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Abstract10

Heavy rains and tropical storms often result in floods, which are expected to increase in fre-11

quency and intensity. Flood prediction models and inundation mapping tools provide decision-12

makers and emergency responders with crucial information to better prepare for these events.13

However, the performance of models relies on the accuracy and timeliness of data received from14

in-situ gaging stations and remote sensing; each of these data sources has its limitations, especially15

when it comes to real-time monitoring of floods. This study presents a vision-based framework16

for measuring water levels and detecting floods using Computer Vision and Deep Learning (DL)17

techniques. The DL models use time-lapse images captured by surveillance cameras during storm18

events for the semantic segmentation of water extent in images. Three different DL-based ap-19

proaches, namely PSPNet, TransUNet, and SegFormer, were applied and evaluated for semantic20

segmentation. The predicted masks are transformed into water level values by intersecting the21

extracted water edges, with the 2D representation of a point cloud generated by an Apple iPhone22

13 Pro LiDAR sensor. The estimated water levels were compared to reference data collected by an23

ultrasonic sensor. The results showed that SegFormer outperformed other DL-based approaches24

by achieving 99.55% and 99.81% for Intersection over Union (IoU) and accuracy, respectively.25

Moreover, the highest correlations between reference data and the vision-based approach reached26

above 0.98 for both the coefficient of determination (r2) and Nash-Sutcliffe Efficiency. This study27

demonstrates the potential of using surveillance cameras and Artificial Intelligence for hydrologic28

monitoring and their integration with existing surveillance infrastructure.29

1 Introduction30

Flood forecasts and Flood Inundation Mapping (FIM) can play an important role in saving human31

lives and reducing damages by providing timely information for evacuation planning, emergency man-32

agement, and relief efforts [Gebrehiwot et al., 2019]. These models and tools are designed to identify33

and predict inundation areas and the severity of damage caused by storm events. Two primary sources34

of data for these models are in-situ gaging networks and remote sensing. For example, in-situ stream35

gages, such as those operated by the United States Geological Survey (USGS) provide useful stream-36

flow information like water height and discharge at monitoring sites [Turnipseed and Sauer, 2010].37

However, they cannot provide an adequate spatial resolution of streamflow characteristics [Lo et al.,38

2015]. The limitation of in-situ stream gages is further exacerbated by the lack of systematic instal-39

lation along the waterways and accessibility issues [Li et al., 2018; King et al., 2018]. Satellite data40

and remote sensing can complement in-situ gage data by providing information at a larger spatial41

scale [Alsdorf et al., 2007]. However, continuous monitoring data for a region of interest remains to42

be a problem due to the limited revisit intervals of satellites, cloud cover, and systematic departures43

or biases [Panteras and Cervone, 2018]. Crowdsourcing methods have gained attention as a potential44

solution but their reliability is questionable [Schnebele et al., 2014; Goodchild, 2007; Howe, 2008]. To45
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address these limitations and enhance real-time monitoring capabilities, surveillance cameras are inves-46

tigated here as a new source of data for hydrologic monitoring and flood data collection. However, this47

requires a significant investment in Computer Vision (CV) and Artificial Intelligence (AI) techniques48

to develop reliable methods for detecting water in surveillance images and translating that information49

into numerical data.50

Recent advances in CV offer new techniques for processing image data for the quantitative measure-51

ments of physical attributes from a site [Forsyth and Ponce, 2002]. However, there is limited knowledge52

of how visual information can be used to estimate physical water parameters using CV techniques.53

Inspired by the principle of the float method, Tsubaki et al. [2011] used different image processing tech-54

niques to analyze images captured by closed-circuit television (CCTV) systems installed for surveillance55

purposes to measure the flow rate during flood events. In another example, Kim et al. [2011] proposed56

a method for measuring water level by detecting the borderline between a staff gauge and the surface57

of water based on image processing of the captured image of the staff gage installed in the middle of58

the river. As the use of images for environmental monitoring becomes more popular, several studies59

have investigated the source and magnitude of errors common in image-based measurement systems,60

such as the effect of image resolution, lighting effects, perspective, lens distortion, water meniscus,61

and temperature changes [Elias et al., 2020; Gilmore et al., 2013]. Furthermore, proposed solutions62

to resolve difficulties originating from poor visibility have been developed to better identify readings63

on staff gages [Zhang et al., 2019]. Recently, Deep Learning (DL) has become prevalent across a wide64

range of disciplines, particularly in applied sciences such as CV and engineering.65

DL-based models have been utilized by the water resources community to determine the extent of66

water and waterbodies visible in images captured by surveillance camera systems. These models can67

estimate the water level [Pally and Samadi, 2022]. In a similar vein, Moy de Vitry et al. [2019];68

Vandaele et al. [2021] employed a DL-based approach to identify floodwater in surveillance footage69

and introduced a novel qualitative flood index, SOFI, to determine water level fluctuations. SOFI70

was calculated by taking the aspect ratio of the area of the water surface detected within an image71

to the total area of the image. However, these types of methods, which make prior assumptions72

and estimate water level fluctuation roughly, cannot serve as a vision-based alternative for measuring73

streamflow characteristics. More systematic studies adopted photogrammetry to reconstruct a high-74

quality 3D model of the environment with a high spatial resolution to have a precise estimation of75

real-world coordination while measuring streamflow rate and stage. For example, Eltner et al. [2018,76

2021] introduced a method based on Structure from Motion (SfM), and photogrammetric techniques,77

to automatically measure the water stage using low-cost camera setups.78

Advances in photogrammetry techniques enable 3D surface reconstruction with a high temporal and79

spatial resolution. These techniques are adopted to build 3D surface models from RGB imagery [West-80

oby et al., 2012; Eltner and Schneider, 2015; Eltner et al., 2016]. However, most of the photogrammetric81

methods are still expensive as they rely on differential global navigation satellite systems (DGNSS),82

ground control points (GCPs), commercial software, and data processing on an external computing83

device [Froideval et al., 2019]. A LiDAR scanner, on the other hand, is now easily available since the84

introduction of the iPad Pro and iPhone 12 Pro in 2020 by Apple. This device is the first smartphone85

equipped with a native LiDAR scanner and offers a potential paradigm shift in digital field data acqui-86

sition which puts these devices at the forefront of smartphone-assisted fieldwork [Tavani et al., 2022].87

So far, the iPhone LiDAR sensor has been used in different studies such as forest inventories [Gollob88

et al., 2021] and coastal cliff site [Luetzenburg et al., 2021]. The availability of LiDAR sensors to build89

3D environments, and advancements in DL-based models offer a great potential to produce numerical90

information from ground-based imageries.91

This paper presents a vision-based framework for measuring water levels from time-lapse images. The92

proposed framework introduces a novel approach by utilizing the iPhone LiDAR sensor as a laser scan-93

ner, which is commonly available on consumer-grade devices, for scanning and constructing a 3D point94

cloud of the region of interest. During the data collection phase, time-lapse images and ground truth95

water level values were collected using an embedded camera and ultrasonic sensor. The water extent96

in the captured images was determined automatically using semantic segmentation DL-based models.97

For the first time, the performance of three different state-of-the-art DL-based approaches, including98

Convolutional Neural Networks (CNN), hybrid CNN-Transformer, and Transformers-Multilayer Per-99
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ceptron (MLP), was evaluated and compared. CV techniques were applied for camera calibration, pose100

estimation of the camera setup in each deployment, and 3D-2D reprojection of the point cloud onto101

the image plane. Finally, K-Nearest Neighbors (KNN) was used to find the nearest projected (2D)102

point cloud coordinates to the water line on the river banks, for estimating the water level in each103

time-lapse image.104

2 Deep Learning Architectures105

Since this study tends to cover a wide range of DL approaches, this section solely focuses on reviewing106

different DL-based architectures. So far, different DL networks have been applied and evaluated for107

semantic segmentation of the waterbodies within the RGB images captured by cameras [Erfani et al.,108

2022]. All existing semantic segmentation approaches–CNN and Transformer-based–share the same109

objective of classifying each pixel of a given image but differ in the network design.110

CNN-based models were designed to imitate the recognition system of primates [Shamsabadi et al.,111

2022], while possessing different network designs such as low-resolution representations learning [Long112

et al., 2015; Chen et al., 2017], high-resolution representations recovering [Badrinarayanan et al., 2015;113

Noh et al., 2015; Lin et al., 2017], contextual aggregation schemes [Yuan and Wang, 2018; Zhao et al.,114

2017; Yuan et al., 2020], feature fusion and refinement strategy [Lin et al., 2017; Huang et al., 2019;115

Li et al., 2019; Zhu et al., 2019; Fu et al., 2019]. CNN-based models follow local to global features in116

different layers of the forward pass, which used to be thought of as a general intuition of the human117

recognition system. In this system, objects are recognized through the analysis of texture and shape-118

based clues–local and global representations and their relationship in the entire field of view. Recent119

research, however, shows significant differences exist between the visual behavioral system of humans120

and CNN-based models [Geirhos et al., 2018b; Dodge and Karam, 2017; De Cesarei et al., 2021; Geirhos121

et al., 2020, 2018a], and reveal higher sensitivity of the visual systems in humans to global features122

rather than local ones [Zheng et al., 2018]. This fact drew attention to models that focus on the global123

context in their architectures.124

Developed by Dosovitskiy et al. [2020], Vision Transformer (ViT) was the first model that showed125

promising results on a computer vision task (image classification) without using convolution operation126

in its architecture. In fact, ViT adopts “Transformers,” as a self-attention mechanism, to improve127

accuracy. “Transformer” was initially introduced for sequence-to-sequence tasks such as text trans-128

lation [Vaswani et al., 2017]. However, as applying the self-attention mechanism on all image pixels129

is computationally expensive, the Transformer-based models could not compete with the CNN-based130

models until the introduction of ViT architecture which applies self-attention calculations on the low-131

dimension embedding of small patches originating from splitting the input image, to extract global132

contextual information. Successful performance of ViT on image classification inspired several subse-133

quent works on Transformer-based models for different computer vision tasks [Liu et al., 2021].134

In this study, three different DL-based approaches including CNN, hybrid CNN-Transformer, and135

Transformers-Multilayer Perceptron (MLP) were trained and tested for semantic segmentation of wa-136

ter. For these approaches, the selected models were PSPNet [Zhao et al., 2017], TransUNet [Chen137

et al., 2021] and SegFormer [Xie et al., 2021], respectively. The performance of these models is evalu-138

ated and compared using conventional metrics, including class-wise Intersection over Union (IoU) and139

per-pixel accuracy (ACC).140

3 Study Area141

In order to evaluate the performance of the proposed framework for measuring the water levels in rivers142

and channels, a time-lapse camera system has been deployed at Rocky Branch, South Carolina. This143

creek is approximately 6.5 km long and collects stormwater from the University of South Carolina144

campus and the City of Columbia. Rocky Branch is subjected to rapid changes in water flow and145

discharges into the Congaree River [Morsy et al., 2016]. The observation site is located within the146

University of South Carolina campus behind 300 Main Street (see Figure 1a).147

An Apple iPhone 13 Pro LiDAR sensor was used to scan the region of interest. Although there is148
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no official information about the technology and hardware specifications, Gollob et al. [2021] reports149

the LiDAR module operates at the 8XX nm wavelength and consists of an emitter (Vertical Cavity150

Surface-Emitting Laser with Diffraction Optics Element, VCSEL DOE) and a receptor (Single Photon151

Avalanche Diode array-based Near Infrared Complementary Metal Oxide Semiconductor image sensor,152

SPAD NIR CMOS) based on direct-time-of-flight technology. Comparisons between the Apple LiDAR153

sensor and other types of laser scanners including hand-held, industrial, and terrestrial have been154

conducted by several recent studies [Mokroš et al., 2021; Vogt et al., 2021]. Gollob et al. [2021] tested155

and reported the performance of a set of eight different scanning apps, and found three applications156

including 3D Scanner App, Polycam and SiteScape suitable for actual practice tests. The objective of157

this study is not the evaluation of the iPhone LiDAR sensor and app performance. Therefore, the 3D158

Scanner App [LABS, 2022] was used with the following settings: confidence = high, range = 5.0 m,159

masking = None, and resolution = 5 mm, for scanning and 3D reconstruction processing. The scanned160

3D point cloud and its corresponding scalar field are shown in Figure 1b and Figure 1c, respectively.161

As the LiDAR scanner settings were set at the highest level of accuracy and computational demand,162

scanning the whole region of interest at the same time was not possible. So, the experimental region163

was divided into several sub-regions and scanned in multi-step. In order to assemble the sub-region164

LiDAR scans, several GCPs were considered in the study area. These GCPs were measured by a total165

station (Topcon GM Series) and used as landmarks to align distinct 3D point clouds with each other166

and create an integrated point cloud encompassing the entirety of the study area.167

Moreover, several ArUco markers were installed for estimating camera (extrinsic) parameters. In168

each setup deployment, these parameters should be recalculated (additional information can be found169

in section 4.3). Since it was not possible to accurately measure the real-world coordination of ArUco170

markers by the LiDAR scanner, the coordinates of the top-left corner of markers were also measured by171

the surveying total station. To establish a consistent coordinate system, the 3D point cloud scanned for172

each sub-region was transformed into the total station’s coordinate system. The real-world coordinates173

of ArUco markers were then added to the 3D point cloud (see Figure 1b).174

4 Methodology175

This study introduces the Eye of Horus, a vision-based framework for hydrologic monitoring and176

real-time water level measurements in bodies of water. The proposed framework includes three main177

components. The first step is designing two deployable setups for data collection. These setups consist178

of a programmable time-lapse camera run by Raspberry Pi and an ultrasonic sensor run by Arduino.179

After collecting data, the first phase (Module 1) involves configuring and training DL-based models180

for semantic segmentation of water in the captured images. In the second phase (Module 2), CV181

techniques for camera calibration, spatial resection, and calculating projection matrix are discussed.182

Finally, in the third phase (Module 3), an ML-based model uses the information achieved by CV183

models to find the relationships between real-world coordinates of water level in the captured images184

(see Figure 2).185

4.1 Data Acquisition186

Two different single-board computers (SBC) were used in this study, Raspberry Pi (Zero W) for187

capturing time-lapse images of a river scene, and Arduino (Nano 3.x) for measuring water level as the188

ground truth data. These devices were designed to communicate with each other, i.e., to trigger the189

other to start or stop recording. During capturing time-lapse images, the Pi camera device triggers the190

ultrasonic sensor to measure the corresponding water level. The camera device is equipped with the191

Raspberry Pi Camera Module 2 which has a Sony IMX219 8-megapixel sensor. This sensor is able to192

capture an image size of 4,256 × 2,832 pixels. However, in this study, the image resolution was set to193

1,920 × 1,440 pixels to balance image quality and computational cost in subsequent image processing194

steps. This setup is also equipped with a 1200 mAh UPS lithium battery power module to provide195

uninterrupted power to the Pi SBC (see Figure 3a).196

The Arduino-based device records the water level. The design is based on an unmanned aerial ve-197

hicle (UAV) deployable sensor created by Smith et al. [2022]. The nRF24L01+ single-chip 2.4 GHz198

transceiver allows the Arduino and Raspberry Pi to communicate via radio frequency (RF). The chip199
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(a) (b)

(c)

Figure 1: Study area of the Rocky Branch Creek. (a) View of the region of interest, (b) The scanned
3D point cloud of the region of interest including an indication of the ArUco markers’ locations, and
(c) The scalar field of left and right banks of Rocky Branch in the region of interest (the colorbar and
the frequency distribution of z values for the captured points are shown on the right side).

Image K-Nearest Neighbor

Camera Intrinsic Matrix
Extrinsic Parameters

Spatial Resection

Rotation Vector

Mask

3D ArUco Markers

DL Model

2D Point Cloud

Contour

2D ArUco Markers

Translation Vector

Intrinsic Parameters
Indices of the Nearest 2D

Point Cloud

3D Coordinates of Water on
the Banklines

Perspective Projection

3D Point Cloud
Module 1 Module 2 Module 3

Figure 2: The Eye of Horus workflow includes three main modules starting from processing images
captured by the time-lapse camera to estimating water level by projecting the waterline on river banks
using CV techniques.
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is housed in both packages and the channel, pipe addresses, data rate, and transceiver/receiver con-200

figuration are all set in the software. The HC-SR04 ultrasonic sensor is mounted to the base of the201

Arduino device and provides a contactless water level measurement. Two permanent magnets at the202

top of the housing attach to a ferrous structure and allow the ultrasonic sensor to be suspended up to203

14 feet over the surface of the water. The device also includes a microSD card module and DS3231204

real-time clock, which enable data logging and storage on-device as well as transmission. The device205

is powered by a rechargeable 7.4V 1500 mAh lithium polymer battery (see Figure 3b).206

The Arduino device waits to receive a ping from the Raspberry Pi device to initiate data collection.207

The ultrasonic sensor measures the distance from the sensor transducer to the surface of the water.208

The nRF24L01+ transmits this distance to the Raspberry Pi device and saves the measurement and a209

time stamp from the real-time clock to an onboard microSD card. This acts as backup data storage, in210

case transmission to the Raspberry Pi fails. The nRF24L01+ RF transceivers have an experimentally211

determined range of up to 30 ft which allows flexibility in the relative placement of the camera to the212

measuring site.213

(a) (b)

Figure 3: Data acquisition devices. (a) Beena, run by Raspberry Pi (Zero W) for capturing time-lapse
images of the river scene; and (b) Aava, run by Arduino Nano for measuring water level correspondence.

A dataset for semantic segmentation was created by collecting images from a specific region of interest214

at different times of the day and under various flow regimes. This dataset includes 1,172 images, with215

manual annotations of the streamflow in the creek for all of them. The dataset is further divided into216

812 training images, 124 validation images, and 236 testing images.217

4.2 Deep Learning Model for Water Segmentation218

The water extent can be automatically determined on the 2D image plane with the help of DL-based219

models. The task of semantic segmentation was applied within the framework of this study to delineate220

the water line on the left and right banks of the channel. Three different DL-based models were trained221

and tested in this study. PSPNet, the first model, is a CNN-based semantic segmentation multi-scale222

network that can better learn the global context representation of a scene [Zhao et al., 2017]. ResNet-223

101 [He et al., 2016] was used as the backbone of this model to encode input images into the features.224

ResNet architecture takes the advantage of “Residual blocks” that assist the flow of gradients during225

the training stage allowing effective training of deep models even up to hundreds of layers. These226

extracted features are then fed into a pyramid pooling module in which feature maps produced by227

small to large kernels are concatenated to distinguish patterns of different scales [Minaee et al., 2021].228

TransUNet, the second model, is a U-shaped architecture that employs a hybrid of CNN and Trans-229

formers as the encoder to leverage both the local and global contexts for precise localization and230

pixel-wise classification [Chen et al., 2021]. In the encoder part of the network, CNN is first used as a231

feature extractor to generate a feature map for the input image, which is then fed into Transformers232

to extract long-range dependencies. The resulting features are upsampled in the decoding path and233
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combined with detailed high-resolution spatial information skipped from the CNN to make estimations234

on each pixel of the input image.235

SegFormer, the third model, unifies a novel hierarchical Transformer, which does not require the posi-236

tional encodings used in standard Transformers, and MultiLayer Perceptron (MLP) performs efficient237

segmentation [Xie et al., 2021]. The hierarchical Transformer introduced in the encoder of this architec-238

ture gives the model the attention ability to multiscale features (high-resolution fine and low-resolution239

coarse information) in the spatial input without the need for positional encodings that may adversely240

affect a models performance when testing on a different resolution from training. Moreover, unlike241

other segmentation models that typically use deconvolutions in the decoder path, a lightweight MLP242

is employed as the decoder of this network that inputs the features extracted at different stages of243

the encoder to generate a prediction map faster and more efficiently. Two different variants, including244

SegFormer-B0 and SegFormer-B5, were applied in this study. The configuration of the models imple-245

mented in this study is elaborated in Table 1. The total number of parameters (Params), occupied246

memory size on GPU (Total Size), and input image size (Batch Size) are reported in Million (M),247

Megabyte (MB), and Batch size×Height×Width×Channel (B, H, W, C ) respectively.248

Table 1: The configuration of models trained and tested in this study.

Model Names Params
(M)

Total Size
(MB)

Batch Size
(B, H, W, C ) Loss Function Optimizer LR

PSPNet 66.2 7,178 2×500×500×3 Binary Cross Entropy SGD 2.50E-04
TransUNet 20.1 6,017 2×448×448×3 Cross Entropy + Dice SGD 2.50E-04
SegFormer-B0 3.7 2,217 2×512×512×3 Cross Entropy AdamW 6.00E-05
SegFormer-B5 82.0 27,666 2×1024×1024×3 Cross Entropy AdamW 6.00E-05

The models were implemented using PyTorch. During the training procedure, the loss function, opti-249

mizer, and learning rate were set individually for each model based on the results of preliminary runs250

used to find the optimal hyperparameters. In the case of PSPNet and TransUNet, the base learn-251

ing rate was set to 2.5×10-4 and decayed using the poly policy [Zhao et al., 2017]. These networks252

were optimized using stochastic gradient descent (SGD) with a momentum of 0.9 and weight decay of253

0.0001. For SegFormer (B0 and B5), a constant learning rate of 6.0×10-5 was used, and the networks254

were trained with the AdamW optimizer [Loshchilov and Hutter, 2017]. All networks were trained for255

30 epochs with a batch size of two. The training data for PSPNet and TransUNet were augmented256

with horizontal flipping, random scaling, and random cropping.257

4.3 Projective Geometry258

In this study, CV techniques are used for different purposes. First, CV models were used for camera259

calibration. They include focal length, optical center, radial distortion, camera rotation, and transla-260

tion. These parameters provide the information (parameters or coefficients) about the camera that is261

required to determine the relationship between 3D object points in the real-world coordinate system262

and its corresponding 2D projection (pixel) in the image captured by that calibrated camera. Gener-263

ally, camera calibration models estimate two kinds of parameters. First, the intrinsic parameters of264

the camera (e.g., focal length, optical center, and radial distortion coefficients of the lens). Second,265

extrinsic parameters (refer to the orientation–rotation, and translation–of the camera) with respect to266

the real-world coordinate system.267

To estimate the camera intrinsic parameters, OpenCV built-in was applied for camera calibration using268

a 2D checkerboard [Bradski, 2000]. The focal length (fx, fy), optical centers (cx, cy), and the skew269

coefficient (s) can be used to create a camera intrinsic matrix K:270

K =

fx s cx
0 fy cy
0 0 1

 (1)

The camera extrinsic parameters were determined using the pose computation problem, Perspective-n-271

Point (PnP), which consists of solving for the rotation, and translation that minimizes the reprojection272
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error from 2D-3D point correspondences [Marchand et al., 2015]. The PnP estimates the extrinsic273

parameters given a set of ‘object points,’ their corresponding ‘image projections,’ as well as the camera274

intrinsic matrix and the distortion coefficients. The camera extrinsic parameters can be represented275

as a combination of a 3×3 rotation matrix R and a 3×1 translation vector t:276

[R | t] =

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz

 (2)

Equation 3 represents the ‘Projection Matrix,’ in a homogeneous coordinate system. The projection277

matrix consists of two parts: the intrinsic matrix (K), containing intrinsic parameters, and the extrinsic278

matrix ([R | t]) which can be represented as follows:279

uv
1

 =

K︷ ︸︸ ︷fx s cx 0
0 fy cy 0
0 0 1 0


[R|t]︷ ︸︸ ︷

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1



Xw

Yw

Zw

1

 (3)

Direct Linear Transformation (DLT) is a mathematical technique commonly used to estimate the280

parameters of the Projection Matrix. The DLT method requires a minimum of six pairs of known281

3D-2D correspondences to establish twelve equations and estimate all parameters of the Projection282

Matrix. Generally, the intrinsic parameters remain constant for a specific camera model, such as the283

Raspberry Pi Camera Module 2, and can be reused for all images captured by that camera. However,284

the extrinsic parameters change whenever the camera’s location is altered. Consequently, for each285

setup deployment, recalculation of the extrinsic parameters is necessary to reconstruct the Projection286

Matrix. To simplify this process, the PnP method was replaced with DLT. It can reduce the required287

number of 3D-2D correspondence pairs to three, by reusing the intrinsic parameters.288

Additionally, ArUco markers were incorporated to represent pairs of known 3D-2D correspondences.289

For this purpose, the pixel coordinates of ArUco markers were determined using the OpenCV ArUco290

marker detection module on the 2D image plane, and the corresponding 3D real-world coordinates291

were measured by the total station. With these 3D-2D point correspondences, the spatial position292

and orientation of the camera can be estimated for each setup deployment. After retrieving all the293

necessary parameters, a full-perspective camera model can be generated. Using this model, the 3D294

point cloud is projected onto the 2D image plane. The projected (2D) point cloud represents the 3D295

real-world coordinates of the nearest 2D pixel correspondence on the image plane296

4.4 Machine Learning for Image Measurements297

Using the projection matrix, the 3D point cloud is projected on the 2D image plane (see Figure 4). The298

projected (2D) point cloud is intersected with the water line pixels, the output of the DL-based model299

(Module 1), to find the nearest point cloud coordinate. To achieve this objective, we utilize the K-300

Nearest Neighbors (KNN) algorithm. Notably, the indices of the selected points remain consistent for301

both the 3D point cloud and the projected (2D) correspondences. As a result, by utilizing the indices302

of the chosen projected (2D) points, the corresponding real-world 3D coordinates can be retrieved.303

4.5 Performance Metrics304

The performance of the proposed framework is evaluated based on four different metrics including305

coefficient of determination (r2), Nash-Sutcliffe Efficiency (NSE), Root Mean Square Error (RMSE),306

and Percent bias (PBIAS). R2 is a widely used metric that quantifies how much of the observed307

dispersion can be explained in a linear relationship by the prediction.308
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Figure 4: KNN is used to find the nearest projected (2D) point cloud (magenta dots) to the water line
(black line) on the image plane.

r2 =

 ∑n
i=1 (Oi − Ō)(Pi − P̄ )√∑n

i=1 (Oi − Ō)2 ·
∑n

i=1 (Pi − P̄ )2

2

(4)

However, if the model systematically over- or under-estimates the results, r2 will still be close to 1.0309

as it only takes dispersion into account [Krause et al., 2005]. NSE, another commonly used metric310

in hydrology, presents the model performance with an interpretable scale and is used to differentiate311

between ‘good’ and ‘bad’ models [Knoben et al., 2019].312

NSE = 1−
∑n

i=1(Oi − Pi)
2∑n

i=1(Oi − Ō)2
(5)

RMSE represents the square root of the average of squares of the errors, the differences between313

predicted values and observed values.314

RMSE =

√√√√ 1

n

n∑
i=1

(Oi − Pi)2 (6)

The PBIAS of estimated water level, compared against the ultrasonic sensor data was also used to315

show where the two estimates are close to each other and where they significantly diverge [Lin et al.,316

2020].317

PBIAS =
100

n

n∑
i=1

(Oi − Pi)∑n
i=1 Oi

(7)

Where n is the number of data points, O and P are observed and predicted values, respectively.318
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5 Results and Discussion319

The results of this study are presented in two sections. First, the performance of DL-based models is320

discussed. Then, in the second section, the performance of the proposed framework is evaluated for321

five different deployments.322

5.1 DL-based Models Results323

The performance of DL-based models for the task of semantic segmentation is evaluated and compared324

in this section. Since the proposed dataset includes just two classes, “river” and “non-river”, “non-river”325

was omitted from the evaluation process, and the performance of models is only reported for the326

“river” class of the test set. The class-wise intersection over union (IoU) and the per-pixel accuracy327

(ACC) were considered the main evaluation metrics in this study. According to Table 2, both variants328

of SegFormer–SegFormer-B0, and SegFormer-B5–outperform other semantic segmentation networks329

on the test set. Considering the models’ configurations detailed in Table 1, SegFormer-B0 can be330

considered the most efficient DL-based network, as it is comprised of only 3.7 M trainable parameters331

and occupies just 2,217 Megabytes of GPU ram during training. In Figure 5, four different visual332

representations of the models’ performance on the validation set of the proposed dataset are presented.333

Since the water level is estimated by intersecting the water line on river banks with the projected (2D)334

point cloud, precise delineation of the water line is of utmost importance to achieve better results in335

the following steps. This means that estimating the correct location of the water line on creek banks in336

each time-lapse image plays a more significant role than performance metrics in this study. Taking the337

quality of water line detection into account and based on the visual representations shown in Figure 5,338

SegFormers’ variants still outperform DL-based approaches. In this regard, a comparison of PSPNet339

and TransUNet showed that PSPNet can delineate the water line more clearly, while the segmented340

area is more integrated for TransUNet outputs.341

Table 2: The performance metrics of different DL-based approaches.

Model Names IoU (River) ACC (River)
PSPNet 94.88% 95.84%
TransUNet 93.54% 96.89%
SegFormer-B0 99.38% 99.77%
SegFormer-B5 99.55% 99.81%

CNNs are typically limited by the nature of their convolution operations, leading to architecture-342

specific issues such as locality [Geirhos et al., 2018a]. Consequently, CNN-based models may achieve343

high accuracy on training data, but their performance can decrease considerably on unseen data.344

Additionally, compared to Transformer-based networks, they perform poorly at detecting semantics345

that requires combining long- and short-range dependencies. Transformers can relax the biases of346

DL-based models inducted by Convolutional operations, achieving higher accuracy in localization of347

target semantics and pixel-level classification with lower fluctuations in varied situations through the348

leverage of both local and global cues [Naseer et al., 2021]. Yet, various transformer-based networks349

may perform differently depending on the targeted task and the network’s architecture. TransUNet350

adopts Transformers as part of its backbone; however, Transformers generate single-scale low-resolution351

features as output [Xie et al., 2021], which may limit the accuracy when multi-scale objects or single352

objects with multi-scale features are segmented. The problem of producing single-scale features in353

standard Transformers is addressed in SegFormer variants through the use of a novel hierarchical354

Transformer encoder [Xie et al., 2021]. This approach has resulted in human-level accuracy being355

achieved by Segformer-B0 and -B5 in the delineation of the water line, as shown in Figure 5. The356

predicted masks are in satisfactory agreement with the manually annotated images.357

5.2 Water Level Estimation358

This section reports the framework performance based on several deployments in the field. The perfor-359

mance results are separately shown for the left and right banks and compared with ultrasonic sensor360

data as the ground truth. The ultrasonic sensor was evaluated previously that documented an average361
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Image GT PSPNet TransUNet SegFormer-B0 SegFormer-B5

Figure 5: Visual representations of different DL-based image segmentation approaches on the validation
dataset.

distance error of 6.9 mm [Smith et al., 2022]. The setup was deployed on several rainy days. The362

results of each deployment are reported in Table 3.363

Table 3: The performance metrics of the framework for five different days of setup deployment.

Deployment Date Position Metrics
r2 NSE RMSE PBIAS

Aug/17/2022 Left Bankline 0.8019 0.5258 0.0409 10.6401
Right Bankline 0.7932 0.7541 0.0294 -0.4848

Aug/19/2022 Left Bankline 0.7701 0.5713 0.0647 16.1015
Right Bankline 0.9678 0.9588 0.0201 -3.4752

Aug/25/2022 Left Bankline 0.7690 0.5700 0.0435 -7.7091
Right Bankline 0.8922 0.8711 0.0238 -1.7738

Nov/10/2022 Left Bankline 0.9461 0.8129 0.0511 -13.1183
Right Bankline 0.9857 0.9790 0.0171 -1.5210

Nov/11/2022 Left Bankline 0.9588 0.8881 0.0397 -10.3656
Right Bankline 0.9855 0.9829 0.0155 -1.7987

In addition to Table 3, the results of each deployment are visually demonstrated in Figure 6. The scatter364

plots show the relationships between the ground truth data (measured by the ultrasonic sensor), and365

the banks of the river. The scatter plots visually present whether the camera readings overestimate or366

underestimate the ground truth data. Moreover, the time-series plot of water level is shown for each367

deployment separately. A hydrograph, showing changes in the water level of a stream over time can368

be a useful tool for demonstrating whether camera readings can satisfactorily capture the response369

of a catchment area to rainfall. The proposed framework can be evaluated in terms of its ability to370

accurately track and identify important characteristics of a flood wave, such as the rising limb, peak,371

and recession limb.372

The first deployment was done on Aug 17, 2022 (see Figure 6a). The initial water level of the base373

flow and parts of the rising limb were not captured in this deployment. Table 3 shows that the374

performance results of the right bank camera readings are better than those of the left bank. R2 for375

both banks was about 0.80 showing a strongly related correlation between the water level estimated by376

11



the framework and ground truth data. Figure 6a shows how the left and right bank camera readings377

perform during the rising limb; the right bank camera readings still underestimated the water level378

during this time frame, and during the recession limb, the left bank camera readings overestimated379

the water level. However, the hydrograph plot shows that both left and right bank camera readings380

were able to capture the peak water level.381

The second deployment was done on Aug 19, 2022. In this deployment, all segments of the hydrograph382

were captured. According to Table 3, the performance of the right bank camera readings was better383

than the left bank one; more than 0.95 was reported for R2 and NSE of the right bankline. Figure 6b384

shows during the rising limb and crest segment both banks estimated the water level similar to ground385

truth. During the recession limb, the right bank water level estimation kept coincident with ground386

truth, while the left bank overestimated the water level. The third deployment was on Aug 25, 2022.387

This time water level of the recession limb and the following base flow were captured (see Figure 6c).388

The right bank camera readings with R2 of 0.89 performed better than the left bank. This time, left389

bank camera readings underestimated the water level over the recession limb, but during the following390

base flow, the water level was estimated correctly by cameras on both banks.391

The results indicate that the right bank camera readings performed better than the left bank. Further392

investigation of the field conditions revealed that stream erosion had a more significant impact on the393

concrete surface of the left bank, resulting in patches and holes that were not scanned by the iPhone394

LiDAR. As a result, the KNN algorithm used to find the nearest (2D) point cloud coordinates to the395

water line could not accurately represent the corresponding real-world coordinates of these locations.396

Figure 7 shows a box plot and scatter plot of the estimated water level for a time-lapse image captured397

at 13:29 on Aug 19, 2022. The patches and holes on the left bank surface caused instability in water398

level estimation for the region of interest. The box plot of the left bank (Cam-L-BL) was taller than399

that of the right bank (Cam-R-BL), indicating that the estimated water level was spread over larger400

values in the left bank due to the presence of these irregularities.401

After analyzing the initial results, the deployable setups were modified to enhance the quality of data402

collection. The programming code of the Arduino device, Aava, was modified to measure five different403

records for water level, each time it is triggered by the camera device, Beena, and transmit the average404

distance to the Raspberry Pi device. This modification decreased the number of noise spikes in the405

measured data and allowed a better comparison between camera readings and ground truth data.406

The case of the camera device, Beena, was redesigned to protect the single board against rain without407

requiring an umbrella which makes the camera setup unstable in stormy weather and causes a decrease408

in the precision of measurements. Moreover, an opening is incorporated into the redesigned case to409

connect an external power bank to enhance the run time. Finally, the viewpoint of the camera was410

subtly shifted to the right to adjust the share of the river banks on the camera’s field of view.411

The results of the deployments on Nov 10, 2022, and Nov 11, 2022, demonstrate that modifications412

to the setup have significantly improved the results of the left bank (as shown in Table 3). NSE413

improved from approximately 0.55 for the first three setup deployments to over 0.80 for the modified414

deployments. Figure 8 shows the setup performances during all segments of the flood wave. The peaks415

were captured by the right bankline on both deployment dates, and there was no effect of noisy spikes416

on either camera readings or ground truth data. However, the right bank images still underestimated417

the water level during the rainstorms.418

6 Conclusion419

This study introduced Eye of Horus, a vision-based framework for hydrologic monitoring and measuring420

real-time water-related parameters, e.g., water level, from surveillance images captured during flood421

events. Time-lapse images and real water level correspondences were collected by Raspberry Pi camera422

and Arduino HC-SR05 ultrasonic sensor, respectively. Moreover, Computer Vision and Deep Learning423

techniques were used for semantic segmentation of water surface within the captured images and for424

reprojecting the 3D point cloud constructed with an iPhone LiDAR scanner, on the (2D) image plane.425

Eventually, the K-Nearest Neighbor algorithm was used to intersect the projected (2D) point cloud426

with the water line pixels extracted from the output of the Deep Learning model, to find the real-world427

3D coordinates.428
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(a)

(b)

(c)

Figure 6: Scatter plot and time series plot for estimated water level by the proposed framework and
measured by the ultrasonic sensor for setup deployment on (a) Aug 17, 2022 (b) Aug 19, 2022, and
(c) Aug 25, 2022.

Figure 7: Water level fluctuation along both left and right banks for the flow regime for an image
captured at 13:29 on Aug 19, 2022.
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(a)

(b)

Figure 8: Scatter plot and time series plot for estimated water level by the proposed framework and
measured by the ultrasonic sensor for setup deployment on (a) Nov 10, 2022, and (b) Nov 11, 2022.

A vision-based framework offers a new alternative to current hydrologic data collection and real-429

time monitoring systems. Hydrological models require geometric information for estimating discharge430

routing parameters, stage, and flood inundation maps. However, determining bankfull characteristics431

is a challenge due to natural or anthropogenic down-cutting of streams. Using visual sensing, stream432

depth, water velocity, and instantaneous streamflow at bankfull stage can be reliably measured.433
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