 .                  (5) 

𝑺/ provides the constraint in the measurement domain that is adjusted during each step of the minimization approach. The 

inversion is known to be an ill-posed problem. The dimension reduction of inversion matrix is usually needed to stabilize the 

solution and reduce the computational cost. The dimension reduction can be done in both the measurement vector r and the 

geophysical state vector x domain. While MW sounders have limited number of channels (AMSU - 15 channels; MHS - 5 170 

channels; ATMS - 22 channels), the dimension reduction is critical to process information from hyper-spectral IR sounders’ 

thousands of spectral channels. In NUCAPS, CHART and CLIMCAPS, only a few hundred selected IR channels are used for 

the retrieval (due to processing constraints in forward model and inverse model calculations). In SiFSAP, the synergetic 

measurement vector 𝒓 for the IR+MW retrieval consists of the principal component (PC) scores of IR radiances and the channel 

brightness temperatures (BTs) of MW measurements: 175 

 𝒓	 = 	 5𝑝& 	⋯	𝑝0"# , 𝑟&	⋯𝑟0$% 	
:                                                                           (6) 

where p denotes the PC scores of IR radiances with 𝑁2/ being the total number of EOFs used and ri denotes the MW BTs of 

𝑁34 channels. The use of PC representation allows us to use all spectral channels of IR sensors and filter out instrument 

random noise. The solution 𝒙 includes all retrieved parameters that are used to quantify atmospheric vertical profiles, cloud 

information, and surface properties in the SiFSAP system. The dimension of the state vector 𝒙 also needs to be limited to 180 

reduce the computational cost and ensure the numerical stability. For example, atmospheric vertical profiles are usually not 

directly represented as level (or layer) quantities on a high vertical resolution pressure grid in a retrieval system. Retrieval 

algorithms including NUCAPS, CHART and CLIMCAPS use a linear combination of pre-defined trapezoidal functions to 

represent vertical profiles. The principal component (PC) analysis is used to reduce the dimension of the geophysical state 

vector 𝒙 in SiFSAP. Atmospheric profiles and surface emissivity spectra are projected onto a set of pre-computed EOFs. Table 185 

2 lists the dimension of measurement and geophysical state vectors used in SiFSAP. Both the IR+MW and MW only retrieval 

follow the same minimization scheme to find the solution of 𝒙 in the EOF domain. The dimensions of r, 𝑺/ , and 𝑲 are 

1 × 𝑁34,	𝑁34 ×𝑁34, 𝑁34 ×𝑁5	for the first-stage MW only retrieval, and 1 × (𝑁34 +𝑁2/),	(𝑁34 +𝑁2/) × (𝑁34 +𝑁2/), 

(𝑁34 +𝑁2/) × 𝑁5 for the second-stage IR+MW combined retrieval.  Here 𝑁5 is the length of the geophysical state vector 𝒙. 

Averaging kernels for retrieved atmospheric profiles are provided in SiFSAP. The vertical resolution of the retrieved 190 

atmospheric temperature, moisture and other trace gases can be characterized using the averaging kernel,  

          𝑨 = (𝑲𝑻𝑺𝒓#𝟏𝑲+ 𝑺𝒂#𝟏)#𝟏𝑲𝑻𝑺𝒓#𝟏𝑲 .                                                                   (7) 

Averaging kernels are also used to derive the Degrees of Freedom (DOF) of the signal, 

 𝑑9 = tr (𝑨) ,                                                                                              (8) 
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a scalar used to evaluate the vertical information content provided by the measurements. Error estimations for each retrieved 195 

variable are also included in SiFSAP output. Following the definition by Rodgers (1990), we calculate the total retrieval error 

covariance matrices: 

𝑺𝒙 = (𝑲!𝑺𝒓#&𝑲+ 𝑺𝒂#&)#&                                                                             (9) 

All geophysical variables are simultaneously and directly retrieved in the SiFSAP scheme. This avoids the complicated 

characterization of error propagation needed in sequential retrieval algorithms, e.g., CLIMCAPS (Smith and Barnet, 2019).  200 

The direct retrieval of state vector related to cloud properties also avoids the uncertainty introduced by ‘cloud clearing’, which 

is difficult to quantify and susceptible to the quality of the atmospheric state used to derive a clear-sky TOA spectrum for cloud 

clearing. 

The overall QC flags are determined based on the cost function zeta (𝜁) that characterizes how well the simulated radiance 

using forward model fits the observed radiances. It is calculated as: 205 

𝜁 = (𝒓923: − 𝒓;<9)!𝑺"#𝟏	(𝒓923: − 𝒓;<9)                                                     (10) 

The zeta threshold values for MW only and IR+MW retrievals are empirically assigned to achieve an optimized balance 

between retrieval accuracy and yield rate. The 𝜁 for the retrieval of trace gas species are calculated using the selected IR 

sounder channels in the corresponding absorption regions.  

3.2 A priori Constraint and Representation of Geophysical Variables 210 

A priori is best used in the retrieval to supplement for the information that cannot be provided by the measurements. Depending 

on the information content that can be obtained from IR or MW sounder data, different a priori constraints are used for different 

retrieval variables. Climatological backgrounds and error covariances used for temperature and water vapor retrieval in the 

SiFSAP system are derived from a combined dataset with more than thirty thousand globally-distributed atmospheric profiles 

(Liu et al, 2009 and Wu et al 2017). These profiles include European Centre for Medium-Range Weather Forecasting 215 

(ECMWF) reanalysis data, radio sonde measurements, and satellite-based observations. The atmospheric profiles are 

represented by level quantities on a 98 pressure level grid from the surface to TOA in the retrieval system. The EOFs 

corresponding to the temperature and water vapor state vectors are derived from the background error covariance matrices.  

The surface level index, which is determined by the surface pressure value, can be quite different for different land regions 

while remaining relatively constant over ocean. Therefore, EOFs and a priori of temperature and water vapor are constructed 220 

as over-land and over-ocean groups. A conventional EOF transformation is used to represent temperature profiles in the form, 

   𝑋2
!=3> = ∑ 𝑈2,@

!=3> ⋅ (𝑃@
!=3>AB

@.& − 𝑃!=3>HHHHHHHH),                                           (11) 

where Xi represents the ith EOF coefficient of a corresponding temperature profile P, which has an unit of Kelvin,  with the 

climatological background 𝑃H being given as the mean value of the profiles included in generating the covariance matrix, and 

Ui is the ith significant eigenvector. The water vapor EOFs are built as the logarithm of water vapor profiles, 225 

𝑋2
C&D = ∑ 𝑈2,@

C&D ⋅ (log	(𝑃@
C&D)AB

@.& − log	(𝑃C&D)HHHHHHHHHHHHH).                                    (12) 
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EOFs of ozone profiles are also constructed using globally distributed data but separated as over-land and over-ocean groups, 

similar to temperature and water vapor.  The absolute value of ozone concentration in the tropospheric region is very small 

compared with that in the stratospheric region. In order to better represent the variational feature of ozone profiles in the 

tropospheric region, the ozone EOFs are built as functions of the square root of ozone profiles: 230 

𝑋2
D' = ∑ 𝑈2,@

D' ⋅	(L𝑃@
D'AB

@.& −√𝑃D'HHHHHHH) .                                                  (13) 

Moreover, a priori for ozone retrieval is stratified according to latitude and tropopause height to better constrain the retrieval 

in the regions where the ozone signal is weak. A priori for Ozone is generated using a synergistic dataset that combines data 

from the Model for Ozone And Related chemical Tracers (MOZART), ozone sonde measurements, the European Centre for 

Medium-Range Weather Forecasts (ECMWF) analysis, and the Modern-Era Retrospective analysis for Research and 235 

Applications (MERRA). The synergistic dataset includes more than 400,000 ozone profiles and collocated temperature 

profiles. Those profiles are globally distributed and provide adequate coverage for seasonal variabilities. The ozone and 

temperature profiles are binned into 18 10-degree latitudinal zones with each zonal group being further stratified into 13 

tropopause-dependent sub-groups. The tropopause height values are derived as the lowest level at which the temperature lapse 

rate decreases to 2K/km or less. To further cover the seasonal variation characteristics of the ozone climatology, a linear 240 

regression relationship between the ozone profiles and the collocated temperature profiles are derived for each latitude-

tropopause sub-group. The a priori covariance of each sub-group are derived as the regression-prediction uncertainty using 

the temperature and ozone data and saved as a static database. With a given tropopause height and a latitude, an individual 

retrieval is first assigned to a sub-group so that the a priori covariance to be used in the SiFSAP system can be directly loaded. 

The first-guess values used for the ozone retrieval are obtained using the pre-established regression relationship of the assigned 245 

sub-group and the temperature profiles from the first-step MW retrieval. The SiFSAP system provides the option of using the 

tropopause height from either the real-time forecast data provided by National Centers for Environmental Prediction (NCEP) 

or that derived using temperature profiles from the first step MW retrieval. Both options are well suited for near-real-time 

applications. The latitude-referenced ozone climatology has been adopted as in CHART (Susskind et al. 2017) and NUCAPS 

(Barnet. et al. 2021), while the tropopause-referenced ozone climatology is also used for ozone retrieval studies using AIRS 250 

measurements (Wei et al., 2010) and that planned for the measurements by Tropospheric Emissions: Monitoring of Pollution 

(TEMPO) satellite (Johnson et al., 2018, Yang et al., 2019). The combined latitude and tropopause information provides a 

quality estimate of the ozone variability that changes latitudinally and correlates with the synoptic-scale meteorological 

features of the tropopause.  

Carbon monoxide (CO) EOFs are also built on the logarithm of profiles. Carbon dioxide is retrieved as averaged column 255 

density values. Methane (CH4) and Nitrous Oxide (N2O) are similar in a way that their concentrations are relatively stable 

below the tropopause and decrease with height via various chemical processes in the stratosphere. Since CH4 and N2O are well 

mixed in the troposphere and their mixing ratios decrease dramatically above tropopause due to chemical reactions and 

photolysis, their ratio profiles (P) can be represented as a sigmoid-like function of altitude ℎ to a good approximation, 
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      𝑃(ℎ) = 	 E(

&(=
)(+)+(,(

)
  ,                                                                 (14) 260 

where 𝑃F defines the near surface mixing ratio, ℎF defines the dependence of vertical profiles on tropopause height, and 𝑎F 

determines the rate of decrement in the stratosphere. In this way, the retrieval of CH4 and N2O profiles is constrained to a 

solution defined by three parameters.  The atmospheric distributions of CH4 and N2O are rather uniform zonally but exhibit a 

gradient with latitude. 𝑃F, ℎF, and 𝑎F values for given individual profiles are obtained by fitting the vertical profiles according 

to the function defined by equation (14). The first-guess values and the corresponding covariance constraints for 𝑃F, ℎF, and 265 

𝑎F are statistically obtained using a MOZART database that includes globally distributed CH4 and N2O vertical profiles of 12 

different months. They are further stratified into 18´13 latitude-tropopause dependent groups.  This is similar to the strategy 

adopted to construct the ozone a priori except that there is a lack of correlation between CH4 or N2O profiles and the collocated 

temperature profiles so that the mean values of specified groups are used as the first guess values instead.  The first guess of 

surface mixing ratio 𝑃F for each individual retrieval is further adjusted according to the globally averaged, monthly mean 270 

atmospheric methane and nitrous oxide concentration determined from the observation network of various air sampling sites 

whose locations range in latitude from 90-degrees-S to 82-degrees-N (Dlugokencky et al., 1994). 

The EOFs for MW surface emissivity over ocean are built from simulated emissivity spectra using the Wilheit (1979) model 

and an improved fast microwave water emissivity model FASTEM (Liu et al., 2011). The Masuda model (Masuda et al. 1988) 

and surface-leaving radiance model (Nalli et al. 2008a, 2008b) are used for the simulation of IR surface emissivity samples 275 

over ocean. The simulations use randomly generated wind speed and surface temperature data within a realistic dynamic range. 

The EOFs for MW land emissivity spectra are obtained using English’s semi-empirical model (Hewison and English, 1999). 

The EOFs for IR land surface emissivity are constructed using data from the ECOsystem Spaceborne Thermal Radiometer 

Experiment on Space Station (ECOSTRESS) spectral emissivity databases (Meerdink, et al. 2019, Baldridge et al. 2009). For 

both MW and IR retrievals, the surface emissivity function  280 

𝐹(ε) = log	 2log 2 G$,.#G
G$,.#G$"!

33                                                                (15) 

is introduced to constrain the retrieved surface emissivity within a range between ε3%5 and ε32', which are empirically based 

on best knowledge of surface emissivity (Zhou et al. 2010). 

Figures 4-6 demonstrate the representation of sample temperature, water vapor, ozone and carbon monoxide profiles using 

different numbers of EOFs as specified in Table 2. The temperature and water vapor profile samples used for the validation 285 

are from selected ECMWF reanalysis profiles. Ozone and carbon monoxide profiles are randomly selected from the 

synthesized datasets used to build a priori constraints for the retrieval, including data from sonde measurements, reanalysis 

databases, and geochemical model results. Along with the plots that illustrate the distribution of true profiles, the EOF 

representation errors are quantified in terms of their mean bias and root-mean-square (RMS) values. Figure 7 demonstrates the 

representation of sample N2O and CH4 vertical profiles from MOZART using the sigmoid representation functions. 290 
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3.3 Bias correction 

As compared with the traditional IR+MW algorithms that rely on cloud-clearing, the SiFSAP algorithm fits the TOA radiance 

directly and maximizes the contribution from the measurement-provided information. The accuracy of the retrieval critically 

depends on how well the forward model errors are addressed. The correction for forward model errors (here referred as ‘bias 

correction’) in the SiFSAP scheme includes two parts: 1) the correction for the channel brightness temperatures of MW sounder 295 

measurements; 2) the correction for the hyperspectral measurements of IR sounders. Forward model errors, which can be 

generalized as the difference between the simulated radiance and the observations, may arise from the spectroscopy 

inaccuracies, and/or the fast parameterizations used in the radiative transfer models. In an optimal estimation-based retrieval 

scheme, forward model errors can be corrected by subtracting the systematic bias (the mean value of 𝜖 defined in Equation 1) 

from the observation and accommodating the uncertainty in the error covariance of radiance residuals after the subtraction (𝑺" 300 

defined in Equation 6).  

Estimation for the systematic bias and the error covariance is done by comparing the observations with radiances computed 

by the forward models using the best estimate of the truth as inputs. A common practice is to use the reanalysis data which are 

spatiotemporally matched to the selected ensemble of satellite observations as the truth of inputs. Data from ECMWF 

reanalysis has been used to evaluate the simulation of MW sounders like ATMS (Zhou, Y. and Grassotti, C. 2020) and MHS 305 

(Schulte et al. 2019).  Aumann et al. (2018) used ECMWF data to evaluate the simulation of hyperspectral sounder 

measurements under cloudy sky conditions using various radiative transfer models (RTMs) with cloud scattering simulation 

capability, including PCRTM.  All RTMs fit reasonably well in the 11-μm atmospheric window area. PCRTM has the smallest 

bias among the 6 RTMs for the cloudy sky observations at 900 cm-1 and provides best match with observed AIRS radiances 

in shortwave IR spectral region where the solar scattering of clouds are important.  310 

MW sounder measurements are known to have systematic, scan-angle dependent errors due to effects of antenna side-lobes 

not being adequately accounted for in the calibration process. The differences between measured and computed spectra are 

usually scene dependent. Therefore, dynamic bias correction schemes for MW measurements have been implemented in the 

numerical weather prediction (NWP) data assimilation (DA) systems (Zhu et al. 2014, Dee et al. 2009) and the physical 

retrieval systems (Schulte et al. 2019). The dynamic bias correction schemes rely on the pre-trained relationship, being either 315 

a regression-based linear or neural network-based nonlinear scheme, between the radiance bias and the predictors. The 

predictors include satellite angles, atmospheric and surface properties collocated with observations. Zhou and Grassotti (2020) 

studied the use of the ATMS brightness temperature (BT) as the major predictor in the Microwave Integrated Retrieval System 

(MiRS, https://www.star.nesdis.noaa.gov/mirs). BTs are used along with other observation angle and scene dependent 

predictors including latitude, cloud liquid water, total precipitable water, and surface skin temperature in the bias correction 320 

scheme. In the SiFSAP scheme, the MW bias corrections are stratified for different scan angles. Considering that the 

information about atmospheric and surface properties is already embedded in MW spectra, we choose the MW spectra as the 

https://www.star.nesdis.noaa.gov/mirs
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only predictor in order to facilitate the operation of the SiFSAP algorithm, especially for near-real-time data production. The 

bias prediction used for the MW sounder is implemented through the following equation: 

  𝜖@H =	∑ 𝐴@2H𝑅2H
0$%
2.& ,                                                                       (16) 325 

where 𝑗 and  𝑖 are MW sounder channel index numbers;	𝜖@His the scan angle dependent bias in brightness temperature of MW 

sounder channel 𝑗; 𝐴@2H  is the regression prediction coefficient that links the bias to the MW channel measurement  𝑅2H; and 𝐴@2H  

is trained using the least-square fit on the training sample. The matchup training samples of  𝝐Hand 𝑹Hare constructed using 

collocated ECMWF data and MW sounder measurements from selected ‘focus’ days. ECMWF does not provide surface 

emissivity and accurate cloud information. Therefore, emissivity is tuned along with cloud properties within the constraint 330 

defined by the preconstructed a priori.  The solutions that provide the best match to the observations are selected. The 

difference between 𝑹H and the corresponding fitted radiances (in BT) is the bias 𝝐H. We filter out the outliers of the matchup 

samples where the absolute differences between the simulated MW brightness temperatures using reanalysis data and the 

observed ones are greater than a predetermined threshold. Figure 8 illustrates the scan-angle dependent bias of ATMS 

measurements onboard of Suomi National Polar-orbiting Partnership (SNPP) and NOAA-20 satellites, respectively.  Figures 335 

9 and 10 further demonstrate the probability density distribution of brightness temperature difference between the observations 

and the simulations for different ATMS channels. Figures 9 and 10 also show that the scene-dependent biases can be effectively 

corrected using the regression-prediction scheme. It is noted here that the global mean daily biases from the simulation cannot 

be characterized as static offsets. The magnitudes of those offsets for different days can be very different and therefore cannot 

be effectively corrected via a static offset subtraction.    340 

The bias correction for the IR hyperspectral retrieval follows a regression-prediction approach similar to that for the MW 

retrieval. IR sounder measurements do not have antenna related, scan-angle dependent errors so that a unified bias correction 

is used for measurements at all satellite scan angles: 

   𝜖@ =	∑ 𝐴@2𝑅2
0/01
2.& .                                                                       (17) 

Here both the bias and radiances are represented in the EOF domain. 𝑁=;I  is the number of EOFs used to represent the 345 

hyperspectral sounder radiances. Again, we need to fit surface spectral emissivity and cloud properties to minimize the 

differences between the simulated spectral radiances and the corresponding sample observations. The static bias correction 

term 𝜖@ is small. What is critical here is the magnitude and the distribution of spectral fitting residuals, which define the error 

covariance used for the retrieval (𝑺" in Equation 2).  Figure 11 plots the spectral error covariance used for the SNPP-CrIS 

retrieval. 350 
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4. Results and Assessment 

4.1 Radiance Fitting Assessment 

One important quality assessment factor for sounder retrieval products is how well the retrieved properties fit the radiance 

measurements. Providing the best fit to the measured TOA radiances is the first important indicator of the correct utilization 

of maximized information provided by the measurement. The capability of providing radiance ‘closure’ justifies the retrieval 355 

products’ application for climate monitoring. It is especially critical to ensure the traceable accuracy when the data from 

multiple sounder measurements like AIRS, CrIS and IASI are fused together to establish a long-term climate data record 

(Strow et al., 2021; Wu et al., 2020).  Figure 12 shows the global mean spectral fitting residuals between the CrIS radiances 

from SiFSAP and the observations for January 14, 2016. This daily mean fitting residual is derived using ~90% of CrIS single 

FOV measurements of that day. The capability of fitting the single FOV measurements under cloudy sky conditions greatly 360 

facilitates the use of SiFSAP for climate studies that requires high spatial resolution and all-sky sampling.  

4.2 Temperature and Water Vapor Profiles  

The validation of temperature and water vapor profiles from SiFSAP has been done using results from selected testing 

days. Figures 13 and 14 plot the global mean and RMS values of the differences between the temperature and the water vapor 

retrieved from SNPP-CrIS/ATMS measurements during July 16th of 2017 and that from the collocated ECMWF data. The 365 

bias and RMS for the temperature difference are calculated as: 

 TBias= 𝑚𝑒𝑎𝑛(𝑇J2*JKE − 𝑇LMNO*) ,     TRMS= ]𝑚𝑒𝑎𝑛((𝑇J2*JKE − 𝑇LMNO*)P) .                                 (18) 

The bias and RMS for the water vapor are calculated as: 

𝐻P𝑂Bias= 3=%'(C&D2"3245#C&D67893)
3=%'(C&D67893)

× 100% ,     RMS= Q3=%'((C&D2"3245#C&D67893)&)
3=%'(C&D67893)

× 100% .             (19) 

We can see that above 10 km, temperature profiles from SiFSAP have a better than 1 K retrieval accuracy. The retrieval 370 

uncertainty becomes larger in the lower troposphere region, mostly due to the limited sensitivity of IR sounders to atmospheric 

profiles below thick clouds. The retrieval accuracy for profiles below clouds becomes more dependent on the retrieval accuracy 

of the MW sounders as clouds get thicker. As compared with over ocean retrievals, the relatively larger uncertainty in the land 

surface emissivity leads to a larger uncertainty in the near surface temperature retrieval. The relative error of water vapor 

retrieval is around 20% or smaller in the complete tropospheric region. 375 

4.3 Surface emissivity  

Figure 15 demonstrates sample land surface emissivity spectra retrieved from CrIS observations over different areas with 

different surface conditions. We can clearly see the strong spectral feature in the quartz reststrahlen band between 8 µm and 

10 µm (1000 cm-1 ~ 1250 cm-1) for samples in the desert and very different emissivity features for surfaces of soil and/or 

plants.   Figure 16 compares the land surface emissivity at 11 µm of two selected days (January 14, 2016 and August 8, 2017) 380 
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with the Aqua MODIS daily emissivity from MOD21 Land Surface Temperature and Emissivity product (Hulley et al. 2016).  

The difference between subplots A2 and A1 illustrates the change of surface emissivity that reflects the seasonal change 

(January - August) of vegetation coverage. There is a clear correlation between the emissivity change and the vegetation 

coverage change shown in subplots C1 and C2 as the normalized difference vegetation index (NDVI). The NDVI values are 

extracted from MODIS/Terra Vegetation Indices Monthly L3 Global 0.05 Degree Climate Modeling Grid product (Didan and 385 

Huete, 2015). There is a noticeable emissivity difference between subplots A1 and A2, which can partly be explained by the 

change of snow coverage in this area from January to August in 2016 (shown in subplots D1 and D2). The snow coverage data 

are extracted from daily Level-3 (L3) MODIS/Aqua snow coverage data products that provides the percentage of snow-covered 

land observed daily within 0.05° (approx. 5 km) MODIS Climate Modeling Grid (CMG) cells (Hall and Riggs, 2021).  

4.4 Trace gases: O3, CO, CO2, CH4, N2O 390 

The SiFSAP atmospheric composition products include the retrieved volume mixing ratio of CO2 O3, CO, CH4, N2O at 98 

vertical pressure level grids defined by the PCRTM algorithm. SiFSAP products include trace gas profiles for each sounder 

FOV, i.e., matching the native spatial resolution of hyperspectral sounder instruments. SiFSAP O3 data have been used to study 

stratospheric intrusion (Xiong et al., 2022A) and cold air outbreaks (Xiong et al., 2022B). SiFSAP CO data have been used 

for process-oriented analysis of emission from large wildfires and air pollution transport studies (Xiong et al., 2022C). The 395 

validation and further developments of those atmospheric composition products have been an on-going effort. Sample 

validation studies are presented here to illustrate the overall performance of SiFSAP. 

Figure 17 demonstrates the inter-comparison study of satellite-based CO observation on/around May 12th, 2020 between 

SiFSAP of SNPP/CrIS, Metop-B/IASI daily CO product, and CO data from the Measurement of Pollution in the 

Troposphere (MOPITT) on board the Terra satellite. IASI CO data are generated using the Fast Optimal Retrievals on Layers 400 

for IASI (FORLI) software (Hurtmans et al. 2012). IASI measures TOA spectral radiances between 645 and 2760 cm-1 with a 

0.25 cm-1 spectral interval between adjacent channels. CO vertical profiles are retrieved using the spectral channel 

measurements between 2128 and 2206 cm-1. As a comparison, SNPP/CrIS lacks the spectral coverage between 2128 and 2155 

cm-1 and only provides spectral measurement with a 0.625 cm-1 spectral interval. However, the ultra-low instrument noise of 

CrIS in the CO absorption region improves the information content that allows the capture of key features of the source and 405 

sink climatology of CO. The spatial and vertical distribution of CO concentration from SiFSAP in the middle-to-upper 

troposphere region agree well with FORLI CO data, which also generally agree with the MOPITT CO data 

(NASA/LARC/SD/ASDC, 2000). MOPITT measures CO using the near-infrared (NIR) band near 2.3 μm and the thermal-

infrared (TIR) band near 4.7 μm. As compared with the swath width of CrIS and IASI that is around 2200 km, the swath width 

of MOPITT observations is only around 640 km, which can only allow a global coverage of CO measurements on a weekly 410 

basis. Therefore, the MOPITT CO data of multiple days (from May 10th to May14th, 2020) are plotted together to have a 

better global scale visualization. The total column amounts of SiFSAP CO from SNPP-CrIS agree better with FORLI data in 

terms of spatial distribution at global scale. IASI FORLI results give much larger total column amount than that from both 
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SNPP-CrIS SiFSAP and MOPITT. SNPP-CrIS SiFSAP CO data agree better with MOPITT data in terms of the scale of the 

total column amount over high CO concentration areas, but there is an obvious difference in spatial distributions which cannot 415 

be simply ascribed to the temporal difference between two observations. IR sensors are known to have limited sensitivity close 

to the surface due to the generally low thermal contrast between the ground and the air above it. MOPITT CO product is 

supplemented with enhanced surface CO mixing ratio from a priori based on the Community Atmosphere Model with 

Chemistry (CAM-chem, Buchholz et al. 2019). Consequently, the spatial distribution of total column amount of MOPITT CO 

is strongly correlated with the surface CO distributions, which is not the case in SNPP-CrIS SiFSAP and FORLI CO products. 420 

The validation of the CAM-chem based a priori and its impact on the CO retrieval in the lower troposphere to surface region 

needs to be further studied.  

Figure 18 compares the total column of O3 on September 19th, 2019 from SNPP-CrIS SiFSAP with that from SNPP-CrIS 

CLIMCAPS, SNPP-OMPS (Jaross, G., 2017), and MetopB FORLI daily O3 product. The ozone hole over the Antarctica region 

is clearly captured by all products. It is noted here that IR sensors like CrIS, AIRS, and IASI are generally more sensitive to 425 

the ozone distribution in the upper troposphere while ultraviolet measurements like OMPS are more sensitive to stratospheric 

ozone. Both instruments can measure the tropospheric columns but lack vertical sensitivity in the troposphere (Fu et al. 2018).  

The results from two products (SiFSAP and CLIMCAPS) using the same sounder measurements agree well over most of the 

area.  

Figures 17 and 18 show that the SiFSAP system works effectively under all sky conditions. As compared with FORLI that 430 

only provides CO and O3 data for cloud free or almost clear (with a less than 13% cloud fraction) observations (George et al., 

2009, Boynard et al., 2018), the capability of accounting for the cloud scattering in the SiFSAP algorithm ensures a much 

higher retrieval yield rate. Although CLIMCAPS can retrieve CO for most of the observations under cloudy sky conditions, it 

fails in area under overcast skies (shown as white area in Figures 17 and 18) because the lack of contrast between observations 

of adjacent FOVs impose challenges on the implementation of the cloud clearing method.   435 

Validation to CO2, N2O, and CH4 from SiFSAP is very limited and remains to be completed in the near future. Therefore, these 

products are still subject to more research and improvement.  

4.5 Cloud properties 

Cloud optical depth, particle size, and cloud height (represented by the cloud top temperature CTT) are simultaneously 

retrieved along with other geophysical variables in the SiFSAP algorithm. Details about the cloud scattering model can be 440 

found in previously published PCRTM and physical retrieval algorithm papers (Liu et al. 2006, Liu et al. 2007, Liu et al. 2009, 

Wu et al. 2017). Cloud properties for one individual CrIS footprint are retrieved under the assumption of one effective single 

layer with the cloud transmittance, reflectance, and emissivity defined by the optical depth and the particle size. Ice and water 

clouds are discerned based on the overall spectral characteristics of the cloud emissivity (transmittance). In the iterative 

retrieval process, both cloud phase options are tried and the one providing the best spectral fitting is saved as the solution. 445 
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Earlier simulation studies have shown that the cloud phase can be retrieved with a very high accuracy rate (>95%) if the 

hyperspectral feature of the ice and water clouds can be fully explored (Wu et al. 2017).  

Cloud properties from hyper-spectral sounder measurements can be validated using the collocated imager observations like 

MODIS or VIIRS (e.g. Yue et al. 2022). The collocated SNPP-CrIS and VIIRS cloud data (Eric Fetzer et al., 2022) based on 

the VIIRS Atmosphere L2 Cloud Properties Product (Platnick et al., 2017, Heidinger and Li, 2017) is used to validate the 450 

cloud properties from SiFSAP of SNPP CrIS. Since VIIRS does not have IR channels in the 13 µm CO2 absorption band, the 

MODIS CO2 slicing solution for cloud top pressure retrievals for cold clouds is replaced with an IR window channel optimal 

estimation approach coupled with a Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)-derived 

a priori (Heidinger et al. 2019). The CTT of SiFSAP CrIS is compared with the average values of the CTT of VIIRS pixels 

within the CrIS footprints as shown in Figure 19. The global scale spatial distribution of CTT from SiFSAP agrees well with 455 

that from the VIIRS cloud product except in the Arctic region where CTT retrieved from CrIS measurements tends to be 

warmer than VIIRs results. The correlation coefficient between the VIIRS CTT and CrIS CTT shown in Figure 19 is larger 

than 0.93. Uncertainty in retrieved cloud properties tends to be larger for very thin clouds due to the challenge of extracting 

weak IR spectral signatures embedded in the measurement or forward simulation errors. Figure 19 only shows results with 

retrieved cloud optical thickness larger than 0.4 (cloud emissivity larger than 0.1) to better illustrate the retrieval accuracy 460 

when there is adequate measurement-provided information. A larger than 0.8 correlation coefficient can still be achieved even 

when we include more thin cloud footprints with optical depth as small as 0.05.   

Direct comparison between the effective cloud optical depth (COD) and the effective particle radius (Re) retrieved for an 

individual CrIS FOV and the corresponding mean values for the collocated VIIRS pixels within the CrIS FOV can be 

challenging due to several factors. First, the spatial heterogeneity among VIIRS pixels means the IR radiative contribution 465 

from a cloud layer with an averaged VIIRS COD can be very different from the combined contribution from individual VIIRS 

pixels due to the nonlinear nature of the radiative transfer 

    𝐹(CODHHHHHH, ReHHHH) ≠ ∑ *(RST",	UV")
0

0
2.& ,                         (20) 

where 𝐹 is the forward operator. Second, the inconsistency between the cloud scattering models used for sounder retrieval and 

for imager retrieval can further introduce large biases or uncertainties between two sets of COD and Re. Third, inconsistency 470 

can also arise from a lack of consistency and accuracy in the atmospheric and surface state assumed for the cloud property 

retrievals. As compared with COD and Re, it is relatively more straightforward to compare the effective cloud emissivity 

(fraction) values retrieved from CrIS and VIIRS measurements. The CrIS FOV cloud emissivity can be related with the VIIRS 

pixel effective cloud emissivity and the corresponding spatial fraction under the assumption that the total thermal emissions 

measured by CrIS and VIIRS within the same spectral band are consistent: 475 

𝐵!(𝑇""#$%)𝜖""#$% + 𝐵!(𝑇%)𝜖%(1 − 𝜖""#$%) = 𝑓 ∑ 𝜖",'($$)%𝐵!,𝑇",'($$)%-*
'+, + (1 − 𝑓 ∑ 𝜖",'($$)%*

'+, )𝐵!(𝑇%)𝜖%,        (21) 

where 𝐵W  represents the Planck function at wavenumber 𝜈, 𝜖MM/XJ and 𝑇MM/XJ	are CrIS cloud emissivity and CTT, 𝜖M,2YXXZJ and 

𝑇M,2YXXZJ are cloud emissivity and CTT of individual VIIRS pixels, f represents the spatial fraction of VIIRS cloud pixels within 
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a CrIS FOV, 𝑇J and 𝜖J are surface skin temperature and surface emissivity which are assumed to be homogeneous within a 

single CrIS FOV. Equation 21 is justified under the condition that 𝜈 is within a ‘window’ spectral region where atmospheric 480 

absorption and thermal emission can be neglected, and the effective cloud reflectivity is close to zero. Therefore, the cloud 

transmissivity is approximated as 1 − 𝜖M. A more simplified form can be used 

𝜖MM/XJ	𝑇MM/XJ + (1 − 𝜖MM/XJ)𝑇J = ∑ 𝑓2𝜖M,2YXXZJ𝑇M,2YXXZJ0
2.& + (1 − 𝑓∑ 𝜖M,2YXXZJ0

2.& )𝑇J                                     (22) 

by utilizing the fact that the Planck function is linear enough and the surface emissivity is close to unity. Such an approach to 

check the radiometric consistency between cloud properties from IR sounders and imagers has been used in the AIRS-MODIS 485 

cloud retrieval validation study (Kahn et al. 2007, Nasiri et al. 2011). Figure 20 demonstrates the comparison between the 

effective brightness temperature of CrIS 𝑇=IIM/XJ	and that of corresponding VIIRS measurements 𝑇=IIYXXZJ, with the definition being 

given as 

  𝑇=IIM/XJ =	𝜖MM/XJ	𝑇MM/XJ + (1 − 𝜖MM/XJ)𝑇J,                                                            (23) 

𝑇=IIYXXZJ = 𝑓∑ 𝜖M,2YXXZJ𝑇M,2YXXZJ0
2.& + (1 − 𝑓∑ 𝜖M,2YXXZJ0

2.& )𝑇J.                                          (24) 490 

A good agreement is found between 𝑇=IIM/XJ	and 𝑇=IIYXXZJ except a small percentage of samples in the Arctic. The cloud emissivity 

data used for this study are the retrieval results based on the NOAA Daytime Cloud Optical and Microphysical Properties 

(DCOMP; Walther and Heidinger, 2012) algorithm. Li et al. (2020) found that VIIRS cloud data products tend to have larger 

uncertainties in polar regions due to the lack of VIIRS spectral measurements in IR water and CO2 absorption channels. They 

found a major improvement for the cloud mask can be achieved over polar regions by fusing the collocated CrIS measurements 495 

in the missing spectral region with the VIIRS data. Although the radiative consistency between cloud properties from SiFSAP 

CrIS and that from VIIRS is high, the surface skin temperature 𝑇J, CTT, and the cloud effective emissivity (fraction) are highly 

correlated with each other. Uncertainties in either 𝑇J or CTT will introduce inconsistency between the effective emissivity 

from these two measurements. Even though the three parameters compensate each other to fit radiometrically to the 

observations, the effective cloud emissivity from CrIS and VIIRS measurements can still be quite different. This is especially 500 

the case when there is a lack of thermal contract between 𝑇J and CTT.     

4.6 Averaging kernels  

Hyperspectral sounder measurements provide rich information for temperature and humidity vertical profiling. Figures 21 and 

22 demonstrate typical temperature and water vapor retrieval averaging kernels from SNPP CrIS SiFSAP. Figure 21 clearly 

shows that high vertical resolution temperature retrieval can be achieved by the SiFSAP algorithm even in the lower 505 

tropospheric region near the surface. The sum of the averaging kernel rows, also known as ‘verticality’, is usually used to 

characterize how much information comes from the measurements. A verticality value close to one means measurement 

provides dominant information so that a retrieval system’s dependence on the a priori is minimized. On the other hand, a 

verticality value close to zero indicates that the system is heavily dependent on the a priori since the measurement does not 

provide much information. Figure 21 shows that hyperspectral measurements can well resolve the temperature profile from 510 
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troposphere to stratosphere under a clear sky condition. The information from the measurements degrades in the lower 

troposphere under a cloudy condition region due to the weaking of thermal emission signal by clouds. The averaging kernel 

for water vapor retrieval (Figure 22) is relatively less sensitive to clouds, but the information provided by hyperspectral 

measurements to retrieve water vapor in upper troposphere and stratosphere region is limited.  

As compared with temperature and water vapor, the measurement information from hyperspectral IR sounders for trace gases 515 

retrieval is relatively limited and more scene dependent. Figure 23 shows the averaging kernels of O3 retrievals from SNPP 

CrIS SiFSAP of September 20th, 2019 for different latitudinal regions.  The O3 retrieval has sensitivity peaks in both 

stratosphere and upper troposphere. The measurement sensitivity for lower tropospheric O3 is the highest in the tropical region 

and tends to decrease as the observations move to higher latitude regions. Overall, the SiFSAP system provides decent vertical 

resolution of O3 profiling based on real CrIS observation data, which is comparable to what has been demonstrated for IASI 520 

measurements via an end-to-end simulation study (Wu et al. 2017). 

Samples averaging kernels from SiFSAP CO product are shown in Figure 24 for different latitudinal bands, as CO retrieval is 

more latitudinal dependent as compared with O3. CrIS full spectral resolution measurements provide abundant information for 

the tropospheric CO retrieval in the tropical region (with verticality close to 1). The measurement information becomes less 

dominant in the mid-latitude region and very limited in the polar regions. This is partly due to the fact that thermal emission 525 

signals due to CO absorption in the atmosphere are weaker in lower temperature region. Ultimately, the total measurement 

sensitivity of CO is limited by the CrIS instrument noise level in the CO absorption spectral region. The vertical resolution of 

CO retrieval is very limited in the current version of SiFSAP. Similar to SiFSAP, the reported vertical resolution of CO retrieval 

in other IR sounder retrieval systems, e.g. FORLI, AIRS CO retrieval, and CLIMCAPS (George et al. 2009, Smith and Barnet, 

2020), is also very limited. This can be ascribed to the weak thermal contrast among signals in CO measurement channels of 530 

IR sounders and the vertical distribution constraints from the a priori that remain to be optimized.  

5. Conclusions and Future Work  

SiFSAP retrieval algorithm has been developed to generate a high spatial resolution and radiometrically consistent 

hyperspectral sounder product to explore the applications of sounder observations in areas that have not been fully addressed 

by the current operational sounder products. SiFSAP products include temperature, water vapor, O3, CO2, CO, CH4, and N2O 535 

profiles, as well as surface properties (including surface skin temperature and surface emissivity) and cloud properties 

(including cloud top pressure, height, temperature, effective cloud optical depth, and effective cloud particle size). Following 

an optimal estimation scheme and the efficient and accurate forward radiative transfer model PCRTM, SiFSAP also provides 

users with the averaging kernels and error estimates to facilitate better uncertainty quantification in physical process studies 

and data assimilations using sounder products, as well as intercomparisons of multiple observational and model products.  540 

Initial validation on key SiFSAP Level 2 variables has been carried out using SNPP-CrIS as an example. More extensive 

studies and validation of SiFSAP products for other satellites will be conducted. Validation for CO2, CH4, and N2O has been 
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initiated but a lot of work remains to be done, so these three trace gas products are released as exploratory data products at the 

current stage. 

One key advantage of the SiFSAP algorithm is its applicability for multiple IR and MW sounder systems. In addition to 545 

CrIS/ATMS onboard SNPP and Joint Polar Satellite System (JPSS) satellites, the SiFSAP system is ready for the processing 

of both AIRS/AMSU and IASI/AMSU/MHS data. Simulations based end-to-end studies and some evaluation work using 

sample IASI data have been demonstrated (Wu et al. 2017, Liu et al. 2009). Some AIRS retrieval case studies using the SiFSAP 

algorithm have already demonstrated the advantage of SiFSAP over traditional AIRS Level 2 product in capturing the high 

spatial resolution feature of gravity wave signals in the stratospheric temperature (Wu et al. 2019). SiFSAP provides a solution 550 

to retrieve key climate variables from different hyperspectral sounder observations using a consistent physical algorithm. This 

is not only important for effectively fusing information from multiple instruments, but also essential to constructing a long-

term continuous climate data record from the Program of Record sounder observations. The capability of using a unified 

radiative transfer model (i.e., PCRTM) to accurately fit the spectral radiances measured by all modern era operational 

hyperspectral sounders under all sky conditions is essential for the climate trend/anomaly retrieval study from a radiometric 555 

consistency perspective.  

SiFSAP will support weather and atmospheric dynamics studies by providing high spatial resolution temperature and water 

vapor profiles that can be used to reveal mesoscale atmospheric variations. The algorithm’s capability of using the spectral 

information from all hyper-spectral channels via PC analysis makes it easy to be adapted and affordable for future sounder 

applications with a much higher spectral resolution and much more channels (e.g. IASI-NG). The scheme requires minimal 560 

auxiliary data to provide the a priori constraints and is suitable for real-time and environmental monitoring applications. Future 

work includes exploring the SiFSAP algorithm’s application potential in challenging areas (e.g. Planetary Boundary Layer 

studies) by further improving the utilization of spectral information and the accommodation for forward model errors. The 

development of a long-term climate record based on SiFSAP using the climate spectral fingerprinting scheme is also underway. 

 565 

Data availability. SiFSAP will soon be available to public from the NASA Goddard Earth Sciences Data and Information 

Services Center (GES DISC). The availability of the SNPP SiFSAP data is currently on a request basis. The SNPP CLIMCAPS 

data is available from GES GISC (https://10.5067/62SPJFQW5Q9B).VIIRS cloud property data is available from Level-1 and 

Atmosphere Archive & Distribution System Distributed Active Archive Center (LAADS DAAC  https://ladsweb.modaps. 

eosdis.nasa.gov/search/order/1/CLDPROP_L2_VIIRS_SNPP—5111). The collocated SNPP-CrIS and VIIRS data is available 570 

from GES GISC (https://disc.gsfc.nasa.gov/datasets/SNPP_CrIS_VIIRS750m_IND_1/summary?keywords=CrIS_VIIRS750 

m). AQUA MODIS monthly land surface emissivity data is available from the Land Processes Distributed Active Archive 

Center (LP DAAC https://lpdaac.usgs.gov/ products/myd11c3v006/). AQUA MODIS monthly vegetation index data is 

available from LP DAAC (https://lpdaac.usgs.gov/ products/myd13c2v006/). Snow coverage data is from NASA National 

Snow and Ice Data Center Distributed Active Archive Center (https://doi.org/10.5067/ MODIS/MYD10C1.061). METOP-B 575 

IASI O3 and CO data are available from IASI portal (https://iasi.aeris-data.fr/o3/, https://iasi.aeris-data.fr/co/). MOPITT CO 

https://disc.gsfc.nasa.gov/datacollection/SNDRSNIML2CCPRET_2.html
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps/
https://lpdaac.usgs.gov/
https://iasi.aeris-data.fr/o3/
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data is from the NASA Atmospheric Science Data Center (ASDC) (ftp://l5ftl01.larc.nasa.gov/MOPITT/).  OMPS O3 data is 

from NASA Earth Data (https://omisips1.omisips. eosdis.nasa.gov/outgoing/OMPS/LANCE/NMTO3-L2-NRT/).  
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Figure 1 Climatological background used for temperature and water vapor retrievals (dash curves) in the SiFSAP algorithm. The 
final retrieval results (sample retrieved profiles presented as solid curves) can be very different from the background values. 
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Figure 2 IR sounder radiances fitted by SiFSAP. Left: IASI; Middle: CrIS; Right: AIRS.  The radiance fitting residues (blue curves 
in lower subplots) are compared with the instrumental random noise (with the magnitude being marked using yellow curves). 

1000 1500 2000 2500
200

220

240

260

280

300

320

BT
 (K

)

Observed
PCRTM Modeled

1000 1500 2000 2500
Wavenumber (cm-1)

-5
0
5

 B
T 

(K
) 800 1000 1200 1400 1600 1800 2000 2200 2400

200

220

240

260

280

300

BT
 (K

)

Observed
PCRTM Modeled

800 1000 1200 1400 1600 1800 2000 2200 2400
Wavenumber (cm-1)

-5
0
5

 B
T 

(K
)

1000 1500 2000 2500
200

210

220

230

240

250

260

270

BT
 (K

)

Observed
PCRTM Modeled

1000 1500 2000 2500
Wavenumber (cm-1)

-5
0
5

 B
T 

(K
)



28 
 

 
 

 

First guess 

Retr. Results from 
prev. FOV 

Radiance Bias:   
MW, IR 

Climatological  
background, X0 

Measurement 
uncertainty, Sy 

covariance 
matrices, Sx, 
EOFs, Ux 

CRTM model 
parameters, LUTs 

PCRTM model 
parameters, LUTs 

MW data Single FOV MW retrieval 

Single FOV IR+MW 
retrieval 

MW only 
retrieval 
results 

IR + MW 
retrieval 
results 

Next FOV 

Next FOV 

IR data QUALITY CONTROL 
& 

POST PROCESSING 
 

SYNERGETIC RETRIEVAL UNIT 

INITIALIZATION 

MW 
spectrum 

Iterative optimal estimation 
solution for MW radiance 

fitting  
 

Bias Correction 

Radiance Bias:  
MW 

Climatological  
background, X0 

Measurement 
uncertainty, Sy 

covariance 
matrices, Sx, 
EOFs, Ux 

CRTM model 
parameters, 
LUTs 

CRTM 
Forward 
Operator 

 

Single FOV MW Retr. 

Bias 
Correction 

MW 
spectrum 

Iterative optimal estimation 
solution for MW+IR radiance 

fitting   
 

Bias 
Correction 

Radiance Bias:  
MW 

Climatological  
background, X0 

Measurement 
uncertainty, Sy 

covariance 
matrices, Sx, 
EOFs, Ux 

CRTM model 
parameters, 
LUTs 

PCRTM model 
parameters, 
LUTs 

PCRTM+CRTM 
Forward Operator 

 

IR  
spectrum 

Radiance Bias:  
IR 

Single FOV IR+MW Retr.  

MW retr. 
converged ? Prev. FOV 

converged? 
 

First guess 

Retr. Results from 
MW Retr. 

Yes Yes 

No No 

GSF Surf. Pres. 

Figure 3 Flow diagram of the SiFSAP data processing scheme. 



29 
 

 840 
 

 
 

Figure 4 EOF representation errors of temperature and water vapor profiles. (a) and (c) the original temperature and water 
vapor profiles; (b) and (d) the mean and the RMS values for the difference between the original profiles and the profiles 
being represented using limited number of EOFs (20 EOFs are used for temperature profiles and 15 EOFs are used for 
water vapor). 

(a) (b) (c) (d) 

Figure 5 EOF representation errors of ozone profiles. (a) the original ozone profiles; (b) the mean and the RMS values for the 
difference between the original profiles and the profiles being represented using 10 EOFs. 
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Figure 7 The representation of nitrous oxide and methane profiles using sigmoid functions. 

Figure 6 EOF representation errors of carbon monoxide profiles. (a) the original ozone profiles; (b) the mean and the RMS 
values for the difference between the original profiles and the profiles being represented using 4 EOFs. 
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Table 1.  Geophysical parameters included in SiFSAP. 

 From IR+MW  

Synergistic retrieval 

From First Step MW only 

retrieval 
1Temperature Profile (K) Yes Yes 
1Water Vapor MMR profile (g/kg)  Yes Yes 
1CO2 VMR profile (ppmv) Yes  
1O3 VMR profile (ppmv) Yes  
1CH4 VMR profile (ppmv) Yes  
1CO VMR profile (ppmv) Yes  
1N2O VMR profile (ppmv) Yes  

Surface Skin Temperature (K) Yes Yes 
2IR Surface Emissivity Yes  
3MW Surface Emissivity Yes Yes 

Effective Cloud Top Pressure (hPa) Yes  

Cloud Particle Size (µm) Yes  

Cloud Optical Thickness  Yes  

Cloud phase (ice or water) Yes  

Liquid Water Content (g/m2) Yes Yes 
1 Atmospheric profiles are given at 98 pressure levels;  
2 IR surface emissivity at native mono-frequency bins defined by the PCRTM are provided. Number of frequency bins for 

different sounders are: AIRS - 500; IASI- 753; CrIS at full resolution - 540; CrIS at nominal resolution – 485; 
3 MW surface emissivity are given for each channel of MW sounders. 860 
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Table 2.  Number of EOFs used in SiFSAP to represent radiances and geophysical parameters. 

Hyperspectral IR Instruments 

Name     Measurement Band 

Number of Channels Number of EOFs used 

AIRS 

LWIR   1262 50 

MWIR   602 35 

SWIR   514 40 

CrIS (NSR)  

LWIR   713 50 

MWIR   433 30 

SWIR   159 25 

CrIS (FSR)  

LWIR 713 50 

MWIR   863 40 

SWIR 865 30 

IASI 

LWIR   2260 50 

MWIR   3160 60 

SWIR   3041 80 

 

Geophysical Parameters Number of EOFs 

Temperature 20 

Water Vapor  15 

Carbon Dioxide 1 

Ozone 10 

Carbon Monoxide 4 

IR Surface Emissivity 8 

MW Surface Emissivity 5 
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Figure 8 Global mean bias (in BTs) predicted by the SiFSAP algorithm for ATMS measurements onboard of SNPP 
and NOAA20(JPSS-1) on April 30th, 2020. 
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Figure 9 Blue solid curves: histograms that illustrates the distribution of biases in different SNPP-ATMS channels for 
over the land measurements during April 30th, 2020 at the 52.725o scan position, being derived from the study discussed 
in Section 3.3; Yellow dash curves: histograms of biases after the correction following the regression-prediction scheme. 
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Figure 10 Blue curves: similar to Figure 9 but for histograms that illustrate the distributions of biases in different NOAA20-
ATMS channels for over the ocean measurements the 52.725o scan position.  Yellow dash curves: histograms of biases after 
the correction following the regression-prediction scheme. 
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Figure 11 Left column: Spectral fitting error covariances (normalized by diagonal elements) used for SNPP-CrIS SiFSAP 
algorithm; Right column: Corresponding magnitude of the spectral fitting uncertainty for each CrIS channels (quantified 
as differential temperature at 280 K); A – For over ocean ascending observations; B – For over land ascending observations; 
C – For over ocean descending observations; D – For over land descending observations. 
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Figure 12 Global scale daily mean spectral fitting bias achieved by SiFSAP for SNPP-CrIS observations on January 14, 2016. 
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Figure 13 Error statistics of global temperature and water vapor profiles retrieved from SNPP-CrIS/ATMS descending 
observations with respect to ECMWF for (a) over the ocean scenes and (b) over the land scenes. Solid lines: biases of temperature 
and water vapor profiles; dashed lines: RMS errors of the temperature and water vapor profiles. In addition to the bias and 
RMS values for all CrIS/ATMS descending measurements, the statistics for observations of under either clear sky or thin cloud 
(with cloud optical depth less than 1.0) are explicitly plotted to illustrate the impact of cloud on the retrieval accuracy of 
temperature and water vapor profiles at low altitudes.    
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Figure 14 Error statistics of global temperature and water vapor profiles retrieved from SNPP-CrIS/ATMS ascending 
observations with respect to ECMWF for (c) over the ocean scenes and (d) over the land scenes. 
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Figure 15 Sample land emissivity spectra from SiFSAP of SNPP CrIS. 
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A B 

Figure 16 A1 and A2 – SiFSAP surface emissivity at 11 µm for January 14, 2016 and August 9, 2017, respectively; B1 and B2– MODIS 
surface emissivity at 11 µm for January, 2016 and August of 2017, respectively; C1 and C2 – MODIS monthly NDVI values for 
January, 2012016 and August of 2017, respectively; D1 and D2 – MODIS monthly snow coverage for January, 2016 and August of 
2017, respectively; The area with relatively thicker clouds single (cloud optical depth larger than 1.0) are filtered out in subplots A1 
and A2. 
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Figure 17 A and B are map plots of VMR (ppmv) of CO at 500 hPa from SNPP CrIS SiFSAP and SNPP CrIS CLIMCAPS for May 
12th, 2020, respectively; C shows the corresponding MOPITT CO VMR at 500hPa (during May 10-14, 2020, to ensure a global scale 
spatial coverage). Metop-B IASI FORLI CO VMR at 500 hPa is plotted in D. 
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Figure 18 O3 total column amount (DU) retrieved from satellite-based observations on September 20th, 2019 (A – SNPP/CrIS 
SiFSAP; B – SNPP/CrIS CLIMCAPS; C – SNNP-OMPS; D – Metop-B/IASI FORLI). 
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Figure 19 Cloud top temperature (K) for January 1st, 2016 from SNPP/CrIS SiFSAP (A) and that from SNPP/VIIRS cloud 
data products collocated to CrIS footprints (B). C is the corresponding scatter plot. 
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Figure 20 Effective brightness temperature (K) for January 1st, 2016 from SNPP/CrIS SiFSAP (A) and that from 
SNPP/VIIRS cloud data products collocated to CrIS footprints (B). C is the corresponding scatter plot. 
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Figure 21 Sample temperature averaging kernels from SNPP/CrIS SiFSAP;  A – averaging kernel under a clear sky 
condition; B – sum of averaging kernel rows at different pressure levels. C and D represent those under a cloudy sky 
condition. 
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Figure 22 Similar to Figure 21 but for water vapor retrievals. 
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Figure 23 Ozone averaging kernels of September 20th, 2019 from SiFSAP of SNPP CrIS for different latitudinal regions. 
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Figure 24 CO averaging kernels of May 12th, 2020 from SiFSAP of SNPP CrIS for different latitudinal regions. 


