

Supporting Information for

Estimating Marine Carbon Uptake in the Northeast Pacific Using a Neural Network Approach

Patrick J. Duke¹, Roberta C. Hamme¹, Debby Ianson^{2,1}, Peter Landschützer³, Mohamed M. M. Ahmed^{1,4}, Neil C. Swart^{5,1}, Paul A. Covert²

¹School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada

²Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, BC, Canada

³Flanders Marine Institute (VLIZ), Ostend, Belgium

⁴Education and Research Group, Esri Canada, Calgary, AB, Canada

⁵Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, BC, Canada

Correspondence to: P. J. Duke (pjduke@ucalgary.ca)

Contents of this file

Figure S1

Figure S2

15 Figure S3

Figure S4

Figure S5

Figure S6

Table S1

20 Table S2

Figure S1 Withheld data distribution in (a) month, (b) years, (c) geographically as the number of months of observational coverage per $1/12^\circ \times 1/12^\circ$ grid cell. Ocean Station Papa is shown for reference.

25

Figure S2 Mapped mean bias and standard deviation in residuals between ANN-NEP pCO₂ estimate and 1/12°x1/12° gridded SOCAT data.

30 **Figure S3 Mean pCO₂ standard deviation between ANN-NEP 10-fold ensemble members. Ocean Station Papa is shown for reference.**

Figure S4 10-fold cross-evaluation (Section 2.4) individual ensemble member estimated $p\text{CO}_2$ against the 10% 10-fold evaluation data specific to that ensemble member. Mean root mean squared error (RMSE) and coefficient of determination (r^2) are across all individual ensemble members compared to the 10% evaluation data specific to that ensemble member. Data is binned into $2 \mu\text{atm}$ by $2 \mu\text{atm}$ bins. The dashed black line represents a perfect fit of slope ($c_1 = 1$) and intercept = 0.

Figure S5 (a) Mean difference in the surface ocean $p\text{CO}_2$ seasonal amplitude in μatm between the ANN-NEP estimate (this study) and the Landschützer et al. (2020) global product. Positive (negative) differences indicate higher $p\text{CO}_2$ seasonal amplitude for the ANN-NEP (Landschützer et al. (2020)) estimate. The Landschützer et al. (2020) estimates have been interpolated to the

1/12°x1/12° grid of this study. (b) Mean ANN-NEP seasonal surface ocean $p\text{CO}_2$ seasonal amplitude in μatm . Ocean Station Papa is shown for reference.

Figure S6 Property to property plot of air-sea CO_2 flux density anomalies and sea surface height (SSH) anomalies (grid cell by grid cell) in the subpolar Alaskan Gyre region of our study area (latitudes north of 52° N). Stronger (weaker) upwelling label relates to gyre upwelling strength driven by winds enhancing (damping) Ekman pumping and depressing (elevating) SSH.

Table S1 Regional high-resolution artificial neural network Northeast Pacific (ANN-NEP) pCO₂ product performance against all SOCAT pCO₂ observation data grouped by year and month. Number of observations (N), root mean squared error (RMSE), coefficient of determination (r²), and mean bias (calculated as the mean residual).

	N	RMSE	r ²	Mean bias
<i>Year</i>				
1998	3085	8.1	0.73	-1.4
1999	2184	7.5	0.91	1.4
2000	5195	8.1	0.93	0.0
2001	2404	5.7	0.96	1.2
2002	2110	7.1	0.91	1.0
2003	2526	5.2	0.84	-1.3
2004	652	4.5	0.94	1.2
2005	110	6.8	0.69	-3.6
2006	413	3.3	0.93	-2.6
2007	405	6.4	0.87	-2.8
2008	217	4.0	0.95	-1.3
2009	2751	5.0	0.94	-0.4
2010	1267	6.5	0.96	1.9
2011	980	9.1	0.87	-1.0
2012	1567	6.1	0.93	1.3
2013	1593	4.3	0.99	0.9
2014	1017	5.1	0.95	-1.5
2015	836	9.1	0.95	1.5
2016	919	6.3	0.91	-0.4
2017	511	4.7	0.89	1.0
2018	1303	5.7	0.94	1.2
2019	2051	8.1	0.93	-0.6
<i>Month</i>				
January	2731	5.2	0.97	0.7
February	2971	5.8	0.98	-0.7

March	1816	6.8	0.96	-1.0
April	2277	4.3	0.97	0.3
May	3041	5.6	0.94	0.1
June	4077	9.0	0.92	-1.1
July	3601	9.6	0.86	-0.1
August	3922	7.5	0.94	1.0
September	4121	6.6	0.93	0.2
October	2240	4.9	0.91	1.2
November	1511	3.9	0.97	-0.4
December	1788	4.4	0.97	0.8

50

55 **Table S2 Regional artificial neural network Northeast Pacific pCO₂ product performance at varying resolutions against training and independent withheld SOCAT pCO₂ observations. Mean and standard deviation between lower 10th percentile (5 of 50 runs) of overfitting metric values for each resolution with varying internal data division ratios between the pCO₂ training data used by the ANN to train and internally evaluate. Number of observations (N), root mean squared error (RMSE), coefficient of determination (r²), mean absolute error (MAE), mean bias (calculated as the mean residual), and the slope of the linear regression (c₁). Courser resolution product uncertainties are also included where overall pCO₂ product uncertainty (θ_{pCO_2}) is calculated from the square root of the sum of the three squared errors: observational uncertainty (θ_{obs}), gridding uncertainty (θ_{grid}), and ANN interpolation uncertainty (θ_{map}). The 10-fold ensemble approach was not run for the courser resolution products, likely leading to a slight underestimate of overall uncertainty as ANN run randomness uncertainty (θ_{run}) was excluded.**

60

<i>Training data</i>						
Resolution	N	RMSE	r²	Mean Bias	c₁	MAE
1°	2547	11.8±0.6	0.79±0.02	-0.1±0.1	0.73±0.02	8.8±0.5
1/2°	5569	10.9±0.7	0.83±0.02	0.1±0.2	0.77±0.02	7.9±0.6
1/4°	11253	11.3±0.9	0.82±0.03	0.0±0.1	0.77±0.03	8.2±0.7
1/8°	21869	12.2±1.0	0.79±0.03	0.0±0.2	0.74±0.03	8.8±0.8
1/12°	31392	10.5±1.0	0.84±0.03	0.0±0.2	0.79±0.03	7.4±0.8
<i>Independent withheld data</i>						
1°	155	11.7±0.3	0.76±0.01	-0.7±0.5	0.88±0.01	8.4±0.1
1/2°	350	11.5±0.6	0.78±0.02	0.1±0.7	0.93±0.03	8.3±0.5
1/4°	716	11.5±0.8	0.79±0.03	0.1±0.6	0.98±0.02	8.6±0.7
1/8°	1387	12.5±0.6	0.76±0.01	-0.1±1.2	0.93±0.04	9.2±0.5
1/12°	1857	11.4±0.5	0.79±0.01	2.1±0.6	0.92±0.03	8.4±0.5
<i>pCO₂ product uncertainty</i>						
	θ_{obs}	θ_{grid}	θ_{map}		θ_{pCO_2}	
1°	3.1	3.7	11.7		12.6	
1/2°	3.1	2.8	11.5		12.3	
1/4°	3.1	2.0	11.5		12.2	
1/8°	3.1	2.0	12.5		13.0	