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Abstract. The biogeochemical behaviour
:::::::
behavior

:
of the Southern Ocean is complex and dynamic . The processes that

affect this behaviour are highly dependent on
:::
and

::::::
driven

::
by

:
physical, chemical, and biological constraints, which are poorly

constrained in Earth System Models. We assess how emissions
:::::::::
processes.

::::
Such

::::::::
processes

:::::
leads

::
to

:::
the

:::::::::
formation of dimethyl

sulfide (DMS), a precursor
:::::
which

::
is

::::::::
produced

:::
by

::::::
marine

::::::::
biogenic

::::::
activity

::::
and

::
is

:::
the

:::::::::
dominant

::::::
source of sulfate aerosol ,

change over the Southern Oceanwhen the chlorophyll-a distribution, which influences oceanic DMS production , is altered.5

Using a nudged .
::::::::
However,

:::::
DMS

:::::::::
production

::
is

:::::
poorly

::::::::::
constrained

::
in

:::::
Earth

::::::
system

::::::
models.

:::::
Using

:::
an

::::::::::::::
atmosphere-only

::::::
nudged

::
to

::::::::::
observations

:
configuration of the atmosphere-only United Kingdom Earth System Model ,

:
(UKESM1-AMIP), we performed

nine
::::
eight

:
10-year simulations using forcings representative of the period 2009 – 2018. Four different

::
for

:::
the

::::::
recent

::::
past

:::::::::::
(2009–2018).

:::
We

:::::
tested

::::
four

:
seawater DMS data sets are tested as input for these simulations. Three different

:::
and

:::::
three DMS

sea-to-air flux parameterizationsare also explored. Our goal is to evaluate the changes in
::::::
transfer

:::::::
velocity

::::::::::::::::
parameterizations.10

:::
All

:::
data

::::
sets

::::
and

::::::::::::::
parameterizations

:::
are

::::::::::
commonly

::::
used

:::
by

:::::::::
present-day

:::::
Earth

:::::::
system

::::::
models,

:::::
with

:::
the

::::::::
exception

::
of

::::
one

::::
data

::
set

::::
that

:::
we

:::::::::
developed

:::::
from

:::::::
satellite

:::::::::::
chlorophyll-a

:::::
data.

:::
We

::::::::
evaluate

::::::::
simulated

:
oceanic DMS, sea-to-air fluxes

::::::
transfer

:
of

DMS, and atmospheric DMS through these different simulations during austral summer. The mean spread across all the
::
In

simulations with different oceanic DMS datasets,
:::::::
seawater

:::::
DMS

::::
data

:::
sets

:
but the same sea-to-air flux parameterizations, is

::::::::::::::
parameterization,

::::::::
Southern

::::::
Ocean

:::::::::::
summertime

:::::
DMS

:::::
varies

:::
by

:
112% (3.3 to 6.9 TgS Yr−1). The mean spread in

::::
This

::
is15

::::::::::::
approximately

::::
twice

::
as

:::::
much

::
as

:::
the

:
simulations using the same oceanic DMS dataset,

::::::
seawater

:::::
DMS

::::
data

:::
set but differing sea-

to-air flux parameterisations is
::::::::::::::
parameterizations,

:::
in

:::::
which

:::::
DMS

:::::
varies

::
by

:
50-60% (2.9 to 4.7 TgS Yr−1). The choice of DMS

emission parameterisation
::::::
oceanic

:::::
DMS

:::::
source

:
has a larger influence on atmospheric DMS than the choice of oceanic DMS

source. We also find that linear relationships between wind and DMS flux generally compare better to observations than
:::::
DMS

::::::::
emission.

::::::::::
Simulations

::::::
testing

:::::::
different

::::::::
sea-to-air

:::::::
transfer

::::::
velocity

:::::::::::::::
parameterizations

:::::
show

:::
that

:::::::::
simulating

::
a
:::::
linear

::::::::::
dependence20

::
of

:::::
DMS

:::
gas

:::::::
transfer

:::::::
velocity

:::
as

:
a
::::::::

function
::
of

:::::
wind

:::::
speed

::::::
results

:::
in

:
a
:::::

more
::::::::
accurate

::::::::::::
representation

::
of

:::::::::::
atmospheric

:::::
DMS
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::::::::::
distributions

::::
than

:::::
using

:
quadratic relationships. Simulations that implement a quadratic emission rate show on average 35%

higher DMS mixing ratios than the linear emission rates. Simulations using seawater DMS derived from satellite chlorophyll-a

data in combination with a recently-developed flux parameterisation for DMSshow the closest
:::::::::::
chlorophyll-a

:::
data

:::::
show

:::::::
realistic

::::::::::::
spatiotemporal

:::::::::
variability

::
in

::::
DMS

::::
and

:::::
when

::::::::
combined

::::
with

::
a

::::::
recently

:::::::::
developed

:::::::
transfer

:::::::
velocity

::::::::::::::
parameterization

::
for

::::::
DMS,25

::
the

::::::
model

:::::
shows

:::::
good agreement with atmospheric DMS observationsand are recommended to be included in future simulations

:
.

::
As

::
a

::::::::
precursor

::
for

:::::::
natural

:::::
sulfate

:::::::
aerosol

:::
and

:::::
cloud

:::::::::::
condensation

::::::
nuclei,

:::::
DMS

::::
plays

:::
an

::::::::
important

::::
role

::
in

:::
the

:::::::
radiative

:::::::
balance

:::
over

::::
the

::::::::
Southern

:::::
Ocean. This work recommends for Earth System Models to include a

::::::::
highlights

::::
that

:::
the

::::::::
seawater

:::::
DMS

:::
data

::::
sets

:::
and

:
sea-to-air

::::::
transfer

:::::::
velocity

:::::::::::::::
parameterizations

::
for

:::::
DMS

:::::::::
commonly

:::::
used

::
in

::::::
climate

::::::
models

:::
are

::::::
poorly

::::::::::
constrained

::
for

:::
the

::::::::
Southern

::::::
Ocean

::::::
region.

::::
We

::::::::::
recommend

::::
that

::::::
models

:::
use

::
a
:::::
DMS

::::::::
sea-to-air

:
parameterization that is appropriate

:::
was30

::::::::
developed

::::::::::
specifically for DMS, and for oceanic DMS datasets to include inter-annual

:::::::::
incorporate

:::::
spatial

:
variability based on

observed marine biogenic activity. Such improvements will provide a more accurate process-based representation of oceanic

and atmospheric DMS, and therefore sulfate aerosol, in the Southern Ocean region.

1 Introduction

The representation of aerosols over the Southern Ocean is a large source of uncertainty in climate models due to the lack of ob-35

servational data and large seasonal variability (Revell et al., 2019). Poor representation of aerosols contributes to the large biases

in future climate projections over the Southern Ocean (Myhre et al., 2014). Sea spray and dimethyl sulfide (DMS; CH3SCH3)

are fundamental sources for aerosol formation over this region (Revell et al., 2021; Bhatti et al., 2022). The dominant source

of sulfate over the marine atmosphere is the biogenic marine aerosol precursor DMS, controlled by phytoplankton productivity

(Keller et al., 1989; Bates et al., 1987; Berndt et al., 2019)
::::::
marine

::::
biota

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Keller et al., 1989; Bates et al., 1987; Kiene and Bates, 1990; Curson et al., 2011)40

. Revell et al. (2019) found sulfate aerosol production from DMS was responsible for around 60% of the austral summer aerosol

optical depth over the Southern Ocean. Atmospheric DMS therefore has the potential to greatly influence cloud condensation

nuclei during austral summer , due to its high rate of emissions (Kloster et al., 2006; Revell et al., 2019; Korhonen et al., 2008;

Pandis et al., 1994).

The Southern Ocean contains extremely high phytoplankton
:::
and

::::::
marine

::::
biota productivity during austral summer (December,45

January, and February
::::
DJF,

:::::::::::::::::
December–February) (Deppeler and Davidson, 2017). Phytoplankton

::::::
Marine

:::::::
biogenic activity plays

a key role in chlorophyll-a (chl-a) production and is considered to be a key driver of oceanic DMS production (e.g. Uhlig et al.,

2019; Townsend and Keller, 1996; Anderson et al., 2001; Deppeler and Davidson, 2017). Earth System Models
::::::
(ESMs)

:
repre-

sent the process of oceanic DMS formation through multiple mechanisms, with varying focus
:::::::::
approaches

::::
that

:::
are

:::::::::
dependent

on chl-a, nutrients, light, mixed-layer depth, zooplankton, and dimethylsulfoniopropionate
::::::::::
concentration

:
(Bock et al., 2021).50

The UKESM1 and MIROC-ES2L
::::::
models

:
use a diagnostic approach to represent chl-a (Sellar et al., 2019; Anderson et al.,

2001; Hajima et al., 2020).
:::
The CNRM-ESM2-1 and NorESM2-LM focus on

:::::
models

:::
use

:
a prognostic approach, closely related

to zooplankton and dimethylsulfoniopropionate ,
:::::::::
abundance,

:::::
which

:::
are

::::
both

:
precursors of oceanic DMS (Seland et al., 2020;

Séférian et al., 2019).
:::::::::::::::
Bock et al. (2021)

::::::::
evaluated

::::::
oceanic

:::::
DMS

::
in

:
CMIP6 models simulate biases in oceanic DMS production
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compared
:::
and

:::::
found

::::
that

::
all

:::::::
models

:::
are

:::::
biased

::
in

::::::::::
comparison with observational climatologies of DMS in the Southern Ocean55

region(Bock et al., 2021).

Atmosphere-only
:::::
global climate models use climatologies to approximate

:::::::
prescribe

:
the global concentration of oceanic

DMS. Lana et al. (2011) and Kettle et al. (1999) constructed observational climatologies of oceanic DMS which are used

within climate
::
by

:::::
such models. However, there is a limited amount of data available within the Southern Ocean, which can

lead to biases when compared to other regions
:::::
errors

::
in

:::
the

::::::::::::
representation

::
of

:::::::
oceanic

:::::
DMS (e.g. Bock et al., 2021; Mulcahy60

et al., 2020). A limitation of representing oceanic DMS as a static climatology is that it does not account for the large temporal

variations in DMS concentrations observed. For instance, El Niño Southern Oscillation (ENSO) events, wildfires, and volcanic

eruptions all significantly influence oceanic DMS within the Southern Ocean (e.g. Yoder and Kennelly, 2003; Tang et al., 2021;

Wang et al., 2022; Browning et al., 2015; Longman et al., 2022). Calculating oceanic DMS online using a biological proxy

would resolve these perturbing events
:
to

:::::
some

::::::
degree (Galí et al., 2018).65

DMS is emitted
:::
The

::::
flux

::
of

:::::
DMS from the ocean to the atmosphere and has a strong dependence on the

::::::
depends

:::
on

:::
the

:::
gas

::::::
transfer

:::::::
velocity,

::::::
which

::
in

:::
turn

:::::::
depends

::
on

:::
the

:
surface wind speed (e.g. Fairall et al., 2011). A wealth of research has focused on

better understanding the relationship between atmospheric DMS and wind speed (Vlahos and Monahan, 2009; Zavarsky et al., 2018; Blomquist et al., 2017; Wanninkhof, 1992, 2014; Nightingale et al., 2000; Liss and Merlivat, 1986; Goddijn-Murphy et al., 2016; Ho et al., 2006; Bell et al., 2015)

. However, the uncertainty in this relationship remains high particularly within the Southern Ocean due to a lack of observational

data (e.g. Elliott, 2009; Smith et al., 2018; Zhang et al., 2020), particularly for wind speeds ≥ 13 ms−1 (Blomquist et al., 2017)70

. Recently, significant progress has been made as recent literature has established that DMS flux has a linear relationship

with wind (Goddijn-Murphy et al., 2016; Blomquist et al., 2017; Bell et al., 2015), while Earth System Models continue to

use older quadratic relationships to represent DMS emissions Bock et al. (2021)
::::::::::::::::::::
(e.g. Fairall et al., 2011).

::::::
Many

:::::
DMS

::::
flux

::::::::::::::
parameterizations

::::
have

::::
been

:::::::::
developed,

:::
but

:::::
most

:::
use

::::::
transfer

::::::::
velocities

::::::::
measured

:::
for

:::::
gases

::::
other

::::
than

:::::
DMS

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Wanninkhof, 1992, 2014; Nightingale et al., 2000; Liss and Merlivat, 1986)

:
.
:::::
Some

:::::::
studies,

::::::::
including

::::::::::::::::::::
Blomquist et al. (2017)

:::
and

:::::::::::::::
Yang et al. (2011),

:::::
used

:::::
DMS

::::::::::::
measurements

::
to

::::::
derive

::
a

::::::::::
relationship75

:::::::
between

::::
wind

:::::
speed

::::
and

:::::
DMS.

:::::::::
Depending

:::
on

:::
the

::::::::
solubility

::
of

:::
the

:::
gas

:::::::::
measured,

:::
gas

::::::
transfer

:::::::::
velocities

:::::::
typically

::::
have

::
a

:::::
linear

::
or

::::::::
quadratic

::::::::::
dependence

::
on

:::::
wind

:::::
speed.

::::::
Linear

:::::::::::
relationships

:::
best

::::::::
represent

:::::
gases

::::
with

:::::::::::
intermediate

::::::::::
solubilities,

::::
such

::
as

:::::
DMS

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Blomquist et al., 2017; Goddijn-Murphy et al., 2016; Bell et al., 2015; Yang et al., 2011; Huebert et al., 2010),

:::::
while

::::::::
quadratic

::::::::
equations

:::
are

:::::
better

:::::
suited

:::
for

:::::
highly

::::::
soluble

:::::
gases

::::
like

::::
CO2::::::::::::::::::::::::::::::::::::::::::::::::::::

(Wanninkhof, 2014; Nightingale et al., 2000; Wanninkhof, 1992).

Oceanic DMS observations
::::::::::
Uncertainty

::
in

:::::
DMS

:::::::::
emissions

:::::::
remains

::::
high,

::::::::::
particularly

:
in the Southern Ocean are highly80

variable in time and space (Lana et al., 2011; Hulswar et al., 2022; Galí et al., 2018), while the emissions of DMS are also

uncertain (e.g. Korhonen et al., 2008; Blomquist et al., 2017). This study sets out to examine whether including oceanic DMS

with spatio-temporal variabilitybased on real-world
:::::
region

:::::
where

:::::
wind

:::::
speeds

:::
are

::::
high

::::
and

:::::::::::
observational

:::
data

::::::
sparse

::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Elliott, 2009; Smith et al., 2018; Zhang et al., 2020)

:
.
:::::
ESMs

:::
use

:
a
::::::
variety

::
of

:::::::
transfer

::::::::
velocities

:
to
::::::::
represent

:::::
DMS

::::::::
emissions

:::::::::::::::
(Bock et al., 2021)

:
.
::::::::
UKESM1

::::
uses

:::
the

:::::::::::::::::::::
Liss and Merlivat (1986)

:::::::::::::
parameterization

:::::
even

::::::
though

:
it
::::
was

::::::::::
constructed

::
for

:::::
gases

:::::
other

::::
than

:::::
DMS.

:
85

::::
Here

:::
we

:::::::
examine

::::::::
whether

:::::::::::
incorporating

:::::::
realistic

:::::::
oceanic

:::::
DMS

:::::::::
variability,

::::::
based

::
on

::::::::::::::
remotely-sensed

:
chl-a observations

improves the simulation of atmospheric DMS. We investigate differences in oceanic DMS and emission parameterizations for

forming atmospheric DMS using the nudged to observation configuration of
:::::
Using

:
a
:::::::
nudged

:::::::::::
configuration

::
of

::
the

::::::::::::::
atmosphere-only

:::::
United

:::::::::
Kingdom

:::::
Earth

:::::::
System

::::::
Model

:
(UKESM1-AMIP. We calculate

::
),

:::
we

:::
use

:::::
three

::::::::::
established

::::::
oceanic

::::::
DMS

:::::::
datasets

3



:::
and

:::::
three

:::::::
transfer

:::::::
velocity

:::::::::::::::
parameterizations.

::::
We

::::
also

:::
test

:
a 10-year monthly time series calculated from chl-a

::
in

::::::
which90

:::::::
seawater

:::::
DMS

::
is

::::::::
calculated

::::::
offline

::::
from

:
MODIS-aqua satellite data implemented within the modified Anderson et al. (2001)

parameterization (Sellar et al., 2019). We also test climatologies from Lana et al. (2011), Hulswar et al. (2022), and the DMS

climatology used by UKESM1-AMIP (Sellar et al., 2019).
::::
chl-a

::::
data

::::
using

:::
the

:::::::::::::::::::
Anderson et al. (2001)

::::::
oceanic

:::::
DMS

::::::::::::::
parameterization

:::::
which

::
is

::::
used

:::
by

:::::::::
UKESM1

::::::::::::::::
(Sellar et al., 2019).

::::
We

:::::::
evaluate

::::::::
sea-to-air

::::::
fluxes

::
of

:::::
DMS

::::
and

:::::::
oceanic

:::
and

:::::::::::
atmospheric

:::::
DMS

::::::::::::
concentrations

::::::
relative

:::
to

::::::
station

:::
and

:::::::::
ship-based

::::::::::::
observations.

:::
The

::::::::::::
observational

::::
data

::::
sets

:::
are

::::::::
described

::
in

:::::::
Section

::::
2.4,

:::
the95

:::::
model

:::::::::::
configuration

::
is

::::::::
described

::
in
:::::::
Section

:::
2.1,

::::
and

::::::
details

::
of

:::
the

::::::
oceanic

:
DMS emissions are calculated using two quadratic

(Wanninkhof, 2014; Nightingale et al., 2000) and two linear (Liss and Merlivat, 1986; Blomquist et al., 2017)
:::
data

:::
sets

::::
and sea-

to-air flux parameterizations. Evaluating the process and sensitivity of DMS from the ocean to the atmosphere in climate models

is critical for the further development of models and for understanding the biogeochemical cycle. We compare the DMS

variability across the Southern Ocean during summer, improving our understanding of the relative importance of choosing100

the source (oceanic DMS ) and emissions.
::::::
transfer

:::::::
velocity

::::::::::::::
parameterizations

::::::
tested

:::
are

::
in

:::::::
Sections

:::
2.2

::::
and

:::
2.3,

:::::::::::
respectively.

::::::
Results

::::::
follow

::
in

::::::
Section

::
3.

:

2 Methods

2.1 Model Configuration
:::
and

::::::::::
Evaluation

Simulations were performed using the atmosphere-only configuration of the coupled UK Earth System Model (UKESM1; Yool105

et al., 2020; Sellar et al., 2019; Mulcahy et al., 2020).
::
By

:::::::
default,

::::::::::
atmospheric

:::::
DMS

::
is

::::::::
produced

:::
via

:::
the

::::::::::::::::
Lana et al. (2011)

::::::
oceanic

:::::
DMS

::::
data

::::
set

:::
and

:::::::::::::::::::::
Liss and Merlivat (1986)

::::::::
sea-to-air

:::::::
transfer

:::::::
velocity

:::::::::::::::
parameterization.

:::::::::::
Atmospheric

:::::
DMS

:::::
then

:::::::
oxidises

::
to

::::
form

::::::
sulfate

:::::::
aerosols.

::
In UKESM1simulates ocean biogeochemistry via an intermediate complexity biogeochemical

dynamic model, MEDUSA2.0 (the Model of Ecosystem Dynamics, nutrient Utilization, Sequestration, and Acidification; Yool et al., 2020, 2013)

. MEDUSA is used in UKESM1 to represent biogeochemical feedbacks within the Nucleus for European Modelling of the110

Ocean (NEMO) ocean model (Madec and others, 2008). The aerosol component of UKESM1 uses the GLOMAP-mode aerosol

scheme, which is described in full by Mulcahy et al. (2020) and Mann et al. (2010, 2012). ,
:::::::
aerosol

::::::
growth,

:::::::::
chemistry

::::
and

::::::
removal

:::
are

:::::::
handled

:::
by

:::
the

::::::::::::::
GLOMAP-mode

::::::
scheme

:::::::::::::::::::
(Mulcahy et al., 2020).

:

Wind and temperatures within the simulations used in this study are nudged 6-hourly to real-world conditions via the

use of the
::
are

:::::::
nudged

::
to
::::::::

6-hourly
:
ERA-5 reanalysis data (Hersbach et al., 2020). The full description of how nudging is115

incorporated within the UKESM1-AMIP is outlined in more detail by Telford et al. (2008). As noted by Pithan et al. (2022) and

Kuma et al. (2020), nudging simulations can enhance the precision of simulations used for assessing atmospheric processes.

Specifically, it allows for a more accurate representation of meteorological factors such as wind speed, which play a key role

in
:::
the

:::::::
nudging

:::::::::::
configuration

::
is

:::::::
outlined

::
in
:::::::::::::::::

Telford et al. (2008)
:
.
:::::::
Nudging

:::::::
ensures

::::
that

::::
wind

:::::::
speeds,

:::::
which

:::
are

::::::
pivotal

:::
to the

formation of atmospheric DMS. Using nudged runs also allows us to better evaluate our simulations against observational120

measurements made during voyages.
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The sea-to-air transfer of DMS in our simulations is discussed in Section 2.3. All simulations in this study
:
,
:::
are

:::::::::
accurately

:::::::::
represented

::::::::::::::::::::::::::::::::
(Pithan et al., 2022; Kuma et al., 2020)

:::
and

::::::
allows

::::::::::
like-for-like

::::::::::
comparisons

::::::
against

:::::::::::
observations.

:::
Sea

:::::::
surface

:::::::::
temperature

:::
and

:::
sea

:::
ice

:::
data

:::::
from

:::
The

::::::
Hadley

::::::
Centre

::::::
Global

:::
Sea

:::
Ice

:::
and

:::
Sea

:::::::
Surface

::::::::::
Temperature

::::
were

:::::
used

::::::::::::::::::::::::::::::::
(HadISST; Titchner and Rayner, 2014)

:
.
::::::::::
Simulations are 10 years long, spanning

::::
from 2009 to 2018. We focus on the austral summer months (December–February;125

DJF)due to the summer being the most biologically productive season
::::
This

:::::
period

::::
was

::::::
chosen

::
to

:::::::
coincide

::::
with

:::
the

::::::::::
availability

::
of

:::::
recent

:::::
DMS

::::::::::
observations

::::::::
(Section

:::
2.4).

In this paper, we compare observational data to our simulations using the same hourly timescales
::::::::::
Atmospheric

:::::
DMS

::::::::::::
concentrations

::
are

::::::::
analyzed

::
at

:::
the

:::::
lowest

::::::
model

::::
level,

::
at

::
20

::
m

::::::
during

::::
DJF,

:::::
which

::
is

:::
the

::::
most

:::::::::
productive

::::::
season

::
for

:::::
DMS

:::::::::::::::::::::::::::::::::::::::::::::::::
(Deppeler and Davidson, 2017; Jarníková and Tortell, 2016)

:
.
::::::
Hourly

::::::
output

::::
was

:::::
saved

::
to

::::::::
compare

::::
with

:::::::::::
observations

::::::
where

:::::::::
applicable

::::
(for

::::::::
example,

:::::::
voyages

:::::::
provide

:::::::::::
observations

::
at130

:::::
hourly

::::::::
temporal

:::::::::
frequency). To evaluate variability, we use the coefficient of variation (CoV)which is a statistical measure that

compares the variability of data by expressing the standard deviation as a percentage of the mean. CoV is used to compare the

variability between each of the simulations oceanic DMS, DMS emissions, and atmospheric DMS concentration.
:
.
:
A higher

CoV suggests that the variability or dispersion of the data is relatively large compared to its mean. Where uncertainty is re-

ported, 1 standard deviation through time and space
:::
one

:::::::
standard

::::::::
deviation

:::::::::
calculated

::::
over

:::
the

::::::
relevant

:::::::
domain

:::
and

::::
time

::::::
period135

is stated.

2.2 Oceanic DMS

We input four oceanic DMS data sets into the atmospheric model: three climatologies and one 10-year time-series between

2009 to 2018. Two are observational-based climatologies
:::
time

::::::
series.

:::::::::::::::::
Observational-based

:::::::::::
climatologies

:::
are

:
from Lana et al.

(2011) (hereafter ‘Lana’) and Hulswar et al. (2022) (hereafter ‘Hulswar’). The ‘MEDUSA’ climatology (1979-2014) is sourced140

::::::::
originates from the UKESM1 CMIP6 repository, MEDUSA (Yool et al., 2021; Sellar et al., 2019). See

::::::::::::::::::::::::::::::::::::::::::::
(Yool et al., 2021; Sellar et al., 2019; Tang et al., 2019)

:
. Table 1 for an outline of

:::::::
outlines the oceanic DMS climatologies and dataset used.

:::::::
datasets

::::
used.

::::::
Ocean

::::::::::::::
biogeochemistry

::
is

::::::::
simulated

::
in

:::
the

::::::::
UKESM1

:::
via

:::::::::::
MEDUSA2.0

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(the Model of Ecosystem Dynamics, nutrient Utilization, Sequestration, and Acidification; Yool et al., 2020, 2013)

:
.
:::
The

::::
time

:::::
series

::::
was

::::::::
calculated

::::::
offline

::::
using

::
a
::::::::::
combination

::
of

:::::::
satellite

::::
data

:::
and

:::
the

::::::::
UKESM1

::::::::
approach

::
to

:::::::::
calculating

::::::::
seawater

:::::
DMS,

::
as

:::::::::
described

::::::
below.145

The
:
In

:
UKESM1uses a diagnostic approach in the formulation of oceanic DMS, which is calculated online using ,

:::::::
oceanic

::::
DMS

:::::::::::::
concentrations

:::
are

:::::::::
calculated

:::::
using

::
a

:::::::::
diagnostic

::::::
method

:::::
from

:::::::::::::::::::
Anderson et al. (2001),

::::::
using surface daily shortwave

radiation (J), dissolved inorganic nitrogen (Q), and surface chl-a (C):

Oceanic DMS = a, for log(CJQ)≤ s (1)

150

Oceanic DMS = b[log(CJQ)− s] + 1, for log(CJQ)> s (2)

The fitted parameter values are a=1, b=8, and s=1.56, as described by Sellar et al. (2019). The online oceanic DMS from

MEDUSA in the UKESM1 shows small annual variability and therefore a 30-year climatology will represent MEDUSA
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Table 1. Oceanic DMS data sets used in the model simulations.

Oceanic DMS dataset Source Citation Year of Data

Lana Oceanic DMS observations Lana et al. (2011) 1972 - 2009

Hulswar Oceanic DMS observations Hulswar et al. (2022) 1972 - 2021

MEDUSA UKESM1 CMIP6 simulations Anderson et al. (2001); Sellar et al. (2019) 1979 - 2014

MODIS-DMS MODIS-aqua chlorophyll-a via

Anderson et al. (2001)

N/A (produced for this study) 2009 - 2018

well. Qand ,
:
chl-aare taken from MEDUSA, and J is from the atmosphere component of the UKESM1, the Unified Model.

Chl-a is used to calculate oceanic DMS concentrations in other
::
are

::::::::
averaged

:::::
from CMIP6 models, such as MIROC-ES2L,155

and within algorithms such as that detailed by Galí et al. (2018). The Anderson et al. (2001) parameterization is a widely

used
:::
for

:::
the

:::::::::
MEDUSA

::::::::::
climatology.

::::
The

:::::::::::::::::::
Anderson et al. (2001)

::::::::::::::
parameterization

::::::::
produces

:::::::
positive

:::::
biases

::
in
:::::

DMS
:::::

over
:::
the

:::::::
Southern

::::::
Ocean

::::::
within

:::::::::
MEDUSA

::::::::::::::::
(Bock et al., 2021)

:::
due

:::
to

:::
the

:::
set

:::::::::
minimum

::::::
oceanic

::::::::::::
concentration

:::
of

::
1,

:::::
which

:::::
leads

:::
to

::::
large

:::::::
average

:::::
DMS

::::::::::::
concentrations

::::::::::::::::::::::::::::::
(Yool et al., 2021; Bock et al., 2021)

:
.
::::::
Recent

:::::::
research

::::::::
suggests

:::
that

:::::
chl-a

::::
may

::::
not

::
be

:::
an

:::::::::
appropriate

:::::
proxy

:::
for

:::::::
oceanic

:::::
DMS

::::::::::::::::::::::::::::::
(Uhlig et al., 2019; Bell et al., 2021),

:
and well-validated method for calculating oceanic160

DMSin UKESM1. Here, we have tested a modified version of it using the MODIS-aqua
:::::
future

:::::
work

:::
will

:::::::
explore

:::::::::
alternative

:::::::
methods

:::
for

:::::::::
calculating

:::::::
oceanic

::::
DMS

::::::
within

:::::::::
UKESM1.

:::::::::::
Nonetheless, chl-

:
a

:
is
::::::

widely
:::::
used

::
by

::::::::::
CMIP6-era

::::::
models

::
to

::::::::
calculate

::::::
oceanic

::::::
DMS,

:::
and

:::
we

::::::
explore

:::::
here

:::::::
whether

::::
using

:::
an

:::::::::::::
observationally

::::::
derived

::::
chl-a dataset. This data set,

:::::::::::
concentration

::::
field

::::
leads

::
to

:::::::
changes

:::
in

:::
the

::::::
spatial

:::
and

::::::::
temporal

:::::::::
variability

::
of

:::::::::::
atmospheric

:::::
DMS.

:::::::::::::
Monthly-mean

:::::
chl-a

::::::::::::
concentrations

:::::
from

:::
the

::::::::
Moderate

:::::::::
Resolution

:::::::
Imaging

::::::::::::::::
Spectroradiometer

:::::::::::::
(MODIS)-aqua

::::::
satellite

::::::::::
instrument

::::
were

::::
used

:::
to

::::::::
construct

:
a
::::
time

:::::
series

:::
of165

::::::
oceanic

:::::
DMS

:::::::
between

:::::::::
2009–2018

:::::::::::::::::::::::::::::::::::::::::::::
(Table 1; Hu et al., 2019; O’Reilly and Werdell, 2019).

::::
This

::::
time

::::::
series,

:::::
which

:::
we

::::
term

:::
the

‘MODIS-DMS’ , is a continuous time series between 2009 to 2018. MODIS-DMS is
:::
data

:::
set,

::
is
:
calculated offline using the

same diagnostic parameterization (Anderson et al., 2001; Sellar et al., 2019) as Equations 1 and 2. The UKESM1 has a +6

W m−2 bias for J within CMIP6 over the Southern Ocean, which may result in slightly higher oceanic DMS concentrations

(Schuddeboom and McDonald, 2021). The J and Q used to calculate MODIS-DMS remain the same to MEDUSA, but a170

new monthly-mean
::
as

:::::::::
MEDUSA.

::::::::
Through

:::
this,

:::
we

:::::::
capture

:::::
spatial

::::
and

:::::::::
interannual

:
chl-a field (C) is introduced via Moderate

Resolution Imaging Spectroradiometer (MODIS) -Aqua Level-3 ocean-color chl-a (Table 1; e.g. Hu et al., 2019; O’Reilly and Werdell, 2019)

:::::::::
variability,

::::::::
indicating

:::::::::
biological

::::::::::
productivity. Bi-linear interpolation is used to fill in small gaps (around 1% for monthly av-

erages) of spatial chl-a data. Using the MODIS-Aqua chl-a satellite data, oceanic DMS concentrations were calculated each

month for our 10 year period. From this, we capture the annual variability of the distribution in ocean biological productivity175

(referenced in this work as MODIS-DMS). Our goal is to understand the relationship between oceanic biological productivity,

as represented by chl-a, and atmospheric DMS concentrations in the Southern Ocean during austral summer. We then evaluate

which oceanic DMS sources produce the best distribution compared to observations.
::::::
Oceanic

:::::
DMS

::::::::::::
concentrations

:::
are

:::::::
masked

:::::
where

::::
they

:::::::
coincide

::::::
within

:::
the

::::::
sea-ice

::::
zone

::::
from

:::::::::
HadISST.
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Several studies have validated the
:
In
:::::::
general,

:::
the MODIS-aqua Ocean Color chl-a retrieval , finding it to generally underestimate180

Southern Ocean conditions (Zeng et al., 2016; Haëntjens et al., 2017; Jena, 2017). Satellites can also overestimate chl-a measurements

due to the scattering of light from aerosols (Schollaert et al., 2003). However, Marrari et al. (2006) found satellite chl-a is

accurate within the Southern Ocean during summer. Therefore the
::::::::::::
underestimates

::::::::
Southern

::::::
Ocean

::::::::::
chlorophyll

::::::::::::
concentrations

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Zeng et al., 2016; Haëntjens et al., 2017; Jena, 2017; Gregg and Casey, 2007; Johnson et al., 2013).

:::::::::
Simulated

:::::::
oceanic

:::::
DMS

:::
may

::::::::
therefore

:::
be

::::::::::::
systematically

:::::::::::::
underestimated.

:::::::::::
Nonetheless,

:::
the

:
high spatial and temporal availability of summertime data185

makes chl-a a viable option for estimating phytoplankton productivity and oceanic DMS. Using the MODIS-DMS data set,

we aim to accurately simulate maxima and minima in oceanic DMSconcentrations comparable to observations. By comparing

the model results with observations, we can identify and understand the impact of phytoplankton bloom events and annual

variability which can not be captured by climatologies.
:::::::::::
observations

:::::
during

:::::::::::
summertime

:::::
makes

:
it
::::::
useful

::
to

::::::
explore

::::::::::::
spatiotemporal

::::::::
variability

::
in

:::::::::::
atmospheric

:::::
DMS.190

2.3 DMS Sea-to-Air Flux

To calculate the transfer of DMS from the ocean to the atmosphere, a parameterization is used which is controlled by wind

speed. The formulation of the transfer velocity is derived from observational measurements of a particular gas. Many flux

parameterisations have been developed, but these have mostly been based on gases such as CO2 (e.g. Wanninkhof, 2014). These

parameterizations are widely implemented within climate models to represent DMS but vary depending on the model. We tested195

three flux parameterisations shown in
:::::
Three

:::::
DMS

:::::::
transfer

::::::::
velocities

:::
are

:::::
tested

::
(Figure 1. Blomquist et al. (2017) (hereafter

‘B17’) used DMS measurements to derive a relationship between wind speed and DMS, whereas Wanninkhof (2014) (W14)and

Liss and Merlivat (1986) (
:
,
::::
Table

:::
2).

::::
Two

:::
are

:::::
linear

::::::::
equations

::::
from

:::::::::::::::::::::
Liss and Merlivat (1986)

::::::::
(hereafter

:
‘LM86) used CO2, and

other high solubility gases. Sea-to-air parameterizations are typically linear or quadratic, depending on the solubility of the gas.

Linear equations best represent gases with intermediate solubilities, such as DMS (e.g. Blomquist et al., 2017; Goddijn-Murphy et al., 2016; Bell et al., 2015)200

, while quadratic equations are better suited for highly soluble gases like CO2 (Wanninkhof, 2014; Nightingale et al., 2000; Wanninkhof, 1992)

. This study uses two linear equations from LM86 and
:
’)

:::
and

::::::::::::::::::::
Blomquist et al. (2017)

:::::::
(hereafter

:
‘B17to represent DMS emissions

more accurately compared with observations, as suggested by Blomquist et al. (2017) and Goddijn-Murphy et al. (2016). LM86

is a piecewise function consisting of three lines with different gradients and intercepts, depending on the wind speed (Figure 1
:
’).

LM86 is used as the default flux parameterization within the
::::::
default

::::::::::::::
parameterization

::::::
within UKESM1 (Sellar et al., 2019)205

and is thus used on with oceanic DMS datasets
::::
was

::::::::
evaluated

::
in

::::::::::
combination

:::::
with

::
all

:::::::
oceanic

:::::
DMS

::::
data

:::
sets. The quadratic

formula from Wanninkhof (2014)
::::::::
(hereafter

::::::
‘W14’)

:
is also tested. Using these different parameterizations provides an estimate

of
:::::::::
appropriate

::::::::
estimate

:::
for the spread of DMS emissions . The Lana oceanic DMS climatology is tested with the W14, and

B17 fluxes, as Lana is currently the most widely used climatology within climate models (Bhatti et al., 2022). We also apply

the W14 and B17 flux parameterisations to the MODIS-DMS oceanic DMS dataset to test the
:::
due

:::
to

:::
the

:::::
upper

::::
and lower210

limits of oceanic DMS concentrations to assess the variation from the time-series
::::
DMS

:::::::
transfer

:::::::
velocity

:::::
tested

:::::
from

::::::
in-situ

::::
DMS

:::::::::::::
measurements

:::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Goddijn-Murphy et al., 2016; Blomquist et al., 2017). Table 2 outlines the sensitivity simulations

performedfor this study, described by
::::::::::
summarizes

:::
the

::::::::
sensitivity

:::::::::
simulation

::::::
names

:::::::::
performed.

::::::::::
Simulations

:::
are

::::::
named

::::
with the
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Table 2. Simulations used in this study,
:::::
named with the oceanic DMS data sets as the name

::::::::::
concentration

::::
used, followed by

::::::::
subscripted

::::
with

the DMS flux parameterization
:::::::
sea-to-air

::::::
transfer

::::::
velocity used.

Simulation name Oceanic DMS source DMS flux
::::::
transfer

:::::::
velocity parameterization

LanaLM86 Lana et al. (2011) Liss and Merlivat (1986)

LanaB17 Lana et al. (2011) Blomquist et al. (2017)

LanaW14 Lana et al. (2011) Wanninkhof (2014)

HulswarLM86 Hulswar et al. (2022) Liss and Merlivat (1986)

MEDUSALM86 Anderson et al. (2001); Sellar et al. (2019) Liss and Merlivat (1986)

MODISLM86 N/A (produced for this study) Liss and Merlivat (1986)

MODISB17 N/A (produced for this study) Blomquist et al. (2017)

MODISW14 N/A (produced for this study) Wanninkhof (2014)

:::::::::::::
MODISB17CLIM

:::
N/A

::::::::::
(climatology

:::::::
produced

:::
for

:::
this

:::::
study)

:::::::::::::::::
Blomquist et al. (2017)

oceanic DMS concentration
::::
used,

:
subscripted with the sea-to-air flux

::::::
transfer

:::::::
velocity

:
used. For example, LanaLM86 means

that the simulation used the Lana et al. (2011) climatology as its oceanic DMS source, and the DMS flux parameterisation215

::::::
transfer

:::::::
velocity

::::::::::::::
parameterization of Liss and Merlivat (1986).

To calculate the flux of DMS, the Schmidt number of DMS is required
:::
The

:::::::
Schmidt

:::::::
number

:::
for

:::::
DMS

::
is

::::
used

::
to

::::::::
calculate

::
the

:::::
DMS

::::::::
emission. The Schmidt number describes the mixing efficiency of a substance in a fluid and is used to calculate

the transfer velocity of gasfrom the sea to air
::::::::
represents

:::
the

::::::::::::::::
viscosity/diffusion

::::::::
properties

::
of

::
a
::::
gas,

::::::
varying

::::
with

:::::::
respect

::
to

:::
sea

::::::
surface

::::::::::
temperature

::
(T

::
in
::::

◦C). We update the Schmidt number of DMS (ScDMS) used in the UKESM1 from the formulation220

used in Saltzman et al. (1993) to Wanninkhof (2014), as shown in Equation 3:

ScDMS = 2855.7+ (−177.63+ (6.0438+ (−0.11645+0.00094743 ·T ) ·T ) ·T ) ·T (3)

T is the sea surface temperature derived from The Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST )

within the model (Titchner and Rayner, 2014). LM86 was constructed based on gases other than DMS, but is often used for

DMS emissions within CMIP6 Earth System and climate models (e.g. Horowitz et al., 2020; Tang et al., 2019; Yukimoto et al., 2019)225

. In equation 4,
:::::
Where

::
T

::
is

::::::
derived

:::::
from

::::::::
HadISST

:::::::::::::::::::::::
(Titchner and Rayner, 2014)

:
. U10 is the wind speed at

::
(m

::::
s−1)

:::::::::
represents

::::::::::
near-surface

:
(10m above the surface

:::
m)

:::::
wind

:::::
speed and Kw ::::

(cm
::::
h−1)

:
represents the transfer velocity of DMS.

::::::::
Equation

::
4

::::::::
represents

:::
the

::::::
LM86

::::::
transfer

:::::::
velocity

::
of

:::::
DMS:

8



for u10 ≤ 3.6 :

Kw = 0.17

(
600

ScDMS

) 2
3

u10,

for 3.6≤ u10 < 13 :

Kw = 2.85

(
600

ScDMS

) 1
2

(u10 − 3.6)+0.612

(
600

ScDMS

) 2
3

,

for u10 > 13 :

Kw = 5.9(u10 − 13)

(
600

ScDMS

) 1
2

+26.79(u10 − 3.6)

(
600

ScDMS

) 1
2

+0.612

(
600

ScDMS

) 2
3

(4)

W14 uses a quadratic formula (equation 5) to empirically fit observations of CO2 as a
::
for

:
sea-to-air transfer. W14 is also230

very frequently used to calculate DMS emissions amongst CMIP6 simulations
::::::
models (e.g. Tjiputra et al., 2020).

Kw = 0.251 ·u2
10

(
660

ScDMS

) 1
2

(5)

Finally, B17 is the only parameterization used
:::::
tested in this study which calculates a transfer velocity

:::
for

:::::
which

:::
the

:::::::
transfer

::::::
velocity

::
is
:
based on real-world observation of DMS (equation

:::::::
Equation 6). B17 is a superlinear and sub-quadratic parameteri-

zation, however, for simplicity and the wind speeds used in this study, we label B17 as a linear parameterization.235

Kw = 0.7432 ·u1.33
10

(
660

ScDMS

) 1
2

(6)

::
To

:::::
assess

:::
the

:::::::::::
inter-annual

::::::::
variability

::
of
:::::

DMS
:::::::::
emissions

:::
and

:::::::::::
atmospheric

::::
DMS

:::::::::::::
concentrations,

:::
we

:::::::::
performed

::
an

:::::::::
additional

::::::
10-year

::::::::::
simulation,

:::::::::::::::
MODISB17CLIM.

::::::
While

::::::::::
MODISB17 ::::

used
::
a

::::::
10-year

::::
time

::::::
series

::
of

:::::::
oceanic

:::::
DMS

::::::
derived

:::::
from

:::::::
MODIS

:::::::::::
chlorophyll-a

::::
data,

:::::::::::::::
MODISB17CLIM

::::
used

:
a
:::::::::::
climatology

::::::::
calculated

::::
from

:::::::::::::
monthly-mean

:::
data

:::
for

:::
the

:::::::
10-year

::::::::::
MODISB17 ::::

time

:::::
series.

:
240

2.4 Observational Datasets

2.4.1
::::
DMS

::::::::
Datasets

Two Southern Ocean voyages are used to validate
:::::::
evaluate our simulations: the SOAP (Surface Ocean Aerosol Production; Bell et al., 2015; Law et al., 2017)

campaign
::::::::
campaign

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Surface Ocean Aerosol Production; Bell et al., 2015; Law et al., 2017) and RV Tangaroa voyage (TAN1802;

Kremser et al., 2021). The SOAP voyage measured oceanic and atmospheric DMS from Feb-March 2012 near the Chatham245

Rise (within 42–47 ◦S, 172–180 ◦E) off the east coast of New Zealand , a highly biologically productive region of the Southern

Ocean (Bell et al., 2015; Smith et al., 2018). The TAN1802 voyage measured oceanic DMS along a transect in the Southern

9
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Figure 1. DMS sea-to-air flux parameterizations
:::::
transfer

::::::::
velocities tested in this study. LM86 = Liss and Merlivat (1986); W14 = Wanninkhof

(2014)and ;
:
B17 represents

:
= Blomquist et al. (2017). The gases labelled in the legend are the measurements taken to identify the gas exchange

relationship.

Ocean during Feb-March 2018 between latitudes 40 ◦S to 70 ◦S, 180 ◦E (Kremser et al., 2021). Other voyages outside the

years covered by our nudged simulations , but included in the atmospheric DMS analysis are the SOIREE and ANDREXII

voyages, used to calculate the observational atmospheric DMS . SOIREE occurred in
::
We

::::
also

::::::
extend

:::
the

::::::::::
simulations

::
to

:::::
cover250

::
the

:::::::::::
ANDREXII

::::::
voyage

:::::::
between

:::
Feb

:
-
:::::
April

:::::
2019

::
for

:::::::::::
atmospheric

::::
DMS

::::::::::::
concentrations

:::
as

:::
this

::::::
voyage

::::::
mostly

::::::::
measured

::::::
during

::::::
autumn

:::::::::::::::
(Wohl et al., 2020)

:
.
::::::::::
ANDREXII

:::::::
traveled

::::::::::::
longitudinally

::::::
around

::
60

:::

◦S.
::::::::
Although

:::::::
outside

:::
our

:::::::::
simulation

:::::
range,

:::
we

::::
also

:::::::
consider

:::::::
SOIREE

:::
for

:::::::::::
atmospheric

:::::
DMS

:::::::
analysis

::::
from

:
Feb 1999 and measured atmospheric DMS concentration (Boyd and

Law, 2001) between 42 - 63 ◦S, 139–172 ◦E. ANDREXII (Wohl et al., 2020) travelled longitudinally around 60 ◦S, between

February to April 2019.255

We used oceanic DMS measurements for TAN1802 Kremser et al. (2021), SOAP (Bell et al., 2015), and ERA-5 surface wind

speeds (Hersbach et al., 2020) to calculate hourly DMS emissions. The Wanninkhof (2014)
::::::::::::::::
Wanninkhof (2014) DMS Schmidt

number is calculated using the same parameters used within the simulations, for consistency with comparisons to simulated

fluxes. Sea ice and sea surface temperature data are from the Met Office Hadley Centre’s sea ice and sea surface temperature

(HadISST; Titchner and Rayner, 2014), where sea surface temperature represents T in Equation 3. The HadISST and ERA-5260

wind speed data were obtained for the same time and location as the two voyages (within the nearest neighbour
:::::::
neighbor

:
grid

cell). We applied three different sea-to-air flux parameterizations (LM86, B17, and W14) to both SOAP and TAN1802 voyage

paths (See section 3.2).
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We compare our simulations to the voyage dataset using the hourly model output and identify the nearest neighbour
:::::::
neighbor

grid cell to the ship location. Analysis of oceanic DMS data used in the models is also synchronized to TAN1802 and SOAP265

voyages, using the same timescales for comparing the voyages with model data.

We also validate the model using atmospheric DMS concentrations measured at three
:::
two

:
stations: Cape Grim (1989 to

1996; 41 ◦S and 145 ◦E) ; Amsterdam Island (1987 to 2008; 38 ◦S, 78 ◦E); and King Sejong Station (2018 to 2020; 62 ◦S,

58 ◦W). King Sejong is located on the Antarctic Peninsula, where sea ice melt occurs during our study period, which can

profoundly increase DMS emissions, as previously found by Berresheim et al. (1998); Read et al. (2008). The climatologies270

from Amsterdam Island and Cape Grim stations

2.4.2
:::::
Cloud

::::
and

:::::::
Aerosol

::::::::::::
Observations

:::::::::::
MODIS-aqua

:::::::
aerosol

::::::
optical

:::::
depth

:::::::
(AOD)

::::::::::::
measurements

::
at

::::
550

:::
nm

:::::::::::::::::::
(Platnick et al., 2017) are compared with the model

climatology of atmospheric DMS. The King Sejong measurements align with our simulation period, and so we compare both

datasetson the same timescale
::::
each

::::::::::
daily-mean

:::::
model

:::::::
output.

:::::::::::::
Daily-averaged

::::::::::
observations

:::::
from

::::::::::::::::::::
Grosvenor et al. (2018)

:::
and275

:::::::::::::::::::::::
Bennartz and Rausch (2017)

::::
were

::::
used

:::
to

:::::::
compare

:::
the

:::::
cloud

::::::
droplet

:::::::
number

:::::::::::
concentration

::::::::
(CDNC)

::::
with

:::
our

:::::::::::::
daily-averaged

::::::::::
simulations.

::::::
Finally,

::
to

:::::::
evaluate

:::::
cloud

:::::::::::
condensation

:::::
nuclei

::::::
(CCN),

:::
we

::::
used

:::::::::::::::::::::::::
Choudhury and Tesche (2023)

::
at

:::
818

:::
m,

:
in
::::::::::
comparison

::::
with

::::::::
simulated

:::::
CCN

::
at
::::

800
:::
m.

::::
The

:::::::::
description

::::
and

:::::::::
evaluation

:::
of

:::::
using

:::::::::::::::
MODIS-observed

:::::
AOD

::::::::
compared

:::::
with

:
a
:::::::

related

:::::::::::
configuration

::
of

::::::::::::::
UKESM1-AMIP

::
is

::::::::
discussed

::
in

::::
more

:::::
detail

::
in

:::::::::::::::::
Revell et al. (2019)

::
and

::::::::::::::::::
Mulcahy et al. (2020)

:
.
:::
We

:::::::
calculate

:::
an

:::::
austral

:::::::::::
summertime

::::::::::
climatology

:::
for

::::
these

::::::::::::
observational

:::::::
datasets,

:::::
which

:::
we

:::
use

::::
over

:::
the

::::::::
Southern

::::::
Ocean.280

3 Results
:::
and

:::::::::
Discussion

3.1 Oceanic DMS

Figure 2a-d shows the spatial distribution of the oceanic DMS from the different datasets used in this study
::::
each

:::::::
oceanic

::::
DMS

:::::::
dataset. Each distribution has key defining characteristics, although Hulswar (Figure 2d) is similar

::
an

::::::
update

:
to Lana

(Figure 2c)as it is an updated version. When the dataset includes chlorophyll-a (chl-a), oceanic DMS has distinguishable285

features across latitudes, partly due to the influence of the Southern Hemisphere westerly jet, driving ocean circulation and

transporting phytoplankton (e.g. Allison et al., 2010; Li et al., 2016). The only difference between the calculation of
:
.
::::
The

::::::::
distinction

::::::::
between MODIS-DMS and MEDUSA oceanic DMS is the

::::::::::
calculations

::
is chl-ainput, however, their distributions

of oceanic DMS in the Southern Ocean are largely different , as illustrated
:::::
which

::::::
results

::
in

::::::::
distinctly

::::::::
different

:::::::::::
distributions,

::
as

::::::
shown in Figure 2e. Observational-based climatologies, such as in

:::
like Lana or Hulswar(Figure 2c, d), do not consider290

other proxies of oceanic DMS (Lana et al., 2011; Hulswar et al., 2022). Lana and Hulswar (Figure 2c,d), do not match the

distribution of
:
,
::
do

:::
not

:::::
align

::::
with

:::
the

:
chl-a

:::::::::
distribution in the Southern Ocean, particularly along the Antarctic Circumpolar

Current, as oceanic DMS concentrations are focused to a specific region,
:::::::::::
concentrating

:::::::
oceanic

:::::
DMS

::
in

::::::
specific

:::::::
regions based

only on observations of oceanic DMS (Lana et al., 2011; Hulswar et al., 2022). The
::::
mean

:
difference between the mean of
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MODIS and MEDUSA (the lowest and highest
:::::
lowest

::::::::::::::
(MODIS-DMS)

:::
and

::::::
highest

:::::::::::
(MEDUSA) mean of all the oceanic DMS295

datasets used ) is 107%, respectively.

MEDUSA produces the most homogeneous oceanic DMS distribution in the summertime Southern Ocean, with the highest

mean of 4.88 nM. Additionally, it has the
:::
and

:
smallest standard deviation of

::::
(4.88±0.87 nM(and

:
).
::

It
::::

also
::::
has the lowest

CoV of ±17% indicating a small spread of variance). The chl-
:
.
::::
Chl-a calculated by MEDUSA has

:
in

:::::::::
MEDUSA

::::::
shows

:
a

positive bias when compared to
::::::
against

:::::::
summer observations in the Southern Ocean during summer (Yool et al., 2013, 2021)300

, resulting in higher oceanic DMS concentrations than other datasets
:::::::::::::::::::
(Yool et al., 2013, 2021). In contrast, the MODIS-DMS

dataset produces
::
has

:
low oceanic DMS concentrations in open ocean regions, but very

::
and

:
high concentrations in biologically

productive regions (near the subtropical front), such as the Chatham Rise and coastal South America (Behrens and Bostock,

2023). MODIS-DMS exhibits large variability due to locally-enhanced chl-a concentrations along coastal regions and the

mid-latitudes (40-50 ◦S)of the Southern Ocean. Oceanic DMS from MODIS has a mean of
:::
has

:::
the

:::::
largest

::::::
spatial

:::::::::
variability

::
in305

::::::
oceanic

:::::
DMS

::::::
overall

:::::
(CoV

:::::
67%).

::::
The

:::::
mean

::::::
oceanic

:::::
DMS

::
in

::::::::::::
MODIS-DMS

::
is 2.36±1.57 nM(CoV of 67%), which is outside

the range of oceanic DMS produced by MEDUSA, highlighting the sensitivity of the Anderson et al. (2001) parameterization

to the chl-a concentration
:::::::::::
concentrations.

::
In

:::
the MODIS-DMS

:::::::::
simulation,

:
oceanic DMS concentrations vary each summertime

::::::
summer

:
across the Southern Ocean

during the 10 year
:::
over

::
a

::::::
10-year

:
climatology (See Figure ?? in the supplementary materials

:::
??a

::
in

:::
the

::::::::
appendix). The year310

with the highest mean oceanic DMS concentration observed by the MODIS-DMS dataset (2.58±2.12 nM) occurred in 2010

(Figure ??), with a 16.2% higher concentration than the lowest concentration in 2015 (2.22±1.88 nM). The largest interannual

variability in MODIS-DMS
::::
most

:::::::::
significant

:::::::::
interannual

:::::::::
variability

:
occurs around New Zealand and the East Coast of South

Americaand is likely caused by specific phytoplankton bloom events, possibly being
:::::
South

:::::::::
America’s

::::
East

:::::
Coast,

:::::
likely

:::::
from

::::::::::::
phytoplankton

::::::
blooms

:
influenced by ENSO (e.g. Santoso et al., 2017; Thompson et al., 2015; Yoder and Kennelly, 2003)315

. Oceanic DMS climatologies do not capture these inter-annual oceanic events. Furthermore, voyages that measure oceanic

DMS often have specific research targets which can cause asampling bias within the climatologies compiled from in-situ

observations. Voyages also only collect data during specific months within specific regions. For example, the SOAP voyage

targeted phytoplankton blooms and their accompanying high oceanic DMS concentrations (Bell et al., 2015).

Factors such as melting sea ice can also affect chl-a, and therefore oceanic DMS (Behera et al., 2020; Berresheim et al., 1998)320

. Phytoplankton activity, such as bloom events, affect chl-a concentrations (e.g. Uhlig et al., 2019; Matrai et al., 1993) and will

be captured by the MODIS-DMS simulations, but not by the climatologies; MEDUSA currently lacks the ability to represent

realistic phytoplankton blooms in chl-a concentrations (Yool et al., 2021).

::::::
(Figure

:::
2a).

::::
The

:
Lana and Hulswar

:::::::::
simulations have similar means and CoV, respectively, across the entire Southern Ocean

during austral summer (3.87 nM and 3.51 nM; CoV of 31% and 32%). However, the distribution of both datasets ,
:::::::::::
respectively)325

:::
but

::::
differ

:::
in

::::
their

::::::::::
distribution (Figure 2e)is different: Lana contains much higher concentrations, maximizing

:
.
:::::::
Oceanic

:::::
DMS

:::::::::
maximises at 30 nM compared to

::
in

:::::
Lana,

:::
and

::
at

:
14 nM from Hulswar. Using

:
in

::::::::
Hulswar.

::::
The

:::::::::
MEDUSA

:::::::::
simulation

:::::
using

the Anderson et al. (2001) parameterization while changing the chl-a input, MEDUSA calculates a peak DMS concentration

:::::
shows

:::::::
oceanic

:::::
DMS

::::::::::
maximising at 11 nM, whereas MODIS-DMS is 64% greater, maximizing

::::
while

:::::
when

::
a
:::::::
variable

:::::
chl-a

12



summertime

Figure 2.
:::::::::
Summertime

:
(DJF) Oceanic DMS in the Southern Ocean (40 - 60 ◦S). The spatial distribution (a-d) shows the (a) UKESM1

climatology from MEDUSA, (b) the climatology from MODIS-DMS, and observational-based climatologies of (c) Lana and (d) Hulswar.

(e) The box plot shows the distribution of each oceanic DMS dataset used. The data points outside the whiskers represent 0.7%
:
,
:::::
where

::::::::::
MODIS-DMS

:::::::
contains

::
all

::
10

::::
years

:
of the dataset

:::
data, highlighting

::::
while the outliers of the distribution

:::::::::
climatologies

::::::
contain

::
12

::::::
months.
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:::::::::::
concentration

::::
field

::
is
:::::

used
::
in

::::
the

::::::::::::
MODIS-DMS

::::::::::
simulation,

:::::::
oceanic

:::::
DMS

:::::::::
maximises

:
at 18 nM

::::
(64%

::::::
higher

::::
than

::
in
::::

the330

::::::::
MEDUSA

::::::::::
simulation).

By examining localized oceanic DMS measurements within the Southern Ocean obtained during the
::
To

::::::::
examine

::::
how

:::
the

:::::::::
simulations

::::::::
compare

::::
with

:::::::::::
observations,

:::
we

:::::::
compare

:::
the

:::::::
oceanic

:::::
DMS

::::::::::
distribution

::::::
against

:
TAN1802

:::
and

::::::
SOAP

:::::::
voyages

:::
for

::
the

:::::::
regions

::::
and

:::::
times

::
at

:::::
which

:::::
those

::::::::
voyages

::::
took

:::::
place (Figure 3) and SOAP (

:
,
:
Figure 4)voyages in comparison to each

model input data, we can determine the variations across each simulation. The oceanic DMS from the model overlays the335

respective voyage data (grey)in Figure 3 and Figure 4. Lana fits
:
.
:::
For

:::
the

::::::::
TAN1802

:::::::
voyage

::::::::
(40–70◦S,

:::::::
180◦E),

:
the distribution

of TAN1802 more closely than the other datasets, as illustrated by the higher DMS concentrations. The differences between the

two climatologies are a result of additional observational datasets within Hulswar.
::::::::
measured

::::::
oceanic

:::::
DMS

:::::
aligns

:::::::
closely

::::
with

::
the

:::::
Lana

:::::::::
simulation.

:
MODIS-DMS and MEDUSA have the lowest means ,

:::::
lower

:::::
means

::
of

:
1.19 and 1.52 nM,

:
respectively, but

MODIS-DMS has a higher
::::
high

:
CoV of 79% due to higher concentrations at lower latitudes (45 ◦S) of the Southern Ocean.340

TAN1802 has a CoV of 105%, similar to Lana’s 114%. Hulswar
::::::
Oceanic

:::::
DMS

::
in

:::
the

::::::::
Hulswar

::::::::
simulation

:
overestimates DMS

concentrations by a factor of two between 45 and 65
:::::
45–65 ◦S. Observation-based climatologies capture high oceanic DMS

concentrations better than parameterization-based concentrations, as illustrated by the violin plot in Figure 3.

SOAP voyage data represents oceanic DMS concentrations during
:::
For

:::
the

::::::
SOAP

:::::::
voyage,

:::::
which

:::::::
targeted

:
phytoplankton

bloom events , therefore the shape of the observed DMS distribution (Fig. 4) is quite different to
:::::::::
(42–47◦S,

:::::::::::
172–180◦E),345

::
the

:::::::::
measured

:::::
DMS

:::::::::
distribution

::
is
:::::::
skewed

::::::
toward

:::::
higher

:::::::::::::
concentrations

::::::::
compared

::::
with

:
the TAN1802 data (Fig. 3)and would

be expected to be highly biased. All of the oceanic DMS datasets
::::::
voyage

::::::
(Figure

:::
4).

:::
In

:::::::
contrast,

:::::::::
TAN1802

:::::::::
transected

:::
the

:::::::
Southern

::::::
Ocean

:::::::
without

::::::
specific

:::::
focus

:::
on

:::::
bloom

:::::::
activity,

:::::::
yielding

::
a

:::::
range

::
of

:::::
DMS

::::::::::::
concentrations.

:::
We

::::::::
consider

:::
that

::::::
SOAP

::
is

:::
still

:::::
useful

:::
as

:
it
:::::
offers

:::::::
insights

:::
into

:::::::
extreme

:::::::::
conditions

:::
not

::::::::
reflected

::
in

::::
other

::::
data

::::
sets.

:::
All

::::::::::
simulations fail to capture the higher

concentrations measured by SOAP, displaying a positively skewed distribution (Bell et al., 2015); with most concentrations350

clustered between 2-4 nM. .
:::::::
Oceanic

:::::
DMS

::
in

:::
the

:
MODIS-DMS has the greatest

:::::::
exhibits

::
the

:::::::
highest variability (CoV of 36%),

highest average, and largest
::::
mean,

::::
and

:
maximum concentration. MODIS-DMS also has the best linear relationship

:::::
aligns

:::
best

:
with SOAP, where

:
in

::::
that

::
it

:::::::
captures

:::::
some

::
of

:::
the

::::
high

:::::
DMS

:::::::::::::
concentrations

:::::::
resulting

:::::
from

::::::::::::
phytoplankton

:::::::
blooms.

::::
The

MODIS-DMS follows the concentrations through space and time better than the other datasets. For example, when SOAP

measures its lowest oceanic DMS concentrations following the voyage,
::::::::
simulation

:::::::
captures

:::::::
around

:::
half

:::
of

:::
the

::::::::
variability

:::
of355

:::::
SOAP

:::::::::::::
measurements,

:::::::
whereas

:::
the

::::
other

::::::::::
simulations

::::
only

::::::
match

:::::::
between

:::
7%

::
to

:::::
18%. MODIS-DMS also simulates its lowest

concentrations. Additionally, when SOAP observations are at their highest concentrations (25 nM), MODIS-DMS displays its

highest concentration (over 10 nM)
:
is

::::::
within

::::
11%

::
of

:::
the

::::::
SOAP

:::::
mean,

:::::::
whereas

:::
the

:::::
other

::::::::::
simulations

:::
are

::::
22%

::
to

:::::
218%

:::::
lower.

See Figure ??
::
and

:::
?? for simulated comparisons of DMS emission to SOAP

:::
and

:::::::::
TAN1802.

Lana, Hulswar, and MEDUSA fail to represent high biological variability in the Chatham Rise region of the Southern360

Ocean, as confirmed via comparison with TAN1802 between 45 ◦S to 60 ◦S. MODIS-DMS does not capture the heightened

concentrations from SOAP or TAN1802, but it aligns more closely with the observations than the climatologies. This is likely

due to the MODIS-DMS simulations using the chl-a data during the period of each voyage, and nudging model conditions to
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Figure 3. Violin plots of TAN1802 data
::::
(grey). Overlaid are the oceanic DMS datasets used in the model simulations (Feb to March

2018, 40 ◦S to 70 ◦S, 180 ◦E)
:::
from

::::::::
MEDUSA

:::::::
(purple),

:::::::::::
MODIS-DMS

::::::
(blue),

::::
Lana

::::::
(green),

:::
and

:::::::
Hulswar

:::::::
(yellow).

:::::
Violin

::::
plots

:::::
depict

:::
data

:::::::::
distribution

:::
and

::::::
density.

::::
The

:::::
width

::
of

::::
each

::::::
’violin’

:::::::::
corresponds

::
to
:::

the
::::::::
frequency

::
of

::::
data

:::::
points

:::::
within

::::
that

::::
value

:::::
range,

:::::
while

:::
the

:::::
length

:::::::
indicates

:::
the

:::::
range

:
of
::::::

values.
:::
The

::::::::
frequency

::::
axis,

::::::::
represented

:::
by

::
the

:::::
width,

::::::
allows

::
for

::
an

::::::::
immediate

:::::
visual

:::::::::
comparison

::
of

::::
how

::::
often

:::::::
particular

:::::
ranges

::
of

:::::
values

:::::
occur

::
in

::::
each

:::::::
category.

:::
This

:::::
offers

:
a
::::::::::::

comprehensive
::::
view

::
of

::::
both

::
the

:::::::::
distribution

:::
and

::::::::
frequency

::
of

::::
data

:::::
across

::::::
different

::::::::
categories.

similar conditions. From this, implementing the inclusion of satellite chl-a in oceanic DMS calculations improves the accuracy

of DMS distribution in lower latitudes.365

The Anderson et al. (2001) oceanic DMS parameterization assumes chl-a has a central role in forming oceanic DMS .

The known global correlation
:
is

::::::
central

::
to
:::::::

oceanic
:::::
DMS

:::::::::
formation.

::::::::
Previous

::::::::::
correlations between chl-a and oceanic DMS,

described
:::::
given by the coefficient of determination (r

::
R2), is between

:::::
range

:::::::
globally

::::
from 0.11 to 0.818, where higher latitudes

tend to have higher r
::::
0.93,

::::
with

::::::
higher

:::::::
latitudes

::::::
having

:::::::
increased

::
R2 values

:::
due

::
to

::::::
factors

:::
like

:::::::
nutrient

:::::::::
availability

:::
and

:::::::::
prolonged

::::::
summer

::::::::
daylight,

:::::::
coupled

::::
with

:::::::::
heightened

::::
wind

::::::
speeds

:
(Uhlig et al., 2019; Townsend and Keller, 1996; Tison et al., 2010; Ma-370

trai et al., 1993). The Anderson et al. (2001) parameterization used
:::::::::::::::
Gros et al. (2023)

:::::::
estimated

:::
an

:::
R2

::
of

::::
0.93

:::::::
towards

:::
sea

:::
ice

:::::::
latitudes,

:::::
while

:::::::::::::::
Bell et al. (2021)

::::
found

:::::
chl-a

:::::::
explains

::::
just

::::
15%

::
of

:::::::
oceanic

::::
DMS

:::::::::
variability.

::::::
Using

:::
the

:::::::::::::::::::
Anderson et al. (2001)

:::::::::::::
parameterization

:
in MODIS-DMS, has a strong r

::
we

::::::::::
determined

::
a

::::
large

::
R2 value of 0.75 in the Southern Ocean, validating

15
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Figure 4. Same as Figure 3, but for the SOAP 2012 voyage (Feb to March 2012, 42–47 ◦S, 172–180 ◦E).

this parameterization for simulating oceanic DMS . The Anderson et al. (2001) parameterization using .
::::::

While
::::::::::
associating

::::
chl-a

::::
with

:::::::
oceanic

:::::
DMS

::::
has

:::::::::::
discrepancies

:::::::::::::::::::::::::::::
(Gros et al., 2023; Bell et al., 2021)

:
,
:::
we

:::::
show

:::
that

::::::
using

:::::::::::::::::::
Anderson et al. (2001)375

::::
with satellite chl-a provides a better representation of austral summer oceanic DMS conditions within the Southern Ocean

::::
data

:::::
better

::::::::
represents

::::::::
Southern

:::::
Ocean

:::::::::::
summertime

:::::
DMS compared with the Anderson et al. (2001) MEDUSA configuration.

Chl-a is used to calculate oceanic DMS within half the Earth System Models
:
in
::::

two
:::
of

:::
the

::::
four

:::::
ESMs

:
with interactive

biogeochemistry participating in CMIP6 (Bock et al., 2021).
:::::
These

:::::::
models

:::::
reveal

::::::::::::
discrepancies

::::::::
between

::::
each

:::::
other

::::
and

:::::::
observed

:::::::
oceanic

:::::
DMS

::::
data

::::
sets,

:::::::::
indicating

:::::::
ongoing

:::::::::::
uncertainties

:::
in

::::::
CMIP6

::::::
ESMs

::::::::::
concerning

:::::::
oceanic

:::::
DMS

:::
and

:::
its

::::
flux380

::
to

::
the

::::::::::
atmosphere

::::::::::::::::
(Bock et al., 2021).

::::::::::::::::
Bock et al. (2021)

:::::::::
emphasizes

:::
the

::::
need

:::
for

::::::::
enhanced

::::::::::::
understanding

:::
and

:::::::::::
observations

::
to

::::::::
accurately

:::::::
capture

:::::::::::
DMS–climate

:::::::::
feedbacks. CNRM-ESM2-1 uses a comprehensive prognostic approach that considers grazing

by
:::::
adopts

:::
an

::::::::
approach

::::::::::
considering

:
zooplankton and DMSP , rather than chl-a. However, this is very difficult to validate

due to the lack of widespread data availability. Here we suggest that a realistic biological proxy, such as chl-a, is useful to

construct an oceanic DMS dataset
:
,
:::
but

::
its

:::::::::
validation

::
is

::::::::::
challenging

::::
due

::
to

::::::
limited

::::::::::::
observational

::::
data

:::::::::::::::::
(Belviso et al., 2012)

:
.385

::::::::
NorESM2

::::
uses

::
an

:::::::::
alternative

::::::::::
mechanism

:::
for

::::
DMS

::::::::::
production,

::
by

:::::
using

:::::::
detritus

:::::
export

:::::::::
production

::::
and

:::
sea

::::::
surface

::::::::::
temperature

:::::::::::::::::
(Tjiputra et al., 2020). An oceanic DMS algorithm developed by Galí et al. (2018) includes sea-surface temperature, chl-a,

photosynthetically active radiation, and the mixed layer depth, where
:::
but

:
oceanic DMS has a general overestimation along

16



coastal regions (Galí et al., 2019; Hayashida et al., 2020). Galí et al. (2018) also produced a time series of oceanic DMS

over parts of the Northern Hemisphere, finding similar
::::
high inter-annual variability

::
by

:
using chl-a satellite data. We concur390

with Galí et al. (2018) that a move beyond classical climatologies is an important step in developing future climate models.

We suggest using temporally varying input instead of climatology to allow the capture
::::::::
Adopting

:::::::::
temporally

:::::::
variable

:::::::
oceanic

::::
DMS

::::::
inputs

:::::
within

:::
the

::::::
model

::::
may

:::::
better

::::::
reflect inter-annual variability over the Southern Ocean , particularly from

:::::::
Southern

:::::
Ocean

:::::::::
variability

:::
due

::
to
:

ENSO events and biologically productive years. One such way to achieve this for future projections

would be through a stochastic approach of capturing all chl-a years from the satellite (e.g. SeaWiFS and MODIS-aqua) archive,395

including high biological productivity years, such as 2010 and 2020, or low productivity such as in 2015 (Figure ??).

3.2 DMS Flux

Having established that the
::::::
oceanic

:::::
DMS

::::
from

:::
the MODIS-DMS data set produces simulated oceanic DMS in good agreement

with observations (
::::::::
simulation

::::::
aligns

::::
well

::::
with

:::::::::::
summertime

:::::::::::
observational

:::::::
voyages

::
as

:::::
seen

::
in

:
Figure 3),we now test

:
,
::
4,

:::
we

:::
now

::::::
assess

:
the sensitivity of atmospheric DMS to a suite of

:::::
various

:
sea-to-air transfer functions for different oceanic DMS400

sources
::::::
(Figure

::
5,

:::
??). Figure 5 shows the DMS flux during austral summer across all simulations integrated over

:::
the

::::::
austral

::::::
summer

:::
in the Southern Oceanregion (40 to 60 ◦S), which ranges, on average, ,

::::::::
averaging

:
between 2.9 to 7.3 TgS Yr−1. The

spread of
::::
This

::
is

::::::::
consistent

:::::
with

::::::::::::::::::::::::
Jarníková and Tortell (2016)

::::::::
estimation

::
of

:::
3.4

:::
Tg

:::
S,

:::::::
aligning

::::
most

:::::
with

:::
the

::::::::::::
MODIS-DMS

:::::
linear

::::::::::::::
parameterizations

:::::::
(LM86

:::
and

:::::
B17).

::::
The

::::::
spread

::
in

:::::::
average

::::::::
Southern

:::::
Ocean

:::::::::::
summertime

:::::
DMS

:::::
fluxes

::::::
across the mean

fluxes across all eight simulations is 153%, which is greater than the difference
:::::
spread

:
between all the oceanic DMS inputs, a405

:::::::::
simulations

::::::
testing

:::::::
different

:::::::
oceanic

:::::
DMS

:::::::
sources,

:
at
:
107%spread in mean oceanic DMS concentration. The lowest CoV value

:::::
CoVs within both oceanic DMS and DMS emissions are found in the MODIS-DMS simulations, specifically, the Blomquist

et al. (2017) parameterization (MODISB17) with a mean of 2.9 ± 0.84 TgS Yr−1. The upper range of simulated DMS flux, 7.3

± 1.8 TgS Yr−1, comes from the W14 quadratic formula used with the Lana DMS climatology (LanaW14).

:::
The

::::::
largest

:::::
DMS

:::::::::
emissions

:::
are

::::
seen

:::
in

:::
the

:::::::::::::
MEDUSALM86:::::::::::

simulations,
:::
due

:::
to

:::
the

::::::::
relatively

:::::
large

:::::::::
underlying

::::::::
seawater410

::::
DMS

::::::
source

::::::
spread

::::::::::
throughout

:::
the

::::::::
Southern

:::::
Ocean

:::::::
(Figure

::::
2a).

:::
The

::::::::
Lanaw14:::::::::

simulation
::::
also

::::::
shows

::::
large

:::::
DMS

:::::::::
emissions

:::
due

::
to

:::
the

::::::::
quadratic

::::::::::
dependence

:::
of

:::
the

:::
gas

:::::::
transfer

:::::::
velocity

:::
on

::::
wind

:::::
speed

:::::::
(Figure

:::
1).

:::::::
Overall,

:::
the

:::::
W14

::::::::
quadratic

:::::::
formula

:::::
yields

:::::
about

::::
33%

:::::
more

::::::::
emissions

::::
than

:::
the

:
LM86 has a

:::
and

::::
B17

:::::
linear

:::::::::
formulas.

:::
For

:::
the

:::::::
transfer

:::::::
velocity

:::::::::::::::
parameterizations

::::
using

::
a
:::::
linear

:::::::::::
relationship

::
to

:::::
wind

::::::
(LM86

::::
and

:::::
B17),

::::::
LM86

:::::::
exhibits

:
a
:

higher transfer velocity than B17 for wind speeds

greater than
:::::
above

:
7.5 m s−1 (Figure 1). The Southern Oceanhas the highest wind speeds over any ocean region, with wind415

speeds very frequently above 7.5 m s−1 (Bracegirdle et al., 2020b), therefore our simulations show Liss and Merlivat (1986)

flux produces
:::::
Given

:::
the

::::::::
Southern

:::::::
Ocean’s

::::::::::
predominant

::::
high

:::::
wind

::::::
speeds

:::::::::::::::::::::
(Bracegirdle et al., 2020a)

:
,
:::::::::
simulations

:::::::
indicate

::::
that

:::::
LM86

:::::
yields

:
14% more emissions of DMS than Blomquist et al. (2017)

::::::
emitted

:::::
DMS

::::
than

:::::
B17 (Figure 1). Lana is widely

used by climate models (e.g. Sellar et al., 2019; Horowitz et al., 2020; Bhatti et al., 2022). Implementing a DMS flux based on

DMS observations within this climatology (LanaB17) results in a 4.86 ± 1.67 TgS Yr−1 flux, which is within the range of all420

the simulations (Figure 5).
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Figure 5. Summertime (December – February) Southern Ocean sulfur emissions in Tg Year−1 in all model simulations performed. The

error bars represent the spatial and temporal standard deviation. The different colors represent different oceanic DMS climatologies (Purple:

MEDUSA ((Sellar et al., 2019; Anderson et al., 2001), Green: (Lana et al., 2011) and Orange: Hulswar ((Hulswar et al., 2022), and time

series (Blue: derived from MODIS-DMS chl-a) used in this work. + marker represents simulations performed with the Liss and Merlivat

(1986) sea-to-air flux, the dot marker represents Wanninkhof (2014), and the square marker represents Blomquist et al. (2017).

For simulations using the same
:::
The LM86 sea-to-air flux parameterizations, but different

:::
flux

::::::::::::::
parameterisation

:::
was

::::::
tested

::::
with

::
all oceanic DMS sources, the spread of all means is

::
as

::
it

:
is
::::::::
currently

:::
the

:::::::::::::
parameterisation

:::::
used

::
by

::::::
default

::
in

::::::::::::::
UKESM1-AMIP.

::::::::::
Simulations

::::
using

::::::
LM86

::::
have

:
a
::::::
spread

::
in

::::::
average

:::::::::::
summertime

:::::::
Southern

::::::
Ocean

::::
DMS

:::::::::
emissions

::
of 112% (3.3 to 6.9 TgS Yr−1).

The means derived from different DMS
::
In

:::::::
contrast,

:::::::::
simulations

:::::
using

:::
the

:::::
same

::::::
oceanic

:::::
DMS

::::::
source

::::::::::::
(MODIS-DMS

::::
and

:::::
Lana)425

:::
but flux parameterizations (LM86, B17, and W14) within MODIS-DMS and Lana are spread between

::::
have

:
a
::::::
spread

::
in

:::::::
average

::::::::::
summertime

::::::::
Southern

:::::
Ocean

:::::
DMS

:::::::::
emissions

::
of

:
51%

::::::::::::
(MODIS-DMS

::::::::::
simulations)

:
to 62%

:::::
(Lana

:::::::::::
simulations). The choice of

the oceanic DMS source is therefore more important than the choice of DMS emission flux. Changing oceanic DMS within the

model produces a larger impact on the resultant atmospheric DMS than the flux parameterization used. The emission of DMS

from the ocean, over the Southern Ocean, results in a slightly higher spread between all the simulationsof 6%. For a given430

oceanic DMS source, the quadratic formula of W14 produces around 33% more DMS emissions than the linear formulas of

LM86 and B17
:::::::
therefore

:::::::
impacts

:::::
DMS

::::::::
emissions

:::::
more

::::
than

:::
the

::::::
transfer

:::::::
velocity

::::::::::::::
parameterization

::::::
within

:::::
these

:::::::::
simulations.
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The selection of a DMS flux parameterization has a large impact on the emissions of oceanic DMS. The W14 parameterization

generates excessive DMS emissions, accurately representing the highest 10% (see Figure ??) but overestimating the rest of

the distribution. Using W14, or similar quadratic fluxes (such as Nightingale et al. (2000)) within climate models for DMS435

emissions could therefore result in an overproduction of DMS. See Figure ?? for a visual overview of DMS across all

simulations.

Table 3 presents simulated daily Southern Ocean DMS fluxes
:::::
details

:::::::::
simulated

::::
daily

:::::
DMS

:::::
fluxes

::::
over

:::
the

:::::::
Western

::::::::
Antarctic

::::::::
Peninsula during the austral summer. The total annual DMS emissions which occur during DJF are presented as a percentage

and as a daily flux. DMS emissions during austral summer make up 32-46,
::::

for
::::::::::
comparison

::::
with

:::::::::::
observations,

:::::::::
including440

:::::::::::::::
Webb et al. (2019).

:::::
DMS

:::::::::
emissions

::
in

::::
this

:::::
period

:::::::::
constitute

:::::
33-52% of the annual flux, substantially lower than

:::::::::
contrasting

::::
with the 72% reported by Webb et al. (2019). However, Webb et al. (2019) measured DMS in Ryder Bay, near the Antarctic

Peninsula (67.54 ◦S, 68.35 ◦W), an area known for high levels of
::::
The

:::::
region

:::::::
exhibits

:::::::::
significant

:
sea-ice melt and high DMS

emissions during DJF. The
:::
Our

::::::::::
simulations daily mean flux from our simulations during DJF is 22.2

:::
4.6 ± 5.13

:
4 µmol m−2

d−1. Compared with the 22.7 ,
::::::
below

:::::::::::::::
Webb et al. (2019)

:
’s

::
29

:
µmol m−2 d−1 flux reported by Webb et al. (2019) for Ryder Bay445

during the summer, our simulations therefore represent fluxes within the expected range. Additionally, a
:::::
(67.54

:::

◦S,
:::::
68.35

:::::

◦W).

::::::::
However,

:::
our

:::::
results

:::::
align

::::
with

:::
the

::::::::
emissions

::::
from

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Jarníková and Tortell (2016); Berresheim et al. (1998); Asher et al. (2017)

:
.

::::
Like

::
in

:::::::::::::::::::::::
Jarníková and Tortell (2016)

:::
and

::::::::::::::::
Webb et al. (2019),

:::
we

:::
find

:::::::
periodic

:::
hot

:::::
spots

::
of

:::::
DMS

::::::::
emissions

:::::
above

:::
50

:::::
µmol

::::
m−2

:::
d−1

::::
over

:::::
these

:::::::::::
sub-Antarctic

:::::::
regions,

:::
but

::
at

::::
10%

:::
the

:::::::::
magnitude

::
of

:::
the

:::::::::
maximum

:::::
found

::
by

::::::::::::::::
Webb et al. (2019).

:

:
A
:

2018 Southern Ocean voyage during February calculated
:::::::
reported

:
a mean daily flux to be between

:
of

:
2.6 ± 3.5 µmol450

m−2 d−1 within
:::
over

:
the open ocean (Zhang et al., 2020). Tracking this voyage through space and time with our simulations

shows fluxes varied between
:::
Our

::::::::::
simulations

:::
are

::
in

:::::
good

:::::::::
agreement

::::
with

::::
this,

::::::::
showing

:::::
DMS

:::::
fluxes

::
of

:
2.7 µmol m−2 d−1

from (MODISB17)
:

to 8.9 µmol m−2 d−1 in
:
(LanaW14:

)
:::
for

:::
the

:::::
same

::::::
region

::::
and

::::::
period

::
of

:::::
time. Shon et al. (2001) es-

timated the daily flux between 40 ◦S to 55 ◦S around early December to be
:
a
:::::
daily

::::
flux

::
of

:
2.6 ± 1.8 µmol m−2 d−1 .

Only
:::::
around

:::::
early

:::::::::
December.

::::
Only

:::
the

:
MODISB17 coincides with

::::::::
simulation

:::::::
matches

:
these daily fluxesacross this latitudinal455

region. Our .
:::::::::::
Furthermore,

:::
the

:::::
linear MODIS-DMS simulations using a linear flux parameterisation (LM86 and B17) also align

::::::::::::
(MODISLM86 :::

and
:::::::::::
MODISB17)

::
are

:::
in

::::
good

:::::::::
agreement with the 12 ± 15 µmol m−2 d−1 measured by Marandino et al. (2009)

and the 2.8 µmol m−2 d−1 measured by Lee et al. (2010) in the Southern Ocean.

Pandis et al. (1994) estimates that for aerosol nucleation to occur from DMS emissions, the flux must be above 2.5 µmol

m−2 d−1. Our simulations show that DMS emissions are above this threshold between 52% (MODISB17) and 88% of the460

time (MEDUSALM86) during summertime. This range agrees with Webb et al. (2019), who measured the flux to be over this

threshold around 63% of the year. MODISLM86 (at 61%) and LanaLM86 (at 62%) compare best to the observed value, although

Webb et al. (2019) is likely positively skewed based on their location in an area characterised by large DMS emissions. As the

UKESM1 underestimates AOD during austral summer (Mulcahy et al., 2020), MEDUSALM86 also produces the highest daily

DMS flux over the Southern Ocean, suggesting a bias may be present during the formation of aerosols. This may be a result of465

the chemistry scheme used in the formation of aerosols as a compensating bias, which will be addressed in future work.
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Table 3. Mean daily DMS flux over the Southern Ocean
::::::
Western

:::::::
Antarctic

::::::::
Peninsula,

::
by

:::::
Ryder

:::
Bay

:
during the austral summer period for

each simulation. The percentage shows the proportions of the total annual DMS flux which occurs during the summer months. Additionally,

the total DJF flux shows the mean daily DMS flux (µmol m−2 d−1) and standard deviations. The last row outlines the overall DMS flux

volume, simulated above the 2.5 µmol m−2 d−1 threshold for aerosol nucleation to occur from DMS emissions, as a percentage.

MEDUSALM86 MODISLM86 MODISW14 MODISB17 LanaLM86 LanaW14 LanaB17 HulswarLM86 ::::::::::::::
Webb et al. (2019)

Total DJF % 38.1
::
44 31.8

::
34

:
31.7 33 44.9

::
36 40

::
49 46 40.3

:
52

: ::
46

:
72

:

Total DJF (µmol

m−2 d−1)

31.8
::
4.3

:
± 5.9

:
4 15.3

:::
2.2 ± 2.7

::
2.5 21.6

::
2.7

:
± 3.8

:
3 13.3

::
1.9

:
± 2.6

:
2 26.1

::
5.6

:
± 4.6

::
5.1

:
34.4

::
8.4

:
± 5.5

::
7.5

:
22.3

::
5.3

:
± 3.9

::
4.2

:
24

:
6
:
± 3.7 Total DJF % above 2.5 µmol m−2 d−1

::
5.2

:
88 61 73.5 52 62 76.8 56 66

::
29

Many CMIP6 models use the quadratic sea-to-air flux parameterization detailed in Wanninkhof (2014) to calculate
::
for DMS

emissions (e.g. Salzmann et al., 2022; Seland et al., 2019; Neubauer et al., 2019; Tatebe and Watanabe, 2018; Wu et al., 2019),

however, recent literature suggests that DMS has .
::::
Yet,

::::::
recent

::::::
studies

:::::::
indicate a linear relationship with

::::::
between

:::::
DMS

::::
and

wind speed (e.g. Blomquist et al., 2017; Goddijn-Murphy et al., 2016; Bell et al., 2013; Zavarsky et al., 2018; Vlahos and470

Monahan, 2009; Bell et al., 2015). We show
::::::::::
demonstrate that linear DMS emissions may not represent the upper ranges of

DMS flux as well as quadratic flux emissions, where wind and oceanic DMS concentrations are high. Extreme concentrations

of oceanic DMS can result in very high emissions. LanaW14 simulates these higher concentrations similar to the higher

fluxes from TAN1802 (Figure ??) but result in an overestimation for the lower emissions of the distribution. MEDUSALM86

emits DMS similarly to the quadratic formulation of LanaW14, within the higher ranges of emissions. Therefore, using475

a formula developed specifically for DMS, such as Blomquist et al. (2017) may generally better represent DMS emissions

in the UKESM1. Additionally, simulations of atmospheric DMS with UKESM1 are improved when using observed chl-a

concentrations to calculate historical oceanic DMS
::::::
transfer

::::::::
velocities

::::::::
represent

:::
the

:::::
DMS

::::
flux

::::::
ranges

:::::
better

::::
than

:::
the

::::::::
quadratic

::::
W14

::::
flux

::::
when

:::::::::
compared

::
to

:::::::
Southern

::::::
Ocean

:::::::::::
observations.

3.3 Atmospheric DMS480

We now
:::
We

:::
next

:
evaluate atmospheric DMS in our sensitivity simulations. Figure 6 compares all simulated atmospheric DMS

concentrations to observational data averaged across the Southern Ocean during austral summer. The observational data shown

::::
with

:::::::::::
observational

:::::::
datasets.

::::
Data in Figure 6 was collated from three observational stations (Cape Grim, Amsterdam Island, and

King Sejong Station) and three
:
is

::::
from

:::::
three Southern Ocean voyages (SOAP, SOIREE, and ANDREXII), with an average and a

standard deviation (spatial and temporal)summertime atmospheric DMS concentration of 185 ±
::::::::::
ANDREXII;

::::::
Figure

::::
6a-c)

::::
and485

:::
two

:::::::
stations

:::::
(Cape

::::
Grim

::::
and

::::
King

::::::
Sejong

:::::::
Station;

:::::
Figure

::::::
6d-e).

:::::
Figure

::
6f

::::::
shows

::::::::
aggregate

::::::::
averaged

::::
DMS

::::::::::::
concentrations

:::::
from

::
all

:::
five

:::::::::::
observational

:::::::
sources,

::::
and

:::
has

::
an

::::::
average

:::::::::::
summertime

:::::::::::
concentration

::
of 129 ppt (Smith et al., 2018; Wohl et al., 2020; Boyd and Law, 2001)

. The mean atmospheric DMS across all simulations is 276 ± 174 ppt, and is within the range of the observations. In addition,

when using the DMS source in best agreement with oceanic observations (
::
74

:::
ppt

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Smith et al., 2018; Wohl et al., 2020; Boyd and Law, 2001, Figure 6f)

:
.
:::
The

::::::::::
simulations

:::::
using

::
the

:
MODIS-DMS ) combined with a linear DMS flux parameterisation

::::::
oceanic

::::::
source

:::
and

:::::
linear

:::::
DMS490

::::::
transfer

::::::
models

:
(LM86 and B17) , the atmospheric concentration mean is consistent

:::::
show

:::
the

::::::
closest

::::::::
agreement

:
with the ob-

servational mean, averaging 164
::
of

:::
106

:
± 132 ppt . Along the Peruvian coastline, Zhao et al. (2022) measured atmospheric
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DMS concentrations at 145
::
66

:::
ppt

::::
and

:::
100

:
± 95 ppt, which also aligns well with the linear MODIS-DMS simulations. During

the summer months,
::
60

:::
ppt

:::
for

::::::::::::
MODISLM86 :::

and
:::::::::::
MODISB17,

::::::::::
respectively.

::::
The

:::::
mean

::::
total

::::::
spread

::
in

:::::::::::
summertime

::::::::
Southern

:::::
Ocean

::::::::::
atmospheric

:::::
DMS

::::::
across

::
all

::::::::::
simulations

::
is

:::::
171%,

:::::::::
compared

::::
with

:::
the

::::::
spread

::
of

:::::
153%

::
in

:::::
DMS

:::::::::
emissions.495

:::
Our

:::::::::::
simulations,

::::::::
compared

::
to
:::::::

coastal
::::::::
Antarctic

:::::::::::::
measurements,

::::
offer

:::::::
insights

::::
into

:::
the

:::::::::::
performance

::
of

::::
sea

::::::::::::
ice-influenced

::::::
regions

:::::::::::::::
(Galí et al., 2021).

:::
In

:::::::
summer,

:::::::::::::::::::::
Berresheim et al. (1998)

:::::::
recorded mean atmospheric DMS concentrations of 119 ppt

(measured at 64.8 ◦S, 64 ◦W) by Berresheim et al. (1998) and 114 ppt(measured
:
,
::::::
closely

::::::::
matching

::::::::::
MODISB17 at

:::
121

::::
ppt.

:::
All

::::
other

:::::
DMS

::::::
sources

:::::
show

::::::::::::
concentrations

::::::
which

:::
are

::::
more

::::
than

:::::
twice

::
as

:::::
large

::
as

:::
this

::::::::::::
measurement.

:::::::::::::::
Read et al. (2008)

::::::::
measured

::::::::::
atmospheric

:::::
DMS

::::::::::::
concentrations

::
of

:::
45

::
±

:::
50

:::
ppt

::
at

::::::
Halley

::::::
Station,

:::::::::
Antarctica

::
(75.4 ◦S, 26.2 ◦W)by Read et al. (2008) align500

best with the MODIS-DMS simulations . Additionally, Lee et al. (2010) measured a mean of 61 ppt over the same high latitudes

in February. However, there are also disagreements between observations and MODIS-DMS simulations with linear fluxes, as

a voyage tracking along the Eastern South Pacific Ocean during January 2000 measured 340 ,
::::
best

:::::::
aligning

::::
with

:::::::
LanaB17::

at
:::
42

:::
ppt.

::
It

::::::
should

::
be

:::::
noted

::::
that

::
all

::::::::::
simulations

:::
fall

::::::
within

:::
one

::::::::
standard

::::::::
deviation

::
of

:::
the

::::::::::::
measurements

:::::::
reported

::
at

::::::
Halley

:::::::
Station.

::::::::::::::::::
Preunkert et al. (2007)

::::::::
measured

::::
high

::::::::::
interannual

:::::::
variation

::
of

::::::::::
atmospheric

:::::
DMS

::
at

:::::::
Dumont

::::::::
d’Urville

::::
(66.4

:::

◦S,
::::
140

:::

◦E)
::::::
during505

:::::::
January,

::::
from

::::
244

:::
ppt

:::
in

::::
2002

:::
to

::::
only

:::
60

:::
ppt

::
in
::::::

2003.
::::
The

::::::
average

:::::::
January

::::::::::::
concentration

::::
over

:::
13

:::::
years

::::
was

::::
170 ± 370

ppt (Marandino et al., 2009), which is consistent with Lana
:::
180

:::
ppt.

:::::
Here,

::::
the

::::
Lana

::::
and

:::::::
Hulswar

::::::::::
simulations

:::
are

:::
in

::::::
closest

:::::::::
agreement,

:::
and

::::::::
simulate

:::::::
average

:::::
DMS

::::::::::::
concentrations

:::::::
between

:::
92

::::
and

:::
141

::::
ppt.

::::::
Lastly,

:::::::::::::::
Lee et al. (2010)

:::::::
measured

::
a
::
61

::::
ppt

::::::
average

::::
over

:::
the

::::::
Pacific

::::::::
Southern

::::::
Ocean

::
in

::::::::
February,

::::::
closest

::
to

::::::::::
MODISB17::::

and
:::::::
MODISLM86 , but not as high as LanaW14.

The variability from Amsterdam Island measurements is much higher than that of the simulations.
::
(64

::::
and

::
53

::::
ppt,

:::::::::::
respectively).510

These measurements highlight the high variability of atmospheric DMS
::::::::::
Multi-annual

::::::
studies

:::::::::
emphasize

::::
high

:::::
yearly

:::::::::
variability

:::::::::::::::::::::::::::::::::
(Read et al., 2008; Preunkert et al., 2007)

:
.
::::::::::::
Measurements

:
during austral summer over the Southern Ocean

:::::
show

:::::::::
significant

:::::::::
variability,

::::::::
especially

::
in

:::::
higher

::::::::
latitudes.

:::
The

::::::::::::
climatologies

::::::
produce

::::::
higher

::::::::::::
concentrations

:::::
along

:::
the

::::::
coastal

::::::
regions

::
of

:::::::::
Antarctica,

::
as

::::::::
illustrated

::
in

::::::
Figure

::::
2a-d,

:::
but

::::::::::::
MODIS-DMS

:::
still

:::::::
captures

:::::
much

::
of

:::
the

::::::
spatial

::::::::
variability

:::::::
(Figure

:::
??).

:::::::::
MEDUSA

::::::::
performs

:::
the515

::::
worst

::::
over

:::::
these

::::::
higher

::::::
latitude

:::::::
regions,

:::::
where

:::
sea

:::
ice

::::
can

::::
have

:
a
:::::
large

:::
role

::
in

:::::::::
producing

::::::::::
atmospheric

:::::
DMS

:::::::::::::::
(Galí et al., 2021)

. Berresheim (1987) measured 106 ppt over the Drake passage during March and April, representing the lower end of our

simulated DMS mixing ratio. All measurements during summer show very high variability , with lower values seen in higher

latitudes. MODISB17 does a better job of representing atmospheric DMS compared to simulations from other
::::::::
represents

::::::::::
atmospheric

:::::
DMS

::::
more

:::::::::
accurately

::::
than

:
models like MEDUSA, Lana, and Hulswar when compared to observations

::::
based

:::
on520

::::::::::
observations

::::
over

:::
the

::::::::
Southern

:::::
Ocean

::::::
during

:::::::::::
summertime.
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Figure 6.
::::
Five

::::::::::
observational

::::::
datasets

::::::::
measuring

:::::::::
atmospheric

::::
DMS

:::::::::::
concentrations

::::
(ppt)

:::
are

::::::
directly

::::::::
compared

:::
with

:::
the

::::
eight

:::::::::
simulations

::
(a

:
–
::
e)

::
at

::
the

::::
same

::::::
spatial

:::
and

:::::::
temporal

::::::::
resolution.

::
In

::
(a)

:::::
SOAP

:::
and

:::
(b)

:::::::::
ANDREXII,

:::
we

:::::
follow

::::
both

::::::
voyages

:::::
using

::
the

::::::
nearest

:::
grid

:::
cell

:::::
along

:::
each

::::
hour

::
of

:::
the

:::::::::
simulations,

::::::::
matching

::
the

::::::::
timescales

::
in
::::
2012

::::
and

::::
2019.

:::
For

::::::::
comparing

:::
the

:::::::::
simulations

::::
with

:::
the

::
(c)

:::::::
SOIREE

::::::
voyage,

:::
we

:::
also

:::::
follow

:::
this

::::::
voyage

::
in

::
an

:::::
hourly

::::::::
timescale,

:::
but

:::
due

:
to
:::

the
::::::
voyage

::::
being

::::::
outside

:::
our

::::
study

::::::
period,

::
we

::::::
average

:::
this

::::
over

::
all

:::
10

::::
years.

::::
The

:::
two

::::::::::
observational

::::::
stations

::::
used

::
are

:::
(d)

::::
Cape

::::
Grim

:::
and

:::
(e)

::::
King

:::::
Sejong

::::::
Station.

:::
We

:::::::
calculate

:::
the

:::::
nearest

:::::::
grid-cell

::
for

::::
each

::::::::
simulation

::
to

:::
the

::::::::::
observational

:::::
station

:::
and

:::::::::
constructed

::
an

::::::
average

::::
over

::
10

::::
years

:::::
along

:::
with

::
a

::::::
temporal

:::::::
standard

::::::::
deviation.

::::
From

:::
this,

:::
we

:::::::
construct

::
an

::::::
overall

::::::
average

::
(f)

:::
and

::::::
standard

:::::::
deviation

:::
for

::
all

::::::::::
observational

:::::::::::
measurements

:::
and

:::::::::
simulations

::::
which

:::
can

::
be

::::::::
compared

::::::
directly

::
to

::::
these

::::::::::
observations.
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3.4
:::::

Effects
:::::
from

:::::::::::
Inter-annual

::::
and

:::::::
Spatial

:::::::::
Variability

DJF averaged

Figure 7.
::::
Time

::::
series

:::
of

::
the

:
atmospheric concentration

::::
DMS

:::::::::
probability

::::::
density

::::::
function

:::::::
between

:
(ppt) for the nine simulations. The

observations represent asummertime average across Cape Grim, Amsterdam Island,
:
)
:::::::::
MODISB17 and King Sejong Station and three

::
(b)

:::::::::::::
MODISB17CLIM

::::
from

::::
2009

::
to

::::
2018

::::::
summer

::::
over

::
the

:::::
entire Southern Oceanvoyages

:
. (SOAP, SOIREE, and ANDREXII

:
c) . The error bars

represent the standard deviation through time
:::::::
difference

:::::::
between

:::::::::
MODISB17 and space

:::::::::::::
MODISB17CLIM

::
is

:::
also

::::::
shown,

:::
with

:::
the

:::
R2

:::::
shown

::::::
between

:::
the

:::
two

:::::::::
simulations.

So far we have focused on DMS, which is an important biogenic marine aerosol precursor. However, the development of
::
To

:::::
assess

:::
the

::::::
impact

:::
of

:::::::::
interannual

:::::::::
variability

:::
in

::::::
oceanic

:::::
DMS

:::
on

:::::::::
simulated

::::::::::
atmospheric

::::::
DMS,

:::
we

:::::::
compare

::::
the

::::::::::
MODISB17

::::::::
simulation

:::::
with

:::::::::::::::
MODISB17CLIM,

:::::
which

:::::
used

:
a
::::::::::
climatology

::
of

:::::::
oceanic

:::::
DMS

:::::::::
calculated

::::
from the MODIS-DMS data set has525

implications for primary marine organic aerosol (PMOA), whose production is influenced by
::::::
(Figure

:::
7).

::::
Both

::::::::::
simulations

:::
are

::::::
similar

:::
(R2

::
=

:::::
0.92)

::
in

:::::
terms

::
of

::::::::::
interannual

::::::::
variability

::::::
across

:::
the

::::::::
Southern

::::::
Ocean

::
as

:
a
::::::
whole.

:::::::
(Figure

:::
7c).

:::::::
Rolling

::::::
means

:::
are

::::::::
presented

::
in

::::::
Figure

::::
??b,

::
c.

:::::
While

:::::
there

:::
are

:::::
small

:::::::::
differences

::
in

::::::::
Southern

::::::
Ocean

::::::::::
atmospheric

:::::
DMS

:::::::
between

:::
the

:::::::::::
simulations,

::
the

::::::::::::
overwhelming

::::::::::
similarities

:::::::
between

::::::
Figure

::
7a

:::
and

::
b

::::::
suggest

::::
that

::
an

:::::::
oceanic

::::
DMS

:::::::::::
climatology

:::::
results

::
in

::::::
similar

::::::::::
interannual
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::::::::
variability

:::
in

:::
the

::::::::::
atmospheric

:::::
DMS

:::::
PDF

:::::::::
suggesting

::::
that

:::::::
oceanic

:::::
DMS

::
is

:::
not

::
a
::::::
strong

:::::
driver

:::
of

:::::::::
interannual

:::::::::
variability

:::
in530

::::::::::
atmospheric

:::::
DMS.

::::
This

:::::
result

::
is
::
in

:::::::
contrast

::
to

::::
that

::
of

:::::::::::::::
Galí et al. (2018)

:::
who

::::
used

::
a
:::::::
different

:::::::::
algorithm

::
for

:::::::::
producing

:::::::
oceanic

:::::
DMS.

::::
This

:::::::::
difference

::::
may

:::
be

:::
due

:::
to

:::
our

::::
use

::
of

:::
the

::::::::::::::::::::
Anderson et al. (2001)

::::::::
algorithm,

::::::
which

::
is

::::::
known

::
to

:::::::
produce

:::::::
limited

::::::::
variability

::::::::::::::::::::::::::::::::
(Belviso et al., 2004; Bock et al., 2021)

:
.

::
To

::::::
assess

:::
the

::::::
impact

:::
of

::::::
spatial

:::::::::
variability

:::
in

:::::::
oceanic

:::::
DMS

:::
on

::::::::
simulated

:::::::::::
atmospheric

::::::
DMS,

:::
we

::::::::
compare

::::::::::
simulations

::::::::
performed

:::::
using

:::
the

:::::::::
MEDUSA

:::
and

::::::::::::
MODIS-DMS

::::
data

:::
sets

:::::
(with

:::
low

:::
and

::::
high

::::::
spatial

::::::::
variability

::
in

:::::::
oceanic

:::::
DMS,

:::::::::::
respectively)535

::
in

:::::
Figure

::
8.
::::::

Larger
:::::::::
variability

::
in

:::
the

::::::::::::
MODIS-DMS

:::::::
oceanic

:::::
DMS

::::::
source

:::::
leads

::
to

:::::
larger

:::::::::
variability

::
in

::::::::
simulated

:::::::::::
atmospheric

:::::
DMS,

::::::::
compared

:::::
with

:::
the

:::::::::
MEDUSA

::::::::::
simulations.

::::
The

::::::
spatial

:::::
CoV

::::
from

::::::::::::::
MEDUSALM86::

is
::::
45%

:::::
lower

:::::
than

::::::::::::
MODISLM86,

:::::::
showing

::::::
greater

::::::
spatial

:::::::::
variability

::::
from

::::::::::::::
MODIS-derived chl-aconcentration in UKESM1 (Mulcahy et al., 2020). PMOA are

organic detritus or compounds that are emitted to the atmosphere when bubbles burst as waves break (Gantt et al., 2012, 2011)

. A parametrisation of PMOA has been implemented in the UKESM1 in Mulcahy et al. (2020) based on the parametrisation540

developed by Gantt et al. (2011), where PMOA is a function of wind speed, sea salt dry diameter, and surface chl-a. As

identified by Mulcahy et al. (2020), the MEDUSA chl-a bias is carried through to PMOA which results in a Southern Ocean

distribution similar to that of oceanic DMS
:
.
:::
The

:::::::
oceanic

:::::
DMS

:::::
signal

::
in

:::
the

:::::::::
atmosphere

::
is

::::::
strong

::
but

::::::::
includes

::::
large

::::::::::
fluctuations

::
the

:::::
wind.

PMOA is the dominant source of ice nucleating particles over the Southern Ocean (Vergara-Temprado et al., 2018; Zhao et al., 2021)545

which may reduce the downwelling shortwave radiation bias (Schuddeboom and McDonald, 2021; Fan et al., 2011; Fiddes et al., 2022)

. This shortwave bias may have links to a deficit in supercooled liquid
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Figure 8.
:::::::::
Atmospheric

:::::
DMS

:::::::::::
concentrations

::::::::
comparing

:
(a
:
-
::
d)

::::::::::::
MEDUSALM86::::

with
::
(e

:
-
:
h)
:::::::::::
MODISLM86 :::::

across
:::
four

::
of

::
the

::::
same

::::::::::
summertime

:::
days

:::::
(15th

::::::::
December)

::
in
:::
(a,

::
e)

::::
2009,

:::
(b,

:
f)
:::::

2010,
::
(c,

:::
g)

::::
2013,

:::
(d,

::
h)

::::
2015.

::::
The

::::::::::
area-weighted

:::::::
Southern

::::::
Ocean

::::
mean

::
is

:::::
shown

:::::
below

::::
each

:::
plot.

3.5
::::::

Aerosol
::::
and

:::::
cloud

::::::::
response

:::::
Figure

::
9
::::::
shows

:::
the

:::::
effect

:::
on

::::::
cloud

:::
and

:::::::
aerosol

:::::::::
properties

::
of

::::::::
changing

::::
the

::::::::::
atmospheric

:::::
DMS

:::::::::::
distribution.

::::::::
Changing

::::
the

::::::::::
atmospheric

::::
DMS

::::::::::::
concentration

:::::
yields

::::
little

::::::
change

::
to

:::::
CCN,

::::::
CDNC

::
or

:::::
AOD.

::::
This

:::::::
suggests

::::
that

::::
these

::::::::
variables

::
are

:::::::::::
significantly550

::::::::
influenced

:::
by

::::::
factors

::::
such

:::
as

:::
sea

:::::
spray

::::::
aerosol

:::
and

::::
the

::::::::::
atmospheric

::::::::
oxidation

::::::::
pathways

::::
that

::::::
convert

:::::
DMS

::
to
::::::

sulfate
:::::::
aerosol

::::::::::::::::::::::::::::::::
(Revell et al., 2021; Fossum et al., 2020)

:
.
:::::::
Changes

:::
to

:::
the

::::
DMS

::::::
source

:::::::
increase

:::
the

::::::
spread

::
in

::::::::
simulated

:::::
CCN

::::
and

::::::
CDNC over

the Southern Ocean within CMIP6 (Fan et al., 2011). Our analysis shows that upon implementing chl-a measurements derived

into the parametrisation (Figure ??), PMOA
:::::
rather

::::
than

::::::::
changing

:::
the

:::::
mean

:::::
DMS

::::::::::
emissions,

:::::
which

::
is
:::::::::

consistent
::::
with

::::
our

::::::
findings

:::
for

:::::::::::
atmospheric

::::
DMS

:::::::::::::
concentrations.

:::::::
Altering

:::
the

:::::
DMS

::::::
source

::::::
affects

::::
AOD

:::
by

::::
73%

:::::
more

:::
than

:::::
DMS

:
emissions over555

the Southern Oceanincrease substantially during summer ( 81%) . Although PMOA is in the preliminary stages of development

within the UKESM1, our results increase in ice nucleating particles which could improve PMOA-driven cloud formation

processes
:
,
::::::::::
emphasizing

:::
the

::::
role

::
of

:::
the

:::::
ocean

::
in

::::::::
producing

::::::::::
atmospheric

::::::
DMS.

::::
Box

::::
plots

::
of

:::::
AOD,

:::::
CCN,

::::
and

::::::
CDNC

::::::
(Figure

:::
9e,

:
a,
:::

c)
::::
show

::::
that

:::
the

::::::::::
simulations

:::
do

:::
not

:::::::
capture

:::
the

:::::::
maxima

::
in

:::::::
CDNC,

:::::
CCN

::
or

:::::
AOD over the Southern Ocean. This will be

investigated in future work.560
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Emissions of primary marine organic
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Figure 9.
::::::::::
Summertime

:::::::::
climatology

::::::
between

:::
60◦

::
S

:
to
:::
40◦

::
S
::::::
showing

:::
the

::::
(a,b)

::::
cloud

::::::
droplet

::::::
number

:::::::::::
concentrations,

::::
(c,d)

::::
cloud

::::::::::
conversation

::::
nuclei

::::
(800

:::
m

::
in

:::::::
altitude),

:::
and

::::
(d,e)

:
aerosol for

:::::
optical

:::::
depth

::
at

:::
550

::::
nm.

:::
The

:::::
violin

::::
plots

:
(a

::
,c,e) MEDUSA

::::::
represent

:::
all

:::::
spatial

:
and

for
::::::
temporal

::::
data

:::::
points

:::::
across

:
the

::
10

::::
years

::::
over

:::
the

:::::::
Southern

::::::
Ocean

::
in

::::
DJF.

:::
The

::::::
lowest

:::
1%

::
of

:::::
values

:::
are

::::::::
excluded

::::
from

:::
the

:::::
violin

::::
plots.

::
In

:
(b
:::
,d,f) MODIS-DMS simulation integrated over the summer period

:::
grey

:::::
lines

:::::::
represent

::::::::::
observational

:::::::
datasets

:::::
where

:
(DJF

:
b)

:::::::::::::::::
Grosvenor et al. (2018)

::::::
(dashed)

::::
and

:::::::::::::::::::::
Bennartz and Rausch (2017)

:::::
(solid)

::
are

::::::
shown

::
for

::::::
CDNC,

:::
(d)

::::::::::::::::::::::
Choudhury and Tesche (2023)

::
is

:::::
shown

:
at
:::::
818m,

:::
and

:::
(f)

::::
AOD

:::::::::
climatology

::
by

:::
the

::::::
MODIS

:::::::::::::
satellite-retrieval

:
is
:::::
shown

::::::::::::::::
(Platnick et al., 2017). The mean value is area weighted across

:::
error

::::
bars

:::::::
represent

:::
one

:::::::
standard

:::::::
deviation

::::
either

::::
side

::
of the Southern Ocean DJF

:::::::::
observational

:::::
mean.

4 Conclusions

The concentration and distribution of atmospheric DMS is highly uncertain
::::::::
Modelled

:::::::::::
atmospheric

:::::
DMS over the Southern

Ocean , in part due to the lack of observational data and lack of understanding of oceanic DMS and DMS
::
is

:::::::
sensitive

:::
to

::::
both

::::::
oceanic

:::::::
sources

:::
and

:::::::::
sea-to-air emissions. We examine the key processes and relationships involved in the emissions of

DMS and the production of atmospheric DMS . We also provide an overview of different oceanic DMS climatologies and565

calculate an oceanic DMS time series using chl-a satellite data . We then used three different oceanic DMS climatologies

(MEDUSA, Lana, and Hulswar) in
::::::::
examined

:::
the

:::::::::
sensitivity

::
of
:::::::::::

atmospheric
:::::
DMS

::
to

::::::::
different

:::::::
oceanic

:::::
source

::::
data

::::
sets

::::
and

::::::::
sea-to-air

::::::
transfer

:::::::
velocity

:::::::::::::::
parameterizations

::::
using

:
the UKESM1-AMIP model. We also constructed a competing oceanic DMS
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spatially distributed time series, using satellite chl-
::::::::::
demonstrate

:::
the

:::::::::::
effectiveness

::
of

:::::
using

:
a
::::::::::::::
‘MODIS-DMS’

::::::
oceanic

:::::
DMS

::::
data

::
set

::::
and

::::::::::
climatology

:::::::::
calculated

:::::
from

::::::
satellite

:::::::::::
chlorophyll-a data from 2009 to 2018. By using nudged simulations, we can570

more accurately examine the drivers of the change between oceanic DMS and atmospheric DMS via closer comparisons with

observations. Across all four oceanic DMS datasets, we used the sea-to-air parameterization proposed by Liss and Merlivat (1986)

. We incorporated a quadratic parameterization from Wanninkhof (2014) in the
::::::::::
observations.

:
MODIS-DMS and Lana oceanic

DMS source to align with current flux estimations in the literature and other Earth System Models. Moreover, we tested a

formula based on DMS observations from Blomquist et al. (2017) within the MODIS-DMS and Lana simulations.575

MODIS-DMS suggests that large areas of open water
:::::::::
simulations

:::::::
indicate

:::
that

:::::
large

::::
open

:::::
water

:::::
areas in the Southern Ocean

have lower oceanic DMS concentrations compared with
::
to

:::
the

::::
other

:::::
three

::::::
oceanic

:::::
DMS

::::
data

:::
sets

:::::
tested

:
(MEDUSA, Lana, and

Hulswar. Our study finds that climatologies based on observations show
:
).
::::::::::::
Climatologies

::::::::
compiled

::::
from

::::::
in-situ

:::::::::::
observations

:::::
(Lana

:::
and

::::::::
Hulswar)

:::::
depict

:
fewer distinct features in oceanic DMS concentrations . On average, all four oceanic DMS datasets

have a summertime mean of 3.7 ± 1.2 nM within the Southern Ocean (40 ◦S to 60 ◦S). MODIS-DMS oceanic DMS shows580

significant differences in the Southern Ocean between coastal areas and the open ocean, where coastal regions contain enhanced

oceanic DMS . By incorporating a time series based on proxies of real-world biological data, we demonstrate that annual
::::
than

::::::::::::
MODIS-DMS.

:::::::
Coastal

::::::
regions

::::
have

:::::::::
enhanced

:::::::::::
chlorophyll-a

::::
and

:::::
DMS,

::::
and

:::
we

::::::::::
demonstrate

:::
the

::::::::
influence

::
of

:::::::::::::
spatiotemporal

chl-a fluctuations can influence oceanic DMSand impact emissions. This highlights the importance of capturing high levels

of biological activitywithin oceanic DMS over time
:::::::::
fluctuations

:::
on

::::::
oceanic

::::
and

::::::::::
atmospheric

::::::
DMS.

:::::::::::
Atmospheric

:::::
DMS

::
in

:::
the585

:::::::::::
MODIS-DMS

:::::
time

:::::
series

:::::::::
simulation

:::::
shows

::::::
similar

::::::::::
interannual

:::::::::
variability

::
to

:::
the

::::::::::::::::::
MODIS-DMS-CLIM

:::::::::
simulation,

:::::::::
indicating

:::
that

::::::::
capturing

:::::::
realistic

::::::
spatial

::::::::
variability

::
is

:::::
more

::::::::
important

::::
than

::::::::
capturing

:::::::
realistic

:::::::::
interannual

:::::::::
variability.

:

::::::
Current

:::::::
oceanic

::::
DMS

::::::::::::
climatologies

:
in
:::::::
climate

::::::
models

::::
lack

::::::
realistic

::::::
spatial

::::::::::
distributions

:::
for

::::::::
Southern

:::::
Ocean

:::::::
summer,

:::::::
evident

::::
from

::::::
voyage

:::::::::::
comparisons

:::
and

:::::::::::
atmospheric

:::::
DMS

::::::
spatial

::::::::::
distribution.

:::
We

:::::
show

::::
how

:::::
using

:::::
chl-a

::::
data

::::
from

:::
the

::::::::::::
MODIS-aqua

:::::::
satellites

:::::
offers

::
a

::::
good

::::::
spatial

::::::::::::
representation

::
of

:::::::
oceanic

:::::
DMS.

:::::::::
Approaches

:::::
such

::
as

:::
this

::::
and

:::
that

:::
of

::::
Gali

::
et

::
al

::::
offer

:::::::::
promising590

::::::
avenues

:::
for

::::::::::
realistically

:::::::::
capturing

::::::
spatial

::::::::
variability

:::
in

:::::::
oceanic

:::::
DMS

::::::::
associated

:::::
with

::::::
marine

::::::::
biogenic

:::::::
activity.

:::
The

:::::::
current

:::::::
approach

::
to
::::::::::
calculating

::::::
oceanic

:::::
DMS

::::::
within

::::::::
UKESM1

:::::::::::
(MEDUSA)

:::::
shows

::::
little

::::::
spatial

:::::::::
variability

:::
and

:::::
high

::::::
average

::::::
biases

::
in

::
the

::::::::
Southern

::::::
Ocean

:::::
region,

:::::::::::
emphasizing

:::
the

::::
need

:::
for

:::::
further

:::::::::
refinement

:::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Bock et al., 2021; Mulcahy et al., 2020; Yool et al., 2021)

:
.

We find that atmospheric DMS is more sensitive to changes in oceanic DMS than the range of flux parameterizations used in595

this study. Using different
::::::::
sensitivity

:::
to oceanic DMS

::::::
changes

::::::::
surpasses

:::
the

:::::::::
sensitivity

::
to

:::
flux

:::::::::::::::
parameterizations

::
in

:::
our

::::::
study.

:::::::
Different

:::::::
oceanic

:::::
DMS concentrationswith ,

:::::
using the same sea-to-air parameterizationresults in ,

::::
lead

::
to

:
a 112% spread across

the means within the DMS emissions. In contrast, changing just the DMS flux parameterization
::::
alone

:
results in a spread of

50-60% . Additionally, atmospheric DMS concentrations are more sensitive to changes in oceanic DMS concentrations than

DMS emissions . The mean emissions between all eight simulations have a spread of
:::::
spread.

::::
The

:::::
total

::::::
spread

::
in

:::::::
average600

:::::::
Southern

::::::
Ocean

:::::
DMS

::::::::
emissions

::::::
across

::
all

::::::::::
simulations

::
is 153%, smaller than the spread across the atmospheric concentration

of
:::::
while

:::
the

::::::::::
atmospheric

:::::
DMS

::::::::::::
concentration

::::::
spread

::
is 171%. Changing either the oceanic DMS or

::::
Both

::::::
oceanic

:::::
DMS

::::
and

DMS flux parameterization has considerable effects on atmospheric DMSconcentrations and emissions, thus requiring careful
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thought about implementation in future simulations
::::::
changes

:::::::::::
significantly

::::::::
influence

::::::::::
atmospheric

::::::
DMS,

::::::::::
emphasizing

:::
the

:::::
need

::
for

::::::
careful

::::::::::::
consideration

::
in

:::::
future

:::::::
research.605

We recommend moving away from the commonly used W14 quadratic sea-to-air flux parameterization in CMIP6 models for

DMS and instead consider more up-to-date relationships developed specifically for DMS. The Wanninkhof (2014) quadratic

DMS parameterization has a
:::::
leads

::
to 33% larger influence on

::::
more DMS emissions than that of Liss and Merlivat (1986) and

Blomquist et al. (2017). Additionally, all simulations have a summertime Southern Ocean flux of 22.2 ± 5 µmol m−2 d−1,

with linear flux parameterizations aligning
:::::
Linear

:::::::
transfer

:::::::
velocity

:::::::::::::::
parameterizations

:::::
align better with observations than the610

quadratic flux. Furthermore, we found that using
::
for

:::::
DMS

:::::::::
emissions,

::::::::::
particularly

:::
for

:::
the

::::::::::::
MODIS-DMS

::::::::::
simulations.

:::::
Using

:
a

linear flux parameterization , B17, and LM86, within MODIS-DMS aligned the
::::::
brought atmospheric DMS (164

::
88 ± 132 ppt)

much closer to the observations (185
::
55

:::
ppt)

::::::
closer

::
to

::::::::::
observations

::::
(108

:
± 129

::
61

:
ppt). All simulations have a Southern Ocean

DJF mean of 276 ± 174 ppt, within one standard deviation.

The use of climatologies within climate models to represent oceanic DMS does not represent realistic distributions within615

the Southern Ocean as shown by comparisons to voyages. Climatologies should be replaced by spatially distributed time

series to represent inter-annual variability of oceanic DMS. The time series would benefit from using a wide-spread readily

available dataset that best represents a realistic spatial distribution of oceanic DMS. Given the current data availability,

using chl-a data from the MODIS-aqua satellite is a viable option. The oceanic DMS within the UKESM1 (MEDUSA) is

positively biased (e.g. Bock et al., 2021; Mulcahy et al., 2020; Yool et al., 2021), and is in need of further development. In620

futurework, when developing sulfate chemistry, we recommend using the LM86 or
::
In

::::::
future,

:::
we

::::::::::
recommend

::::
that

:::::::
models

:::
use

::::::::
up-to-date

::::::::::::
DMS-specific

:::::::::::
relationships

::::
such

::
as

:
B17flux parameterization along with either Lana or MODIS-DMS oceanic

DMS concentrations, to capture a more realistic DMS cycle in the Southern Ocean.
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flux simulation with the rankings of hourly TAN1802 data. Each simulation overlays the corresponding SOAP voyage flux,

whereby both emissions are calculated with the same sea-to-air flux, winds, and Schmidt number.

Same as Figure ??, but for TAN 2018960

Scatter plot representing how DMS flux and atmospheric DMS mixing ratio respond to increasing oceanic DMS concentrations.

(a-i) Each simulation presents 97920 data points within the DJF Southern Ocean. (j,k) The relationship between observational

voyages during 2012 (SOAP using the Wanninkhof (2014) flux parameterization), 2019 (ANDREXII), and 2008 (SOExchange)

is also presented. The r2 value is shown on each plot to represent the coefficient of determination between the oceanic DMS

and DMS emissions for each simulation and voyage.965
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