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Abstract. In response to the need for securing a spatiotemporally more up-to-date emissions inventory and the impending
release of new geostationary platform-derived observational data generated by the Geostationary Environment Monitoring
Spectrometer (GEMS) and its sister instruments, this study, using a series of GEMS data fusion product and its proxy data,
TROPOMI data, and CTM-based inverse modeling techniques, aims to establish a top-down approach for adjusting aerosol
precursor emissions over East Asia. We begin by sequentially adjusting bottom-up estimates of nitrogen oxides (NOx) and
primary particulate matter (PM) emissions, both of which significantly contribute to aerosol loadings over East Asia, to
reduce model biases in aerosol optical depth (AOD) simulations during the year 2019. While the model initially
underestimates AOD by 50.73% on average, the sequential emissions adjustments that led to overall increases in the
amounts of NOy emissions by 122.79% and of primary PM emissions by 76.68% and 114.63% (single- and multiple-
instrument-derived emissions adjustments, respectively), reduce the extent of AOD underestimation to 33.84% and 19.60%,
respectively. We consider the outperformance of the model using the emissions constrained by the data fusion product the
result of the improvement in the quantity of available data. Taking advantage of the data fusion product, we perform
sequential emissions adjustments during the spring of 2022, the period during which the substantial reductions in
anthropogenic emissions took place accompanied by the COVID-19 pandemic lockdowns over highly industrialized and
urbanized regions in China. While the model initially overestimates surface PM2s concentrations by 47.58% and 20.60% in
the North China Plain (NCP) region and Korea, the sequential emissions adjustments that led to overall decreases in NOx and

primary PM emissions by 7.84% and 9.03%, respectively, substantially reduce the extent of PMzs underestimation to 19.58%
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and 6.81%, respectively. These findings indicate that the series of emissions adjustments, supported by TROPOMI and
GEMS-involved data fusion products, performed in this study are generally effective at reducing model biases in simulations
of aerosol loading over East Asia; in particular, the model performance tends to improve to a greater extent on the condition
that spatiotemporally more continuous and frequent observational references are used to capture variations in bottom-up
estimates of emissions. In addition to reconfirming the close association between aerosol precursor emissions and AOD as
well as surface PM2s concentrations, the findings of this study could provide a useful basis for how to most effectively

exploit multi-source top-down information for capturing highly varying anthropogenic emissions.

1 Introduction

In East Asia, atmospheric aerosols, such as particulate matter (PM), have been a focus of great concern because of their
adverse impact on public health and safety, accompanied by rapid urban and industrial growth that has elevated levels of
anthropogenic emissions over time (Hatakeyama et al., 2001; Ohara et al., 2007). In response to the growing interest in
airborne hazards, many research entities, using ground-based networks of monitoring sites in many industrial regions and
megacities over East Asia, have devoted considerable effort to systemically monitoring local and regional air quality.
Unfortunately, the limited number of stations often impedes efforts to secure efficient sampling coverage and data

availability for aerosol studies (Kumar et al., 2007; Tian and Chen, 2010).

To overcome this limitation, many research entities have substantially improved the collection and, thus, the availability of
satellite observational data, which enables them to estimate the spatiotemporal distributions of aerosols over vast areas that
are not in close proximity to monitoring sites (Remer et al., 2013; Levy et al., 2013). A variety of aerosol products derived
from sun-synchronous low Earth orbit (LEO) satellite instruments, such as the Advanced Very High Resolution Radiometer,
the Visible Infrared Imaging Radiometer (VIIRS), the MODerate-resolution Imaging Spectroradiometer (MODIS), and the
Multiangle Imaging SpectroRadiometer (MISR), have been available for many years (Chan et al., 2013; Ahn et al., 2014;
Levi et al., 2015; Garay et al., 2020). For example, researchers have conducted a number of comprehensive air quality
assessments on local to global scales using the aerosol optical depth (AOD), an essential property of aerosols that represents
columnar aerosol loadings in the atmosphere (Bellouin et al., 2005; Remer et al., 2008, Munchak et al., 2013; Filonchyk et
al., 2019; Jung et al., 2019, 2021; Lee et al., 2022).

Since the recent advent of satellite products, researchers have increased their efforts to use top-down observational data to
improve the performance of chemical transport models (CTMs) such as the Community Multiscale Air Quality (CMAQ)
model (Byun and Schere, 2006). A number of studies have applied satellite data in CTM-based numerical approaches, such
as inverse modeling and data assimilation, to reduce the uncertainties in bottom-up estimates of air pollutant emissions and
perform more accurate air quality simulations (Wang et al., 2012; Ku et al., 2013; Koo et al., 2015; Pang et al., 2018; Xia et
al., 2019; Wang et al., 2020; Li et al., 2021; Lee et al., 2022); most of these studies, however, share a common challenge in
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resolving uncertainties originating from retrieval discontinuity (i.e., coarse orbiting cycles of satellite instruments and cloud
contamination). Using Ozone Mapping and Profiler Suite products, Wang et al. (2020) performed top-down optimizations
of nitrogen dioxide (NO2) and sulfur dioxide (SO2) emissions and examined the sensitivity of AOD to concentrations of
secondary inorganic aerosols over East Asia. Their results suggested a need for spatiotemporally more continuous satellite
data. To improve model estimate of the AOD over East Asia, Li et al. (2021) used Ozone Monitoring Instrument data to
perform a top-down inversion of SO, emissions. Their results emphasized the need for satellite data at finer temporal scales,

which would allow one to capture highly variable SO, emissions over East Asia.

To address such instrument-inherent challenges, researchers have developed a number of approaches to applying more
continuous and frequent observational data afforded by geostationary Earth orbit (GEO) satellite instruments; temporal
resolutions of GEO satellite instruments (e.g., from a few minutes to an hour) are relatively finer than those of LEO satellite
instruments on a 12-hour orbit cycle at best over given geographic locations (Vijayaraghavan et al., 2008). Leveraging
aerosol product data derived from GEO satellite instruments such as the Geostationary Ocean Color Imager (GOCI) and the
Advanced Himawari Imager (AHI), several CTM-based studies have shown substantial improvements in model
performances in estimating aerosol loadings in East Asia (Jeon et al., 2016; Lee et al., 2016; Yumimoto et al. 2016; Jin et al.,
2019). In addition, in response to the increasing demand for satellite data available at finer temporal resolutions, the
Committee on Earth Observation Satellites has led an international effort to coordinate a new constellation of GEO satellite
instruments for monitoring the behaviors of atmospheric constituents over the globe at faster sampling rates. For example,
the Geostationary Environment Monitoring Spectrometer (GEMS), jointly developed by the Korea Aerospace Research
Institute and Ball Aerospace, was launched onboard the GEO-KOMPSAT-2B satellite in 2020 as the first ultraviolet-visible
(UV-Vis) instrument of its kind that can measure the columnar loadings of both trace gases and aerosols over the Asia-
Pacific region in a geostationary manner up to eight times during daytime (Choi et al., 2018; Kim et al., 2018; Kim et al.,
2020); before the advent of the GEMS mission, all UV-Vis instruments had been operating on LEO platforms. Furthermore,
equipped with similar observational capabilities, a series of GEO satellite instruments are planned to be launched in 2023 to
complete building the future constellation, which includes NASA’s Tropospheric Emissions: Monitoring of Pollution
(TEMPO) above North America (Zoogman et al. 2017) and the European Space Agency Sentinel-4 above Europe and North
Africa (Ingmann et al., 2012), and ultimately serve the needs of more detailed and frequent air quality measurements over

the Northern Hemisphere.

In addition to taking advantage of such finer spatiotemporal resolutions afforded by GEO satellite instruments, researchers
have developed numerous data fusion approaches to integrating atmospheric properties retrieved by multiple individual
instruments in order to further improve the quality of satellite products; the products derived from multiple instruments can
be spatiotemporally complementary in terms of the completeness of observational data (Zou et al., 2020). For example,

several studies have fused multi-source satellite products to yield more accurate estimates of air quality over East Asia (Choi
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et al., 2019; Go et al., 2020; Lim et al., 2021) in response to the upcoming releases of GEMS products. Choi et al. (2019)
fused multiple aerosol products afforded by three LEO satellite instruments (i.e., MODIS, MISR, and VIIRS) and two GEO
satellite instruments (i.e., GOCI and AHI) to examine how effective the data fusion approach was at improving the accuracy
of AOD estimates over East Asia. Their results showed that the multi-source aerosol product could substantially improve
observational coverage and frequency, and the AOD estimates from which showed closer spatiotemporal agreement with in
situ ground-based measurements at AErosol RObotic NETwork (AERONET) sites (Holben et al., 1998) than those from
AOD estimates provide by each of the individual satellite instruments (Choi et al., 2019). As a follow-up study over East
Asia, Lim et al.” (2021) fused the GOCI AOD with AHI AOD (hereafter referred to as GOCI-AHI AOD) products by using
multi-source aerosol properties and land surface parameters from those in ensemble-mean and maximume-likelihood
estimation (MLE) methods in order to reduce observational and systematic biases occurring during the retrieval process.
Their multi-source AOD estimates showed substantially improved agreement with AERONET AOD measurements over
East Asia, which they considered to be the result of complementary retrievals that reduced the number of pixels with missing
values and ensured more cloud-free pixels (Lim et al., 2021). Note that their study aimed to develop and examine data fusion
algorithms for near-future use, which would be applied to producing synergistic satellite products after the full product
releases of GEMS and its sister instruments, including the Advanced Meteorological Imager (AMI) onboard the GEO-
KOMPSAT-2A satellite and Geostationary Ocean Color Imager 2 (GOCI-2) onboard the GEO-KOMPSAT-2B satellite.

Despite the availability of the many numerical approaches and data fusion techniques for reducing the uncertainties in the
model and observations, efforts to couple them have not been sufficiently rigorous over East Asia; therefore, this study
aimed to examine the utility of synergistic satellite observation data in improving the performance of CTM-based
simulations of aerosol loadings over East Asia. Hypothesizing that finer spatiotemporal resolutions of multi-source data
fusion products would provide more observational references available for use, we employed the GEMS data fusion product
and its proxy data in adjusting the emissions inventory in East Asia in a top-down manner. This study largely consists of two
phases: 1) the implementation and evaluation of emissions adjustments using the TROPOspheric Monitoring Instrument
(TROPOMI) tropospheric NO, columns (hereafter referred to as TROPOMI NO; columns), and AHI AOD and GOCI-AHI
fused AOD (the proxies of GEMS AOD and GEMS-AHI-GOCI-2 fused AOD, respectively) for the simulation year 2019,
and 2) the application of the emissions adjustment approach using the TROPOMI NO; columns and GEMS-AHI-GOCI-2
fused AOD for the spring of 2022. For the former period, which represents the most recent year before the COVID-19
outbreak in this study, we first performed inverse modeling to constrain bottom-up estimates of nitrogen oxides (NOx)
emissions using TROPOMI NO- columns, and then we constrained bottom-up estimates of primary PM emissions using
each of the AHI AOD and GOCI-AHI fused AOD. Prior to proceeding with the second phase, we compared the model
performances from using the single-instrument- and multi-source-derived AOD products in constraining primary PM
emissions. For the latter period, which was considered to be severely affected by the resumptions of city- and province-wide
lockdowns (Dyer, 2022) in China, we used the TROPOMI NO; columns and GEMS-AMI-GOCI-2 fused AOD to
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sequentially constrain NOy and primary PM emissions based on the earlier top-down approach. Note that we did not focus on
other gaseous air pollutants than NOy considering the future application of GEMS tropospheric NO product, which has
recently been released (as of November 23, 2022) by Environmental Satellite Center of Korean National Institute of
Environmental Research (NIER) (https://nesc.nier.go.kr). And then, using a series of a posteriori emissions (i.e., NOx-
constrained emissions and NOy- and primary PM-constrained emissions) in CMAQ, we simulated AOD and PMgs
concentrations over East Asia to examine the utility of the GEMS-involved synergistic product in inverse modeling and

ultimately to improve model performances in estimating aerosol loadings over East Asia.

2 Materials and Methods
2.1 Modeling setup and preparation of base emissions

Using the 2016 KORUS-AQ emissions inventory version 5.0 developed by Konkuk University (Woo et al., 2020), we
prepared CMAQ-ready anthropogenic emission inputs over the modeling domain, shown in Fig. 1, which encloses the
eastern half of China, the Korean Peninsula, southern Russian Far East, and Japan. The KORUS-AQ emissions inventory
consists of multiple individual emissions inventories, including the Comprehensive Regional Emissions for Atmospheric
Transport Experiments version 2.3 (Jang et al., 2019), Clean Air policy Support System 2015 (Yeo et al., 2019), and Studies
of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (Toon et al., 2016). To
prepare biogenic emissions inputs, we employed the Model of Emissions of Gases and Aerosols from Nature (MEGAN)
version 3.0 (Guenther et al., 2012), which can speciate, quantify, and regrids biogenic emissions from terrestrial ecosystems
based on a series of input data (e.g., meteorological fields and land surface parameters) (Guenther et al., 2006, 2020). We
used reprocessed MODIS version 6 leaf area index (LAI) products (Yuan et al., 2011) and VIIRS global green vegetation
fraction (GVF) products (Jiang et al., 2016) as input data for MEGAN. We merged the anthropogenic and biogenic

emissions to prepare the a priori emissions inputs (hereafter referred to as base emissions).
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Figure 1. Modeling domain and the locations of the ground-based in-situ measurement sites used for model evaluation.

To simulate the meteorological fields and ambient concentrations of gaseous air pollutants and aerosols for each of the study
periods, we used the Weather Research and Forecasting (WRF) version 3.8 developed by the National Center for
155 Atmospheric Research (NCAR) (Skamarock et al., 2008) and CMAQ version 5.2 developed by the U.S. Environmental

Protection Agency (EPA) (Byun and Schere, 2006). Employing the same modeling setups and initial conditions used in our
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previous studies over East Asia (Jung et al., 2019, 2021; Pouyaei et al., 2020, 2021; Park et al., 2022), we configured WRF
and CMAQ to cover the modeling domain at a horizontal resolution of 27 km and 35 vertical variable thickness layers from
the surface up to 100 hPa. Detailed model configurations are listed in Table S1. Then, using the WRF-simulated
meteorological fields and base emissions in CMAQ, we simulated NO, columns and concentrations, AOD, and PMas
concentrations over the modeling domain for the entire year 2019 and the period from March to May 2022. For each of these

two study periods, we initiated both WRF and CMAQ simulations with a 10-day spin-up time.

2.2 TROPOMI NO:2 product

TROPOMI, an LEO satellite instrument launched onboard the Copernicus Sentinel-5 Precursor satellite in 2017, provides
global observations of trace gases and aerosols (Veefkind et al., 2012). To obtain daily tropospheric NOz and SO, column
densities observed during the study periods, we used TROPOMI Level 2 NO; and SO, products. The spatial resolution of
TROPOMI was initially 3.5 km x 7 km and was improved to 3.5 km x 5.5 km in early August 2019. The daily acquisition
time of the column data was approximately 04:30 UTC when the instrument overpassed the modeling domain during the
study period. For the NO2 columns, we used pixels with quality assurance values (qa_values) larger than 0.75 and cloud
fractions smaller than 0.3. To ensure consistency in the horizontal spacings between the TROPOMI NO; columns and
CMAQ’s modeling grids, we regridded the TROPOMI NO> columns into 27 km x 27 km grids by using distance-weighted
mean of those observation references with a radius of 0.25° (approximately 27 km).

2.3 AHI AOD and GOCI-AHI fused AOD products

The AHI, a GEO satellite instrument launched onboard the Himawari-8 geostationary meteorological satellite in 2014,
provides regional observations of aerosol properties over East Asia and western Pacific regions in a spatiotemporally
continuous manner (Okuyama et al., 2015; Bessho et al., 2016). For the study period 2019, we used the Japan Aerospace
Exploration Agency (JAXA) AHI Level 3 aerosol product to obtain the hourly estimates of AOD over the modeling domain,
the spatiotemporal resolutions of which are 0.05° x 0.05° and one hour for 8 consecutive daytime (00:30 UTC to 07:30 UTC)
retrievals per day. To ensure consistency between the observed AOD and modeled AOD, the latter of which was estimated
based on the light extinction of aerosols at a wavelength of 550 nm (Pitchford et al., 2007), we converted the AHI AOD
retrieved at 500 nm wavelength to those at a 550 nm wavelength following Eq. 1 (Angstrom, 1961):

550\ ¢

)

AODs50um = AODs00nm % (255 W

where AODssg pm and AODggg i are AODs at 550 and 500 nm wavelengths, respectively, and AE is the Angstrom
exponent at 400 - 600 nm wavelengths provided in the AHI aerosol product. To ensure the retrieval quality, we used pixels

with quality assurance values (AOT_merged_uncertainty) smaller than 1 (very good and good retrievals).
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To explore the utility of the synergistic observational data in the emission adjustments, we employed the GOCI-AHI fused
AOD product developed by Lim et al. (2021), which provides near-real-time bias-corrected AOD estimates over East Asia,
taking advantage of multi-source retrievals of aerosol optical properties that complement each other. GOCI, a GEO satellite
instrument launched onboard the Communication, Ocean and Meteorological Satellite (COMS-1) in 2010, provides regional
observations of ocean environments (i.e., sea surface albedo and reflectance) and aerosol properties (i.e., the AOD) over East
Asia and western Pacific regions (Lee et al., 2010). The GOCI-AHI AOD product affords the best compromise among four
individual retrievals post-processed based on Yonsei Aerosol Retrieval (YAER) retrieval algorithms (Choi et al., 2016, 2018;
Lim et al., 2018); the data fusion process comprises a series of post-processing and data fusion techniques to complement the
error characteristics of each other (i.e., the spatiotemporal collocation, the cloud removal process, the ensemble-mean
method, the MLE method, and systematic bias correction based on the long-term validation of AERONET AOD
measurements) (Lim et al., 2021). For the study period 2019, we used the GOCI-AHI fused AOD product to obtain hourly
estimates of the AOD (at a 550 nm wavelength) over the modeling domain, the spatial resolution of which was initially 6 km
x 6 km and regridded into 0.05° x 0.05°, and the temporal resolution of which is identical to that of the AHI AOD product
described above. The consistency in the grid spacings among AHI AOD, GOCI-AHI AOD, and CMAQ’s modeling grids

was ensured in the same approach described in Section 2.2 above.

2.4 GEMS-AMI-GOCI-2 fused AOD product

The GEMS-AMI-GOCI-2 fused AOD product is a synergistic science product jointly developed by Yonsei University,
Chungnam National University, and the Korean National Institute of Environmental Research (NIER) based on their earlier
data fusion approach applied to the GOCI-AHI fused AOD product (the proxy of the GEMS-AMI-GOCI-2 fused AOD
product in this study) described in Sect. 2.3. GEMS provides hourly daytime observations of the columnar loadings of
gaseous air pollutants (i.e., ozone, NO2, SO,, formaldehyde, and glyoxal) and aerosols (i.e., the AOD) (Kim et al., 2020a).
The AMI, a meteorological satellite instrument, provides regional observations of meteorology (i.e., cloud mask) and
terrestrial environments (i.e., vegetation indices, surface reflectivity, albedo, and turbid water) as well as aerosol optical
properties (i.e., fine mode fraction (FMF) and AOD) every 10 minutes at spatial resolutions of 0.5 km - 1.0 km for visible
channels and of 2 km for near-infrared and infrared channels (Chung et al., 2020; Kim et al., 2021). GOCI-2, an advanced
ocean color imager that succeeded the mission of GOCI, provides hourly observations of ocean environments (i.e., ocean
current, green tide, and red tide) as well as of aerosol optical properties (i.e., FMF and AOD) over the ocean surface at a full-
domain spatial resolution of 1 km (Kim et al., 2020a). Note that these three individual instruments are in operation onboard
two sister GEO platforms (i.e., the AMI onboard GEO-KOMPSAT-2A, and GEMS and GOCI-2 onboard GEO-KOMPSAT-
2B) over the Asia-Pacific region. To create the best synergy from the superiorities of these instruments over each other (i.e.,
GEMS’s retrieval accuracy over bright surfaces, and AMI’s and GOCI-2’s sampling performances over cloud-free pixels at
finer spatiotemporal resolutions) (Kim et al., 2020b), the data fusion process utilizes GEMS Level 2 aerosol product version
1, and AMI and GOCI-2 aerosol products post-processed based on the YAER algorithm (Kim et al., 2020b) to produce the

8
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GEMS-AMI-GOCI-2 AOD product. For the study period 2022, we used the GEMS-AMI-GOCI-2 AOD product to obtain
the hourly estimates of AOD (at a 550 nm wavelength) collocated into the spatiotemporal resolutions identical to those of the
AHI AOD and GOCI-AHI AOD products described earlier. Detailed information about the data fusion process is provided
by Kim et al. (2020b).

2.5 Top-down approaches for NOx and primary PM emissions adjustments
2.5.1 Emissions adjustments for the study period 2019

To constrain the NOyx and primary PM emissions based on top-down information provided by satellite instruments for the
study period 2019, we employed a series of inverse modeling techniques. To adjust the a priori NOx emissions, we
performed analytical (or Bayesian) inverse modeling towards mathematically minimizing the difference between TROPOMI
NO; and CMAQ-simulated NO, columns based on the following cost function in Eq. 2 under the assumptions that 1) the
relationship between the changes in NO; columns and NOy emissions is not rigorously nonlinear, 2) observation and
emission error covariances are described by zero-bias Gaussian probability density functions, and 3) observation and

emission error covariances are independent of each other (Rodgers, 2000):

1 1
J@) = 5 (= FG0) S5y = F) +5 (2 = x)785 (x = xa) @)

where x is a posteriori NOx emissions, x, a priori NOx emissions, S, the observational error covariance provided in the
TROPOMI NO; product, and S, the error covariance of the a priori NOx emissions, the uncertainty of which was calculated
by combining the error covariances of anthropogenic (50%) and biogenic (200%) NOx emissions (Souri et al., 2020; Jung et
al., 2022). F is the first-order sensitivity coefficient that correlates NOy emissions with tropospheric NO; columns. We used
the CMAQ decoupled direct method in three dimensions (CMAQ DDM-3D) version 5.2 (Napelenok et al., 2006) to compute
the initial sensitivity coefficient, a measure of the responses of modeled NO; columns to changes in NOx emissions. We used
the same model configurations in CMAQ DDM-3D as those used in CMAQ described in Sect. 2.1. To infer the a posteriori

emissions, we used the Gauss-Newton method in Eq. 3 (Rodgers, 2000):
Xip1 = Xq + SeKT (KiSK! + So) ™ [y — F(x;) + Ky (x; — x)] 3)

where i is the number of iteration, and K is the Jacobian matrix calculated in CMAQ DDM-3D. We iterated Eq. 3 two times
within each month to attain convergence, and F and K were updated after each iteration. It should be noted that we derived
log(x) instead of x to constrain negative a posetriori values, the details of which are described in Souri et al. (2018). And
then, we applied the monthly emissions adjustment ratios derived from Eqgs. 2 and 3 to the base emissions to update the

bottom-up estimates of NOx emissions over the modeling domain (hereafter referred to as 2019 NOx-constrained emissions).
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Further details about the analytical inverse modeling approach employed in this study are provided by Souri et al. (2020) and
Jung et al. (2022).

To adjust the primary PM emissions, we applied analytical inversion described in Egs. 2 and 3 to the emissions of 19
primary PM species predefined as contributors to the AOD in the 6th generation CMAQ aerosol module (AERQO6) (Simon,
2015) listed in Table S2. Note that the primary PM emissions, hereafter, refer to the summation of the emissions of all 19
individual primary PM species. In Eq. 2, x is a posteriori primary PM emissions, x, is a priori primary PM emissions (in the
NOy-constrained emissions inventory obtained earlier), and S, the error covariance of the a priori primary PM emissions, the
uncertainty of which was set as 100% (Crippa et al., 2019). For S,, we employed + 0.1 + 0.3 X AOD (Zhang et al., 2020)
and + 0.043 4+ 0.178 x AOD (Lim et al., 2021) as the observational error covariances of the AHI AOD and the GOCI-AHI
AOD, respectively. To compute F, since CMAQ DDM-3D is not available for aerosols, we employed the brute-force method
(BFM) described in Eq. 4 (Napelenok et al., 2006):

C+10% _ C—lO%
FPm = (4)

0.2
where FP/™ is the approximate first-order sensitivity coefficient that correlates primary PM emissions to the AOD, C*10%
the CMAQ-simulated AOD of the primary PM emissions perturbed by +10%, and € ~1°% the CMAQ-simulated AOD of the
primary PM emissions perturbed by -10%. In this approach, F?/™ represents the sensitivity of the total primary PM
emissions with regard to changes in the AOD; therefore, the resultant adjustment ratio was applied to the emissions of each
of the primary PM species equally, not in a selective manner due to the limited data availability. Note that no routine
observations have been made until today for the loadings of such species over vast areas in East Asia in a top-down manner.
We applied the daily emissions adjustment ratios derived from Egs. 2, 3, and 4 to the 2019 NOy-constrained emissions to
update the bottom-up estimates of primary PM emissions over the modeling domain (hereafter referred to as 2019 NOy- and
PM-constrained emissions). To evaluate the model performance before and after the application of the sequential emission
adjustments, we used the series of a priori and a posteriori emissions (i.e., the base emissions, 2019 NOx-constrained
emissions, and a pair of 2019 NOy- and PM-constrained emissions using the AHI AOD and GOCI-AHI AOD) to perform
CMAQ simulations for the study period 2019. It should be noted that NOx emissions were adjusted monthly, due to the
relatively coarse temporal resolution of TROPOMI NO; columns (providing zero to one valid snapshot of columnar NO, per
day over the modeling domain), while primary PM emissions were adjusted daily by using the AOD products at sufficiently

fine temporal resolutions afforded by geostationary platforms.
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2.5.2 Emissions adjustments for the study period 2022

Similar to the approach described in Sect. 2.5.1, we first adjusted NOy emissions by using the TROPOMI NO; columns
obtained for the study period 2022 prior to proceeding with the primary PM emissions adjustment. To adjust the a priori NOy
emissions, we employed the basic mass balance method described by Martin et al. (2003) and Cooper et al. (2017).
Assuming a direct linear relationship between changes in both the NO, columns and the NOy emissions, we adjusted the a

priori NOyx emissions based on the ratios between the TROPOMI NO; and CMAQ-simulated NO2 columns following Eq. 5:
E
Ez022 = Q—X Q2022 (5)

where E,,, represents the a posteriori NOx emissions, E,qq4 the a priori NOy emissions (from the 2019 NOy-constrained
emissions described in Sect. 2.5.1), 0,419 and Q,4,, the TROPOMI NO. columns obtained for the study periods 2019 and
2022, respectively. We then applied the monthly emissions adjustment ratios derived from Eq. 5 to the 2019 NOy-
constrained emissions to update the NOx emissions for the study period 2022 (hereafter referred to as 2022 NOy-constrained

emissions).

Then, to adjust the primary PM emissions, we used the GEMS-AMI-GOCI-2 AOD obtained for the study period 2022 to
perform the analytical inversion and BFM described in Sect. 2.5.1 by using the S, of + (—0.001 + 0.48 x AOD) provided in
the GEMS-AMI-GOCI-2 AOD product and the perturbed (£10%) primary PM emissions. The daily emissions adjustment
ratios were applied to the 2022 NOy-constrained emissions to update the primary PM emissions (hereafter referred to as 2022
NOx- and PM-constrained emissions). Using the base emissions, 2022 NOy-constrained emissions, and 2022 NOx- and PM-

constrained emissions to perform CMAQ simulations for the study period 2022, we evaluated the performance of the model

2.6 Ground-based measurements for model evaluation

To evaluate the model performance, we used ground-based in situ observations across South Korea (hereafter referred to as
Korea) and the North China Plain (NCP) region. To validate the accuracy of the WRF-simulated meteorological fields, we
obtained hourly measurements of the 2 m air temperature and 10 m wind U and V components from the Korean
Meteorological Administration database (132 sites for 2019 and 95 for 2022). The WRF-simulated hourly meteorological
fields showed fair agreements with the in situ measurements (Figures S1 and S2; Table S3), which we considered sufficient

for further use as meteorological inputs for CMAQ.

To evaluate the performance of the CMAQ model, we obtained the hourly measurements of surface NO, and PM;s
concentrations from the AirKorea website (https://www.airkorea.or.kr) (346 sites for 2019 and 425 for 2022) and from the
Chinese Ministry of Ecology and Environment database (MEE) (312 sites for 2022), and hourly sun photometer
measurements of the AOD (at a 550 nm wavelength) (85 AERONET sites for 2019). To ensure the quality of the validation
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sets, we excluded observation sites in which the frequency of missing values exceeded 50% of all observations made during
the study period. For the measurements collected from the MEE sites, we applied the quality assurance processes (e.g.,
elimination of negative values) that we used in our previous study over mainland China (Mousavinezhad et al., 2021). To
quantify the extent of model overestimation and underestimation, we employed a normalized mean bias (NMB) following
Eq. 6:

=1 (M; —0))
2100

Normalized mean bias (NMB) =

(6)

where M represents the model predictions, O the observations, and n the total number of pairs.

To discuss the success of the sequential NOx and primary PM emissions adjustments described in Sect. 2.5, we obtained the
seasonal compositions of surface PMzs assessed at six ground-based supersites in Korea, the constituents of which include
secondary inorganic aerosols (i.e., nitrate, sulfate, and ammonium aerosols), the lumped summation of the primary PM
species listed in Table S2, and the rest remaining undefined. The locations of the supersites are as follows: Incheon (37.61°N,
126.93°E), Seoul (37.96°N, 124.63°E), Daejeon (35.23°N, 126.85°E), Gwangju (36.32°N, 127.41°E), Ulsan (35.58°N,
129.32°E), and Jeju (33.35°N, 126.39°E).

3. Results and Discussions
3.1 Evaluation of the top-down approach using TROPOMI NO2, AHI AOD, and GOCI-AHI AOD

We performed a series of emissions adjustments by using the TROPOMI NO; columns, AHI AOD, and GOCI-AHI AOD as
the constraints to updating the bottom-up estimates of NOx and primary PM emissions over the modeling domain. Prior to
proceeding with the primary PM emissions adjustments, we examined the model performances in simulating NO, columns
during the study period 2019 on a seasonal basis. The model using the base emissions tended to underestimate NO, columns
over the major portion of the modeling domain during the entire study period (Figure S3). After the NOx emissions
adjustment, which resulted in overall increases in NOx emissions by 71.64% - 174.16% (Figure S4; Table S4), the modeled
NO; columns showed closer spatial agreements to the observed NO; columns (Figure S5). Then we evaluated the model
performances in simulating daily surface NO concentrations at ground-based in-situ measurement sites in Korea and the
NCP region in a time series. Overall, the NOx emissions adjustment led to a closer temporal agreement between the modeled
and observed NO; concentrations with reduced model biases. While the model using the base emissions showed NMBs (Rs)
of -24.20%, 15.63%, -2.06%, and -23.54% (0.66, 0.45, 0.72, and 0.71) in the spring, summer, fall, and winter, respectively,
the model using the NOy-constrained emissions showed NMB of -5.66%, 1.83%, 21.66%, and 13.45% (0.72, 0.63, 0.82, and
0.76) in the corresponding seasons, the results of which indicate that the NOy emissions adjustment was effective (Figure S6;

Table S5) at reducing the model biases in most seasons. However, in the NCP region, the NO, emissions adjustment showed
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mixed results in reducing the model biases. While the model using the base emissions showed NMBs (Rs) of -13.90%,
5.25%, -11.43%, and -1.05% (0.75, 0.54, 0.50, and 0.55) in the spring, summer, fall, and winter, respectively, the model
using the NOx-constrained emissions showed NMBs of 12.34%, 22.32%, 15.24%, and 33.75% (0.75, 0.52, 0.55, and 0.59) in
the corresponding seasons. Although the NOx emissions adjustment led to some improvements in Rs in the NCP region,
NMBs showed increases in the summer, fall, and winter seasons, which indicate that the emissions adjustment was not as

effective in reducing the model biases in the NCP region as it was in Korea.

In addition to the NOx emission adjustment, we performed primary PM emission adjustments followed by evaluating the
model performance in simulating AOD during the study period 2019. To compare the use of the single-instrument- and
multi-source-derived AOD products for constraining primary PM emissions, we performed two separate emission
adjustments, using each of the AHI AOD and GOCI-AHI AOD as a constraint to updating the primary PM emissions over
the modeling domain. To ensure the consistency between the comparisons, we spatially collocated the CMAQ-simulated
AOD to each of the AHI AOD and GOCI-AHI AOD. We found that during the entire study period, the model using the base
emissions tended to underestimate AODs over a major portion of the modeling domain except for a few inland regions in
China (Figures 2a, 2b, 3a, and 3b). After the NOx emissions adjustment, the modeled AODs showed closer spatial agreement
with the observed AODs in Korea and the NCP region (Figures 2c and 3c); the model, however, tended to overestimate the
AODs in some inland regions such as southeast China and the Sichuan Basin region; we consider this tendency the result of
uncertainty in the bottom-up estimates of air pollutant emissions coming from the unique basin landform that often encloses
highly concentrated anthropogenic emissions (Chen et al., 2021). After the primary PM emission adjustments using the AHI
AOD and GOCI-AHI AOD, which resulted in overall increases in primary PM emissions by 19.55% - 31.79% (Figure S7;
Table S6) and 87.54% - 142.96% (Figure S8; Table S6), respectively, the modeled AODs showed even closer spatial
agreement with the observed AODs (Figures 2d and 3d).

We then evaluated the performance of the model at simulating daily mean AODs at AERONET sites in time series and
found that overall, the series of emissions adjustments resulted in improvements in the performance of the model during the
entire study period 2019. In brief, the model's initial underestimation of AOD was mitigated by the NOyx emissions
adjustment, which led to increased NOx emissions, and then by the subsequent primary PM emissions adjustment, which
resulted in overall increases in primary PM emissions. Whereas the model using the base emissions showed an average
NMB of -50.73% (Figure 4a; Table 1a), the model using the 2019 NOy-constrained emissions showed an average NMB of -
42.52% (Figure 4b; Table 1b). The model using the 2019 NOy- and PM-constrained emissions showed average NMBs of -
33.84% (using the AHI AOD) and -19.60% (using GOCI-AHI AOD), respectively (Figures 4c and 4d; Tables 1c and 1d).
These results indicate that the sequential adjustments of NOy and primary PM emissions were generally effective at
improving model performance in simulating the AOD; in particular, the use of the multi-source AOD product led to a greater

reduction in model biases than that of the single-instrument AOD product. Despite the success of the sequential adjustments
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of NOx and primary PM emissions in improving the model's AOD simulations, there are still uncertainties remaining
365 regarding the accuracy of NOy emissions. For example, in the NCP region, the NOx emissions adjustment caused the model
to overestimate surface NO; concentrations in some seasons, and consequently, increased the model biases. Nevertheless,
this overestimation was shown to help the model to reduce its AOD underestimation. Addressing this issue requires the

development of region-specific tactics for adjusting the bottom-up estimates of gas-phase air pollutant emissions in future

studies.
370
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Figure 2. Spatial distributions of the AHI and CMAQ-simulated AODs before and after the NOx emissions adjustment (based on
TROPOMI NO:2 columns) and primary PM emissions adjustment (based on AHI AOD) during the study period 2019. (a) The AHI
AOD, (b) the CMAQ-simulated AOD using base emissions, (c) the CMAQ-simulated AOD using 2019 NOx-constrained emissions,
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375 and (d) the CMAQ-simulated AOD using 2019 NOx- and PM-constrained emissions. Note that CMAQ-simulated AODs were
temporally collocated to the AHI AOD.
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Figure 3. Spatial distributions of GOCI-AHI fused and CMAQ-simulated AODs before and after the NOx emissions adjustment

380 (based on TROPOMI NO2 columns) and primary PM emissions adjustment (based on GOCI-AHI AOD) during the study period
2019. (a) The GOCI-AHI AOD, (b) the CMAQ-simulated AOD using base emissions, (c) the CMAQ-simulated AOD using 2019
NOx-constrained emissions, and (d) the CMAQ-simulated AOD using 2019 NOx- and PM-constrained emissions. Note that
CMAQ-simulated AODs were temporally collocated to the GOCI-AHI AOD.
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Figure 4. Comparisons of the time series of daily mean AERONET AODs (85 sites) and CMAQ-simulated daily mean AODs

before and after the NOx and primary PM emissions adjustments during the study period 2019. (a) The CMAQ-simulated AOD

using the base emissions, (b) the CMAQ-simulated AOD using the 2019 NOx-constrained emissions, (c) the CMAQ-simulated AOD

using the 2019 NOx- and PM-constrained emissions using the AHI AOD, and (d) the CMAQ-simulated AOD using the 2019 NOx-
390 and PM-constrained emissions using the GOCI-AHI fused AOD.
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Table 1. Summary statistics of the daily mean AERONET AOD (85 sites) and the CMAQ-simulated daily mean AOD before and
after the NOx emissions adjustment (based on TROPOMI NO:2 columns) and primary PM emissions adjustment (based on AHI
AOD and GOCI-AHI AOD) during the study period 2019. (a) The CMAQ-simulated AOD using the base emissions, (b) the
CMAQ-simulated AOD using 2019 NOx-constrained emissions, (c) the CMAQ-simulated AOD using 2019 NOx- and PM-
constrained emissions using the AHI AOD, and (d) the CMAQ-simulated AOD using 2019 NOx- and PM-constrained emissions
using GOCI-AHI fused AOD. R: Pearson’s correlation coefficient; NMB (%): normalized mean bias.

(a) Base emissions (b) 2019 NOx-constrained 2019 NOx- and PM-constrained emissions
emissions (c) AHI AOD (d) GOCI-AHI AOD

MAM R 0.45 0.43 0.45 0.45
NMB -64.74 -55.62 -49.63 -26.76

JJA R 0.77 0.78 0.77 0.77

NMB -29.45 -19.71 -9.20 0.21

SON R 0.57 0.57 0.62 0.62
NMB -51.13 -47.09 -38.03 -39.70

DJF R 0.55 0.48 0.57 0.57
NMB -43.23 -41.77 -28.65 -23.36

Yearly R 0.53 0.53 0.54 0.54
NMB -50.73 -42.52 -33.84 -19.60

3.2 Merits and limitations of the sequential emission adjustments and the use of the data fusion product

Despite the many top-down approaches to achieving more up-to-date emissions inventories, questions still remain about the
extent to which each of the aerosol components contributes to aerosol loadings. To ascertain the possible implications for our
understanding of sequential improvements in the performance of the model in simulating the AOD, we examined the
chemical compositions of surface PM2s in Korea during the study period 2019 on a seasonal basis. While a slightly larger
portion (53.26% on average) of surface PM2s loadings was comprised of secondary inorganic aerosols such as nitrate, sulfate,
and ammonium aerosols (20.90%, 18.56%, and 13.81%, respectively), the remaining portion (46.74% on average) was

mostly comprised of primary PM (36.32% on average) and some unknown (undefined) aerosols (Table 2).

As both the contributions of primary and secondary aerosols to aerosol loadings were significant, we considered the
sequential adjustments of NOy and primary PM emissions effective at improving model performance. However, setting aside
the earlier improvements in the model performances achieved for the study period 2019, such a chemical makeup of PMzs
observed implies that the adjustment of solely NOx emissions performed in this study might not have sufficiently reduced the
uncertainty underlying the emissions of the precursors of other secondary inorganic aerosols, such as sulfate and ammonium

aerpsols. Considering the impending availability of the GEMS tropospheric NO; product in its mature stage, this study
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mainly focused on examining the utility of NO, columns, not the other gas-phase precursors, which could have been
beneficial for constraining the remaining secondary inorganic aerosols. This limitation presents a need for follow-up research
that employs more comprehensive sets of top-down constraints (e.g., observational references for SO, and ammonia loadings

in the troposphere).

Table 2. Concentrations (ng/m®) and compositions (%) of surface PM2s and its components in Korea during the study period 2019.
ANOg, ASO4, and ANHq4: nitrate, sulfate, and ammonium aerosols, respectively; Lumped PM: the lumped summation of primary

PM species, Unknown: the summation of undefined PMzs species.

ANO3 ASOq4 ANH4 Lumped primary PM  Unknown PM PMzs
MAM 6.76 (26.02) 4.83 (18.59) 4.05 (15.59) 8.72 (33.57) 1.61 (6.22) 25.97 (100)
JIA 1.66 (10.37) 4.43 (27.68) 2.37 (14.81) 6.99 (43.72) 0.55 (3.42) 16.00 (100)
SON 2.05 (13.31) 2.43 (15.82) 1.56 (10.15) 6.27 (40.75) 3.07 (19.96) 15.38 (100)
DJF 7.34 (26.35) 4.12 (14.79) 3.79 (13.59) 9.22 (33.11) 3.39 (12.16) 27.86 (100)
Yearly 4.45 (20.90) 3.95 (18.56) 2.94 (13.81) 7.80 (36.62) 2.15 (10.12) 21.30 (100)

To account for the outperformance of the model that used the adjusted emissions based on the data fusion product, we
quantified the amount of observational references available from each of the AHI AOD and GOCI-AHI AOD products. The
benefit of securing more continuous and frequent observations, which provide more data available for constraining model
biases, has often been highlighted in many satellite-based inverse modeling and data assimilation studies (Jeon et al., 2016;
Lee et al., 2016; Yumimoto et al. 2016; Jin et al., 2019; Choi et al., 2019). We compared the numbers of valid AOD
retrievals made for each of the modeling grids (hereafter referred to as AOD records) obtained from the AHI AOD and
GOCI-AHI AOD products. Note that the grid-specific number of AOD records does not necessarily indicate the instrumental
sampling frequency of the satellite instrument in this comparison. Whereas the AHI AOD product showed some clusters of
missing values over several inland regions (i.e., southeastern and northeastern China, the Sichuan Basin, and some areas in
Primorye in Russia, North Korea, and Japan), the GOCI-AHI AOD product produced more spatially complete domain-wide

observations during the study period 2019 (Figure 5).

In addition to the improvement in the observational coverage, the GOCI-AHI AOD product showed a noticeable
improvement in the amount of available data. Compared to the AHI AOD product, the GOCI-AHI AOD product showed
increases in the numbers of AOD records by 132.23% on average during the entire study period, the seasonal extents of
which ranged from 90.20% - 198.01% (Figure 5; Table 3). In other words, even though the AHI AOD and GOCI-AHI AOD
were given over the modeling domain at identical spatiotemporal resolutions in the first place, there was a substantial
difference in the volume of the information available in the end. We accounted for the greater improvement in the model

performance afforded by the use of GOCI-AHI AOD (Figures 3 and 4; Table 1) by the instruments supplementing

18



440

445

450

undetected or discarded pixels of other instruments that originate from different aerosol retrieval algorithms and by the
additional bias correction approaches (Lim et al., 2018; Choi et al., 2019; Lim et al., 2020).

For example, in MAM 2019, the use of the emissions constrained based on GOCI-AHI AOD reduced the model bias more
effectively compared to that based on AHI AOD. This improvement (or the difference in the extent of emissions adjustment)
was considered to be originating from whether the high AOD peaks along southeast China were captured (Figure 3a) or not
(Figure 2a). Throughout the entire year 2019, the season MAM showed the most frequent occurrences of high AOD peaks
over AERONET sites compared to other seasons (Figure 5). Considering the locations of those ground-based sites (Figure 1
above), many of which cover the southeast China, we first presumed that GOCI-AHI AOD would represent the aerosol
loadings more realistically. And then, this was supported by the grid-specific number of AOD records afforded by AHI AOD
and GOCI-AHI AOD (Figure 5), the former of which showed noticeably fewer information available for use. Therefore, we
concluded that the use of the emissions constrained based on GOCI-AHI AOD, which was considered to better capture the
high AOD peaks across the southeast China in a spatiotemporally more frequent and continuous manner, was more effective

in resolving the model’s initial AOD underestimation.
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Figure 5. The number of AOD records (in each of the modeling grids) obtained from the AHI AOD product and the GOCI-AHI
fused AOD product during the study period 2019.
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Table 3. The number of AOD records (domain-wide) (unit: thousands) obtained from the AHI AOD product and the GOCI-AHI
fused AOD product during the study period 2019.

MAM JIA SON DJF Yearly

(a) AHI AOD 2,654 1,779 2,055 1,233 7,723

(b) GOCI-AHI AOD 5,049 5,302 4,169 3,415 17,936
Difference (b - a) (%) 90.20 198.01 102.81 176.81 132.23

3.2 Application of the top-down approach using the GEMS-AMI-GOCI-2 fused AOD product

Upon the earlier success of the use of the proxy of GEMS-AMI-GOCI-2 AOD (GOCI-AHI AOD described in Sect. 3.1) in
updating the emissions inventory, which resulted in further reduced model biases compared to those from the use of the
proxy of GEMS AOD (AHI AOD described in Sect. 3.1), we employed the GEMS-AMI-GOCI-2 AOD product to proceed
with the emissions adjustment for the study period 2022. Note that the GOCI-AHI AOD product used earlier was served as a
prototype for the development of the GEMS-AMI-GOCI-2 AOD product; the production of the GOCI-AHI AOD product
has been discontinued, and it is currently only available for research purposes for the year 2019To explore the utility of the
multi-source data fusion product in constraining the temporal variations of aerosol precursor emissions and ultimately to
leverage the up-to-date emissions inventory to improve model performance at simulating AOD and PM2 s concentrations, we
used the GEMS-AMI-GOCI-2 fused AOD as top-down constraints to adjusting primary PM emissions over the modeling
domain. Similar to the earlier top-down approach, we used TROPOMI NO; columns in advance of the primary PM

emissions adjustments to constrain NOx emissions.

Using the base emissions, the model tended to overestimate AODs over a major portion of the modeling domain, particularly
across the NCP region, during the study period 2022 (Figures 6a and 6b). Upon the relative decreases in monthly mean NO,
columns in March, April, and May 2022 compared to the corresponding months in 2019 (Figure S9), the NOx emissions
adjustment led to overall reductions in NOy emissions by 2.83% - 13.40% (Figure S10; Table S7), which appeared to be
effective at reducing the discrepancy between the observed and modeled AODs (Figure 6c¢). After the primary PM emission
adjustment, which resulted in overall decrease in primary PM emissions by 9.03% (Figure S11; Table S8), the modeled
AODs showed even closer spatial agreements with the observed AODs (Figure 6d). Then we evaluated the model
performance in simulating daily mean surface PM, s concentrations in Korea and the NCP region in a time-series. Similar to
the earlier results shown for the study period 2019, the NOx and primary PM emission adjustments led to overall
improvements in the model performances during the study period 2022. Using the base emissions, the model overestimated
PMas concentrations by 20.60% in Korea and 47.58% in the NCP region (Figure 7a; Table 4a); on the other hand, using the

NOy emission adjustment, the model reduced the extent of overestimation to 15.74% in Korea and 39.80% in the NCP region
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(Figure 7b; Table 4b); and then the primary PM emission adjustment further reduced those to 6.81% and 19.58% (Figure 7c;
Table 4c).

Unlike top-down constraints used during the study period 2019, those used during the study period 2022 led to overall
reductions in NOy and primary PM emissions, particularly over the highly industrialized regions (e.g., the NCP region and
other major metropolitan areas in China) (Figures S10 and S11). An explanation for the noticeable decreases in NO2 columns
and AODs observed across these regions in March, April, and May 2022 compared to those observed in the corresponding
months during the pre-COVID-19 period (the year 2019 in this study) (Figures 2a, 3a, 6a, and S9) was the strict city- and
province-wide lockdown regulations (the so-called “zero-COVID strategy” that resumed in March 2022) (Dyer, 2022),
which led to substantial reductions in the amounts of anthropogenic emissions (e.g., vehicular, industrial, and agricultural
emissions) (Caporale et al., 2022) in China. In addition, the updated emissions inventory yielded more accurate
representations of the aerosol loadings over the sea surface (i.e., the Yellow Sea), which could benefit other studies that
involve the long-range transport of aerosols emitted from inland sources (Hatakeyama et al., 2001; Carmichael et al., 2002;
Pouyaei et al., 2020, 2021; Jung et al., 2021).
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Figure 6. Spatial distributions of GEMS-AMI-GOCI-2 fused AOD and CMAQ-simulated AODs before and after the NOx and
primary PM emissions adjustments during the study period 2022. (a) The GEMS-AMI-GOCI-2 AOD, (b) the CMAQ-simulated

500 AOD using base emissions, (c) the CMAQ-simulated AOD using 2022 NOx-constrained emissions, and (d) the CMAQ-simulated
AOD using 2022 NOx- and PM-constrained emissions.
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Figure 7. Comparisons of the time series of the CMAQ-simulated daily mean surface PM2s concentrations (ug/m®) before and
after the NOx and primary PM emissions adjustments, and ground-based in situ measurements in Korea (425 sites) and the NCP
region (312 sites) during the study period 2022. OBS: ground-based in situ measurements; (a) CMAQ-simulated PM2s using base
emissions, (b) CMAQ-simulated PM2s using 2022 NOx-constrained emissions, and (c) CMAQ-simulated PMzs using 2022 NOx-
and PM-constrained emissions.
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Table 4. Summary statistics of CMAQ-simulated daily mean PM2s concentrations before and after the NOx and primary PM
emissions adjustments, and ground-based in situ measurements in Korea (425 sites) and the NCP region (312 sites) during the
study period 2022. (a) CMAQ-simulated PM2s using base emissions, (b) CMAQ-simulated PMzs using NOx-constrained emissions,
and (c) CMAQ-simulated PMzs using 2022 NOx- and PM-constrained emissions.

(a) Base emissions (b) 2022 NOx-constrained (c) 2022 NOx- and PM-
emissions constrained emissions
Korea MAR R 0.81 0.81 0.81
NMB 47.26 42.09 21.54
APR R 0.68 0.67 0.69
NMB 14.67 7.83 4.25
MAY R 0.72 0.72 0.70
NMB -6.51 -8.88 -8.93
3-month R 0.76 0.76 0.77
NMB 20.60 15.74 6.81
NCP MAR R 0.46 0.46 0.46
NMB 73.94 65.71 32.38
APR R 0.41 0.42 0.41
NMB 46.84 32.80 19.34
MAY R 0.31 0.31 0.30
NMB 16.44 14.63 6.95
3-month R 0.50 0.50 0.48
NMB 47.58 39.30 19.58

4. Summary and Conclusion

In summary, this study attempted to sequentially adjust bottom-up estimates of NOy and primary PM emissions over East
Asia by employing observational references afforded by multiple satellite instruments retrofitted on various platforms and
the synergistic science product. During the study period 2019, we reconfirmed the utility of LEO and GEO satellite products
in emission adjustments and then explored that of the multi-source data fusion product, whose enhanced observational
quantity and quality appeared to reduce model biases in AOD simulations to a great extent. During the study period 2022,
which experienced noticeable reductions in the amounts of anthropogenic emissions primarily resulting from severe
lockdowns across major urban regions in China, the earlier top-down approach to constraining aerosol precursor emissions

was also effective at reducing spatiotemporal discrepancies between the modeled and observed loadings of aerosols and their
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precursors; particularly, the emission adjustments were effective at improving the model performances in simulating surface

PM3 s concentrations during the lockdown period.

In light of such findings, we conclude that the series of emission adjustments in this study, which were capable of closely
capturing variations in the emissions of both primary aerosols and the precursors of secondary aerosols in a top-town manner,
were generally effective at improving the model performances in estimating aerosol loadings over East Asia. The enhanced
observation quality and quantity afforded by the GEMS-involved synergistic product and its proxy appeared to be beneficial
to capturing the spatiotemporal variations in the emissions of the aerosol precursors. In terms of possible uncertainties that
could originate from other aerosol precursor species, which was outside the scope of this study, the methodology used left
some room for further improvement; nonetheless, this study reconfirmed the significant association between emissions of
aerosol precursors and the AOD as well as surface PM.s concentrations and underscored the benefit of using multi-source,
top-down information to best exploit available observational references. In light of the improvement in data availability (e.g.,
tropospheric SO, columns and the operational version of the data fusion product) in the near future, afforded by GEMS and
its sister instruments, we conclude that the findings of this study could provide a useful basis for how to more effectively use
the new data for producing more up-to-date emission inventories, the expected results of which could provide more precise

insight into the spatiotemporal behaviors of air pollutants under pandemic situations.
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Table S1. Model configurations.

WRF 3.8

Domain
Microphysics

Longwave and shortwave radiation

Land surface
Surface layer
Planetary boundary layer
Cumulus parameterization
Four-Dimensional Data Assimilation

Initial and boundary conditions
for meteorology

East Asia on 27 km x 27 km grids
Morrison double-moment scheme (Morrison et al., 2009)

Rapid Radiative Transfer Model for GCMs (RRTMG) (Clough et al., 2005;
lacono et al., 2008)
Pleim-Xiu land surface model (Xiu and Pleim, 2001)

Pleim-Xiu surface layer (Pleim, 2006)
ACM2 planetary boundary layer model (Pleim 2007a, 2007b)
Kain-Fritch (new Eta) scheme (Kain, 2004)
FDDA option for grid-nudging (Jeon et al., 2015)

1°x 1° National Centers for Environmental Prediction (NCEP) FNL (final)
operational model global analysis data

CMAQ 5.2 and CMAQ DDM-3D 5.2

Horizontal advection
Vertical advection
Horizontal diffusion
Vertical diffusion

Chemical mechanism and aerosol processing
module
Dry deposition model

YAMO
WRF omega formula
Multiscale
ACM2 vertical diffusion scheme (Pleim 2007a, 2007b)

SAPRC-07 and AERO6 (Carter, 2010; Simon, 2015)

M3Dry (Pleim et al., 2001)

10



Table S2. The list of the primary PM species included the KORUS-AQ emission inventory, and the corresponding pollutants
simulated in CMAQ version 5.2 and measured at the Korean supersites.

KORUS-AQ emissions

Corresponding CMAQ

Corresponding Korean supersite Description
species species species
PSO4 ASO4) PM25S04 Fine mode sulfate
PNO3 ANO3J PM25NO3 Fine mode nitrate
PCL ACLJ PM2sCl Fine mode particulate chloride
PNH4 ANH4J PM25NH4 Fine particulate ammonium
PNA ANAJ PM2sNa Fine mode sodium
PCA ACAJ PM2sCa Fine mode calcium
PMG AMGJ PM2sMg Fine mode magnesium
PK AKJ PM2sK Fine mode potassium
POC APOCI, APOCJ PM250C Fine mode primary organic carbon
PNCOM APNCOMI, APNCOMJ - Fine mode primary non-carbon
organic matter
PEC AECI, AECJ PM2sEC Fine mode elemental carbon
PFE AFEJ PM2sFe Fine mode iron
PAL AALJ - Fine mode aluminum
PSI AS - Fine mode silicon
PTI ATI PM2sTi Fine mode titanium
PMN AMNJ PM2sMn Fine mode manganese
PH20 AH20J - Fine mode particulate water
PMOTHR AOTHRJ PM25V, PM25sCr, PM25sNi, PM25sCu, Remaining unspeciated (undefined)
PMz2sZn, PM2sAs, PM2sSe, PM2sBr, fine mode primary PM
PM2sPb
PMC ACORS -

Coarse mode primary PM

15



Table S3. Summary statistics between the WRF-simulated hourly meteorological fields (2 m air temperatures (°C), and 10 m wind

U and V components (m/s)) and ground-based in-situ measurements in Korea during the study periods 2019 (132 sites) and 2022

(95 sites). R: Pearson’s correlation coefficient, IOA: index of agreement, RMSE: root mean square error, MB: mean bias.

2019 2022
Air temperature Wind U Wind V Air temperature Wind U Wind V
R 0.98 0.64 0.52 0.95 0.65 0.48
I0A 0.99 0.74 0.69 0.96 0.75 0.66
RMSE 2.34 1.68 155 2.81 1.56 141
MB -1.00 0.16 -0.21 -1.56 0.49 0.02

20

Table S4. Seasonal and yearly mean NOx emissions (tons/day) before (a priori) and after (a posteriori) the NOx emissions
adjustment over the modeling domain during the study period 2019. MAM: March, April, and May, JJA: June, July, and August,
SON: September, October, and November, DJF: December, January, and February.

MAM JJA SON DJF Yearly

A priori 2.21 2.28 2.17 2.17 221

A posteriori 4.98 6.25 4.72 3.73 4.92
Difference (post - prior) (%) 125.08 174.16 117.68 71.64 122.79

25 Table S5. Summary statistics of the CMAQ-simulated daily mean surface NO2 concentrations (ppb) before (a priori) and after (a
posteriori) the NOx emission adjustment and ground-based in-situ measurements (346 sites in Korea and 235 sites in the NCP

region) during the study period 2019. R: Pearson’s correlation coefficient; NMB (%0): normalized mean bias.

Korea NCP
A priori A posteriori A priori A posteriori

MAM R 0.66 0.72 0.75 0.75
NMB -24.20 -5.66 -13.90 12.34

JA R 0.45 0.63 0.54 0.52
NMB 15.63 1.83 5.25 22.32

SON R 0.72 0.82 0.50 0.55
NMB -2.06 21.66 -11.43 15.24

DJF R 0.75 0.76 0.55 0.59
NMB -23.54 13.45 -1.05 33.75

Yearly R 0.71 0.84 0.76 0.78




NMB -12.11 8.51 -6.00 21.70

Table S6. Seasonal and yearly mean primary PM emissions (g/s) before (a priori) and after (a posteriori) the primary PM
30 emissions adjustments (the emissions adjustments using the AHI AOD and GOCI-AHI fused AOD) over the modeling domain

during the study period 2019. The primary PM emissions here indicate the total amount of all primary PM species listed in Table

S2.
MAM JA SON DJF Yearly
Emissions A priori 13.45 11.90 12.35 15.19 13.22
adjusted using A posteriori 21.19 21.61 19.55 31.79 23,53
AHI AOD Difference (post - prior) (%) 57.54 81.62 58.27 109.30 76.68
Emissions A priori 13.45 11.90 12.35 15.19 13.22
adjusted using A posteriori 28.28 28.91 23.16 33.08 28.36
GOCI-AHI AOD Difference (post - prior) (%) 110.30 142.96 87.54 117.73 114.63

Table S7. Monthly and 3-month mean NOx emissions (tons/day) before (a priori) and after (a posteriori) the NOx emissions
35 adjustment over the modeling domain during the study period 2022.

MAR APR MAY 3-month
A priori 0.83 0.82 0.82 0.82
A posteriori 0.80 0.71 0.76 0.76
Difference (post - prior) (%) -2.83 -13.40 -7.33 -7.84

Table S8. Monthly and 3-month mean primary PM emissions (g/s) before (a priori) and after (a posteriori) the primary PM
emissions adjustments (using GEMS-AMI-GOCI-2 fused AOD) over the modeling domain during the study period 2022. The

primary PM emissions here indicate the total amount of all primary PM species listed in Table S2.

MAR APR MAY 3-month
A priori 14.61 12.80 12.61 13.34
A posteriori 10.35 13.67 12.38 12.14
Difference (post - prior) (%) -29.17 6.86 -1.81 -9.03
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Figure S1. Time-series comparisons between WRF-simulated hourly meteorological fields (2 m air temperatures (°C), and 10 m

wind U and V components (m/s)) and ground-based in-situ measurements in Korea during the study period 2019 (132 sites). OBS:
ground-based in-situ measurements, WRF: WRF-simulated meteorological fields.
45



2 m air temperature
I

WMWW W\\NMUUWMMWWWM\W%WMWWMW

10 m wind U component

Mww P va wm
10 m wind V component
L

!

g WWWWMMW I

==
_—
—

A
=) =) w
ey

(m/s)
& 'a J:. m @
‘% [

m

(m/s)
g

i

Figure S2. Time-series comparisons between WRF-simulated hourly meteorological fields (2 m air temperatures (°C), and 10 m

wind U and V components (m/s)) and ground-based in-situ measurements in Korea during the study period 2022 (95 sites). OBS:
ground-based in-situ measurements, WRF: WRF-simulated meteorological fields.
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Figure S3. Spatial distributions of TROPOMI NO2 columns (molec/cm?) and CMAQ-simulated NO2 columns before the NOx
emissions adjustment during the study period 2019. MAM: March, April, and May, JJA: June, July, and August, SON:
September, October, and November, DJF: December, January, and February
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Figure S4. Spatial distributions of the bottom-up estimates of NOx emissions (ton/day) before (a priori) and after (a posteriori) the

NOx emissions adjustment during the study period 2019.
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Figure S5. Spatial distributions of TROPOMI NO:2 columns, and CMAQ-simulated NO2 columns before (a priori) and after (a
posteriori) the NOx emissions adjustment during the study period 2019. MAM: March, April, and May; JJA: June, July, and

August; SON: September, October, and November; and DJF: December, January, and February.
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Figure S6. Comparisons of the time-series of the CMAQ-simulated daily mean surface NO2 concentrations (ppb) before (a priori)
and after (a posteriori) the NOx emission adjustment, and the ground-based in-situ measurements in Korea (346 AirKorea sites)
during the study period 2019. OBS: ground-based in-situ measurements.
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Figure S7. Spatial distributions of the bottom-up estimates of primary PM emissions (g/s) before (a priori) and after (a posteriori)
the primary PM emissions adjustment (using the AHI AOD) during the study period 2019. The primary PM emissions here
indicate the total amount of all primary PM species listed in Table S2.
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Figure S8. Spatial distributions of the bottom-up estimates of primary PM emissions (g/s) before (a priori) and after (a posteriori)
the primary PM emissions adjustment (using GOCI-AHI fused AOD) during the study period 2019. The primary PM emissions

here indicate the total amount of all primary PM species listed in Table S2.
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Figure S9. Spatial distributions of TROPOMI NO2 columns (molec/cm?) in March, April, and May 2019 and 2022.

14



NO, emissions NO, emissions Difference

(a priori) (a posteriori) (post - prior)
ton/day
MAR 10 10
9 8
8 6
17 4
16 2
APR 15 0
14 2
3 -4
2 -6
1 -8
MAY 0 .

120'E 120 130'e 140 10'E 120" € 130° € 140 120'E 120 130 140" E

85  Figure S10. Spatial distributions of the bottom-up estimates of NOx emissions (ton/day) before (a priori) and after (a posteriori)
the NOx emissions adjustment during the study period 2022.
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Figure S11. Spatial distributions of the bottom-up estimates of primary PM emissions (g/s) before (a priori) and after (a posteriori)
90 the primary PM emissions adjustment (using GEMS-AMI-GOCI-2 fused AOD) during the study period 2022. The primary PM
emissions here indicate the total amount of all primary PM species listed in Table S2.
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