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Abstract. Satellites monitoring air pollutants (e.g., nitrogen oxides, NOx = NO + NO2) or greenhouse gases (GHGs) are widely

utilized to understand the spatiotemporal variability and evolution of emission characteristics, chemical transformations, and

atmospheric transport over anthropogenic “hotspots”. Recently, the joint use of space-based long-lived GHGs (e.g., carbon

dioxide, CO2) and short-lived pollutants has made it possible to improve our understanding of emission characteristics. Some

previous studies, however, lack consideration of the non-linear NOx chemistry or complex atmospheric transport. Considering5

the increase in satellite data volume and the demand for emission monitoring at higher spatiotemporal scales, it is crucial

to construct a local-scale emission optimization system that can handle both long-lived GHGs and short-lived pollutants in

a coupled and effective manner. This need motivates us to develop a Lagrangian chemical transport model that accounts for

NOx chemistry and fine-scale atmospheric transport (STILT-NOx ); and investigate how physical and chemical processes,

anthropogenic emissions, and background may affect the interpretation of tropospheric NO2 columns (tNO2 ).10

Interpreting emission signals from tNO2 commonly involves either an efficient statistical model or a sophisticated chemical

transport model. To balance computational expenses and chemical complexity, we describe a simplified representation of the

NOx chemistry that bypasses an explicit solution of individual chemical reactions while preserving the essential non-linearity

that links NOx emissions to its concentrations. This NOx chemical parameterization is then incorporated into an existing

Lagrangian modeling framework that is widely applied in the GHG community. We further quantify uncertainties associated15

with the wind field and chemical parameterization and evaluate modeled columns against retrieved columns from the TROPO-

spheric Monitoring Instrument (TROPOMI v2.1). Specifically, simulations with alternative model configurations of emissions,

meteorology, chemistry, and inter-parcel mixing are carried out over three US power plants and two urban areas across seasons.

Using EPA-reported emissions for power plants with non-linear NOx chemistry improves the model-data alignment in tNO2 (a

high bias of ≤10% on an annual basis), compared to simulations using either EDGAR or without chemistry (bias approaching20

100%). The largest model-data mismatches are associated with substantial biases in wind directions or conditions of slower

atmospheric mixing and photochemistry. More importantly, our model development illustrates (1) how NOx chemistry affects

the relationship between NOx and CO2 in terms of the spatial and seasonal variability and (2) how assimilating tNO2 can
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quantify systematic biases in modeled wind directions and emission distribution in prior inventories of NOx and CO2, which

laid a foundation for a local-scale multi-tracer emission optimization system.25

1 Introduction

Emissions of air pollutants (APs) and greenhouse gases (GHGs) adversely impact urban ecosystems and environments, human

health, and the climate via the moderation of energy budgets (Myhre et al., 2014; Watts et al., 2021). APs and GHGs are

directly inter-connected considering they are co-emitted from many combustion sources, suggesting that reductions in GHGs

may bring co-benefits in mitigating APs (Cifuentes et al., 2001; West et al., 2013; Lin et al., 2018). Although quantifying30

emissions in GHGs and APs and understanding their underlying drivers at all scales are equally important, emission estimates

beyond a county or city become more relevant in addressing policy-relevant topics such as emission mitigation.

Space-based remote sensors offer an objective perspective to monitoring global air quality and GHGs. These new data enable

us to uncover the spatial variability along with the temporal trend and perturbation of anthropogenic emissions. Air quality-

related observations have been among the first to demonstrate the capability of satellite remote sensing to globally diagnose air35

quality (Duncan et al., 2016; Laughner and Cohen, 2019; Jin et al., 2020), constrain emissions across time, space, and sectors

(Jiang et al., 2018; Goldberg et al., 2019; Tang et al., 2019; Qu et al., 2022), and evaluate real-world decisions (Lamsal et al.,

2011; Demetillo et al., 2020). Leveraging satellite observations in understanding the spatiotemporal distribution of emissions

within cities is still limited compared to those city-total estimates. Data and analysis uncertainty further present the main

challenge in extracting robust combustion signals from remotely sensed measurements and these uncertainties are amplified in40

attempts to resolve dynamic flows and heterogeneous combustion activities within cities (Valin et al., 2013; Goldberg et al.,

2022; Souri et al., 2022).

Making full use of existing and upcoming satellites that retrieve concentrations of APs and GHGs offers an informative way

to target urban emissions from different sources at a policy-relevant scale of a few km. Combining satellite observations of

species with different atmospheric lifetimes has enabled studies to diagnose chemical conditions and meteorological processes45

(Jin et al., 2017; Lama et al., 2022), identify urban plumes, and constrain emissions for the tracer of interest (Wunch et al., 2009;

Yang et al., 2023), and obtain observation-based ratios between tracers (Silva and Arellano, 2017; Wu et al., 2022; MacDonald

et al., 2022) to infer structural changes in combustion activities (Reuter et al., 2014; Miyazaki and Bowman, 2023). In light

of the rapid rise in satellite data volume, it is beneficial to have an analysis system that adequately accounts for the important

local-scale processes in interpreting the abundance of GHG and APs in a coupled manner (Fig. 1). Analogies to such local-scale50

systems in a global context include the AP-focused Tropospheric Chemical Reanalysis (TCR-2, Miyazaki et al., 2020) and the

GHG-focused Carbon Monitoring System-Flux (CMS, Hurtt et al., 2022). Only a few recent multi-tracer modeling systems

aim to bridge CO2 and NO2 column measurements (Reuter et al., 2014; Kaminski et al., 2022; Hakkarainen et al., 2023),

albeit limits in their modeling tools (elaborated in the next paragraph). In addition, as emphasized in Reuter et al. (2014), most

multi-tracer studies rely on emission ratio/conversion ratio from inventories, which can be problematic.55
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In efforts to interpret CO2 or NOx emission signatures from satellite observations, most prior studies used either statistical

or inversion approaches. The former approach involves the use of Gaussian plume or Exponentially-Modified Gaussian (EMG)

models with input from simple wind information to derive emissions of CO2 and NOx (or lifetime if for NOx) purely from

observations in a computationally efficient manner without relying much on prior assumptions of emissions (Nassar et al.,

2022; Beirle et al., 2011). These statistical approaches only provide a plume-integrated emission estimate that can be sensi-60

tive to the input wind speed and chemical lifetime. Multiple satellite overpasses need to be aggregated with wind direction

aligned for a robust fit in the EMG model to obtain emission and lifetimes. It is challenging to infer and evaluate sub-grid cell

variations in emissions. The more sophisticated inverse approach involves the use of a chemical transport model (CTM) that

comprehensively accounts for atmospheric transport and chemical transformation and a coupled inversion or data assimilation

system (e.g., Liu et al., 2022; Qu et al., 2022). CTMs are, however, computationally expensive and often involve hundreds65

of species and their coupling reactions. Most CTMs used in AP-related studies are Eulerian models, which may suffer from

complications caused by rigid model grids (Wohltmann and Rex, 2009; Valin et al., 2011). Motivated by these approaches

that rely on a constant lifetime or solve for individual chemical reactions, we have built a modeling framework to balance the

advantages and imperfections —i.e., to simplify the chemical transformation process that preserves the non-linear relationship

between NOx emissions and the observed concentration field together with a high-resolution atmospheric transport using a70

Lagrangian Particle Dispersion Model (LPDM).

LPDMs have been increasingly utilized for emission estimates over the past decades. For instance, the Stochastic Time-

Inverted Lagrangian Transport Model (STILT, Lin et al., 2003) building upon HYSPLIT (Stein et al., 2015) has been well

adapted to analyze emission signals from all sorts of measurement platforms. STILT was designed to better describe the

movement of air parcels only relevant to an observation site and explicitly provide the source-receptor relationship (i.e., the75

Jacobian matrix) to facilitate efficient atmospheric inversions for optimizing emissions. Besides, LPDMs themselves possess

inherent numerical and computational advantages, such as avoiding artificial smoothing of concentration fields by spurious

numerical diffusion in confined model boxes (Wohltmann and Rex, 2009; Lin et al., 2013). More importantly, the Lagrangian

transport perspective is intuitively coupled with box models that handle chemical reactions. Noticeable examples include

STOCHEM (Collins et al., 1997), ATLAS (Wohltmann and Rex, 2009), CLaMS v2.0 (Konopka et al., 2019), and HYSPLIT-80

based variations including HYSPLIT-CheM (Stein et al., 2000), ELMO-2 for ozone (Strong et al., 2010), and STILT-chem

(Wen et al., 2012). These Lagrangian chemical models describe the chemical reactions of each species or lumped group with

similar functional groups to calculate chemical transformation along trajectories but vary in the complexity of implemented

chemistry and parameterization for turbulent mixing and numerical diffusion. Despite these prior modeling efforts, Lagrangian

chemical models are more often adopted to inform the origins of APs but are less commonly used to constrain emissions. Such85

under-appreciation is in part a result of the heavy computational expenses in solving chemical changes at high frequency via

ordinary differential equations (similar to most Eulerian CTMs) and the reliance on external meteorological fields.

To reduce computational costs in dealing with complex chemistry, studies have proposed machine learning techniques or

defaulted to a constant-lifetime assumption as a shortcut. Machine learning techniques have been applied to approximate the

chemical mechanisms (Keller and Evans, 2019; Huang and Seinfeld, 2022), predict OH field with observational constraint90
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(Zhu et al., 2022), and calculate emissions (He et al., 2022). Other studies have assumed a constant first-order lifetime to

estimate NOx emissions and emission ratios between NOx and CO2 (Lee et al., 2014; Hakkarainen et al., 2023). However,

unlike chemically passive species such as CO2, the chemical tendency of NOx is not independent of atmospheric advection and

turbulent mixing because of the chemically-driven non-linearity between the NOx lifetime and the NO and NO2 concentrations

(Laughner and Cohen, 2019). More specifically, during the day NOx is lost through two more permanent pathways of (1) NO2 +95

OH to nitric acid and (2) NO + peroxy radicals (RO2 ) with a minor branch in producing alkyl nitrates, ANs (POINT 3 in Fig.

1). The two pathways compete with one another and either may dominate depending on chemical conditions. Such non-linear

dependence of NOx lifetime or chemical tendency with NOx concentration must be accounted for to estimate NOx emissions

from atmospheric NO2 concentrations. Such non-linearity will affect the interpretation of tracer-to-tracer emission ratios from

observed enhancement ratios.100
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Figure 1. A conceptual diagram of our proposed local-scale multi-tracer modeling framework in interpreting column observations. It contains a road map

for this study (POINTs 1 through 5). The diagram highlights key biogenic/physical/chemical processes for quantifying NOx, CO, and CO2 around cities

based on space-based measurements (pixels from red to blue): atmospheric conditions (wind speed & PBLH for vertical mixing, horizontal mixing/diffusion

lengths), chemical conditions (photolysis rate and NOx regimes, regional versus local oxidant conditions), the spatial distribution of emissions (urban vs.

power plant), and sensitivities of the column abundance to individual vertical levels (averaging kernel).

In this study, we present a non-linear modeling framework, STILT-NOx , to simulate tropospheric column-average NO2 mix-

ing ratio (tNO2 ) as retrieved from TROPOMI. Note that initial NO2 vertical column density [VCD, molecules cm−2] is con-

verted to tNO2 [ppb] by dividing by a dry air VCD. The dry air VCD is calculated by integrating a profile of the ideal gas
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number density of air minus a modeled water vapor profile. As illustrated in Fig. 1, the overarching goal of this framework is

to facilitate emission optimizations over global anthropogenic hotspots by simulations of the concentrations of key trace gases105

of CO2, CO, and NOx at the local scale. To do so, the current work aims to equip the STILT model with simplified chemistry

that avoids explicit calculations of chemical reactions while preserving the non-linearity that ties the NOx concentrations to

its emission (POINT 3 in Fig. 1). The proposed STILT-NOx framework is comprised of four components, which correspond

respectively to points 1 to 4 in Fig. 1 and will be coupled to an upcoming non-linear flux inversion module (POINT 6).

1. the HYSPLIT-STILT core that resolves fine-scale atmospheric advection and turbulence; and calculates the sensitivity110

of concentration anomalies to upwind fluxes (“footprint”) (Lin et al., 2003; Fasoli et al., 2018; Loughner et al., 2021);

with an additional simplified inter-parcel mixing scheme (Sect. 2.3);

2. a column weighting module to simulate atmospheric columns (and uncertainties) that incorporates pressure weighting

functions and retrieval-specific averaging kernel profiles (X-STILT, Wu et al., 2018);

3. a simplified chemistry module that describes NOx chemical tendency (Sect. 2.1) and how much NOx is presented as115

NO2 (NO2–to–NOx ratio, Sect. 2.2);

4. an error analysis module that quantifies errors and biases in wind fields and chemical parameters (Sect. 3) following

methods initially proposed in Lin and Gerbig (2005) and Wu et al. (2018), which can be used for future flux inversions.

We illustrate the skill of this framework using comparisons of modeled tNO2 and those diagnosed from TROPOMI over 3 US

power plants and 2 cities across seasons (Sect. 4). Lastly, we discuss possible future advances in Sect. 5.3 and demonstrate120

the benefits of applying this framework, especially on the quantification of CO2 emissions, emission ratios between NOx and

CO2, and “near-field” wind biases in Sects. 5.1 and 5.2.

2 STILT-NOx model descriptions

Building upon the HYSPLIT-STILT atmospheric transport core, the STILT-NOx framework traces the origin of the atmospheric

column observed by the satellite and calculates changes of NOx concentrations due to emissions, inter-parcel mixing, and125

chemical transformations at the (sub-)minute scale. The STILT-NOx simulations are conducted in three steps (Fig. 2).

First, the backward-trajectory mode records the lat/long/pressure coordinates of air parcels originating from the same atmo-

spheric column sampled by satellites and being driven by the Eulerian meteorological fields (STEP 1 in Fig. 2). In this work,

we test two meteorological fields when they are available for each examined region, namely from the Global Forecast System

(GFS0p25) and the High-Resolution Rapid Refresh (HRRR) with a respective horizontal grid spacing of 0.25◦ and 3km (Rolph130

et al., 2017). As most anthropogenic and all soil sources of NOx are from the surface, air parcels are evenly distributed and

released from the surface to 2 km which is slightly above the typical planetary boundary layer (PBL) height (Wu et al., 2018).

To evaluate how representative enhancements between 0 and 2 km are compared to the total tropospheric column enhance-

ments (which can include sources from lightning and aviation), we analyzed vertical distributions of NOx mixing ratios from

TCR-2 (Miyazaki et al., 2020). TCR-2 is a global chemical reanalysis that includes full physical and chemical processes for135
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various species and assimilates multiple satellite products of NO2 , ozone, CO, and SO2. As a result, monthly mean NOx con-

centrations over the 2◦ × 2◦ area around the top 1000 cities is quite insignificant for pressure ≤ 700 hPa compared to huge

signals within the PBL (Supplement Fig. S1). Although 0 to 2 km columns include most anthropogenic enhancements over

urban areas, we subtracted a local NO2 background from the total tropospheric columns to minimize the non-anthropogenic

influences with a plume detection algorithm following Kuhlmann et al. (2019). The model-data comparisons with background140

subtracted are discussed in Sect. 4.1.

Figure 2. A schematic of STILT-NOx for simulating concentrations in three steps. STEP 1 — routine backward-time calculation: record

locations of air parcels at each timestamp (∆t) of 1 min or less and their influence from potential fluxes (“footprint”). STEP 2 — initial

condition: the trajectory endpoint at time = t0 is given a concentration from 4D fields (e.g., TM5 in the case of NOx). STEP 3 — forward-

time concentration calculation: updates change in concentrations due to emissions, net chemical losses, and inter-parcel mixing along each

trajectory at a timescale of ≤ 1 min. To clarify, STEP 3 made use of trajectories originating from a column receptor stretching from the

surface to 2 km generated from STEP 1.

After being released from a given TROPOMI sounding at the overpass time (∼1 pm local time for nadir soundings), air

parcels are dispersed backward in time for 12 hours (time at t0 in Fig. 2). STEP 1 also provides the STILT “footprint”

[ppm/(µmol m−2 s−1)] per air parcel per timestamp (Lin et al., 2003). STILT footprint of a given air parcel is proportional

to the time this parcel spends in a small area (of ∼100 meters) and describes how the downwind concentration may be altered145

6



if this air parcel is influenced by emissions. A much more complete description of STILT can be found in Lin et al. (2003);

Fasoli et al. (2018). The footprint concept, by definition, relies on atmospheric transport and only accounts for concentration

changes due to emissions, but not chemical transformations.

Next, NOx concentrations at the endpoints of the model trajectory are extracted from the Tracer Model version 5, Massively

Parallel version (TM5-MP) to serve as the initial conditions (STEP 2 in Fig. 2). TM5-MP is an auxiliary dataset whose150

NO2 vertical profiles serve as the prior knowledge facilitating the stratosphere-troposphere separation in L2 NO2 retrieval

(Van Geffen et al., 2022). Here, we simply assume that most NOx is presented as NO2 at nighttime, despite the apparent

caveat in neglecting NO3 chemistry and heterogenous reactions involving N2O5.

Once NOx is initialized at the time t0 for the endpoint of every trajectory, we proceed with (STEP 3 in Fig. 2) to es-

timate changes in concentrations due to emissions, chemical transformation, and inter-particle mixing. Mathematically, the155

concentration per air parcel per timestamp (Cp,t) relies on that from the last timestamp following Eq. 1:

Cp,t = Cp,t−∆t + ∆Cemis,p,t(E,Fp,t) + ∆Cchem,p,t(Cp,t,θp,t) + ∆Cmix,p,t(Cp,t,Cpngb,t) (1)

where the time interval for updating concentrations, ∆t, is defaulted to 1 min or reduced to sub-minute when Ct becomes

nonphysically negative to ensure numerical stability. Concentration gains from emissions, ∆Cemis, result from multiplying

STILT parcel-specific footprints (Fp,t) with prior emissions (E) from EDGARv6.1 (Crippa et al., 2022) and EPA (United States160

Environmental Protection Agency, 2022) for power plant cases in this study. We neglect soil NOx emissions given the relatively

small contributions in cities. Unlike sophisticated CTMs which resolve chemical reactions of an individual or lumped groups

of species, concentration anomalies due to chemical reactions, ∆Cchem, are solved in an explicit first-order fashion involving

a “net chemical tendency” with a unit of ppb hr−1. Such a chemical tendency (RNOx
in Eq. 2b) is parameterized offline as

functions of NOx concentrations and solar zenith angles, θ, which is explained in Sect. 2.1. The final term, ∆Cmix,p,t, denotes165

the concentration exchange between a given air parcel and its volumetric neighborhood (pngb), which is explained in Sect. 2.3.

Following these steps, we obtain the modeled NOx mixing ratio for every trajectory released between the surface and 2 km

based on NOx curves described in Sect. 2.1. To compare against TROPOMI tropospheric NO2 columns, we account for the

fraction of NOx that is present as NO2 (Sect. 2.2) and properly weight modeled NO2 from different altitudes according to

pressure weighting function and averaging kernel profiles following Wu et al. (2018). Such an approach in applying averaging170

kernel (Fig. 1) to modeled profiles is equivalent to a more commonly used approach, which re-calculated retrieved tNO2 as

“seen” from the CTM by re-calculating air mass fraction based on modeled NOx profiles as investigated in Goldberg et al.

(2022). In addition, we evaluate the modeled meteorology and chemistry using a separate set of STILT-NOx simulations with

“true” NOx emissions from EPA for three US power plants (Sect. 4.1).

2.1 NOx net chemical tendency, RNOx , and uncertainty175

Inspired by the theoretical non-linear curves of NOx lifetimes as functions of NO2 vertical column density and volatile organic

compound reactivity (VOCR ) based on a box model in Laughner and Cohen (2019), we extract similar non-linear parameter-

izations using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem v4.0.2, Grell et al., 2005).
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Focusing primarily on polluted environments, we carried out WRF-Chem simulations for three mid-latitude cities and extracted

model outputs from a 2◦ ×2◦ region centered around each city. Three cities, namely Los Angeles in the US, Shanghai in China,180

and Madrid in Spain represent typical megacities in North America, Asia, and Europe. Their varied climatic conditions and

sectoral emissions of NOx, VOC, and GHGs provide a holistic view of the variability of NOx chemical tendency. While our

analyses extended to power plants and cities beyond these three training sites when compared to TROPOMI data (Sect. 4), it

helps assess the broader applicability of our chemical parameterizations.

Appendix A describes our specific WRF-Chem settings used to generate look-up tables of NOx chemical loss tenden-185

cies, which we will refer to as “NOx curves” (Fig. 3). Of the WRF-Chem settings, the chosen chemical mechanism (RADM2,

Stockwell et al., 1990) is the most relevant to the accuracy of these NOx curves. Despite uncertainties in these WRF-Chem sim-

ulations, what matters the most for reproducing the NOx tendency is how NOx varies with for example solar zenith angle and

ozone, rather than the exact accuracy of NOx concentrations themselves (from WRF-Chem). Thus, non-chemical components

(prior emissions, boundary conditions, and physical processes) in this specific WRF-Chem configuration do not necessarily190

need to be “perfect” or optimized against observations. We clarify that WRF-Chem simulations had been performed to facilitate

the parameterization of NOx tendency within STILT-NOx but are not required when running STILT-NOx.

By leveraging WRF-Chem’s chemical diagnostic capability, we derive the net chemical tendency of NOx within each hour

[RNOx ,ppb hr−1] for every model grid within the lower 12 vertical levels (x, y, z). RNOx is calculated specifically from the

cumulative changes in NO and NO2 concentrations solely due to chemical reactions (i.e., “chem_no2” and “chem_no” in195

WRF-Chem registry) following Eqs. 2:
h∑
h0

∆CNOx
(x,y,z) =

h∑
h0

∆CNO(x,y,z) +

h∑
h0

∆CNO2
(x,y,z) (2a)

RNOx
(x,y,z,h) = PNOx

(x,y,z,h)−LNOx
(x,y,z,h) =

∑h
h0

∆CNOx(x,y,z)−
∑h−1

h0
∆CNOx(x,y,z)

1 hr
(2b)

where model hour h denotes the start time of each hour interval in the WRF-Chem outputs and z denotes the index of model

vertical levels (i.e., from 1 to 12).
∑h

h0
∆CNOx

describes the cumulative net changes to NOx concentration given chemical200

reactions from the initial model hour h0.

WRF-Chem pixel-specific hourly NOx rate changes, RNOx
, are then grouped by both SZA (θ) bins with a spacing of 2◦ and

CNOx bins with equal spacing in log10 scale (Fig. 3a). θ is chosen given the close relation to solar radiation under clear-sky

conditions and controls the photolysis frequency of ozone and OH production (Rohrer and Berresheim, 2006) when ozone and

water vapor abundance remain unchanged. Because the intention in using STILT-NOx is to inform the relationship between205

emission sources and satellite NO2 columns, which are almost always filtered to remove cloudy scenes (i.e., quality assurance

of ≥ 0.7), the choice of θ without considering cloud coverage is reasonable. Specifically, these net chemical changes explicitly

contain all NOx -relevant reactions within the WRF-Chem/RADM2 scheme, such as the recycling of NOx from oxidized

odd-nitrogen species like peroxyacetyl nitrate.

The above grouping procedure of RNOx based on a finite number of bins of CNOx and θ unavoidably reduces the variability210

of RNOx that were directly derived from WRF-Chem. To assess the extent to which the RNOx variability can be explained by
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the selected binning feature variables, we performed a sensitivity test to quantify the deviation of bin-averaged RNOx
from the

initial RNOx
. Generally, the RNOx

variability is better preserved over polluted regimes with higher NOx level > 1 ppb than

over low-NOx regimes (Supplement Figs. S2ab). Choosing CNOx alone better explains the RNOx variability than choosing

SZA or air temperature alone. Including additional variables (e.g., air temperature, NO2–to–NOx ratio, and VOCR ) on top of215

our default choice of SZA and CNOx
marginally improves the prediction of RNOx

except for the inclusion of ozone. However,

estimating ozone remains a challenging problem thereby ozone is not included as a feature variable in this study.

Figure 3. A diagram of NOx net chemical loss tendency [RNOx, ppb hr−1] as functions of NOx concentration (CNOx) and solar zenith angle (θ). The net

loss timescale was first calculated for each 12 km grid cell of all WRF-Chem simulations for 3 cities (with specific model setups summarized in Appendix

A) and then aggregated into multiple bins of NOx concentration [ppb]. The NOx bins are equally divided in the logarithmic space. The solid dots and error

bars denote the average and standard deviation of RNOx within each combined θ and CNOx bin. For the net loss timescale, only positive values are displayed

given the logarithmic scale of the y-axis in panel b and data points with values > 72 hours are simply treated as infinite.

As a net result, RNOx is mostly negative during the day, meaning NOx is removed from the system. RNOx is large with

small spread at low θ of ≤ 20◦ and gradually decreases during the day. RNOx
becomes positive as approaches nighttime hours

(Supplement Fig. S2c) and its variability peaks during sunset when θ ∈ [80◦, 100◦] with a fractional uncertainty of over 100%220

(blue error bars in Figs. 3a) considering the transition to nighttime chemistry. When focusing on the daytime portion with θ <

70◦ and CNOx
≥ 1 ppb, the spread in RNOx

among WRF-Chem urban pixels ranges from 12.2% to 67.9% according to varied

θ and CNOx (red to yellow error bars in Fig. 3a) with an average uncertainty of 41.2%. When focusing on the nighttime portion

with θ ≥ 70◦ and CNOx ≥ 1 ppb, the spread in RNOx spans from 27.9% to over 100% with an average uncertainty of 96.3%

largely skewed by the high uncertainty around the dusk hours. Lastly, the average daytime uncertainty in the NOx tendency at225

medium to high NOx concentrations (i.e., 41.2%) will be propagated into chemical uncertainties in tNO2 for cases of power

plants and urban areas, which is further described in Sect. 3.

Given the further fluctuation in RNOx
with CNOx

, we define a “net loss timescale” [hr] as tsNOx
=−CNOx

/RNOx
and

distinguish it from the conventional chemical lifetime that only accounts for chemical losses. For reference, a positive (or neg-

ative) timescale corresponds to a net loss (or production) of NOx (Fig. 3b). The contribution from NOx production is minor230
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during noon hours. The non-linear dependence of tsNOx
with CNOx

is largely driven by several NOx loss pathways: predom-

inately by the loss processes of NO2 + OH and the formation of alkyl nitrates during the daytime and by the NO3 chemistry

and heterogeneous chemistry at nighttime (Supplement Fig. S2). Here, we do not differentiate NOx curves by VOCR despite

its critical role in determining the turning point when NOx is mainly lost to either nitric acid or alkyl nitrates (Laughner and

Cohen, 2019). We instead perform a sensitivity study of the impact on NOx curves for three VOCR intervals in Sect. 5.3. Note235

that these NOx curves should be considered as a first-order approximation and can certainly be improved upon to evaluate

more complex parameterization (Sect. 5.3). When it comes to calculating chemical changes within STILT-NOx per air parcel

per timestamp (i.e., ∆Cchem,p,t in Eq. 1), such a loss timescale is looked up according to parcel-specific θ and CNOx
to enable

the non-linearity core (Fig. 2 bottom).

2.2 NO2–to–NOx ratio240

As only the vertical column density of NO2 is retrieved, the fraction of NOx present as NO2 as TROPOMI passed over is an

important component of our analysis. Prior studies estimated such ratios using a constant value (e.g., of 0.75) at noon hours

across seasons with a 10% uncertainties (Beirle et al., 2011, 2019; Goldberg et al., 2022), monthly mean climatology of ozone

from reanalysis (Beirle et al., 2021), and CTMs. NOx is primarily emitted as NO but converted to NO2 via the reaction with

ozone. During the daytime, NO2 is photolyzed back to NO with a photolysis frequency, JNO2 . Thus, NO2–to–NOx ratio scales245

with the ratio of ozone and JNO2
(Eq. 3a).

Considering the close coupling between NO2 and O3 , their sum Ox in Eq. 3b, is a key indicator for atmospheric oxidant

capability in understanding urban air chemistry (Clapp and Jenkin, 2001; Fujita et al., 2016) and informing chemical dynamics

(e.g., during COVID, Parker et al., 2020; Lee et al., 2020). Ox levels within PBL can be regarded as a NOx –independent

component related to regional ozone inflow plus a NOx –dependent component that non-linearly varies with local NOx and250

VOCR conditions (Clapp and Jenkin, 2001; Jenkin, 2004). The complexity in the local Ox -NOx non-linearity is caused by

key reactions behind NOx curves, which are discussed in Sect. 5.3.1.

For simplification, we prescribed a typical Ox level of 50 ppb in the first version of STILT-NOx and calculated the

NO2–to–NOx ratio via Eqs. 3 assuming steady-state:

JNO2
(θ)[NO2] = kNO+O3

(TA,P)[O3][NO] (3a)255

[Ox] = [O3] + [NO2] (3b)

where JNO2 relies on θ for daytime and the reaction rate coefficient of NO with O3 (kNO+O3 ) is a function of air temperature

TA and pressure P (Fig. 2 bottom). The inclusion of Ox in calculating NO2–to–NOx ratio is to avoid non-physical infinite

conversion of NO to NO2 at high-emitting sources following the titration of ambient ozone. Sensitive tests were performed to

reveal how biases in prescribed Ox level may modify the modeled tNO2 (Sect. 3). Typical NO2–to–NOx ratios over examined260

mid-latitude targets across seasons are summarized in Sect. 5.2. In the future, satellite observations of tropospheric ozone could

be used to add the additional complexity of variable Ox .
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2.3 Inter-parcel mixing

Eulerian chemical models usually suffer from too strong mixing or numerical diffusion within their model grid; while La-

grangian models (equivalent to possess extremely high “spatial resolution”) may lack any mixing between air parcels that are265

normally assumed to be independent of one another (Lin et al., 2013; Brunner, 2012). Such lack of mixing has negligible

impact on passive tracers as mixing alters only the spatial distribution of concentration among air parcels but not the resultant

concentration averaged across parcels at the receptor. However, non-linear processes alter both the spatial distribution of parcel-

specific concentrations together with the average resultant concentration. As a result, the calculation of the total NOx tendency

will be sensitive to how inter-parcel mixing is parameterized. Common ways to realize turbulence mixing are through (1)270

stochastic processes followed by the exchanging/averaging properties of air parcels found within a certain mixing length (e.g.,

STILT-chem, Wen et al., 2012), (2) implemented deformation- and instability- driven schemes that rely on atmospheric stability

and wind shear/stress characteristics (e.g., CLaMS, McKenna et al., 2002; Konopka et al., 2019), and (3) diffusion approaches

that require the vertical gradient of concentrations (e.g., CiTTyCAT and ELMO-2, Pugh et al., 2012; Strong et al., 2010).

Here we follow the STILT-chem approach to enable a process of exchanging concentrations per timestamp among the air275

parcels in close proximity to each other (∆Cmix term back in Eq. 1), which smooth the horizontal gradient of concentrations

among those air parcels. Specifically, at the timestamp of t, the concentration for a given air parcel p is updated based on the

concentration gradient between p and its neighborhood according to a mixing timescale (τmix) within a grid volume with a

mixing length scale of a horizontal area and the mixed layer height for the height as follows:

C′p,t = Cp,t exp(− ∆t

τmix
) + Cpngb,t [1− exp(− ∆t

τmix
)] (4)280

where exp(− ∆t

τmix
) implies the degree of horizontal mixing and C(t) represents the average concentration among air parcels

within the mixing volume. The update of C′p,t from Cp,t responds to ∆Cmix in Eq. 1. A relatively fast mixing time scale of 3

hours and a horizontal mixing length of 1 km is used for testing the mixing impact on modeling tNO2. Although we neglect

the mixing in the free troposphere and the mixing between the mixed layer and the free troposphere in this first model version,

we tested a spectrum of the horizontal mixing scales and include possible future improvements (Sect. 5.3.2).285

3 Model uncertainty in tNO2 due to wind and chemistry

As atmospheric transport and chemical transformation are the two main components in any CTMs, we assess how uncertainties

tied to the modeled wind field, NOx loss timescale, and NO2–to–NOx ratio may contribute to uncertainties in tNO2 in ppb.

σ2
sim = σ2

trans +σ2
ts +σ2

nn. (5)

Here we briefly describe how various tNO2 uncertainties were approximated based on our understanding of errors in respec-290

tive model parameters/inputs (i.e., wind error, NOx chemical tendency, or Ox levels). To approximate tNO2 uncertainties

due to transport errors, we followed previous approaches to first assess the GFS- and HRRR- modeled wind profiles against

radiosonde, calculate respective error statistics including wind error, correlation time and length scales, and lastly propagate
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wind error statistics into errors in column concentrations. Mathematically, σ2
trans in Eq. 5 is derived from the difference in the

variance of STILT-NOx air parcel-specific NO2 concentrations between the original simulation and a second simulation with295

wind error (Lin and Gerbig, 2005; Wu et al., 2018). The derivations of modeled wind errors and contributions to tNO2 er-

rors are elaborated in Appendix B. To evaluate the impact due to errors associated with chemical parameters, we perturbed the

NOx curves or the Ox level according to 20 perturbing factors. Perturbed curves/parameters are used to generate 20 new sets of

tNO2 fields, of which their respective standard deviation among perturbations serves as the chemical uncertainty [ppb] due to

NOx net loss timescale and NO2–to–NOx ratio (σts, σnn in Eq. 5). These 20 perturbing factors were randomly selected from300

a normal distributionN(µ= 1,σparam). Here we tested out σparam of 40% for NOx loss timescales according to uncertainties

in the chemical tendency (Fig. 3) and a σparam of 40% for Ox level (Eqs. 3).

Due to heavy computational expenses in conducting such wind and chemical perturbation analyses for all overpasses and

locations, we only ran error analyses for a total of six overpasses over a power plant and a city. To cover seasonal changes in

NO2 signals and their uncertainties, overpasses in varied seasons are examined for the New Madrid power plant on Feb 8, June305

15, and Dec 8, 2020, and Phoenix on Feb 7, May 27, and Dec 23, 2020. Two winter cases with relatively large signals are shown

in Fig. 4a. Considering the non-linearity between chemical tendency and NOx concentration, sounding-specific uncertainties

for all six cases are presented against modeled tNO2 in Fig. 4b. When conducting those perturbations, other model parameters

like meteorological field and emissions remain unchanged.

Figure 4. (a) Demonstrations of best-estimated tNO2 (“TNO2”) and their uncertainties [ppb] due to random u-/v- wind errors (“Trans_Error”), NOx chemi-

cal tendency (“Tendency_Error”), and Ox levels (“Ox_Error”) on Dec 8, 2020, over the New Madrid power plant and Dec 23, 2020, over Phoenix. (b) Scaling

between uncertainties and mean tNO2 signals over six overpasses for the two targets with smooth splines fitted (crosses with solid lines for tendency errors,

stars with dashed lines for Ox errors; and circles with dotted-dashed lines for transport errors). Colors differentiate the sites and TROPOMI overpass times.

As a result, the average percent error in u-/v- wind speed in the PBL is roughly 22% for the New Madrid case (Supplement310

Fig. S3a), which contributes to 50% uncertainty in tNO2 at the sounding level (3rd column in Fig. 4a). Higher transport errors
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may more frequently occur if an intensive point source is in the area or over pixels on the border of the NO2 plumes with

moderate signals of about 0.2 to 0.5 ppb (e.g., dots in Fig. 4b). This is because small deviation in modeled wind vectors

causes air parcels to either “hit” or “miss” the intensive source. The transport uncertainty appears to first correlate positively

with the signals and then decreases when signals are sufficiently high, e.g., > 0.7 ppb. Such a decline may be associated with315

hyper-near-field soundings, where deviation in wind fields may not alter modeled signals as modeled air parcels will always

experience large influence from the emission source (dotted-dashed lines in Fig. 4b). Compared to power plants, cities may be

associated with a more homogeneous transport uncertainty if emissions are more homogeneous and better mixed in the PBL.

Given a roughly 40% uncertainty in Ox levels or NOx chemical tendency, chemical uncertainties in ppb remain small when

modeled signals are compared (Fig. 4a). Uncertainties from chemical tendency first increase with tNO2 signals and gradually320

plateau for tNO2 beyond 0.7 ppb, likely because NOx is lost slowly when the NOx concentration stays high and further

perturbations in chemical tendency are less impactful. In contrast, uncertainty from Ox levels appears to consistently scale

against the signals, i.e., more apparent for soundings adjacent to the power plant with reasons explained as follows: When the

certain perturbed Ox level approaches zero, the amount of NO that can be oxidized as NO2 becomes minimal (2nd column in

Fig. 4a). This case mimics the scenario where O3 can be titrated in proximity to an intense release of NO before the ozone-325

depleted plume air is mixed with the ambient ozone-rich air. Nevertheless, considering the entire sample, the percent errors

due to chemical parameters remains relatively low (13% to 18% for six cases in Fig. 4b).

Whether chemical or meteorological errors dominate the total model errors fundamentally depends on tropospheric NO2 sig-

nals which further rely on factors like atmospheric stability with wind errors, chemical tendency, and emission distribution.

Such dependence leads to spatial gradient and seasonal variations in estimated errors as seen from the above examples. In brief,330

our limited perturbation experiments suggest that transport uncertainties dominate the total modeled uncertainties, except for a

few hyper-near-field soundings where chemical uncertainties become more substantial.

For future emission optimizations, uncertainties in the emissions, retrieval, and background should also be included. Despite

the significant advance in the TROPOMI NO2 retrieval version of v2 compared to v1 (Van Geffen et al., 2022), v2 retrieval

is associated with a fractional uncertainty (normalized over retrieved tNO2) of ∼30 to 50% for most soundings within the335

plume. Uncertainties in NOx emissions between inventories can serve as the prior uncertainty, which is substantial at the pixel

level (Supplement Figs. S4, S5). Besides the regional wind assessment, a novel plume rotation algorithm based on model-data

NO2 plumes is proposed in Sect. 5.2 to quantify near-field wind biases.

4 Model-data evaluations and comparisons

The tropospheric NO2 mixing ratio at a given sounding location is influenced by the regional inflow, atmospheric advection340

and turbulence mixing, underlying emission characteristics, and chemical changes en route to the sounding (Fig. 2). Modeled

tropospheric NO2 mixing ratios using a variety of model configurations are compared against retrieved values from TROPOMI.

Such model-data comparisons help evaluate the overall model performance and the roles of individual physical and chemical

processes with a naming convention of <MET>_<EMISS>_<GAS>_<PROC> explained as follows:
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∗ <MET> represent meteorological fields of either 0.25◦ GFS or 3km HRRR that are used to drive STILT air parcels.345

∗ <EMISS> represent two prior NOx emission inventories. EDGARv6.1 with monthly mean emissions and the latest year

available of 2018 is the primary one for simulating all cases. Hourly mean emissions from EPA reports are only used to

evaluate modeled chemistry and meteorology for several US power plants (Sect. 4.1).

∗ <GAS> represent the simulated species with a default string of “TNO2” without subtracting a localized tNO2 back-

ground. A separate comparison with background subtracted is shown in multi-track comparisons (Fig. 6, Sect. 4.1).350

∗ <PROC> denotes the physical and chemical processes considered per run. Two main configurations include (1) “DEF”

runs with both inter-parcel mixing and chemical parameterization included, and (2) “NOCHEM” runs with mixing but

without considering the NOx chemical tendency. The “NOCHEM” runs do account for the NO2–to–NOx conversion

but as a constant ratio of 0.74 according to EMG-based studies.

Only model-data comparisons using TROPOMI v2 are shown. As satellite averaging kernel and observed tNO2 differ sub-355

stantially between v1 and v2, modeled concentrations are weighted by the version-specific AKs to yield apple-to-apple com-

parisons. Changes in AKs, retrieved and modeled values between versions are summarized in Supplement Fig. S6.

4.1 Model validation: US power plants

The New Madrid power plant along the Mississippi River is a 1,300-megawatt coal-fired power station (GEM, 2021), which

ranks first in 2020 among US power plants regarding NOx emissions provided by EPA. Thomas Hill and Martin Lake power360

plants ranked second and third in 2020, respectively. We also report results for an overpass over the Intermountain power plant

in Utah where the surrounding complex terrain is difficult to model properly. Let us start with two examples to illustrate plumes

modeled by different model configurations (Sect. 4.1.1) and then present model-data comparisons over dozens of overpasses

of the three power plants (Sect. 4.1.2).

4.1.1 Single-track demonstration365

The correction in NOx emissions greatly improves the model-data alignment. For example, EDGAR-based simulations sub-

stantially underestimate or overestimate the tropospheric columns (Fig. 5a1, 5c1), as EDGAR emissions are almost 1/3 or twice

of the reported hourly EPA emissions for New Madrid or Intermountain power plant, respectively (Supplement Fig. S7). EPA-

based simulations align better with retrieved values from TROPOMI v2 despite deviations over the far-field region (Fig. 5a2

vs. 5a6). Such improvements in model-data alignment are also inferred from the linear regression slopes reported in Fig. 5bd.370

Not accounting for NOx chemistry or lifetime elevates NO2 concentrations both within the plume and over the background

even if EPA emissions are assumed to be “correct” (Fig. 5a3, 5a5). The inter-parcel mixing with a 3-hour mixing timescale

redistributes NOx concentrations among adjacent air parcels but leads to a minimal impact of ≤ 5% of the modeled tNO2 at

individual column receptors (thereby not shown).

The choice of meteorological fields with different spatial resolutions insignificantly affects the modeled signals except for375

cases surrounded by complex topography and flows. For example, the HRRR-based plumes resemble the GFS-based plumes
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Figure 5. Maps (a) and scatter plot (b) of modeled plumes based on several model configurations (first five columns) versus retrieved plumes + uncertainties

from TROPOMI v2.3 (last two columns) for the New Madrid power plant on June 15, 2020, and Intermountain, Utah power plant on Feb 14, 2020. Varied

model configurations are labeled on the top of each panel, following the naming convention of “<MET>_<Emiss>_<GAS>_<PROC>” explained in the

list of Sect. 4. In particular, “_DEF” and the “_NOCHEM” denote the modeled columns using the default (with mixing and chemistry) and non-chemistry

configurations. Grid cells with intensive NO emissions from EDGARv6 are labeled as white circles with sizes denoting the relative emission magnitude. The

type II linear regression slope is fitted for each configuration (dotted-dashed line) and modeled and retrieval uncertainties are added (dashed error bars). The

underlying road maps were created using the ggmap library in R (copyright: map data © 2023).

for the New Madrid power plant (Fig. 5a2 vs. 5a4), which is also revealed by their similar wind error statistics (Supplement

Fig. S3a). However, complex terrain and stable PBL during wintertime complicate and usually worsen the model performance

as a result of increased meteorological errors. On Feb 14, 2020, EPA-based plumes over the Intermountain power plant in Utah

using two meteorological fields differ substantially from each other and they both deviate from the observed plume regarding380

the plume shape. GFS delineates the mean wind direction within its coarser 0.25◦ grid box while 3km HRRR offers more

spatial variability in wind directions (Fig. 5c2 vs. 5c4). Yet, precisely capturing the curvature in the wind vector is extremely

challenging even using 3km meteorological fields (Fig. 5c6) and more difficult using Gaussian plume approaches that rely on

only one effective wind vector. Such model-data mismatch in plume shapes can further help quantify the wind biases, which

are discussed in Sect. 5.2.1.385

Besides modeling challenges, retrieval uncertainty cannot be neglected, as it ranges from 22% to 31% of the retrieved signal

for the New Madrid case (Fig. 5a7) and up to 100% for the Intermountain case (Fig. 5c7) at the sounding level. When using

retrieved data and averaging kernel from TROPOMI v1, the regression slope becomes 1.18 and 1.25 (Supplement Fig. S8),

indicating that modeled plumes using both meteorological fields are larger than observed plumes. While using TROPOMI v2,

the respective slopes are 0.88 and 1.2 (Fig. 5bd). This again emphasizes the substantial uncertainty in retrieved signals, large390
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enough to even alter the conclusion of whether emissions are underestimated or overestimated for a single overpass; and the

need for analyzing multiple overpasses for evaluations (Sect. 4.1.2).

4.1.2 Multi-track evaluation

To provide a broad impression of the model performance, we expand the model-data comparisons to a total of 50 TROPOMI

overpasses across all seasons in 2020 including 34 overpasses for the New Madrid power plant and 9 and 7 summertime395

overpasses for the Thomas Hill and Martin Lake power plants, respectively. These overpasses are selected based on their

relatively intense signals compared to the surroundings. Model-data comparisons for all overpasses are shown on maps in

Supplement Figs. S9 –S12 with linear regression slopes reported and summarized in Fig. 6 and Table S1.

Cases with slopes deviating significantly from 1 are usually associated with substantial near-field wind directional biases. For

instance, modeled wind vectors on March 11, April 28, and Sept 9, 2020, have directional biases of > 30 degrees (Supplement400

Figs. S9b, S10b), which explain the respective abnormal linear regression slopes of -1.75, 0.49, and 3.2 (Fig. 6). EDGAR-

based simulations are biased too high or too low by a factor of two or more compared to observed values from TROPOMI v2.3

(green dots in Fig. 6), driven by biases in EDGAR emissions (Supplement Fig. S7). The “NOCHEM” simulations without

the account of NOx losses overestimate tNO2 by a factor of two across all seasons and three power plants, regardless of the

meteorological or emission fields adopted (empty circles in Fig. 6). “Upgrading” meteorological fields to a higher resolution405

seems to contribute less to the improvement of model-data agreements than “correcting” emissions or chemistry. In the end,

modeled values with NOx chemistry and correct EPA emissions using either GFS or HRRR yield the best agreement with

retrieved values from TROPOMIv2 (orange dots and lines in Fig. 6). Aggregating results of all overpasses, simulations using

the “best” knowledge of emissions, the simplified chemistry, two different meteorological fields, and inter-parcel mixing are

slightly high-biased (regression slope up to 1.2, Table S1). RMSE values between observed and modeled tNO2 when enabling410

NOx chemistry range from 0.11 to 0.15 ppb (Table S1), which is comparable to the random uncertainty in the NO2 retrieval

of 0.09 ppb.

Statistics discussed above compared the total tropospheric NO2 columns from the model and TROPOMI for soundings

around each power plant. It is noticeable that modeled tNO2 uncontaminated by emissions (i.e., background tNO2) are some-

times slightly lower than observed background tNO2 (Supplement Figs. S9a, S10a), possibly because higher chemical uncer-415

tainties are related to low-NOx regimes and non-anthropogenic NOx sources from soil and lightning are excluded from current

simulations but can play a bigger role of tNO2 over rural regions (Goldberg et al., 2022; Shah et al., 2022). In particular, column

contributions from lightning NOx emissions aloft may be amplified since TROPOMI NO2 retrieval has a higher sensitivity

towards the free troposphere than PBL. Since our current model setup only accounts for anthropogenic NOx sources below 2

km, we conducted an additional test by subtracting the background tNO2 from total tNO2 to arrive at observed anthropogenic420

enhancements (the second paragraph in Sect. 2), assuming soundings within or outside the plumes have equal contributions

from the nearby non-anthropogenic NOx sources. After subtracting the tNO2 background, the model-data comparison based

on observed tNO2 enhancements does not change dramatically (e.g., orange crosses vs. orange solid dots in Fig. 6).
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In summary, using more accurate NOx emissions with chemistry considerably improves the model-data comparison. In-

creasing the spatial resolution of meteorological fields has less impact on cases with relatively flat terrain. Larger model-data425

mismatches generally are associated with larger wind directional biases. Modeled values in tNO2 may be slightly biased low

in summer months from April to June and high in winter months from Nov to Feb with minimal annual biases, assuming EPA

emissions and observed tNO2 are unbiased.

Figure 6. A summary figure of the linear slope between the observed tNO2 and simulated tNO2 using a variety of model configurations over all three US

power plants. Model configurations include simulations (1) with or without NOx chemistry parameterization (empty vs. solid dots), (2) using default EDGAR

or scaled emissions from EPA (green vs. orange dots), (3) using 0.25◦ GFS or 3km HRRR (dark green/orange vs. light green/orange dots), (4) using total

tNO2 or background-removed local enhancements (e.g., CHEM-FF as crosses). Annual mean slopes are displayed as horizontal solid or dashed lines. The

model evaluation here uses TROPOMI v2.3 and emissions from EDGARv6.1. Evaluations based on TROPOMI v1.3 and annual mean EDGARv5 emissions

are shown in Supplement Fig. S13a.

4.2 Model application: two cities

We now move to city cases including an industrial city, Baotou in China, and one of the fastest growing megacities in the430

US, Phoenix. As CO2 and NOx are commonly co-emitted into the atmosphere, observed XCO2 enhancements derived from

OCO-3 Snapshot Area Mapping (SAM) mode are displayed with observed tNO2 (Fig. 7). Background XCO2 is defined as the

mean values over the background region that is determined by NO2 plumes (modified from the background approach in Wu

et al., 2018). Both cities possess relatively richer OCO-3 SAM observations co-located with TROPOMI data. Since no “true”

NOx emissions are available for cities, EDGAR is utilized as the prior emission inventory for simulating tNO2 and optimizing435

NOx emissions.

We simulated 18 and 12 TROPOMI overpasses respectively for Baotou and Phoenix (Supplement Figs. S14, S15) and

first presented one example per city in Fig. 7. Baotou is surrounded by four point sources suggested by EDGARv6 but one
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large source in the city center informed by both the observed tNO2 and XCO2 enhancements on Oct 3, 2020 (Fig. 7a).

Such a mismatch is confirmed by the comparison of normalized tNO2 across all 18 TROPOMI overpasses with various wind440

speeds and directions (Supplement Fig. S14b), suggesting that EDGAR very likely misallocated anthropogenic NOx sources.

Similarly, the largest emission source to the east of the city center of Phoenix according to EDGAR seems suspicious and may

again be misplaced once simulating more overpasses (Supplement Fig. S15b). The observed plume is more concentrated near

the city center compared to the HRRR-derived plume that disperses farther away from the city center on Dec 23, 2020 (Fig.

7b). Such a spatial offset of the tNO2 plumes is likely due to an overestimation in the modeled wind speed, pushing the plumes445

to the southern edge while diluting tNO2 values over the urban core.

Figure 7. An example of GFS-based tNO2 plumes over Baotou on Oct 3, 2020 (a) and the HRRR-based tNO2 plumes over Phoenix on Dec 23, 2020

(b). Modeled plumes are generated using annual mean ENOx from EDGAR with top emitters highlighted in light-grey circles. Both observed tNO2 and the

anthropogenic XCO2 enhancements from OCO-3 are plotted. XCO2 enhancements calculated from a local background have been averaged based on the

TROPOMI sounding size. Overpass time differences between TROPOMI and OCO-3 for the two cases are < 1 hour. TROPOMI observations are cropped

to match the boundary of the available OCO-3 soundings. The underlying road maps over Baotou and Phoenix were created using the ggmap library in R

(copyright: map data © 2023).

When more overpasses are examined, the model captures well the seasonal variation in tNO2 —i.e., higher/lower values in

winter/summer months (Supplement Figs. S14a, S15a). Other than emission biases that affect all cases, a few overpasses stand

out for Baotou with poorer agreements with TROPOMI likely owing to (1) clear biases in wind direction on May 31, Aug 9, and

Dec 15, 2020, and Feb 19, 2021, and (2) a likely overestimation in STILT footprint that may trigger several effects on Sept 29,450

March 29, 2020, and Oct 16, 2021 (Supplement Fig. S14a). Although STILT can characterize sub-grid cell turbulent mixing

by its stochastic nature, the quarter-degree GFS may be insufficient to resolve the complex terrain and air flows, contributing
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to biases in wind directions and PBL heights over mountainous locations (Lin et al., 2017) such as over Baotou. Deviations

in PBLH may cause a cascade of effects: deciding up to what height the emissions are diluted, whether such height is above

or below the emission/plume height, and chemical changes along the way. Such effects may be magnified under low-mixing455

low-wind conditions where the model particularly struggles with the accuracy of PBLH. Without much mixing between plume

and background air, the prescribed available Ox level may be overestimated adjacent to intensive NOx sources. Overestimation

in NO2 concentration may further be amplified considering the dependence of NOx rate changes on its concentration. Hence,

concentrations of chemically reactive species under low-mixing scenarios are extremely challenging to model properly with an

extreme during the nighttime.460

5 Discussions

Our ultimate goal is to explore what can be learned about the emission characteristics from anthropogenic hotspots with the

joint use of space-based NO2, CO, and CO2 plumes. As an intermediate step, this study is informed by previous efforts in

extracting and constraining urban CO2 emissions from satellites using Lagrangian framework (Wu et al., 2018; Roten et al.,

2022) and extends it to the interpretation of tropospheric NO2 satellite data. To diagnose NOx emissions from NO2 column465

signals, we need to effectively account for how NOx evolves in air parcels from its initial source to locations sampled by

TROPOMI, making the Lagrangian perspective an ideal candidate. Now we discuss when and how such a framework can be

of most use and possible future improvements.

5.1 Model advantages and flexibility

At the urban extent stretches a few hundred kilometers, our framework accounts for atmospheric transport and chemical trans-470

formation in a more rigorous way than typical statistical approaches such as the EMG method, and in a more efficient way than

full-chemistry models that explicitly resolve individual chemical reactions.

Another advantage of the STILT-NOx design is that each of the three main components (trajectory calculations representing

air transport, chemical production or loss of the target species, and optimization of emission) are independent and each can

reuse previously saved output from the others. For example, if one wanted to test how sensitive model concentrations were to475

the chosen chemical scheme, the simulations of atmospheric transport can be reused via the storage of trajectory-based mod-

eling, thereby reducing the computational cost. Our prototype demonstrates a global solution of the NOx chemical tendency

parameterized by the one set of “NOx curves” in Fig. 3. Although simplification may be thought of as a limitation, one can eas-

ily replace those default curves with alternatives that are tailored toward a specific region or regime of interest. Such flexibility

can inform us of the influence on modeled columns from NOx curves derived from different chemical mechanisms. Similarly,480

one can investigate the sole meteorological influence by diversifying the meteorological and mixing parameters. Moreover,

because air parcels in LPDMs are not tied to a certain atmospheric tracer, we can estimate concentrations of various species

along model trajectories. It allows us to constrain emissions for multiple atmospheric constituents in a consistent framework,

which may shed light on tracer-tracer analyses (Sect. 5.2).

19



The Lagrangian modeling approach has its inherent benefits. Firstly, the generation and recording of trajectories can easily485

reveal the source regions only relevant to a specific satellite sounding and the sub-city scale variations in emission charac-

teristics (Wu et al., 2022). In addition to storing lat/long coordinates and extrapolated meteorological quantities along every

trajectory at each timestamp, STILT-NOx outputs and records NOx concentration changes due to every process including emis-

sion, net chemical changes, and inter-parcel mixing at minute scales. Those trajectory-level concentration changes are further

driven by several model configurations listed in Sect. 4, which facilitates model debugging and comprehends modeled results.490

See Sect. 5.2 for one of the applications. Secondly, the spatial resolution of concentration calculations is not bounded by the

rigid boundary of model grid cells, which is particularly important for dealing with non-linear processes for chemically active

species. As demonstrated in several studies (e.g., Valin et al., 2011), the grid-average concentration may undergo excessive

mixing in Eulerian models, and the concentration-driven chemical tendency varies with the adopted spatial resolution. While

the Lagrangian perspective solves for concentration changes at extremely high spatiotemporal resolutions, inter-parcel mixing495

schemes can be implemented to “smooth” the concentration gradients, whereas it may be challenging to “recover” the sub-grid

cell concentration gradients in the Eulerian framework unless increasing the spatial resolution.

More broadly, the proposed simplified parameterization of the non-linear NOx tendency or NOx curves is not limited

to the STILT framework and can potentially be incorporated into other Lagrangian modeling frameworks or even Eulerian

frameworks with a fine spatial resolution to resolve the local variability in chemistry.500

5.2 Implications for constraining urban CO2 emission and emission ratios

The knowledge learned from analyzing NO2 plumes can be transferrable to constraining bottom-up CO2 emissions. Two

main sources of biases influencing the urban CO2 emission constraint include biases in wind direction and emission locations.

Model-data mismatches in NO2 columns have shown great value in easily identifying the biases with emission locations even

without deploying atmospheric inverse analyses (Sect. 4.2), especially for point sources in urban areas when plumes from mul-505

tiple sources are less overlapping with one another. Additionally, diagnosing the NOx emissions can facilitate CO2 emission

estimates in two ways: it can reveal systematic biases in near-field wind directions (Sect. 5.2.1) and by quantifying the NOx to

CO2 emission ratios for point and/or area sources assist in sector-based attribution (Sect. 5.2.2).

5.2.1 Quantifying wind bias

In addition to leveraging limited radiosonde measurements, the obtained modeled and retrieved NO2 plumes can be used to510

quantify wind biases, to improve the accuracy of top-down CO2 emission constraints, whether or not employing conventional

atmospheric inversions. To do so, we conducted a second wind assessment involving a plume rotation algorithm. In brief, a

NO2 plume from either model or retrieval is rotated clockwise (α from -180 to -5◦ with a spacing of 5◦) or counter-clockwise

(from 5 to 180◦) around the emission source and then resampled onto the original TROPOMI pixels (Supplement Fig. S16).

tNO2 from an original and a rotated plume are multiplied to arrive at a cross-product of tNO2 in ppb2, analogous to the515

concept of “cross-correlation”. The original or the rotated plume can be chosen from either model or observations and their
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normalized cross-product can be expressed as a function of rotating angles (colors in Fig. 8a). More details on intermediate

steps to calculate such a function are described in Appendix C.

As a result, the width of the Gaussian-shaped curve of the cross-product (as measured by the σ parameter of a Gaussian

fit) reflects the bias in the plume shape resulting from horizontal dispersion. A larger area under the Gaussian curve indicates520

a greater overlap between the initial plume and the rotated plume. More importantly, deviations in the central line of the

Gaussian fit away from zero (as measured by the µ parameter) imply possible biases in the “near-field” wind direction for each

TROPOMI overpass (Fig. 8b). Specifically, wind directional biases of both GFS and HRRR appear to be smaller from May to

early September than the remaining months (Fig. 8b). A few outliers stand out due to large wind biases on March 11, April 28,

Sept 20, Oct 5, Oct 16, and Nov 16, 2020.525

Figure 8. (a) An example of the normalized spatial mean of the sounding-wise product [ppb2/ppb2] between an un-rotated observed tNO2 and a rotated

plume for the New Madrid power plant on June 15, 2020. Gaussian-like curves are fitted to each set with mean and standard deviation indicating modeled

wind biases. Five sets of rotated plumes include observed tNO2 (purple) and simulated tNO2 driven by GFS (dark green) or HRRR (dark orange) with or

without the account of NOx lifetime (light green or light orange). The horizontal dashed lines denote the µ parameter that can translate into wind bias in

degrees or radians. (b) “near-field” wind directional bias quantified by the modeled tNO2 plumes using 3km HRRR (orange bars) or 0.25◦ GFS (green bars)

and retrieved tNO2 plumes for every examined TROPOMI overpass (y-axis, in degrees) following the rotation algorithm in panel (a).

By identifying those outliers with strong wind directional biases, one can consider either removing those cases or assigning

a larger observational uncertainty when attempting to constrain emissions of NOx, CO and CO2, assuming their emissions are

mostly co-located. Alternatively, we can use this rotating algorithm to create a model plume with minimized wind directional

bias before being fed into atmospheric inversions or data assimilation systems (which usually deal with random uncertainties).

A more sophisticated approach would be to optimize the emission and wind field simultaneously (Liu et al., 2017). More530

investigations may be needed to examine the degree of freedom of such a wind-emission optimization framework.
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5.2.2 Quantifying emission ratios between NOx and GHGs

Our modeling development offers additional insights into the discrepancy between emission ratios at the sources and directly

observed enhancement ratios between two species with different chemical lifetimes. The joint use of NO2 and CO2 has enabled

the calculation of emission ratios by adopting a spatial constant NOx lifetime (MacDonald et al., 2022; Hakkarainen et al.,535

2023), and the constraint of CO2 emissions using NO2 plumes by adopting inventory-based emission ratios (Zheng et al.,

2020; Zhang et al., 2023). However, inventory-based emission ratios might not be well constrained, and the impact of how

NOx decays over time and space on observed ENOx –to–ECO2 emission ratios has not been comprehensively assessed, which

may impair the ability to accurately quantify such observed emission ratios (Kuhlmann et al., 2021).

Thanks to the ability of our model to track NOx and NO2 concentrations along trajectories with different model configura-540

tions, we can provide an assessment of the influence of atmospheric chemistry on estimating emission ratios. Specifically, the

impact from NOx net losses from each satellite sounding (s) is specified as the ratio of modeled tropospheric NOx with chem-

istry over that without chemistry: γts,s = NOx,CHEM,s/NOx,NOCHEM,s. Because NOx is simply treated as a passive tracer like

CO2 in the NOCHEM simulations, γts are naturally smaller than one. Lower γts corresponds to faster NOx chemical frequency

and more chemical losses en route to the sounding location, suggesting that NO2 –to–CO2 enhancement ratios derived directly545

from satellites need to be scaled up to render the ENOx –to–ECO2 emission ratios at source locations.

We calculated γts for every sounding and present their distribution as histograms in Fig. 9a or as a function of the dis-

tance from the emission source (Fig. 9b). γts ranges from 0.24 to 0.61 for three power plants and from 0.42 to 0.84 for

three cities, where lower values correspond to summer months (green bars in Fig. 9a). That is to say, the directly observed

NO2 –to–CO2 enhancement ratios may have to be scaled up by 1.2 to even 4 times across seasons to properly “recover” the550

NOx being lost en route from emission sources to the sounding locations. Not properly accounting for such an effect leads to

an underestimation of derived emission ratios from satellites. More importantly, discrepancies between enhancement ratios and

emission ratios, reflected by γts, are not spatially uniform. γts gradually decline as soundings move away from the emission

sources (Fig. 9b). Soundings located farther downwind from emission sources tend to undergo more chemical transformations,

likely because NOx losses become more rapid as NOx concentrations become lower by atmospheric dispersion (triggering555

positive feedback). We clarify that only downwind soundings affected by major NOx emissions are included in Fig. 9b; and

simulations with or without chemistry have included the effect of atmospheric dispersion as distance increases. Furthermore,

how quickly γts decline with distance depends on the wind speed and heterogeneity in emissions. For example, the faster the

wind may be or the more isolated emissions there are, the steeper γts decline with distance. γts at the distance of zero are

much lower than one in summer, which suggests that chemical transformation can affect the NOx inflow. We further observe560

slight differences in the distribution of γts for cities versus power plants. Histograms of both tropospheric NOx (Supplement

Fig. S17) and γts over cities are associated with a wider spread than power plants because cities contain a wider spectrum of

emission types and intensities.

Lastly, enhancement ratios need to be adjusted considering the NO2–to–NOx ratio and differences in averaging kernels

among two retrievals. The medians of our estimated NOx–to–NO2 ratio over power plants and cities range from 1.33 to 1.66,565
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which generally aligns with previous studies of around 1.32 (Beirle et al., 2011; Goldberg et al., 2022). Our estimates are lower

in winter than in summer and can be as large as 2 or 3 for a few soundings experiencing intense NOx sources (Fig. 9c).

Figure 9. A quantitative metric of the impact from NOx chemistry on tropospheric NOx and NO2 columns. Ratios in tNOx between simulations with and

without chemistry are calculated as γts,s = tNOx,CHEM,s/tNOx,NOCHEM,s, which is displayed as a histogram (a) and as a function of the distance of

the satellite sounding from the site center (b). Soundings in summertime overpasses are colored in dark green whereas brown for soundings in the dormant

months. Soundings of all overpasses for all city and power plant cases are included in histograms. Only downwind soundings in the NO2 plumes are included

in the distance panel (b) with a smooth spline fitted per overpass to reveal the anti-correlation. The ratio between the modeled tropospheric NOx column

versus the tropospheric NO2 column is derived from each sounding to reveal the NO2–to–NOx ratio influence (c). As a reference, most previous studies

adopted a constant NOx–to–NO2 ratio (reciprocal of NO2–to–NOx ratio) of 1.32 and can reach 2 in a hyper-near-field area of a major NOx source.

5.3 Limitation and room for improvements

The diversity of VOC emissions, the vertical profiles of emissions, and the extent of inter-parcel mixing may impact the mod-

eled results. Perhaps one of the biggest limitations of the current NOx chemical representation lies in not directly accounting570

for VOCs, which may affect (a) the “sweet spot” on NOx curves where two NOx loss pathways reach their maximum and (b)

the Ox -based NO2–to–NOx ratios (Sect. 5.3.1). Moreover, the influence of representations of emission profile on modeled

tNO2 can be magnified when further considering the TROPOMI NO2 averaging kernel (Sect. 5.3.2). Simulations of point

sources like power plants may be more sensitive to these factors compared to simulations of areal sources.
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5.3.1 The impact from VOCR575

To investigate the impact of VOCs on NOx curves, we calculated the VOC reactivity against OH from existing WRF-Chem re-

sults based on the following formula: VOCR =
∑n

i=1 kOH+VOCi
[VOCi] and generated separate sets of NOx curves for 4

respective VOCR intervals of [0.1, 1), [1, 3), [3, 10), and [10, 50) s−1 with a coarse SZA bin spacing of 10◦. Curves become

much noisier at night and in pristine environments with extremely low NOx (≤ 0.1 ppb) where WRF-Chem/RADM2 may be

less suitable (thereby not shown in Fig. 10).580

When considering lower SZAs (consistent with TROPOMI overpass time of 1 pm local time), the general non-linear charac-

teristic of these NOx curves holds as VOCR increases (Fig. 10). Higher VOCR relative to lower NOx concentration favors the

oxidation of VOCs by OH and the associated minor loss pathway of NO + RO2 to form alkyl nitrates with a minor branching

ratio, over the competing major NOx loss pathway of NO2 + OH (Fig. 1). With rising VOCR, the NOx chemical tendency

becomes more positive (P - L, Supplement Fig. S18a) and the net loss timescale elongates (e.g., ts_min from 2 to 4 hours in585

Fig. 10). Moreover, NOx is required to reach a higher level to compete with the reactions involving VOCs, evident by the shift

in the trough of the NOx curves (e.g., NOx_min from 1.4 to 3.7 ppb in Fig. 10). To put it in context, the NOx curves shown in

Fig. 3 represent typical patterns as long as VOCR remains below 10 s−1.

Figure 10. (a) Similar to Fig. 3b, but differentiated by 4 intervals of VOCR and SZA bins smaller than 70 degrees with a spacing of 10 degrees. All panels

here utilized model results from the same WRF-Chem simulations described in Sect. 2 and Appendix A.

VOCR may also affect the Ox level and the NO2–to–NOx ratio. The prescribed Ox level of 50 ppb (Sect. 2.2) overlooks

the nonlinear Ox variability related to VOCR (Murphy et al., 2007; Li et al., 2022). In NOx-limited scenarios, OH favors590

the oxidation of VOCs, and local-scale Ox is predominately produced by NO + RO2 or HO2, suggesting higher Ox levels

with increased NOx concentrations. The omission of NO + RO2 or HO2 in Eqs. 3 could lead to an underestimation of the

NO2–to–NOx ratio, which likely explains the modeled tNO2 being consistently lower than observations over background

regions. Conversely, under NOx -saturated conditions, the consumption of OH by NOx may limit the VOC oxidation and

Ox production, leading to a decline in Ox level as NOx concentration rises. Consequently, the NO2–to–NOx ratio might be595

overestimated when true Ox levels fall below 50 ppb (particularly under stagnant atmospheric mixing) or underestimated due

to the absence of NO + RO2 reactions. Nevertheless, our pre-determined Ox level of 50 ppb acts as a first-order limit to prevent

unrealistic conversion from NO to NO2 at extremely high NOx levels when O3 is being titrated.
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To address these limitations, one potential approach is to leverage formaldehyde concentrations retrieved from TROPOMI.

Recent studies revisited the use of the formaldehyde-to-NO2 ratios (i.e., FNR) from satellites as a means of inferring O3 pro-600

duction rates (Goldberg et al., 2022; Souri et al., 2022). Our WRF-Chem simulations, which were used to parameterize the

NOx chemical tendency, show that modeled formaldehyde generally increases with VOCR with varying slopes influenced by

SZA and NOx concentrations (Supplement Fig. S18c); and O3 concentrations scale non-linearly with FNRs with O3 concen-

tration approaching a background value at high FNR > 10 (Supplement Fig. S18d). Even though satellite-based FNRs may

theoretically help probe O3 or Ox concentration to better parameterize NO2–to–NOx ratios, Souri et al. (2022) stressed that605

retrieval errors especially from formaldehyde (40 to 90% with≤ 50% over cities) and inherent chemical errors of the predictive

power of FNRs may hinder the broad application of space-based FNRs at the current stage. Nonetheless, sensitivity analyses

in Sect. 3 indicate an overall chemical uncertainty in tNO2 of about 10 to 20% with respect to NO2 signals, even if perturbed

Ox level is much lower than 50 ppb (Fig. 4).

5.3.2 Uncertainties in non-chemical processes610

Besides simplification of chemical reactions, modeled tNO2 values can be subject to a few physical processes and parameters,

including emission profiles, inter-parcel mixing scales, and dry deposition.

The underlying STILTv2 (Fasoli et al., 2018) accounted for a gradual growth of the mixed layer height over the hyper-

near-field area around emissions. Yet, by convolving the STILT footprint with NOx emissions, we assumed that emissions

originate from the surface and are uniformly mixed over the mixed layer without considering the possible uneven distribution615

of emissions from different vertical levels. In reality, under stable atmospheric conditions, the stack heights or plume heights

of emission sources can sometimes extend above the shallow PBL. Our current assumption may thus lead to an overestimation

in modeled concentrations, and such biases can in turn affect the estimate of NOx tendency. More importantly, changes in the

vertical profile of emissions can lead to changes in concentration per model level, which affect the tropospheric columns as

the typical averaging kernel profile is far from uniform within the PBL. Recall that TROPOMI NO2 AKs decreases rapidly620

towards the surface (Fig. 1). Hence, placing an emission plume at the surface or an elevated altitude (e.g., 400 m) can cause a

discrepancy in modeled column concentrations. In addition, if the wind shear is strong over an intensive point source (likely

the Intermountain example in Fig. 5c), assumptions in the injection height and vertical profile of emission plumes may affect

the modeled plume shape and possibly deviate the estimated near-field wind bias following Sect. 5.2.1. Noticeably, Maier et al.

(2022) investigated the influence of inaccurate representation of emission profiles on the flask-like modeled concentrations by625

implementing a time-varying sector-specific emission profile into STILT. Such an impact on column concentrations may be

minimized but yet requires future in-depth investigations, particularly over point sources.

Accounting for inter-parcel mixing was an important aspect when developing Lagrangian chemical models. Omitting inter-

parcel mixing makes solving for non-linear processes (such as chemical NOx loss) problematic. On the contrary, Eulerian

models suffer from excessive numerical diffusion. Mixing that is too strong smooths the spatial gradient of concentration and630

can lower the concentration within the fixed model grids, which may cause slight shifts in NOx regimes. Valin et al. (2011)

suggested that a spatial resolution of 4 to 12 km is sufficient to capture the non-linearity in NOx loss rate. As for Lagrangian
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models, efforts can be made to enable the flux exchange between air parcels via deformations (Konopka et al., 2019; McKenna

et al., 2002). In addition to the inter-parcel mixing within the mixed layer (ML), several other turbulent mixing processes

require future investigation, including (1) horizontal mixing in the free troposphere (FT), (2) vertical mixing between the ML635

and FT, and (3) mixing between tracked air parcels with the untracked surrounding background. For example, Real et al.

(2008) utilized a linear relaxation with exponential decay of the plume concentrations towards the background based on a

timescale of 2 days to address the third mixing process. The second mixing process requires future modifications involving the

determination of entrainment zones and mixing hyperparameters for such ML-FT exchange.

The original STILT model realized vertical mixing by diluting surface emissions across the ML height (Lin et al., 2003)640

and we further enabled an exchange in pollutants’ concentrations with prescribed mixing length- and time-scales representing

typical horizontal mixing rates (Sect. 2.3). As final sensitivity tests, we simulated tNO2 based on a spectrum of mixing

hyperparameters for the New Madrid power plant. Uncertainties in the mixing parameters result in minimal uncertainties

on the sounding-level modeled tNO2 values (Supplement Fig. S19). For example, differences in modeled tNO2 between

the mixing and non-mixing simulations become larger as mixing becomes faster and for receptors/soundings located on the645

edge of the plume (i.e., only a small fraction of the trajectories encountered power plant emission in Supplement Fig. S20).

Uncertainties in the prescribed mixing hyperparameters contribute even less to the modeled values over urban areas (i.e., <

10% for Phoenix cases), where emissions are generally better mixed than at power plants. In addition, such mixing influence

can vary with the spatial resolution of the emission inventory used in the simulations.

The dry deposition of NO2 was not factored into this study, which could lead to an overestimation of modeled NO2. For650

future model implementations, it is possible to track loss of NO2 concentrations due to dry deposition by calculating “dry

deposition velocities” (e.g., Wesely, 1988) when air parcels descend close to the surface, e.g., 50 meters above the surface

(Wen et al., 2012).

6 Summary

In developing STILT-NOx , we aim to quantify anthropogenic NOx emission signals for power plants and cities using remote655

sensors using a novel Lagrangian chemical system that preserves the non-linear relationship between NOx concentrations and

emissions. This development is motivated by the desire to reduce computational costs by replacing the conventional kinetics-

based approach to solve for concentration changes with a simplified parameterization relying on as few variables as possible.

Such a simplified parameterization can be improved and adopted by other Lagrangian models. This work expands the capability

of (X-)STILT in tracing the origins of chemically reactive species to simulate their concentrations at satellite soundings (Fig.660

1). Although uncertainties exist in modeling atmospheric transport, mixing, and chemical processes, this study covers the key

NOx chemical mechanisms, various error sources, model validation, and the benefit of using NOx to constrain CO2 emissions

and tracer-tracer emission ratios.

To evaluate our modeling system, which consists of the HYSPLIT-STILT core and modules of column weighting, simpli-

fied chemistry, and error analyses (Fig. 1), we compared modeled tropospheric NO2 columns using EPA-reported emissions665
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against observed columns from TROPOMI over three power plants in the US (Fig. 6). The largest model-data discrepancies

are found for overpasses with substantial wind directional biases. Across three power plants and seasons, the systematic bias

informed by the model-data regression slope appears to be small when using EPA emissions. Switching NOx emissions from

prior emissions to EPA (usually with a scaling factor of 2 to 3) greatly improves the model-data agreement, followed by the

impact of whether to turn on the NOx chemistry. Upgrading to a higher-resolution meteorological field minimally alleviated670

model-data mismatches but should be considered for regions with complex terrain. Subtracting the background NO2 is nec-

essary, especially over stagnant days and regions with strong non-anthropogenic emission influences. Based on our limited

case studies, NO2 simulations of power plants are usually more challenging compared to urban areas with more of the areal

source for several reasons: from atmospheric mixing, spatial heterogeneity and vertical profiles of emissions, to the exposure

of ambient ozone-rich air when estimating the NO2–to–NOx ratios.675

Our comprehensive analyses on modeling tNO2 further shed light on the estimation of CO2 emissions at the local scale.

Modeling two species in a consistent modeling framework makes the quantification of two key bias terms easier, namely

from wind directions and emission locations. For example, we demonstrate the use of model-data NO2 plumes to obtain

a quantitative value of the directional biases associated with the modeled wind (Sect. 5.2.1) and biases with the emission

distribution in prior inventories like EDGARv6 (Sect. 4.2). As growing interest arise from the joint use of GHG and air680

pollutants, we also investigated the differences between NO2 –to–CO2 enhancement ratios and the ENOx –to–ECO2 emission

ratios (Fig. 9). Such differences between the two tracer-to-tracer ratios vary across seasons and space, which is again driven by

the non-linearity between the emissions and concentrations. For instance, to be consistent with emission ratios at the sources,

observation-based enhancement ratios need to be scaled up by 2 to 3 times in the summer months due to faster photochemistry.

Soundings with a separation of 60 km from the site center need to be scaled up further by roughly 1.3 times than near-field685

soundings concerning changes in chemical tendency.

STILT-NOx in conjunction with the forthcoming local-scale multi-tracer non-linear modeling/inversion system (Fig. 1) can

be employed to simultaneously constrain emissions from multiple species of both GHGs and key air pollutants along with their

respective emission ratios, allowing for improvements in sectoral attributions. Such a framework has the potential to be scaled

up to a large number of cities for estimating emissions of NOx, CO2, and possibly other tracers from space-based sensors.690

Code and data availability. TROPOMI v2.3 of the Level 2 NO2 data were accessed from https://data-portal.s5p-pal.com/products/no2.html.

The official DOI of TROPOMI is http://doi.org/10.5270/S5P-9bnp8q8.The official DOI of the OCO-3 Level 2 B10p4r XCO2 data is

https://doi.org/10.5067/970BCC4DHH24. EDGARv6.1 emissions are accessed from https://data.jrc.ec.europa.eu/dataset/df521e05-6a3b-

461c-965a-b703fb62313e and have been preprocessed. The STILT-NOx v1 model is built on previous efforts of the X-STILT model in

modeling NO2. The exact version used in the discussion paper is archived on Zenodo with a doi of https://zenodo.org/record/8057850.695
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Appendix A: WRF-Chem setups

We used meteorological fields from the Global Forecast System (0.25◦ × 0.25◦ GFS-FNL, NCEP, 2015) to generate hourly

outputs at a grid spacing of 12 km for five consecutive days in each month of 2020. The first day is regarded as the spin-up time

to stabilize the model whose concentration fields are excluded from the following analyses. Anthropogenic emissions of air

pollutants and VOCs are adopted respectively from EDGARv6.1 (Crippa et al., 2022) and EDGARv4.3.2 (Huang et al., 2017)700

with biogenic VOC emissions derived from the Model of Emissions of Gases and Aerosols from Nature (MEGANv2, Guenther

et al., 2012). No lightning or soil NOx source is included in WRF-Chem simulations. The boundary condition of chemicals

relies on the CAM-CHEM model (Buchholz et al., 2019). The most important part is the gas phase photochemistry scheme,

which is driven by 2nd generation of the Regional Acid Deposition Model (RADM2, Stockwell et al., 1990) with Dry and wet

depositions included. RADM2 is well-suited under polluted environments but may miss several key aromatic components for705

pristine environments dominated by BVOCs (Stockwell et al., 1997).

Appendix B: Technical notes on regional wind assessment

We assess the wind uncertainty associated with two meteorological fields that drive (X-)STILT, namely the 3 km HRRR

and 0.25◦GFS. The first approach targets regional wind error statistics by comparing modeled wind fields (both HRRR and

GFS) against true wind observations at radiosonde stations. The wind error statistic is further used to translate wind errors to710

uncertainties in tNO2. Radiosonde balloons are normally launched at 00 or 12 UTC. U- and V-component wind observations

for only levels below 2 km over the 24 hours ahead of the TROPOMI overpass time are selected. We then estimate random

uncertainties of u-/v-component wind speed (i.e., RMSE in m s−1) and normalize RMSEs over mean wind speed to yield

fractional uncertainties (%) for every overpass (Supplement Fig. S3). For example, fractional wind uncertainties over Missouri

(around 20 to 40%) are generally smaller than uncertainties over mountainous lands in Utah (> 40%), which relates to the715

model’s capabilities in resolving topography and topographic flows. In addition, HRRR-based winds at radiosonde stations

appear to be more erroneous compared to GFS-based winds High-resolution models provide better descriptions of the surface

land cover type, terrain height, and surface roughness, which may improve the spatial variability of PBLH (Lin et al., 2017) and

wind vectors. Without true wind measurements, it remains unclear whether higher-resolution models can capture more accurate

fine-scale meteorology. Nevertheless, the radiosonde analysis provides an overall picture of the regional wind uncertainty.720

To propagate wind error statistics to transport uncertainty in concentrations, a wind error component is added to the mean

wind component and the turbulence component when generating backward trajectories. Transport uncertainties in tNO2 are

defined as the differences in variations of parcel-specific NO2 mixing ratio with the proper vertical weighting of AK and PWF

between the perturbed and the initial set of the trajectories.
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Appendix C: Technical notes on near-field wind bias quantification725

As introduced in Sect. 5.2.1, a NO2 plume from either model or retrieval is rotated clockwise (α from -180 to -5◦ with a spacing

of 5◦) or counter-clockwise (from 5 to 180◦) around the emission source and then resampled onto the original TROPOMI pixels

(Supplement Fig. S16). We then multiply gridded tNO2 from the initial plume with gridded tNO2 from each rotated plume

under each rotating angle, α. The cross-product of two tNO2 plumes [XP, ppb2] measures how two tNO2 plumes are similar

in terms of their spatial structures, as one is rotated around its source location for 360◦ (Eq. C1):730

XP(xs,ys,α) = tNOinitial
2 (xs,ys) tNOrotated

2 (xs,ys,α) (C1)

We next calculate the square-root-mean of these sounding-specific cross-products per rotating angle (Fig. 8a). The peak of the

Gaussian shape suggests when two plume signals reach the maximum correlation, while the wing suggests when one plume

signal starts to decouple with another plume signal. The plume that undergoes rotation (tNOrotated
2 ) can either be a modeled

plume with different model configurations (e.g., GFS or HRRR; with or without chemistry) or an observed plume. For example,

root-mean-products (RMP) based on the simulations without chemistry displays a high bias compared to RMP using observed735

tNO2 , which implies that the entire modeled scene including the background signal is biased high when NOx lifetime is

not included. When an observed plume was rotated to match its original self, their tNO2 product can serve as a baseline.

Normalizing the cross-products offers a diagnostic (Fig. 8), analogous to the concept of the “cross-correlation coefficient”.
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