
The authors thank the reviewers for their constructive comments. The comments are shown in 
regular fonts (we added numbers), our responses are in bold italic, blue fonts. Changes 
made in the manuscript are printed in italic, underlined, blue fonts. Our line references refer to 
the updated manuscript with track-changes. 

  

Reviewer #1: Mirus, Ben 

	
  	
  
  
This manuscript concisely presents a new approach to probabilistic landslide hazard modeling, 
which leverages a susceptibility model published previously in NHESS (Felsberg et al., 2022) 
with ensemble modeling to evaluate the suitability of a few alternative predictor variables for 
hydrologically triggered landslides. This PHELS model is applied at the global scale with coarse 
spatial and temporal resolution. Of the hydrologic predictors considered, rainfall with root zone 
soil moisture performed better than either of those variables alone and slightly better than an 
antecedent rainfall index used in the LHASA model (Stanley et al., Frontiers, 2021). When using 
a sparse global landslide catalogue, the output compares favorably to this existing model and 
the spatial and temporal variability in performance is shown, which reveals that uncertainty is 
lower during wetter seasons than drier ones. Furthermore, the probabilistic analysis reveals that 
very high and very low hazard predictions are well constrained, whereas the combinations of 
moderate susceptibility and moderate triggering conditions exhibit far greater uncertainties in 
landslide hazard predictions. 

Overall, the topic is of considerable interest to NHESS readers, and this is a nice piece of work 
that presents several notable contributions, which ultimately warrants publication. Specifically, 
the approach for incorporating uncertainty in spatial and temporal probability of landsliding is 
novel and broadly applicable to hazard modeling, the evaluation of multiple predictor variables 
for hydrologic triggering is interesting, and the seasonal and spatial analysis as well as 
comparison of results to other global-scale analyses is useful. While these results are not 
particularly surprising and follow somewhat logically from the methods and input data, the work 
is technically sound and a useful reference. Methods and data are clearly described, such that 
results should be readily reproducible and the methods applied successfully with other data. 
The primary areas for improvement are largely editorial and include adding a more involved 
interpretation and context for the results, as well as some minor details in the presentation and 
figures. Therefore, the paper should be published after undergoing some minor revisions to 
address the following general and specific comments. 

We thank the reviewer for the positive feedback and encouraging words. 

  

1) In general, the authors should make a little more effort to discuss what is interesting and 
useful about the results in the context of other studies. Readers should be confronted with both 
the advantages of the approach and its application, as well as its limitations, so that the utility 
and value of the resulting PHELS model is more apparent. For example, the framework for 



uncertainty assessment provides a robust approach to integrate forecast uncertainty that would 
be an important methodological advance for regional-scale landslide warning, but at the same 
time the global application seems of limited value for practical implementation locally and the 
reasonably strong performance is likely linked to the coarse spatial and temporal resolution and 
the decision to exclude a 6-day window for selecting non-triggering rainfall conditions. At the 
same time, the finding that the combination of daily rainfall with root zone soil moisture is more 
effective than seven-day rainfall index used in the LHASA model is consistent with recent 
advances in local landslide warning that leverage in-situ monitoring in favor of antecedent 
rainfall for reducing failed and false alarms, so it is useful to know that this potentially applies 
globally. Lastly, the revised version should include some discussion of why the model at such 
coarse resolution is useful, how that affects performance, and the limits of that utility. 

We extended the Discussion to provide more insights into advantages, limitations and 
applicability of the PHELS model and its setup, which was also suggested by reviewer 
#2, Clàudia Abancó. The new paragraphs are therefore a combination of 
recommendations: 

This known incompleteness of the inventory not only influences the performance evaluation, but 
also adds to the uncertainty of the model fitting process (i.e. Equations 5-6). While the goodness 
of fit can be quantified (see Table 1) and theoretically propagated, it is still relative to the 
available inventory. Quantification of inventory-induced uncertainty requires very detailed or 
synthetic landslide inventories and has been subject of many studies for LSS (Steger et al., 
2017; Lin et al., 2021) but less so for hazard assessment. PHELS does not account for such 
inventory-induced uncertainty, but it does include the uncertainties and within-grid-cell 
heterogeneity of input variables by using an ensemble approach. The latter allows to easily 
account for, e.g., the uncertainty in rainfall, which is directly available from ensemble weather 
prediction systems. Or to account for modeled soil moisture uncertainties, which can be 
obtained from ensemble land surface model simulations that are usually optimized to match the 
variations in observations. Nevertheless, models are always a simplification of real world 
conditions and the downscaling of coarse-scale model estimates to fine scale applications 
remains a challenge. 

PHELS provides reliable insights into spatio-temporal patterns of landslide hazard but has 
limitations in the context of actual early warning systems. These usually require higher spatial 
resolution and temporal accuracy. The coarse spatial resolution would hence call for 
downscaling methods to obtain within grid-box distributions. And although we use the evaluation 
approach LSE3 because of time shifts and possible observation errors, the fact that peaks of 
hazard are often simulated within a 3-day window around a recorded LSE may also indicate a 
low temporal accuracy, which might be mainly associated with the coarse-scale global re-
analysis input of precipitation.. For early warning systems the question moreover remains how 
to interpret or use the hazard uncertainty. Low enough uncertainty could be used as a 
secondary condition before warnings are issued to the public or the uncertainty could be directly 
communicated as is. However, ensemble measures such as the maximum predicted hazard 
(“worst case scenario”) or the 90th quantile of ensemble hazard prediction might be easier to 
understand. While this study used PHELS with specific spatio-temporal resolution and input 
data, its adjustable, modular character makes PHELS a general framework for hazard 



estimation that can be tailored to specific purposes. If adequate landslide and hydrological data 
are available, it would therefore be possible to create a PHELS setup that is more suitable for 
local to regional landslide early warning systems. (Lines 375-397) 

  

In terms of presentation, the writing is clear and most of the figures are great. To address these 
and the general comments above, I have included the following specific comments and 
suggestions by line number: 

2) L18. Specify: “… a two-step approach that separately evaluates where and when landsliding 
will occur.” Also, why are you referencing the first approach (Stanley et al papers) and not a 
long list of others using the two-step, particularly since that is your approach here? 

We included your suggested extension in the manuscript. We had not included 
references for the two-step process here, since the following paragraphs elaborate this 
two-step process in more detail and provide references. However, to avoid confusion 
about this, we included the references in question already here. […] or in a two-step 
process that separately evaluates where and when landsliding is likely to occur (Kirschbaum 
and Stanley, 2018; Monsieurs et al., 2019a, b; Bordoni et al., 2020). (Lines 18-19) 

3) L23. It is misleading to imply that LHASA is specifically for landslide early warning since the 
rainfall data includes some latency and can at best be considered a “now-cast” of potential 
landslide conditions (i.e., see title of Stanley et al., 2021). At this point assessments that 
combine when and where landslides are likely cannot be used in a predictive mode for warning 
and their value for real-time hazard assessments is unclear. Furthermore, these are not typically 
ideal hazard assessments, in that they do not explicitly account for the magnitude and mobility 
of the potential landsliding, which is a significant consideration. 

This is a valid point. We added a separate reference for the use of susceptibility maps in 
early warning systems and give now-casting as another use-case to introduce the 
mention of LHASA in the next sentence. Others are specifically developed to be used in a 
landslide early warning system (Guzzetti et al., 2020) or ‘now-casting’ approach: [...] (Lines 24-
25) 

4) L25. Maybe it’s worth mentioning that in addition to relying on a single threshold for landslide 
initiation (e.g., the 95%-ile of the ARI7 predictor at each grid cell), these also employ some 
susceptibility threshold that also amounts to a simple binary yes/no for landslide occurrence 
(though different thresholds of moderate or high have been used for different applications of the 
model). The value of your study is combining both within a probabilistic framework for both 
potential and initiation, so highlighting that here is worthwhile even if it’s stated elsewhere. 

This is a good point. We added the keywords "categorized" and "thresholds" to the 
sentence to underline this difference. [...]: the global, categorized LSS assessment by 
Stanley and Kirschbaum (2017), for instance, has been developed to allow severity thresholds 
within the first version of the Landslide Hazard Assessment for Situational Awareness (LHASA) 
model (Kirschbaum and Stanley, 2018). (Lines 25-28) 



5) L27. Whiteley et al (2019) is a very nice review of geophysical methods for landslide 
monitoring, but it’s not exactly an appropriate reference for physically based modeling of 
landslide initiation potential. If I understand correctly, there are a lot of more appropriate 
examples (TRIGRS, Baum et al., JGR-ES, 2010; SCOOPS3D, Brien and Reid, Rev. Eng. Geol, 
2008; SHALSTAB, Montgomery and Dietrich, WRR, 1994; etc., or review of this in the textbook 
Lu and Godt, 2013). 

Thank you for catching this inconsistency! We added the review by Lu and Godt, as well 
as the example of TRIGRS and removed the reference to Whiteley et al.: The temporal 
probability can either be calculated explicitly by physical models that compute the shear 
strength and stress in slopes (Lu and Godt, 2013; Baum et al., 2010) [...] (Lines 29-30) 

6) L45. Ok, here you define your limits of hazard modeling, but potentially should acknowledge 
that an ideal hazard assessment also includes the magnitude and mobility to determine where 
hazards are present, but in my view that’s acceptable since at such coarse resolution that’s not 
really as relevant. 

Indeed, the question of what hazard modelling should comprise is scale dependent. We 
added a subclause referring to this: We comprise all of the above-mentioned approaches 
under the term ‘hazard modelling’ , while being aware that at smaller scales the size and 
mobility of a landslide may also be an essential part of hazard prediction. (Lines 49-51) 

7) L60. Here the use of “magnitude” is misleading. Be more specific and careful to clarify that 
you are evaluating the degree to which the spatiotemporal potential for landsliding is related to 
the uncertainty. There are lots of different ways you could consider “magnitude” of the event, 
from the size and velocity of the landslides to the number or extent of landslides or even their 
severity. 

Here, we simply intended to refer to the magnitude of the hazard value, not the 
magnitude of the landslide event. Thanks for pointing out that the phrasing can be 
misleading. We added "value" to avoid any misunderstanding: 2) Is the estimated 
uncertainty related to the magnitude of the simulated hazard value? (Line 66) 

8) L71. Isn’t there also a bias towards landslides in areas where they have an impact (i.e., 
roads, developed areas), as well as for landslide types that have a more notable impact (e.g., 
debris flows and shallow mass movements that affect infrastructure)? 

True. We extended the sentence to reflect on this bias from the data collection method as 
well: Note that the known economic and English-language bias, as well as the fact that media 
reports tend to focus on inhabited areas and landslides with notable impact on infrastructure, 
will affect the completeness of these inventories and reduce the reliability of their ‘absence 
reporting’. (Lines 75-78) 

We also edited the caption of Figure 1 to make clear that these are only the reported 
landslides. 

9) L100. This seems to imply that most landslides (in the inventory?) fail at <1m depth. Is that 
supported by analysis of the GLC? Again, see comment earlier about dataset bias: is the GLC 
indeed mostly shallow landslides? 



The GLC uses a system of categorical size descriptors (small, medium, large, very large, 
catastrophic) depending on the estimated volume, i.e. it is difficult to retrieve information 
on the depth of the shear plane itself. Most landslides from the GLC are reported to be of 
"medium" size (>10m3, <1000m3). Essentially, what we intend to say is that rzmc is more 
suitable than the surface water content or the total water storage by themselves because 
1m depth should be closer to the shear plane. We will rephrase the sentence as follows: 
The rzmc contains information on both surface water content and groundwater and should 
therefore be indicative not only of water content at landslide shear planes <1m, which we 
consider a typical depth, but also for more shallow or deep-seated landslides. (Lines 106-109) 

10) L191. This is a major assumption that warrants further discussion. Even if others have used 
this +/- 3days method before, I’m not convinced it is appropriate since you don’t need a model 
to predict landslides when it’s not raining hard. It seems to undermine the value of the model 
predictions by weighting the non-predictions to times when it’s not really raining. A landslide 
hazard assessment tool really needs to be able to distinguish between triggering and non-
triggering conditions when it’s actually raining hard which your uncertainty assessments show it 
struggles most with in all but the most extremely high and low hazard levels. 

This is a very valid point and actually already describes the reason why rzmc by itself is 
not the best of our tested predictor variables. For local to regional hazard models with 
very reliable landslide data and meteorological information, we agree, focus should lie on 
the exactness of the hazard prediction within a multi-day window. At the global scale and 
coarse spatial resolution, however, we are dealing with uncertainties in a) rainfall data, b) 
landslide timing from media reports, c) time zone shifts, i.e. PHELS is destined to capture 
general spatio-temporal patterns rather than concrete landslide events. We use reported 
landslide events as indicators for such patterns. Nevertheless, we included a sentence in 
the discussion reflecting on the limitations of the +/- 3days method (see second 
paragraph in reply to comment 1) 

11) Figure 4. The greater Seattle Area experienced widespread landsliding in mid-late January 
2016, including several mentioned explicitly in our paper (Mirus et al., Landslides, 2018) and I 
think also elsewhere (see Luna and Korup, GRL, 2022). This is an interesting opportunity to 
show an example where the inventory is not just incomplete in space, but also in time and how 
that influences results. 

Separately, this figure does a nice job of visualizing why a combination of RZSM and daily 
rainfall is a valuable combination. 

Thank you for reminding us of the dates of the landslides in your publication from 2018. 
We included this example in the discussion: For both models, FPR might however be 
erroneously high due to known underreporting in the GLC , even within well reported areas. 
Figure 4 for example misses mid-late January events of 2016 in the Seattle area that were 
reported by Mirus et al. (2018). (Lines 372-374) 

Thanks also for pointing us to the publication by Luna and Korup, it is an interesting 
read and concept! We include the concept of seasonal or monthly landslide modelling in 
the discussion and conclusion as well: Other datasets could be used […], the predictors 
could be preprocessed differently, e.g. into daily or 3-hourly rainfall maximum (Patton et al., 



2023), monthly rainfall (Luna and Korup, 2022), antecedent soil moisture (Mirus et al., 2018), 
soil moisture changes (Wicki et al., 2020), or short- and long-term anomaly values. (Lines 305-
309) 

The approach can also be promising at smaller scales with local (in-situ) data or for seasonal 
modelling […]. (Lines 416-417) 

12) L238. This is more interesting in that it shows that the cumulative rainfall variables are not 
necessarily the best predictors for landslide triggering, instead there are likely some sub-daily 
rainfall characteristics (e.g., three-hour rainfall intensity, see Patton et al., NHESS, 2023). In 
contrast, the predictors that integrate the hydrologic variable, RZSM, may better capture those, 
albeit not explicitly. Still, relying on a +/- 3-day window to obtain great model performance really 
undermines some of the potential utility of such a tool. Emergency planners and the general 
public don’t really want to be on high alert ready to take action for 6 days. 

It is true that PHELS was not developed with the needs of emergency planners in mind, 
and that our performance analysis lacks this viewpoint. In contrast to in-situ 
observations of rainfall close to the landslide location in question, precipitation data 
from a reanalysis model does come with larger possible error, as does our global 
approach. This was the reasoning behind the +/-3 days. We now discuss the limitation for 
early warning (see reply to comment 1 and 10) 

Thanks also for pointing us to Annette Patton's recent preprint. We included this in our 
discussion of possible other predictor variables (see reply to comment 11) 

13) L265. Can the discussion include any conjecture on why these spatial variability in 
uncertainty? Is it all due to the triggering not capturing the type of landsides, is it greater 
combined uncertainty in both the susceptibility and initiation? Is it data limitations? 

From a pure modeling point of view, it is the uncertainty of the input variables and their 
combination. Situations where soil moisture and rainfall and LSS are high can easily be 
distinguished as highly hazardous, and hazard ensemble members deviate less from one 
another. The same goes for the opposite conditions as well. In addition, the ensembles of 
the input parameters (soil moisture, LSS) are generally smaller for more extreme 
magnitudes due to their boundedness. We added a paragraph discussing the concrete 
example of 15 September 2015 and also connect the observations to insights from  
Figure 10: This connection of 𝐻!"# uncertainty with the uncertainty of the input variables 
generates a spatial pattern that is closely following the input patterns. As examples for low 𝐻!"# 
uncertainty on 15 September 2015 we found central USA, the Amazon and the Congo basin 
(see Figure 8). These regions have low LSS and they exhibit dry conditions at this time (low 
rzmc and low or no rainfall) with small connected uncertainty: consequently, low 𝐻 values and 
low 𝐻!"# uncertainties are found. Since these regions have nearly no observed LSE (see Figure 
1), sampled grid cells would probably be true negatives (TN). For the complete study period TN 
also showed lowest 𝐻 and 𝐻!"# uncertainty (see Figure 10b). As examples for high 𝐻!"# 
uncertainty on 15 September 2015 we found Central America and China. Both record a large 
number of observed LSE and high LSS with low uncertainty. However, rzmc is intermediately 
high with increased uncertainty and rainfall is high with large uncertainty, resulting in 𝐻!"# 



uncertainty also being high. Sampled grid cells would probably be positive predictions (TP, FP), 
which for the complete study period also showed highest 𝐻 and 𝐻!"# uncertainty (see Figure 
10b). (Lines 328-337) 

14) Figure 10b. This figure is visually very challenging and not particularly accessible for 
individuals with red-green color blindness. Can you further reinforce this with a better color 
scheme and show TN, FP, FN, and FP with distribution curves of H and standard deviation on 
the x and y axes, respectively? 

Thank you for this suggestion that indeed makes the plot more understandable! We 
changed the color scheme and added distribution curves of the groups along the x and y 
axes. 

 
The caption of the Figure was updated accordingly: [...] The marginal distributions of the 
ensemble average and standard deviation are shown on the top and side panels. Median values 
are indicated by the larger symbols on top of the scatter cloud and on the marginal distributions. 
[...] 

And we describe the different distributions in the Results section: Symbols and color 
indicate whether LSE and noLSE were correctly captured (true positive - TP; true negative TN) 
or not (false positive - FP; false negative - FN), again using the temporal 90th percentile of 𝐻 as 
a threshold. The distributions of  𝐻 for the positives are significantly different from that of the TN 
and they have a peaked distribution. Whereas the distribution for the FN is wider and largely 
overlaps with the distribution for the positives and the TN. While median uncertainty for FN, i.e. 
missed alarms is larger than that for TN, median uncertainty for FP, i.e. false alarms, is nearly 
identical to that of TP.  (Lines 278-283)  



15) L285. Is this accounting for errors the +/- 3 day window? Again, this undermines the 
practical value of this type of model if it can only perform well at capturing a landslide event 
within a 6-day window, particularly given the coarse spatial resolution. 

We added a paragraph in the Discussion on the topic of the +/-3 day window (see reply to 
comment 10) 

16) L330. Yes, we also found replacing antecedent rainfall with antecedent soil moisture 
decreased failed and false alarms (Mirus et al., Landslides, 2018). 

Thanks for reminding us that you also found this in your study. We added the reference: 
The reduction in false alarms was also reported by Ponziani et al. (2012); Mirus et al. (2018); 
Segoni et al. (2018a); Stanley et al. (2021) . (Lines 353-354) 

And also in the introduction: [...] the inclusion of soil water content has been found to prevent 
false alarms, independent of the data source (Ponziani et al. 2012; Mirus et al. 2018; Segoni et 
al. 2018a; Stanley et al. 2021). (Lines 43-45) 

17) L331. I don’t quite follow this logic. ARI7 uses a weighted averaging daily rainfall over 7 
days… how does that capture sub-daily bursts in rainfall intensity that may trigger landslides? 

We understand the confusion. What we intended to say is that intensive rainfall in the 
previous days (high ARI) may not have propagated deep enough into the soil (high rzmc) 
for a positive prediction resp. alarm based on rainfall&rzmc, and result in a missed alarm. 
We decided to shift the focus in the phrasing to the meaning of alarms based on ARI7, in 
accordance with a comment by reviewer #2 Clàudia Abancó: While the number of missed 
alarms is lower for PHELS based on rainfall&rzmc than for PHELS based on rainfall alone, it is 
even lower for PHELS based on ARI7. A possible reason for this can be that (intensive) 
antecedent rainfall prepares failure by progressively destabilizing the slope. (Lines 354-357) 

18) L334-345. Interesting, but I would think that with the same dataset a coarser resolution 
model would likely perform better, particularly for FPR and particularly for isolated landslides. 

FPR is defined as the ratio of false positives over all observed negatives, i.e. all noLSE in 
the reference data. Typically, noLSE are easier to predict because of e.g. absence of rain 
or very dry conditions and the amount of false positive predictions does not increase 
proportionally to the amount of sampled noLSE references. When moving from an LSE-
noLSE sampling rate of 1:1 (PHELS) to 1:10000 (LHASA) the FPR is therefore by design 
much lower. We added this in the sentence: Due to the choice in threshold and the larger 
LSE-noLSE sampling ratio (see above) this FPR is by design much higher than those for 
LHASA predictions […] (Lines 370-371) 

19) L346-348. Yes, the GLC is incomplete both spatially and temporally, see previous comment 
about Seattle-area landslides in January 2016. Are there areas where it is more or less 
complete that you could compare to assess this? 

This is a good question. We had expected the GLC to be rather complete in the US, as 
compared to other regions worldwide, but your example of the Seattle-area illustrates 
that this is not the case. For spatial and temporal completeness, one would probably 
have to turn to a local or regional inventory. The question remains, however, how 



complete landslide inventories can be, in general. The discussion now includes a 
paragraph on landslide-inventory-induced uncertainty. (see first paragraph in reply to 
comment 1) 

20) L349. The discussion section would benefit from presenting the sources of uncertainty are 
not considered and which of those potentially could be included. You are able to consider the 
uncertainty in susceptibility and triggering conditions since they can be quantified. However, the 
uncertainty due to incomplete inventories in space and time is not considered and could only be 
done if there were appropriate data to support this. Conversely, could the framework integrate 
weather forecasts and incorporate uncertainty in those forecasts relative to triggering conditions 
identified with the MERRA2 data? 

We included a paragraph in the discussion on the effect of inventory-induced uncertainty 
on the one hand, and uncertainty that PHELS takes into account on the other hand (see 
first paragraph in reply to comment 1). 

P.S. The animation is a nice bonus of this paper. 

Thanks! 

  

  

  

  



 

Reviewer #2: Abancó, Clàudia 

  

1) General Comments: 

The main topic discussed in this manuscript is the uncertainty on the hazard estimation of 
hydrologically-triggered landslides. It presents a new model at global scale (PHELS), that 
estimates the daily hazard of hydrologically-triggered landslides at a coarse resolution (36 km) 
at the same time that it estimates its uncertainity by generating ensemble simulations. The 
paper is focused on the analysis of the performance of the temporal component (hydrological 
predictors) of the hazard estimation, as the static part (landslide susceptibility) is based in a 
paper already published (Felsberg et al., 2022). 

The manuscript analyses the potential of three main hydrological predictor variables: the daily 
rainfall, the 7-day antecedent rainfall index (ARI7) and the root-zone soil moisture content 
(rzmc), although it does not go into detail on the uncertainty on the obtention of these values. 
Specially the rzmc is a factor that is very sensitive to the input parametres of the Catchment 
Land Surface Model (CLSM), as for exemple the soil porosity. Although my expertise is not in 
data-driven models, I assume that the results could also be affected by this sensitivity, therefore 
I’d recomment that authors acknowledge that some uncertainty could be induced by the source 
of the hydrological predictors. 

The topic is interesting and novel, since as the authors point out, the literature on quantification 
of hazard uncertainty is very scarce, and only some attempts to quantify uncertainty of 
susceptibility or rainfall thresholds uncertainty have been published. In general, I think the 
authors should further emphasize the main advantages and limitations of PHELS compared to 
other models, such as the ones that don’t provide uncertainty. 

The paper is very well written, clear and, even if in some parts some clarification may help (at 
least for the non-experts in the topic), it is in general easy to read. 

The conclusions are consistent with the evidence and arguments presented. They address the 
main questions proposed. 

The Figures and Tables are in general clear, and helpful to follow the paper. 

We thank the reviewer for this positive feedback and the constructive comments. We 
clarified the manuscript following your specific comments, and extended the discussion 
to include a paragraph on uncertainty sources that are and are not taken into account, as 
well as to the applicability, advantages and limitations of the PHELS model framework. 
Since both were also suggested by reviewer #1, Ben Mirus, the new paragraphs are a 
combination of suggested discussion points: 

This known incompleteness of the inventory not only influences the performance evaluation, but 
also adds to the uncertainty of the model fitting process (i.e. Equations 5-6). While the goodness 
of fit can be quantified (see Table 1) and theoretically propagated, it is still relative to the 
available inventory. Quantification of inventory-induced uncertainty requires very detailed or 



synthetic landslide inventories and has been subject of many studies for LSS (Steger et al., 
2017; Lin et al., 2021) but less so for hazard assessment. PHELS does not account for such 
inventory-induced uncertainty, but it does include the uncertainties and within-grid-cell 
heterogeneity of input variables by using an ensemble approach. The latter allows to easily 
account for, e.g., the uncertainty in rainfall, which is directly available from ensemble weather 
prediction systems. Or to account for modeled soil moisture uncertainties, which can be 
obtained from ensemble land surface model simulations that are usually optimized to match the 
variations in observations. Nevertheless, models are always a simplification of real world 
conditions and the downscaling of coarse-scale model estimates to fine scale applications 
remains a challenge. 

PHELS provides reliable insights into spatio-temporal patterns of landslide hazard but has 
limitations in the context of actual early warning systems. These usually require higher spatial 
resolution and temporal accuracy. The coarse spatial resolution would hence call for 
downscaling methods to obtain within grid-box distributions. And although we use the evaluation 
approach LSE3 because of time shifts and possible observation errors, the fact that peaks of 
hazard are often simulated within a 3-day window around a recorded LSE may also indicate a 
low temporal accuracy. For early warning systems the question moreover remains how to 
interpret or use the hazard uncertainty. Low enough uncertainty could be used as a secondary 
condition before warnings are issued to the public or the uncertainty could be directly 
communicated as is. However, ensemble measures such as the maximum predicted hazard 
(“worst case scenario”) or the 90th quantile of ensemble hazard prediction might be easier to 
understand. While this study used PHELS with specific spatio-temporal resolution and input 
data, its adjustable, modular character makes PHELS a general framework for hazard 
estimation that can be tailored to specific purposes. If adequate landslide and hydrological data 
are available, it would therefore be possible to create a PHELS setup that is more suitable for 
local to regional landslide early warning systems. (Lines 376-398) 

  

Specific comments: 

2) L29: binary approach: for the landslide hazard assessment or for the empirical temporal 
probability? 

Here, the binary approach refers to the temporal probability, thanks for pointing out that 
this was not clear. We merged the two paragraphs to emphasize that the second one still 
refers to the temporal probability. (Line 32) 

3) L34-40: do all these refer to the root zone or some include also lower layers of the soil? 

We use "soil moisture" in a general sense. The references use soil moisture at different 
levels and also from different data sources. Soil moisture information from satellites 
informs about the surface soil moisture (upper 5 cm of soil), in-situ observations reach 
depths up to 1.40m, and studies that applied modelling use layers from surface to 
groundwater. We added this information in the manuscript. The measures of soil moisture 
range from antecedent soil moisture (Mirus et al., 2018; Wicki et al., 2020) and increase in soil 
saturation (Wicki et al., 2020) to soil moisture of the day (Bordoni et al., 2020), and refer to 



different soil layers (surface: Ponziani et al. (2012); Brocca et al. (2016); Thomas et al. (2019); 
Bordoni et al. (2020), root-zone: Brocca et al. (2016); Mirus et al. (2018); Thomas et al. (2019); 
Wicki et al. (2020), groundwater: Uwihirwe et al. (2022)). (Lines 39-43) 

4) L99: CLSM- what is the source of the inputs of the model (e.g.: soil porosity)? Also, in what 
units is rzmc? 

The input for CLSM-parameters of e.g. soil porosity comes from the U.S. General Soil 
Map (STATSGO2) and the Harmonized World Soil Database version 1.21, further details 
can be found in De Lannoy et al. 2014, and an overview is provided in Table 1 in Felsberg 
et al. 2022. The unit of rzmc is [m3/m3] as introduced in the introduction. To avoid future 
confusion, we also added the unit here in the methodology section. […] to simulate rzmc [ 
m3/m3 ] (0-100 cm) […] (Line 106) 

5) L125: as the temporally dynamic soil moisture...or also ARI7? 

Yes, indeed. We added this to the sentence. While LSS could conceptually be considered a 
prior probability we opt to use it as a temporally static (but spatially varying) variable and 
implement it as a condition in a similar way as the temporally dynamic soil moisture, ARI7 and 
rainfall. (Lines 131-133) 

6) Table 1: I am not sure if ARI7&rzmc were not tested because conceptually they both 
represent the same parameter (soil moisture)? If this is the case, I am not sure this is correct, as 
ARI7 may imply infiltration of water to lower levels (and consequent instabilization of the slope 
due to the water table rise) while rmzc is only for the upper layer of the soil. 

Indeed, this was our reasoning. Antecedent rainfall has in the literature often been used 
as a proxy for soil moisture and we expected the information content to be redundant. 
For land surface models it is known that lower level soil moisture and rzmc strongly 
correlate and the inclusion of total water storage in addition to rzmc could hence be 
expected to have negligible amount of new information. Since ARI however includes 
additional information on rainfall, it might be worthwhile to investigate the combination 
of ARI and rzmc. We added a sentence on this in the discussion: Furthermore different 
combinations of the predictors could be tested, e.g. rzmc and ARI7. (Lines 309-310) 

7) L186: As I understand, PHELS is trained with all the LSE for 2007-2020, and tested with the 
same data? Do you think this could induce some misleading results in the evaluation? 

Yes, we evaluate against the set of LSE that was also used to derive the parameter 
values for the PHELS equations. In the discussion we already have a paragraph 
explaining why we do not expect misleading results from this approach, and also give an 
outlook about possible other approaches (Line 287). 

8) Figure 4: What about the high H values in 2016? All the predictors show high H around 2016-
02 but no LSE is recorded. Would they be false alarms or a limitation of the GLC? 

Theoretically, both are possible. Thanks to reviewer #1, Ben Mirus (see his comment 11), 
we however got reminded that the "Seattle Area experienced widespread landsliding in 
mid-late January 2016" (Mirus et al. 2018), i.e. it is a limitation of the GLC. We now 



mention this fact in the discussion: Figure 4 for example misses mid-late January events of 
2016 in the Seattle area that were reported by Mirus et al. (2018). (Lines 373-374) 

9) Figure 6: This is an interesting Figure! 

Thanks for this feedback! 

10) Figure 8a: Again, going back to the rzmc absolute values. I can see values around 0.5 
m3/m3 in SE Asia, that would correspond to soil porosity of 0.5 (considering that the soil is fully 
saturated). These are very high values for porosity, only typical for some sort of coarse sand or 
silt, but not common. I have noticed this in SMAP-L4 products derived from CLSM, and in my 
opinion is a limitation that the use of global models have. I would only make a point here to say 
that absolute values of rzmc may be overestimated due to this 

Thank you for sharing this insight. Indeed, global models lack accuracy, especially when 
it comes to soil characteristics and geology. With our approach to transform the absolute 
values of rzmc into percentiles according to the long-term climatology, we hopefully 
reduce the effect that a positive bias, i.e. a consistent overestimation, would have on 
landslide hazard estimation. 

11) L332: I think this could be because ARI7 is actually giving a larger picture of the mechanical 
process going on in the slopes and closely related to the instability process. So, I agree that soil 
moisture of the upper layer is not always a good indicator. 

This is a good point and we rephrased the sentence as follows: While the number of 
missed alarms is lower for PHELS based on rainfall&rzmc than for PHELS based on rainfall 
alone, it is even lower for PHELS based on ARI7 . A possible reason for this can be that 
(intensive) antecedent rainfall prepares failure by progressively destabilizing the slope. (Lines 
354-357) 

12) Conclusions: as I said earlier, in the discussion/conclusions I miss some emphases on the 
advantages and limitations of PHELS over other models, i.e: the applicability of such a model 

We now included a paragraph on the advantages, limitations and applicability of PHELS 
in the discussion (see second paragraph in reply to comment 1)  

  

  

  



We also made some small editorial adjustments to ease the reading flow and hopefully 
make things better understandable: 

- Split sentence in two: To estimate the temporal likelihood of landslide occurrence, we 
use various hydrological predictor variables. We derive 36-km rainfall data [...] (Lines 98-
99) 

- Added a subclause for explanation: Since we use percentiles of rzmc, rainfall and 
ARI7, their respective distributions are (quasi-) uniform, but their joint probability is not 
necessarily uniform. Nevertheless, for simplicity we omit the normalizing joint probability 
terms [...] (Lines 134-136) 

- Clarification: We tested different forms of the fitting equation and found the lowest root 
mean squared deviation (relative to the entire observe LSE distribution) for the following 
exponential functions [...] (Lines 153-154) 

- More specific wording: The difference between the parameters b and c [...] (Lines 164) 

- Addition for clarification: [...], this may result in conservatively high 𝐻      uncertainty 
estimates in comparison to sampling from multidimensional distributions of the 
hydrological variables (not shown). (Lines 188-189) 

- Added a subclause for clarification in the caption of Table 2: To distinguish between 
predicted positives and negatives, we use the temporal 90th percentile of deterministic 
𝐻      (a,b) and  𝐻  (c) as a threshold. 

- Clarification: [...] and the statistical measures to quantify uncertainty should be chosen 
accordingly. (Lines 320-321) 

- Clarification: Similar to LSS, spatial variation of 𝐻      within one grid cell extent [...] (Line 
341) 

- Two articles added: [...] while keeping in mind the large discrepancy in spatial 
resolution [...], the ratio of LSE to noLSe sampling [...], the method of LSE and noLSE 
sampling, [...] and the thresholds in probabilistic H where applicable. (Lines 361-364) 

- Included the two reviewers in the acknowledgements 


