
Probabilistic Hydrological Estimation of LandSlides (PHELS):
global ensemble landslide hazard modelling
Anne Felsberg1, Zdenko Heyvaert1, Jean Poesen1,2, Thomas Stanley3,4, and Gabriëlle J. M. De Lannoy1

1KU Leuven, Department of Earth and Environmental Sciences, Heverlee, Belgium
2Maria-Curie Sklodowska University, Faculty of Earth Sciences and Spatial Management, Lublin, Poland
3GESTAR II, University of Maryland Baltimore County, Baltimore, USA
4Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Correspondence: Anne Felsberg ( anne.felsberg@gmail.com)

Abstract. In this study we present a model for the global Probabilistic Hydrological Estimation of LandSlides (PHELS).

PHELS estimates the daily hazard of hydrologically-triggered landslides at a coarse spatial resolution of 36 km, by combining

landslide susceptibility (LSS) and (percentiles of) hydrological variable(s). The latter include daily rainfall, a 7-day antecedent

rainfall index (ARI7) or root-zone soil moisture content (rzmc) as hydrological predictor variables, or the combination of rainfall

and rzmc. The hazard estimates with any of these predictor variables have areas under the Receiver Operation Characteristic5

curve (AUC) above 0.68. The best performance was found with combined rainfall and rzmc predictors (AUC=0.79), which

resulted in the least amount of missed alarms (especially during spring) and false alarms. Furthermore, PHELS provides hazard

uncertainty estimates by generating ensemble simulations based on repeated sampling of LSS and the hydrological predictor

variables. The estimated hazard uncertainty follows the behaviour of the input variable uncertainties, is about 13.6 % of the

estimated hazard value on average across the globe and in time, and smallest for very low and very high hazard values.10

1 Introduction

Landslides are mass movements of soil and rock triggered by anthropogenic or seismic activity and, most frequently, by

rainfall (Froude and Petley, 2018; Nowicki Jessee et al., 2018; Stanley et al., 2021). In order to limit human and economic

losses due to landslides, the prediction of where and when they are likely to occur is crucial (Crozier, 2013). The spatio-

temporal probability of a landslide is generally referred to as ‘landslide hazard’, and can be estimated based on a range of static15

environmental (spatial) and dynamic hydrological (temporal) data sources. The spatial and temporal information can either be

merged directly, e.g. via machine learning techniques combining rainfall, soil moisture, snow and slope angle in an ad-hoc

fashion (Stanley et al., 2020, 2021), or in a two-step process that separately evaluates where and when landsliding is likely to

occur (Kirschbaum and Stanley, 2018; Monsieurs et al., 2019a, b; Bordoni et al., 2020). The last approach is more common

and traceable, and requires that spatial and temporal probabilities are estimated individually before combining them into one20

prediction system.

The spatial probability, referred to as landslide susceptibility (LSS), is estimated based on (static) environmental features

(Pourghasemi and Rossi, 2016; Reichenbach et al., 2018). Most LSS maps are created at the local to regional scale, where they
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are also used for mitigation and planning purposes (Guzzetti et al., 2005; Crozier, 2013). Others are specifically developed

to be used in a landslide early warning system (Guzzetti et al., 2020) or ‘now-casting’ approach: the global, categorized LSS25

assessment by Stanley and Kirschbaum (2017), for instance, has been developed to allow severity thresholds within the first

version of the Landslide Hazard Assessment for Situational Awareness (LHASA) model (Kirschbaum and Stanley, 2018).

The temporal probability can either be calculated explicitly by physical models that compute the shear strength and stress in

slopes (Lu and Godt, 2013; Baum et al., 2010) or approximated by statistical, empirical approaches (Guzzetti et al., 2008, 2020).

The latter relate one or more dynamic hydrological predictor variables to a chance for a landslide (Guzzetti et al., 2008, 2020).30

A simple yet effective binary approach is to use thresholds for various measures of rainfall and soil water content beyond

which landslide occurrence is expected (Segoni et al., 2018a). While univariate thresholds in antecedent rainfall index (ARI)

or surface soil moisture exist (Kirschbaum and Stanley, 2018; Zhuo et al., 2019), most thresholds are based on two or more

variables. The most frequently used thresholds are based on rainfall intensity and duration or variations thereof (Caine, 1980;

Guzzetti et al., 2008; Rossi et al., 2017; Rosi et al., 2021), and hydro-meteorological thresholds (Ponziani et al., 2012; Brocca35

et al., 2016; Devoli et al., 2018; Mirus et al., 2018; Thomas et al., 2019; Uwihirwe et al., 2020, 2022). Alternatively, it is

possible to retrieve a continuous triggering probability based on rainfall (Calvello and Pecoraro, 2019), soil moisture measures

(Wicki et al., 2020) or a combination of both (Bordoni et al., 2020). The measures of soil moisture range from antecedent soil

moisture (Mirus et al., 2018; Wicki et al., 2020) and increase in soil saturation (Wicki et al., 2020) to soil moisture of the day

(Bordoni et al., 2020), and refer to different soil layers (surface: Ponziani et al. (2012); Brocca et al. (2016); Thomas et al.40

(2019); Bordoni et al. (2020), root-zone: Brocca et al. (2016); Mirus et al. (2018); Thomas et al. (2019); Wicki et al. (2020),

groundwater: Uwihirwe et al. (2022)). In comparison to purely rainfall-based landslide likelihood predictions, the inclusion of

soil water content has been found to prevent false alarms, independent of the data source (Ponziani et al., 2012; Segoni et al.,

2018b; Mirus et al., 2018; Stanley et al., 2021).

To estimate hazard using the two-step process, the temporal probability assessment is combined with spatial LSS information.45

Monsieurs et al. (2019a, b) for example developed combined ARI-LSS thresholds. Kirschbaum and Stanley (2018) adapted the

level of nowcasts (based on a global univariate ARI-threshold) according to LSS. Bordoni et al. (2020) updated LSS according

to whether or not the temporal probability was above 0.5. We comprise all of the above-mentioned approaches under the term

‘hazard modelling’, while being aware that at smaller scales the size and mobility of a landslide may also be an essential part

of hazard prediction.50

The available landslide hazard modelling approaches rarely consider the quantification of uncertainty. For LSS, uncertainty

information is sometimes provided (e.g. Broeckx et al. (2018), Depicker et al. (2020) and Felsberg et al. (2022b)). For the

temporal aspect, uncertainties have been assigned to rainfall and rainfall-LSS thresholds (Rossi et al., 2017; Monsieurs et al.,

2019a). Hartke et al. (2020) created a probabilistic adaptation of the first version of LHASA by using rainfall distributions

instead of deterministic values. This approach increased the number of correctly predicted landslides and decreased the number55

of false alarms from high nowcasts. For a physically-based hazard estimate, Canli et al. (2018) proposed to use an ensemble of

rainfall values as input, resulting in an ensemble of predicted hazard values.
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Figure 1. Spatial distribution of the number of reported landslide events per 36-km grid cell for the study period 2007 through 2020. Note

the irregular colourbar intervals. Grey dashed lines indicate the latitude stratifications between ‘North’, ‘the tropics’ and ‘South’.

In this study we i) investigate the ability of different hydrological predictor variables for global landslide hazard estima-

tion and ii) use ensembles for an uncertainty assessment. We develop the Probabilistic Hydrological Estimation of LandSlides

(PHELS) model. PHELS provides a global coarse-scale (36-km) dynamic landslide hazard simulation with a reliable uncer-60

tainty estimate at any time and location, by combining ensembles of LSS (Felsberg et al., 2022a, b) and daily information on

hydrological predictor variables. For the latter, we test ensembles of rainfall and an ARI based on reanalysis precipitation data,

and root-zone soil moisture content [m3/m3] (rzmc) from a land surface model (LSM). The paper is guided by the following

research questions: 1) Which hydrological variable (or combination of variables) performs best at simulating global landslide

hazards? 2) Is the estimated uncertainty related to the magnitude of the simulated hazard value?65

2 Data, model and methods

2.1 Landslides

Despite the existence of many different types of landslides and their manifold shapes and sizes, in this study the term ‘land-

slide’ refers to all types of hydrologically-triggered mass movements. We use landslide data from the most recent version of the

Global Landslide Catalog (GLC) (https://landslides.nasa.gov/viewer, accessed 20th January 2022). This inventory is based on70

media reports (Kirschbaum et al., 2010, 2015), and supplemented with the citizen science-based Landslide Reporter Catalog

(LRC) data (Juang et al., 2019), see Stanley et al. (2021) for details. We select all landslides triggered by ‘continuous rain’,

‘downpour’, ‘monsoon’, ‘flooding’, ‘rain’ and ‘tropical cyclone’ (GLC classifiers). About 99 % of these landslides were col-
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lected in the time period 2007 through 2020. We therefore select this time period for the research conducted in this study. Note

that the known economic and English-language bias, as well as the fact that media reports tend to focus on inhabited areas and75

landslides with notable impact on infrastructure, will affect the completeness of these inventories and reduce the reliability of

their ‘absence reporting’.

Landslide information from the GLC was already successfully used for a number of global applications. Stanley and

Kirschbaum (2017), Lin et al. (2017) and Felsberg et al. (2022b) used the locations of landslides to create global LSS maps.

The first version of the global LHASA model was evaluated with landslide data from the GLC (Kirschbaum and Stanley, 2018)80

and LHASA version 2.0 was trained with a gridded GLC version (Stanley et al., 2021).

In this study, we additionally included 183 landslides from Russian quarterly reports (FSBIH, 2018; Felsberg et al., 2021)

from 2010 to 2018, but for simplicity, we refer to the combined landslide dataset as ‘GLC’. Multiple landslide occurrences on

one day within one grid cell are merged into one landslide event (LSE), resulting in a total number of 9367 LSE for the study

period as displayed in Figure 1.85

2.2 Landslide susceptibility (LSS)

LSS describes the spatial likelihood of landslide occurrence (Crozier, 2013). In this study, we use the global LSS map of

Felsberg et al. (2022a, b), developed on the 36-km Equal-Area Scalable Earth version 2 (EASEv2) grid for the purpose of sub-

sequent combination with coarse scale (satellite- or model-based) soil moisture data and with extended uncertainty assessment.

This data-driven LSS focuses on hydrologically-triggered landslides, and the most prominent predictor variables are the com-90

pound topographic index, long-term median surface soil moisture and evaporation, slope-related variables and the peak ground

acceleration. The LSS estimates consist of an ensemble of 2500 values per grid cell to reflect the LSS probability distribution.

To facilitate subsequent flexible sampling from these ensembles, we fit a beta distribution Bg(αg,βg) with shape parameters

αg,βg to the 2500 ensemble LSS realizations at each grid cell g, using the package fitdistrplus of R version 4.0.3 (R Core Team,

2020) to estimate optimal parameters via maximum likelihood estimation.95

2.3 Hydrological variables

To estimate the temporal likelihood of landslide occurrence, we use various hydrological predictor variables. We derive daily

36-km rainfall data (comprising convective and large-scale liquid precipitation) and the associated 7-day antecedent rainfall

index [mm] (ARI7) from the global reanalysis data product Modern-Era Retrospective analysis for Research and Applications,

Version 2 (MERRA-2) (Gelaro et al., 2017), available from 1980 onward. The ARI7 for day t was introduced by Kirschbaum100

and Stanley (2018) as a weighted (wt) average of antecedent rainfall (rt) during the preceding 7 days:

ARI7 =

∑6
t=0 rt ·wt∑6

t=0 wt

where wt = (t+1)−2 (1)

The MERRA-2 data have a native spatial resolution of 0.625◦lon × 0.5◦lat and are interpolated to the 36-km EASEv2 grid

via bilinear interpolation. These interpolated MERRA-2 data are also used as input to the state-of-the-art, physically-based

Catchment Land Surface Model (CLSM) (Koster et al., 2000) to simulate rzmc [m3/m3] (0-100 cm) for the study period. The105
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rzmc contains information on both surface water content and groundwater and should therefore be indicative not only of water

content at landslide shear planes < 1 m, which we consider a typical depth, but also for more shallow or deep-seated landslides.

CLSM simulations are run with 24 ensemble members by perturbing meteorological input (including rainfall) and select

state variables (see Felsberg et al. (2021)). The resulting ensemble average of rainfall and rzmc is used for deterministic hazard

modelling, whereas the ensemble average and standard deviation are used to sample input values for the ensemble hazard110

modelling.

In a next step, the sampled hydrological variables are transformed into percentiles to detach their magnitudes from the

local climatological conditions. Felsberg et al. (2021) moreover found that the transformation into percentiles of soil water

content enhanced the ability to distinguish between LSE and sampled days with no landslide event (noLSE). The climatological

percentile thresholds are computed per grid cell based on long-term (entire study period 2007-2020) time series of ensemble115

mean simulations of soil water content, similar as in Felsberg et al. (2021).

2.4 The PHELS model

The objective of PHELS is to obtain a measure of landslide hazard in a probabilistic way. The probability of landslide event

occurrence (LSE = 1) given static environmental conditions or dynamic variables xi can be described stochastically through

conditional probabilities p(LSE = 1 | xi) (van Westen et al., 2006; Calvello and Pecoraro, 2019; Uwihirwe et al., 2020; Lom-120

bardo et al., 2020; Felsberg et al., 2021). For the static condition we use LSS (xL), and for the dynamic variable we use

percentiles of daily rzmc, rainfall and ARI7 describing the hydrological conditions (xh). The probability of a landslide event

occurring conditioned on the susceptibility of the location and the hydrological state of the day can be defined as follows using

Bayes’ law:

p(LSE = 1 | xL,xh) =
p(xL,xh | LSE = 1) · p(LSE = 1)

p(xL,xh)
(2)125

or if two hydrological variables are taken into account:

p(LSE = 1 | xL,xh1,xh2) =
p(xL,xh1,xh2 | LSE = 1) · p(LSE = 1)

p(xL,xh1,xh2)
(3)

Bayes’ theorem connects the prior probability p(LSE = 1) with a known likelihood function of the conditions p(xL,xh |
LSE = 1) to obtain a posterior probability. While LSS could conceptually be considered a prior probability we opt to use it as

a temporally static (but spatially varying) variable and implement it as a condition in a similar way as the temporally dynamic130

soil moisture, ARI7 and rainfall. In this study, p(LSE = 1) thus remains an uninformative prior, that is assumed constant

in space and time. Since we use percentiles of rzmc, rainfall and ARI7 as hydrological predictor variables, their respective

distributions are (quasi-)uniform, but their joint probability is not necessarily uniform. Nevertheless, for simplicity, we omit

the normalizing joint probability terms and use the following proportionality approach:

p(LSE = 1 | xL,xh)∝ p(xL,xh | LSE = 1)

⇒H= f(xL,xh)
(4)135

or for multiple hydrological variables H= f(xL,xh1,xh2), i.e. a function of the predictor variables xL, xh1 and xh2. We

refer to this posterior probability value as landslide hazard [-] (H). By foregoing the normalization, and because the absolute
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Figure 2. a) Bivariate histogram of daily percentiles of rzmc (rzmcpctl) and LSS for landslide events between 2007 and 2020. This data was

used to fit the bivariate exponential of equation 5. b) Hazard (H [-]) as a bivariate exponential fitted function of daily rzmcpctl and LSS.

Note the logarithmic colourbar intervals.

values of the distribution fits (below) depend on the binning and dimensions (scale) of the underlying data, the absolute values

of H with one or two hydrological variables will not be comparable. However, for hazard estimation, only a relative spatio-

temporal assessment is of importance.140

To estimate p(xL,xh | LSE = 1) we extract values of LSS and the hydrological variables for the 9367 LSE. Figure 2a

shows the bivariate histogram for percentiles of rzmc, with the number of LSE indicated in color. Distributions for the other

hydrological variables (not shown) generally exhibit the same behaviour: LSE are exponentially more likely to occur where

LSS is high and under wet hydrological conditions, both individually and combined. At the same time, low LSS or drier

conditions do not exclude the possibility of landslide occurrence. We find that 1.8%/1.3%/0.7% of the LSE occurs where LSS145

is below 0.5 [-] and percentiles of rzmc/rainfall/ARI7 are below 50 [-]. For very susceptible locations, LSE also occur at much

drier hydrological conditions, whereas very wet conditions still require a certain level of LSS. This results in a skewing of the

distribution from the upper right towards the upper left corner, which was also observed by Monsieurs et al. (2019a).

Next, a two- or three-dimensional quadratic-exponential function is fit through the extracted LSE data. This kind of fit

through the distribution of data points is a long-term and spatially aggregated summary statistic, also referred to as system150

signature (Vrugt and Sadegh, 2013). We tested different forms of the fitting equation and found the lowest root mean squared

deviation (relative to the entire observed LSE distribution) for the following exponential functions with one and two hydrolog-

ical predictor variables, respectively:

H= a · exp(b ·x2
L + c ·x2

h) (5)
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and155

H= a · exp(b ·x2
L + c ·x2

h1 + d ·x2
h2) (6)

These equations are the core of the PHELS model. Ensuring
∑

xL,xh
H≡ 1 for xL ∈ {0,0.01, ..,1} (binned continuous

values) and xh ∈ {1,2, ..,100} (percentiles, discrete), results in the parameters shown in Table 1. Note that ensuring the sum

of 1 only offsets the scaling factor a and does not affect the other parameters. For the fitting (‘nls’) and summing, we use R

version 4.0.3 (R Core Team, 2020), and optimal parameters are obtained by minimizing the residual sum-of-squares between160

observed and fitted counts.

The difference between the parameters b and c for x2
L and x2

h reflects the observed skew in the bivariate histogram. The skew

in H is most pronounced as a function of rzmc, reduces for rainfall and is least for ARI7. When having both rzmc and rainfall

as hydrological predictor variables (referred to as rzmc&rainfall), rzmc and LSS become equally important and rainfall slightly

less. This indicates that both LSS and soil wetness are necessary preconditions for LSE occurrence. The different order of165

magnitude in the parameters of PHELS based on Equations 5 and 6 is a result of extending the quadratic exponential to a third

predictor variable. Retaining the integral of 1 over the predictor space moreover reduces the magnitude of resulting H from

maximum values of ∼ 0.7 to 0.00024 (see Table 1). This effect can be avoided by using the complete Bayesian theorem as in

Equations 2-3 with inclusion of a normalization of the probability instead of the proportionality approach of Equation 4. The

average residual standard error is ∼ 0.04 when using only rzmc, rainfall or ARI7 as predictor along with LSS, and the error is170

relatively larger when two hydrological variables are included. This is because a multidimensional fit is harder to achieve (more

variation to account for). Nevertheless, the resulting distribution of H as shown in Figure 2b for rzmc percentiles represents

the observed patterns (Figure 2a) well.

PHELS estimates can be obtained for single values of the hydrological predictor variables and LSS. Such PHELS estimates

are referred to as deterministic H. In order to propagate uncertainties of these input variables, PHELS can also be run as an175

ensemble with members i= 1, ...,Nens. Figure 3 illustrates this approach for one grid cell (g) at one timestep (t [days]) for H
based on rzmc, rainfall and LSS. First, we sample LSS from the beta distribution Bg(αg,βg), and obtain xL,g,i. Next, we sample

rzmcg,t,i from a normal distribution where µg,t and σg,t are the rzmc ensemble average and standard deviation diagnosed

from 24 ensemble CLSM simulations. The sampled rzmcg,t,i is subsequently transformed into the corresponding percentile

by comparison against long-term percentile thresholds for this grid cell and used as xh,g,t,i from Equation 5, or as xh1,g,t,i180

from Equation 6. The same way of sampling is used for rainfall or ARI7. Applying Equation 6 to xL,g,i=1, xh1,g,t,i=1 and

xh2,g,t,i=1 yields the first hazard ensemble member Hg,t,i=1. The sampling is repeated Nens = 100 times to retrieve a landslide

hazard ensemble (Hens). This allows us to obtain an ensemble average H (H) with a connected uncertainty (ensemble standard

deviation). Note that all ensemble sampling was performed independently in time, and for each variable, without accounting for

temporal autocorrelations or crosscorrelations between variables. During hydrological extreme events such as tropical storms,185

this may result in conservatively high H uncertainty estimates in comparison to sampling from multidimensional distributions

of the hydrological variables (not shown). PHELS is coded in R version 4.0.3 (R Core Team, 2020). A 1-day simulation of the

global Hens with Nens = 100 at 36-km spatial resolution takes ∼5 minutes on one core.
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Table 1. Parameters of the exponential fit (Equations 5 and 6) for PHELS based on different hydrological variables (columnwise). Parameters

are given for the static xL (parameter b) and one hydrological variable xh (parameter c for rzmc, rainfall or ARI7) or two hydrological

variables xh1,xh2 namely rzmc (parameter c) and rainfall (parameter d). To simplify comparison between parameters b, c and d across

the different orders of magnitudes (O(x2
L) = 1 and O(x2

h) = 10000), c and d are shown as multiples of 10−4. Residual standard errors

are shown for all fits, as well as the theoretical maximum hazard values Hmax =H(xL = 1,xh = 100) and Hmax =H(xL = 1,xh1 =

100,xh2 = 100), respectively. Note that the absolute H are not to be compared for PHELS models with varying numbers of input variables.

Parameters rainfall ARI7 rzmc rzmc&rainfall

a [×10−5] 5.33 3.32 3.45 6.10

b [1] 5.18 5.19 5.91 0.48

c [×10−4] 4.16 4.78 3.96 0.50

d [×10−4] - - - 0.41

Residual standard error 0.037 0.037 0.038 9.98× 10−5

Hmax 0.67 0.60 0.71 2.43× 10−4

2.5 Evaluation

The evaluation of PHELS is performed both for deterministic and ensemble H estimates. The strength of PHELS is that it190

provides relative estimates of hazards in both space and time. However, given the known strong spatial performance of the LSS

(Felsberg et al., 2022b), the focus will be on a conservative evaluation of the performance in time.

More specifically, the PHELS hazard results are evaluated at grid cells and days of LSE for the study period (2007-2020,

ntotal = 9367). For grid cells with at least one LSE, we randomly sample an equal amount of values for noLSE from all other

timesteps. In order to account for possible errors in the date reporting and time-zone matching of observations and hydrological195

data (local time versus UTC), 3 days prior and after an LSE are excluded from the selection as noLSE. For the same reasons

we also evaluate the performance for maximum hazard values within a 3 day window around the LSE (±1 day, ‘LSE3’) as was

done by Kirschbaum and Stanley (2018) and Monsieurs et al. (2019a). To evaluate the full spatio-temporal performance, we

moreover test the performance when ntotal noLSE are randomly sampled across the globe and in time, without restriction to

the LSE grid cells (‘noLSEglobal’).200

We evaluate the performance of the PHELS models with various hydrological predictor variables (rzmc, rainfall, ARI7 and

rzmc&rainfall). The resulting H is compared for LSE and noLSE in terms of Receiver Operation Characteristic (ROC) curve,

where the true positive rate (TPR) is plotted against the false positive rate (FPR) for different thresholds in the continuous

probability values of H. The TPR is the ratio of correctly predicted LSE (‘true positives’) to the total number of LSE (Wilks,

2011). An LSE is assumed to be predicted when the probability is above a set threshold. The FPR is the ratio of erroneously205

predicted LSE (‘false positives’) to the total number of noLSE, here being the same as LSE due to our 1:1 ratio of sampling.

For a perfect prediction, the area under the ROC curve (AUC) is 1. A value of 0.5 on the other hand indicates that the prediction
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Figure 3. Schematic of the sampling setup within PHELS for the example of combined hydrological predictor variables rzmc&rainfall. i

refers to the ensemble member, g to the grid cell and t to the time [days]. Percentiles of rzmc and rainfall on day t are used to derive hazard

estimates H for the same day following Equation 6. µ and σ are the ensemble average and standard deviation. The transformation into

percentiles is achieved by comparing rzmcg,t,i and rainfallg,t,i against long term percentile thresholds of the corresponding grid cell g.

is not better than a uniform random prediction. We conduct the ROC analysis for the full data sets of LSE and noLSE, and

for LSE3 and noLSEglobal, as well as subsets stratified for latitude and season. Latitudes are stratified at 30◦N and 30◦S into

‘North’, the ‘tropics’ and ‘South’, as indicated by the dashed lines in Figure 1. Note that the ‘South’ subset contains much less210

data. Stratification for seasons follows meteorological standards, i.e. December-January-February (DJF), March-April-May

(MAM), June-July-August (JJA) and September-October-November (SON). For additional insight, we compare numbers of

false predictions, i.e. false alarms (‘false positives’) and missed alarms (‘false negatives’) for the LSE grid cells only. We set

the 90th percentile of H within one grid cell over all timesteps as a threshold to distinguish between predicted positive and

negative.215
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Figure 4. Time series of daily PHELS hazard (H [-]) based on different hydrological predictor variables for a grid cell near Seattle, USA.

H is based on percentiles of a) rainfall, b) ARI7, c) rzmc, d) rzmc&rainfall. Note the different scale in magnitude for d). Days with LSE are

indicated by the red dashed lines.

3 Results

3.1 Deterministic hazard estimates

Figure 4 shows time series of PHELS H in a grid cell near Seattle, USA, based on different ensemble mean predictor variables

as deterministic input. For rainfall, fast changes at rainfall events induce a spiky pattern with frequent short-term changes in H.

For ARI7 fewer spikes are visible and the rainy season stands out more. Seasonal patterns are even more pronounced for rzmc220

reflecting longer-term transitions, while the signal of the rainfall event spikes is strongly dampened. H based on rzmc&rainfall

shows both the general long-term seasonality and short-term spikes of rainfall events. In this grid cell, LSEs usually coincide

with peaks or higher values in simulated H. The first LSE in autumn 2014 coincides with a peak in H based on rainfall

and ARI7. Based on rzmc, H is however very small and would have resulted in a missed alarm. The opposite is the case for

two LSEs in March 2015 where H based on rzmc is still elevated, but close to zero for rainfall and ARI7. When based on225

rzmc&rainfall, both examples show elevated H.
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Figure 5 shows ROC curves for H estimates from PHELS with different hydrological predictor variables, yielding AUC

values between 0.68 and 0.79, only for grid cells with at least one LSE in their time history, and only considering the H
estimates at the exact days of the LSE and noLSE samples. H based on rzmc&rainfall performs better than based on one single

hydrological variable, closely followed by H based on ARI7 (difference of only 0.02).230

Figure 5. ROC curves for PHELS H simulations using one hydrological variable (rainfall, ARI7, rzmc) or both rzmc&rainfall based on the

original LSE and noLSE samples, i.e. for the reported dates and only within LSE grid cells. AUC values are indicated in brackets.

To disentangle these differences in performance, Figure 6 shows AUC values for different subsets of the LSE-noLSE vali-

dation data per latitude and season. The best performance is typically found for the subset MAM-South across all hydrological

variables. The second best performance is found during DJF-North for rainfall, ARI7 and rzmc&rainfall and during DJF-tropics

for rzmc. In general, H based on rzmc performs above average for the tropics throughout all seasons. Apart from JJA-tropics

based on rzmc, performances for JJA are below average across all predictor variables and latitude stratifications. During spring235

time (MAM-North, SON-South), rainfall and ARI7 performances are largely below average, rzmc performance is closer to the

average and for rzmc&rainfall performance is average.

Table 2a-b gives an overview of the hits, misses and false alarms for the LSE-noLSE validation data when setting a threshold

at the 90th temporal percentile of deterministic H in the associated grid cells and individually per hydrological predictor

variable. Considering all LSE-noLSE reference data, the number of hits (misses) is highest (lowest) when H is simulated using240

ARI7 or rzmc&rainfall. The number of false alarms is lowest for H based on rzmc, or second lowest when using rzmc&rainfall.

For the subset of MAM-North, which showed the largest difference in performance between the predictor variables (see above),

the number of hits (misses) is highest (lowest) for rzmc&rainfall. While this comes at the cost of an increased number of false

alarms, this increase in FPR is outweighed by the increase in TPR.

11



Ta
bl

e
2.

Pe
rf

or
m

an
ce

of
de

te
rm

in
is

tic
PH

E
L

S
H

ba
se

d
on

di
ff

er
en

th
yd

ro
lo

gi
ca

lp
re

di
ct

or
va

ri
ab

le
s
x
h

fo
ra

)a
ll

L
SE

an
d

no
L

SE
va

lid
at

io
n

da
ta

an
d

b)
th

e
su

bs
et

du
ri

ng
M

A
M

no
rt

h
of

30
◦
N

.S
ho

w
n

ar
e

th
e

A
U

C
,n

um
be

rs
of

hi
ts

,m
is

se
s

an
d

fa
ls

e
al

ar
m

s,
as

w
el

la
s

th
e

T
PR

an
d

FP
R

.A
dd

iti
on

al
A

U
C

va
lu

es
w

er
e

ca
lc

ul
at

ed

w
he

n
ac

co
un

tin
g

fo
rp

os
si

bl
e

te
m

po
ra

lo
ff

se
ti

n
th

e
da

tin
g

of
th

e
L

SE
w

ith
in

a
3

da
y

w
in

do
w

(±
1

da
y,

L
SE

3)
as

w
el

la
s

fo
rn

oL
SE

sa
m

pl
in

g
w

ith
ou

tc
on

st
ra

in
tt

o

gr
id

ce
lls

of
L

SE
oc

cu
rr

en
ce

(n
oL

SE
gl

ob
al

).
Fo

rc
om

pa
ri

so
n

c)
sh

ow
s

pe
rf

or
m

an
ce

of
PH

E
L

S
en

se
m

bl
e

av
er

ag
e
H

fo
ro

ri
gi

na
lL

SE
an

d
no

L
SE

va
lid

at
io

n
da

ta
.T

o

di
st

in
gu

is
h

be
tw

ee
n

pr
ed

ic
te

d
po

si
tiv

es
an

d
ne

ga
tiv

es
,w

e
us

e
th

e
te

m
po

ra
l9

0t
h

pe
rc

en
til

e
of

de
te

rm
in

is
tic

H
(a

,b
)a

nd
H

(c
)a

s
a

th
re

sh
ol

d.

a)
de

te
rm

in
is

tic
H

,a
ll

da
ta

x
h

hi
ts

m
is

se
s

fa
ls

e
al

ar
m

s
T

PR
FP

R
A

U
C

A
U

C
L

SE
3

A
U

C
no

L
SE

gl
ob

al

ra
in

fa
ll

42
01

51
63

94
3

0.
44

9
0.

10
1

0.
73

1
0.

80
4

0.
94

4

A
R

I7
45

97
47

67
94

1
0.

49
1

0.
10

0
0.

76
6

0.
81

3
0.

95
0

rz
m

c
36

56
57

08
90

5
0.

39
0

0.
09

7
0.

67
5

0.
69

1
0.

93
0

rz
m

c&
ra

in
fa

ll
43

38
50

26
93

1
0.

46
3

0.
09

9
0.

79
1

0.
83

6
0.

93
6

b)
de

te
rm

in
is

tic
H

,M
A

M
-N

or
th

x
h

hi
ts

m
is

se
s

fa
ls

e
al

ar
m

s
T

PR
FP

R
A

U
C

A
U

C
L

SE
3

A
U

C
no

L
SE

gl
ob

al

ra
in

fa
ll

50
7

68
8

10
4

0.
42

4
0.

10
0

0.
69

7
0.

77
8

0.
93

9

A
R

I7
57

3
62

2
93

0.
47

9
0.

08
9

0.
74

0
0.

78
9

0.
94

8

rz
m

c
66

9
52

6
16

7
0.

56
0

0.
16

1
0.

65
5

0.
66

6
0.

94
1

rz
m

c&
ra

in
fa

ll
73

6
45

9
17

3
0.

61
6

0.
16

6
0.

78
5

0.
83

7
0.

94
3

c)
en

se
m

bl
e

av
er

ag
e
H

,a
ll

da
ta

x
h

hi
ts

m
is

se
s

fa
ls

e
al

ar
m

s
T

PR
FP

R
A

U
C

rz
m

c&
ra

in
fa

ll
43

86
49

78
94

0
0.

46
8

0.
10

0
0.

79
2

12



Figure 6. AUC values for PHELS hazard stratified per latitude and season, for the different hydrological predictor variables. AUC of the

full data is indicated by the horizontal dashed line. Season stratifications are shown from left to right (and dark to light color) per predictor

variable: DJF, MAM, JJA, SON. This AUC analysis is based on the LSE and noLSE samples for the reported dates and only within LSE grid

cells.

When using the maximum hazard in a 3-day window around the reported LSE (LSE3) and noLSE, performance in terms245

of AUC strongly increases for rainfall (and ARI7) so that they become similarly well-performing (see Table 2a-b). For rzmc

performance is less impacted, and hazard simulations based on rzmc&rainfall are moderately improved. The order of best to

worst performing predictor variable(s) remains the same. In contrast, the order is changed when noLSE are sampled globally

without restriction to LSE grid cells (noLSEglobal). For LSE-noLSEglobal, simulations based on ARI7 perform best, followed

by those based on rainfall, rzmc&rainfall and finally rzmc. For all four, the AUC values are however really high (> 0.93).250

To summarize, PHELS H estimates are best in the (wet) winter in the North and based on LSE-noLSE PHELS performs

best when using both rzmc&rainfall as predictor variables. For the analysis of subsequent ensemble results, we therefore focus

on this model, unless noted otherwise.

3.2 Ensemble hazard estimates

Figure 7a shows time series of Hens obtained by PHELS using ensembles of rzmc, rainfall and LSS. The 100 ensemble255

members are shown in light grey, with H on top. The range of H between ensemble members is largest for high H. This

translates into large ensemble standard deviations for high H, shown in Figure 7b. The ensemble standard deviation serves as

a measure of simulation uncertainty. We observe a peak in the uncertainty for the three first LSE that occur at peaks in H. For

the two LSE observed in this grid cell in spring 2015, there is no peak in H nor in the uncertainty.

Table 2c gives the AUC values for H, as well as the hits, misses and false alarms. Compared to deterministic PHELS for the260

same hydrological predictor variables, we observe a very minor increase in performance.
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Figure 7. Time series of daily PHELS hazard ensembles (Hens) based on rzmc&rainfall for a grid cell near Seattle, USA (same as in

Figure 4). (a) ensemble members as well as ensemble average H, 75th percentile and maximum, b) ensemble standard deviation. Days with

LSE are indicated by the red dashed lines.

To understand the spatio-temporal behaviour of PHELS simulations, Figure 8 shows spatial distributions of PHELS input

data (ensemble average rzmc, rainfall and LSS) and the resulting H for 15 September 2015. We find elevated H in Central

America, western Subsaharan Africa, central India and China. These hotspots are located where high values of all three input

variables coincide. Note that H uses percentiles of rzmc and rainfall, but that Figure 8a-b show absolute rzmc and rainfall265

values, not percentiles. Large rzmc values do therefore not necessarily indicate extremely wet conditions for a specific location.

Example of this are the northern hemisphere peat areas in central Siberia or close to the Hudson Bay, which are generally wetter

than other regions, but are not necessarily wetter than normal on the shown date.

The ensemble standard deviations of PHELS input and output are shown in Figure 9 for the same day. As for the ensemble

averages, we find a high (low) ensemble standard deviation of H, i.e. uncertainty, where high (low) uncertainty of the input270

variables coincide. Example areas with high uncertainty are Central America and China. Example areas with low uncertainty

are the central USA, the Amazon and the Congo basin.
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Figure 8. Spatial distribution of PHELS input and output for 15 September 2015. Shown are the grid cell’s ensemble average a) rzmc

[m3/m3], b) rainfall [mm], c) static LSS [-] and d) hazard H [-].

Figure 9. Spatial distribution of PHELS input and output for 15 September 2015. Shown are the grid cell’s ensemble standard deviations of

a) rzmc [m3/m3], b) rainfall [mm], c) static LSS [-] and d) hazard H [-].
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Figure 10. Bivariate histogram of ensemble average H against ensemble standard deviation a) for all grid cells on 15 September 2015 and b)

for LSE and noLSE during the complete study time period. Colors and shapes indicate whether the predictions are correct (true negative: TN,

true positive: TP) or not (false negative: FN, false positive, FP). The marginal distributions of the ensemble average and standard deviation

are shown on the top and side panels. Median values are indicated by the larger symbols on top of the scatter cloud and on the marginal

distributions. As a threshold for H predictions to count as LSE or noLSE, we use the 90th percentile of H per grid cell.

The relationship between H and its uncertainty in terms of standard deviation is illustrated in Figure 10a for all land grid

cells on 15 September 2015. A parabolic pattern between low and high H values is found, where uncertainty is low at either
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end and increased in the middle. Furthermore, a more linear trend (‘tail’) is found where uncertainty increases proportionally275

to H. Figure 10b shows H and standard deviation of Hens for all LSE and noLSE. Symbols and color indicate whether LSE

and noLSE were correctly captured (true positive - TP; true negative - TN) or not (false positive - FP; false negative - FN),

again using the temporal 90th percentile of H as threshold. The distributions of H for the positives (TP, FP) are significantly

different from that of the TN and they have a peaked distribution. Whereas the distribution for the FN is wider and largely

overlaps with the distributions for the positives and the TN. While median uncertainty for FN, i.e. missed alarms, is larger280

than that for TN, median uncertainty for FP, i.e. false alarm, is nearly identical to that of TP. High uncertainty is therefore

not necessarily an indicator of a wrong prediction. Overall, across all time steps and all grid cells globally, the uncertainty is

between 5.2×10−6 % and 37.5 % of the estimated hazard value, with an average of 13.6 %.

4 Discussion

We evaluate PHELS against the set of LSE that was also used to derive optimal parameter values for Equations 5-6, which285

describe the signature relationships (Vrugt and Sadegh, 2013) between predictor variables and H. This fit was hence based on a

long-term and spatially-aggregated frequency distribution of LSE and not on individual LSE conditions, and has the advantage

of robustness because a maximum amount of data was used. In the subsequent evaluation, the match between individual

simulated and reported LSE and noLSE is measured in terms of e.g. AUC values, and this focuses on different aspects than the

fit on a summary distribution of LSE. A similar procedure has been followed by Calvello and Pecoraro (2019) and Guzzetti290

et al. (2007) to obtain and evaluate their probabilistic respectively intensity-duration thresholds. Other options could have been

to separate the LSE data into a training and a test subset as was done by Stanley et al. (2021), but this would reduce the number

of data points both for fitting and validation.

PHELS performance increased when accounting for possible errors in the dating of LSE as well as time zone shifts (LSE3),

i.e. PHELS often simulates hazard peaks within 3-day windows around LSE, regardless of the predictor variable(s). This295

is in line with findings of Kirschbaum and Stanley (2018). For LSE3, H performance based on rainfall approaches that of

ARI7, because offsets between the timing of short-term rainfall and LSE are less penalized. The H performance based on

rzmc is least impacted by the extended time window, because rzmc is typically slowly varying in time (seasonal). For this

assessment, noLSE were only sampled within grid cells of reported LSE to emphasize the temporal aspect in the evaluation.

When sampling noLSE globally randomly (noLSEglobal), we find very good H performance for all predictor variables, i.e.300

global spatio-temporal patterns of hazard are equally well captured, reinforcing the quality of the (LSS) estimates by Felsberg

et al. (2022b).

As hydrological predictor variables we investigated daily rainfall, ARI7 from MERRA-2 and rzmc from CLSM. Other

datasets could be used (e.g. rzmc estimates from satellite-based data assimilation, as in Felsberg et al. (2021); Stanley et al.

(2021)), the predictors could be preprocessed differently, e.g. into daily or 3-hourly rainfall maximum (Patton et al., 2023),305

monthly rainfall (Luna and Korup, 2022), antecedent soil moisture (Mirus et al., 2018), soil moisture changes (Wicki et al.,

2020), or short- and long-term anomaly values. Furthermore different combinations of the predictors could be tested, e.g. rzmc
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and ARI7. Percentile thresholds could moreover be derived for shorter time periods (seasonal, pentad), allowing for intra-

seasonal hazard estimations. Note that if the connection of any of these predictor variables with LSE would differ from the

exponential behaviour found for all predictor variables used in this study, the form of the fitted Equations 5-6 would need to be310

adapted. Furthermore, when multiple time-varying hydrological predictors are used, it could be recommended to implement

the normalization factor in Equation 3: given the use of percentile values for the time-varying predictors, the probability for

a single predictor variable is uniform (and normalization would not alter the results), but the joint probability of multiple

percentile predictors is not uniform (and would alter the temporal behavior of PHELS).

PHELS can combine any hydrological variables or even other triggering sources (e.g. seismic). Inclusion of a third predictor315

variable changed H output characteristics from exponential to quasi-normal (see Appendix A), which allowed the use of a

simple ensemble standard deviation as a metric for the H uncertainty. Any further or renewed extension requires a check of

distribution characteristics and the statistical measures to quantify uncertainty should be chosen accordingly.

The Hens uncertainty in terms of ensemble standard deviation follows a parabolic pattern and a linear upward trend with

increasing H. The first is induced by the characteristics of rzmc and LSS, which also show parabolic relationship between320

ensemble average and standard deviation (Felsberg et al., 2022b). The second reflects the behaviour of rainfall and its standard

deviation. However, the uncertainty decreases again for very large H which is likely a result of the design and boundedness of

the input variables xh (percentiles). The sampling (and resampling) of the predictor variable values at the lower (upper) edge

of the definition range, i.e. at percentile 1 (percentile 100), will inevitably lead to smaller ensemble standard deviations.

This connection of Hens uncertainty with the uncertainty of the input variables generates a spatial pattern that is closely325

following the input patterns. As examples for low Hens uncertainty on 15 September 2015 we found central USA, the Amazon

and the Congo basin (see Figure 8). These regions have low LSS and they exhibit dry conditions at this time (low rzmc and

low or no rainfall) with small connected uncertainty: consequently, low H values and Hens uncertainties are found. Since

these regions have nearly no observed LSE (see Figure 1), sampled grid cells would probably be true negatives (TN). For

the complete study period TN also showed lowest H and Hens uncertainty (see Figure 10b). As examples for high Hens330

uncertainty on 15 September 2015 we found Central America and China. Both record a large number of observed LSE and

high LSS with low uncertainty. However, rzmc is intermediately high with increased uncertainty and rainfall is high with large

uncertainty, resulting in Hens uncertainty also being high. Sampled grid cells would probably be positive predictions (TP, FP),

which for the complete study period also showed highest H and Hens uncertainty (see Figure 10b).

The spatial resolution in this study (36 km) is much coarser than a typical landslide extent. This helps to improve (not335

degrade) the hazard estimates, because it is easier to estimate the chance for a landslide in a large pixel than at a specific

location (scaling effect). The 36-km simulated H thus describes spatio-temporal patterns of landslide probability for a larger

area rather than for a single slope. Similar to LSS, spatial variation of H within one grid cell extent can be expected where the

environment is very heterogeneous and this will be partly captured in the Hens uncertainty. The temporal evolution of H, on

the other hand, is governed by hydrology and meso-scale meteorology, which are attributed with autocorrelation lengths of up340

to 40 km even in strongly mountainous terrain such as the Swiss Alps (Mittelbach and Seneviratne, 2012). A 36-km grid cell

time series will thus adequately represent the temporal H variability.
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The comparison of hydrological predictor variables shows that PHELS based on ARI7 or rainfall performs best when rainfall

is above average (above 50th percentile, not shown), and PHELS based on rzmc performs best when rzmc is above average.

As a compromise, the hydro-meteorological approach using rzmc&rainfall performs slightly worse than rzmc (or rainfall)345

alone for elevated rzmc (rainfall), but much better for conditions of dry soil (no rainfall). This is also visible in the stratified

AUC analysis, where AUC values range much closer together for rzmc&rainfall. Including rzmc on top of rainfall as predictor

variable specifically improves the performance in spring when other water sources (meltwater, etc.) may be present. We found

that including rzmc reduced missed alarms (on wet soils even small rainfall events may induce an LSE) and false alarms (where

the soil is dry, LSE occurrence is less likely) for the full data set. The reduction in false alarms was also reported by Ponziani350

et al. (2012); Mirus et al. (2018); Segoni et al. (2018a); Stanley et al. (2021). While the number of missed alarms is lower for

PHELS based on rainfall&rzmc than for PHELS based on rainfall alone, it is even lower for PHELS based on ARI7. A possible

reason for this can be that (intensive) antecedent rainfall prepares failure by progressively destabilizing the slope.

PHELS can be compared to different versions of LHASA (Kirschbaum and Stanley, 2018; Stanley et al., 2021), while

keeping in mind the large discrepancy in spatial resolution (36 km vs. 1 km), the ratio of LSE to noLSE sampling (1:1 vs.355

roughly 1:10000), the method of LSE and noLSE sampling (see LSE3, noLSEglobal) and the thresholds in probabilistic H
where applicable. The following skill values for PHELS and LHASA refer to an evaluation of the hazard at the reported day

of LSE. The first setup of LHASA combined ARI7 and LSS into categorical ‘nowcasts’ (Kirschbaum and Stanley, 2018), and

is comparable to PHELS using ARI7 as hydrological predictor variable. The latter yields a TPR of 0.49, which is above the

range of reported TPR for LHASA (0.13 for an earlier version of GLC, 0.23 for LRC, and 0.38-0.45 with additional large-360

scale rainfall event inventories) (Stanley et al., 2021). LHASA version 2.0 has a different setup (probabilistic combination of

different input variables, among these slope, rainfall, soil moisture, see Stanley et al. (2021)), which is comparable to PHELS

based on rzmc&rainfall. For the latter, we find a TPR of 0.46, whereas Stanley et al. (2021) find TPR values between 0.17

(GLC, also used as training data), 0.32 (LRC, test data) and up to 0.93 with additional inventories. For PHELS, using the 90th

temporal percentile within a grid cell as a threshold results in 10 % positive predictions. Because landslides are rare events, the365

FPR also ranges close to this (0.1) but may differ for temporal subsets (see Table 2). Due to the choice in threshold and the

larger LSE-noLSE sampling ratio (see above) this FPR is by design much higher than those for LHASA predictions (between

0.002 and 0.01, Kirschbaum and Stanley (2018); Stanley et al. (2021)). For both models, FPR might however be erroneously

high due to known underreporting in the GLC, even within well reported areas. Figure 4 for example misses mid-late January

events of 2016 in the Seattle area that were reported by Mirus et al. (2018).370

This known incompleteness of the inventory not only influences the performance evaluation, but also adds to the uncertainty

of the model fitting process (i.e. Equations 5-6). While the goodness of fit can be quantified (see Table 1) and theoretically

propagated, it is still relative to the available inventory. Quantification of inventory-induced uncertainty requires very detailed or

synthetic landslide inventories and has been subject of many studies for LSS (Steger et al., 2017; Lin et al., 2021) but less so for

hazard assessment. PHELS does not account for such inventory-induced uncertainty, but it does include the uncertainties and375

within-grid-cell heterogeneity of input variables by using an ensemble approach. The latter allows to easily account for, e.g.,

the uncertainty in rainfall, which is directly available from ensemble weather prediction systems. Or to account for modeled
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soil moisture uncertainties, which can be obtained from ensemble land surface model simulations that are usually optimized

to match to the variations in observations. Nevertheless, models are always a simplification of real world conditions and the

downscaling of coarse-scale model estimates to fine scale applications remains a challenge.380

PHELS provides reliable insights into spatio-temporal patterns of landslide hazard but has limitations in the context of actual

early warning systems. These usually require higher spatial resolution and temporal accuracy. The coarse spatial resolution

would hence call for downscaling methods to obtain within grid-box distributions. And although we use the evaluation approach

LSE3 because of time shifts and possible observation errors, the fact that peaks of hazard are often simulated within a 3-day

window around a recorded LSE may also indicate a low temporal accuracy, which might be mainly associated with the coarse-385

scale global re-analysis input of precipitation. For early warning systems the question moreover remains how to interpret or

use the hazard uncertainty. Low enough uncertainty could be used as a secondary condition before warnings are issued to the

public or the uncertainty could be directly communicated as is. However, ensemble measures such as the maximum predicted

hazard (“worst case scenario”) or the 90th quantile of ensemble hazard prediction might be easier to understand. While this

study used PHELS with specific spatio-temporal resolution and input data, its adjustable, modular character makes PHELS a390

general framework for hazard estimation that can be tailored to specific purposes. If adequate landslide and hydrological data

are available, it would therefore be possible to create a PHELS setup that is more suitable for local to regional landslide early

warning systems.

5 Conclusions

In this study, we create the global Probabilistic Hydrological Estimation of LandSlides (PHELS) model, which produces daily395

landslide hazard [-] (H) estimates at a coarse 36-km resolution. The PHELS model combines landslide susceptibility (LSS) and

(percentiles of) hydrological predictor variables such as rainfall, a 7-day antecedent rainfall index [mm] (ARI7) or root-zone

soil moisture content [m3/m3] (rzmc). Apart from deterministic H simulations, PHELS supports landslide hazard ensemble

(Hens) simulations based on repeated sampling of LSS and the hydrological predictor variables. The resulting spread among

the ensemble members is a measure of the uncertainty of the simulations. To our knowledge, this is the first global landslide400

hazard model with uncertainty quantification. We conclude the following:

1) deterministic H estimates with PHELS yield area under the ROC curve (AUC) values above 0.68, with the best perfor-

mance (AUC=0.79) based on the combination of rainfall and rzmc as hydrological predictor variables, and second best based

on ARI7 (AUC=0.77). Including rzmc on top of rainfall can reduce missed alarms (especially during spring) and false alarms.

The performance of ensemble average H (H) is similar.405

2) Hens uncertainty follows the behaviour of the input variable uncertainties (rainfall, rzmc and LSS), and is about 13.6 %

of the daily simulated H value globally and for the study period. The uncertainty follows a parabolic pattern introduced by the

characteristics of rzmc and LSS where rainfall uncertainty is small and a positive linear relationship where rainfall uncertainty

is large. Overall, the uncertainty of H simulations is small for very low and very high ensemble average H, and larger for

intermediate values.410
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The PHELS model is a flexible framework that allows the inclusion of other hydrological predictors or data sources (satellite

data products, data assimilation) in future research. The approach can also be promising at smaller scales with local (in-situ)

data or for seasonal modelling, and offers a scaleable way to propagate uncertainties of various contributing predictors to

traceable H uncertainty estimates.

Code and data availability. Code of the PHELS model setup can be found here: https://doi.org/10.5281/zenodo.7194280, hazard output415

in netcdf format for deterministic results (ARI7, rainfall, rzmc, rzmc&rainfall) and ensemble results (rzmc&rainfall) can be found here:

https://doi.org/10.5281/zenodo.7188355. Code for the figures can be obtained upon request to the contact-author.

Video supplement. An animation of global ensemble average hazard (rzmc&rainfall) for the year 2015 can be found here:

https://doi.org/10.5281/zenodo.7882809

Author contributions. AF designed the PHELS setup, created the code and conducted the analysis, supervised by GDL and JP along the420

way. GDL provided scientific guidance for all steps of this study, with special focus on the land surface model simulations and statistics. ZH

provided expertise concerning the probabilistic statistics. JP and TS provided topical expertise for interpretation of results. All co-authors

provided guidance on the study’s content and contributed to the paper.

Competing interests. The authors declare that they have no conflict of interest.

Financial support. Anne Felsberg was funded by the Fonds Wetenschappelijk Onderzoek (grant no. FWO-G0C8918N). VSC usage was425

funded by KU Leuven (C14/16/045), FWO (1512817N) and the Flemish Government.

Acknowledgements. We thank Luca Brocca and Matthias Vanmaercke for being part of the PhD advisory committee of AF, and Ben Mirus

and Clàudia Abancó for their constructive reviews. The computational resources (high-performance computing) and services used in this

work were provided by the VSC (Flemish Supercomputer Center).

Appendix A: Distribution comparison430

In addition to the ROC analysis, we evaluate the performance of deterministic PHELS for all hydrological predictor variables

(rzmc, rainfall, ARI7 and rzmc&rainfall) in terms of H distributions for LSE and noLSE. Specifically, we calculate the area be-
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tween the quantile-quantile (QQ) line and the bisector (AQQ) normalized by the total area underlying the bisector, as described

in Felsberg et al. (2021). The larger AQQ, the more different the two distributions. A large difference between the distributions

implies that the variable in question is able to distinguish well between LSE and noLSE conditions, as discussed in Felsberg435

et al. (2021). To better highlight the long-term capability of PHELS, we also analyze H relative to the temporal average within

a grid cell:

Hrel =
H− avgt(H)

maxt(H)−mint(H)
, (A1)

where avgt, mint and maxt denote the temporal average, minimum and maximum for this grid cell across the complete time

period. For an assessment of the short-term capability, timesteps are limited to ±15 days (around the LSE or noLSE in question)440

across all years to obtain an average, minimum and maximum H within this time window. This relative H is referred to as

Hrel,15.

Table A1. Differences between LSE and noLSE distributions of hazard values for PHELS based on different hydrological variables (rainfall,

ARI7, rzmc, rzmc&rainfall) measured in terms of normalized Aqq . The corresponding distributions are shown in Figure A1. Results are

shown for the deterministic H, H relative to the temporal range within a grid cell (Hrel), and relative to the long-term average hazard for

+/-15 days (Hrel,15).

xh

Aqq based on

H Hrel Hrel,15

rainfall 0.60 0.76 0.42

ARI7 0.65 0.83 0.48

rzmc 0.58 0.75 0.36

rzmc&rainfall 0.24 0.60 0.39

Extracting H for LSE and noLSE results in distributions as displayed in Figure A1. It illustrates that the inclusion of a second

hydrological predictor variable changes results from exponential distributions to quasi-normal distributions. While differences

between the distributions of LSE and noLSE can be captured by AQQ, it is difficult to compare AQQ across such different445

types of distributions. Table A1 summarizes AQQ of all predictor variables for H, Hrel and Hrel,15. ARI7 shows highest AQQ,

i.e. discrimination ability, for H predictions based on one hydrological predictor variable and rzmc has lowest AQQ. AQQ is

generally higher (lower) for Hrel (Hrel,15) than for H. For PHELS based on rzmc&rainfall, AQQ is smaller than for single

variable PHELS. At the same time, AQQ increases for both Hrel and Hrel,15, indicating improvements in the discrimination

abilities both for long- and short-term patterns.450
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Figure A1. Distribution of PHELS H for known LSE (right, dark value) and sampled noLSE (left, light color), shown in histograms (back-

ground) and boxplots (foreground). Distributions are shown for PHELS based on a) rainfall percentiles, b) ARI7 percentiles, c) rzmc per-

centiles (xh in Equation 5) and d) rzmc&rainfall percentiles (xh1 and xh2 in Equation 6).
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Abbreviations

AQQ area between the quantile-quantile (QQ) line and the bisector.

H landslide hazard [-].

Hens landslide hazard ensemble.

H ensemble average H.455

ARI7 7-day antecedent rainfall index [mm].

ARI antecedent rainfall index.

LSS landslide susceptibility.

rzmc root-zone soil moisture content [m3/m3].

AUC area under the ROC curve.460

CLSM Catchment Land Surface Model.

DJF December-January-February.

EASEv2 Equal-Area Scalable Earth version 2.

FPR false positive rate.

GLC Global Landslide Catalog.465

JJA June-July-August.

LHASA Landslide Hazard Assessment for Situational Awareness.

LRC Landslide Reporter Catalog.

LSE landslide event.

LSM land surface model.470

MAM March-April-May.

MERRA-2 Modern-Era Retrospective analysis for Research and Applications, Version 2.

noLSE no landslide event.

PHELS Probabilistic Hydrological Estimation of LandSlides.

ROC Receiver Operation Characteristic.475

SON September-October-November.

TPR true positive rate.
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