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Abstract9

Heavy rains and tropical storms often result in floods, which are expected to increase in fre-10

quency and intensity. Flood prediction models and inundation mapping tools provide decision-11

makers and emergency responders with crucial information to better prepare for these events.12

However, the performance of models relies on the accuracy and timeliness of data received from13

in-situ gaging stations and remote sensing; each of these data sources has its limitations, especially14

when it comes to real-time monitoring of floods. This study presents a vision-based framework15

for measuring water levels and detecting floods using Computer Vision and Deep Learning (DL)16

techniques. The DL models use time-lapse images captured by surveillance cameras during storm17

events for the semantic segmentation of water extent in images. Three different DL-based ap-18

proaches, namely PSPNet, TransUNet, and SegFormer, were applied and evaluated for semantic19

segmentation. The predicted masks are transformed into water level values by intersecting the20

extracted water edges, with the 2D representation of a point cloud generated by an Apple iPhone21

13 Pro LiDAR sensor. The estimated water levels were compared to reference data collected by an22

ultrasonic sensor. The results showed that SegFormer outperformed other DL-based approaches23

by achieving 99.55% and 99.81% for Intersection over Union (IoU) and accuracy, respectively.24

Moreover, the highest correlations between reference data and the vision-based approach reached25

above 0.98 for both the coefficient of determination (r2) and Nash-Sutcliffe Efficiency. This study26

demonstrates the potential of using surveillance cameras and Artificial Intelligence for hydrologic27

monitoring and their integration with existing surveillance infrastructure.28

1 Introduction29

Flood forecasts and Flood Inundation Mapping (FIM) can play an important role in saving human30

lives and reducing damages by providing timely information for evacuation planning, emergency man-31

agement, and relief efforts [Gebrehiwot et al., 2019]. These models and tools are designed to identify32

and predict inundation areas and the severity of damage caused by storm events. Two primary sources33

of data for these models are in-situ gaging networks and remote sensing. For example, in-situ stream34

gages, such as those operated by the United States Geological Survey (USGS) provide useful stream-35

flow information like water height and discharge at monitoring sites [Turnipseed and Sauer, 2010].36

However, they cannot provide an adequate spatial resolution of streamflow characteristics [Lo et al.,37

2015]. The limitation of in-situ stream gages is further exacerbated by the lack of systematic instal-38

lation along the waterways and accessibility issues [Li et al., 2018; King et al., 2018]. Satellite data39

and remote sensing can complement in-situ gage data by providing information at a larger spatial40

scale [Alsdorf et al., 2007]. However, continuous monitoring data for a region of interest remains to41

be a problem due to the limited revisit intervals of satellites, cloud cover, and systematic departures42

or biases [Panteras and Cervone, 2018]. Crowdsourcing methods have gained attention as a potential43

solution but their reliability is questionable [Schnebele et al., 2014; Goodchild, 2007; Howe, 2008]. To44

address these limitations and enhance real-time monitoring capabilities, surveillance cameras are inves-45
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tigated here as a new source of data for hydrologic monitoring and flood data collection. However, this46

requires a significant investment in Computer Vision (CV) and Artificial Intelligence (AI) techniques47

to develop reliable methods for detecting water in surveillance images and translating that information48

into numerical data.49

Recent advances in CV offer new techniques for processing image data for the quantitative measure-50

ments of physical attributes from a site [Forsyth and Ponce, 2002]. However, there is limited knowledge51

of how visual information can be used to estimate physical water parameters using CV techniques.52

Inspired by the principle of the float method, Tsubaki et al. [2011] used different image processing tech-53

niques to analyze images captured by closed-circuit television (CCTV) systems installed for surveillance54

purposes to measure the flow rate during flood events. In another example, Kim et al. [2011] proposed55

a method for measuring water level by detecting the borderline between a staff gauge and the surface56

of water based on image processing of the captured image of the staff gage installed in the middle of57

the river. As the use of images for environmental monitoring becomes more popular, several studies58

have investigated the source and magnitude of errors common in image-based measurement systems,59

such as the effect of image resolution, lighting effects, perspective, lens distortion, water meniscus,60

and temperature changes [Elias et al., 2020; Gilmore et al., 2013]. Furthermore, proposed solutions61

to resolve difficulties originating from poor visibility have been developed to better identify readings62

on staff gages [Zhang et al., 2019]. Recently, Deep Learning (DL) has become prevalent across a wide63

range of disciplines, particularly in applied sciences such as CV and engineering.64

DL-based models have been utilized by the water resources community to determine the extent of65

water and waterbodies visible in images captured by surveillance camera systems. These models can66

estimate the water level [Pally and Samadi, 2022]. In a similar vein, Moy de Vitry et al. [2019];67

Vandaele et al. [2021] employed a DL-based approach to identify floodwater in surveillance footage68

and introduced a novel qualitative flood index, SOFI, to determine water level fluctuations. SOFI69

was calculated by taking the aspect ratio of the area of the water surface detected within an image70

to the total area of the image. However, these types of methods, which make prior assumptions71

and estimate water level fluctuation roughly, cannot serve as a vision-based alternative for measuring72

streamflow characteristics. More systematic studies adopted photogrammetry to reconstruct a high-73

quality 3D model of the environment with a high spatial resolution to have a precise estimation of74

real-world coordination while measuring streamflow rate and stage. For example, Eltner et al. [2018,75

2021] introduced a method based on Structure from Motion (SfM), and photogrammetric techniques,76

to automatically measure the water stage using low-cost camera setups.77

Advances in photogrammetry techniques enable 3D surface reconstruction with a high temporal and78

spatial resolution. These techniques are adopted to build 3D surface models from RGB imagery [West-79

oby et al., 2012; Eltner and Schneider, 2015; Eltner et al., 2016]. However, most of the photogrammetric80

methods are still expensive as they rely on differential global navigation satellite systems (DGNSS),81

ground control points (GCPs), commercial software, and data processing on an external computing82

device [Froideval et al., 2019]. A LiDAR scanner, on the other hand, is now easily available since the83

introduction of the iPad Pro and iPhone 12 Pro in 2020 by Apple. This device is the first smartphone84

equipped with a native LiDAR scanner and offers a potential paradigm shift in digital field data acqui-85

sition which puts these devices at the forefront of smartphone-assisted fieldwork [Tavani et al., 2022].86

So far, the iPhone LiDAR sensor has been used in different studies such as forest inventories [Gollob87

et al., 2021] and coastal cliff site [Luetzenburg et al., 2021]. The availability of LiDAR sensors to build88

3D environments, and advancements in DL-based models offer a great potential to produce numerical89

information from ground-based imageries.90

This paper presents a vision-based framework for measuring water levels from time-lapse images. The91

proposed framework introduces a novel approach by utilizing the iPhone LiDAR sensor as a laser scan-92

ner, which is commonly available on consumer-grade devices, for scanning and constructing a 3D point93

cloud of the region of interest. During the data collection phase, time-lapse images and ground truth94

water level values were collected using an embedded camera and ultrasonic sensor. The water extent95

in the captured images was determined automatically using semantic segmentation DL-based models.96

For the first time, the performance of three different state-of-the-art DL-based approaches, including97

Convolutional Neural Networks (CNN), hybrid CNN-Transformer, and Transformers-Multilayer Per-98

ceptron (MLP), was evaluated and compared. CV techniques were applied for camera calibration, pose99
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estimation of the camera setup in each deployment, and 3D-2D reprojection of the point cloud onto100

the image plane. Finally, K-Nearest Neighbors (KNN) was used to find the nearest projected (2D)101

point cloud coordinates to the water line on the river banks, for estimating the water level in each102

time-lapse image.103

2 Deep Learning Architectures104

Since this study tends to cover a wide range of DL approaches, this section solely focuses on reviewing105

different DL-based architectures. So far, different DL networks were applied and evaluated for semantic106

segmentation of the waterbodies within the RGB images captured by cameras [Erfani et al., 2022]. All107

existing semantic segmentation approaches–CNN and Transformer-based– share the same objective of108

classifying each pixel of a given image but differ in the network design.109

CNN-based models were designed to imitate the recognition system of primates [Shamsabadi et al.,110

2022], while possessing different network designs such as low-resolution representations learning [Long111

et al., 2015; Chen et al., 2017], high-resolution representations recovering [Badrinarayanan et al., 2015;112

Noh et al., 2015; Lin et al., 2017], contextual aggregation schemes [Yuan and Wang, 2018; Zhao et al.,113

2017; Yuan et al., 2020], feature fusion and refinement strategy [Lin et al., 2017; Huang et al., 2019;114

Li et al., 2019; Zhu et al., 2019; Fu et al., 2019]. CNN-based models follow local to global features in115

different layers of the forward pass, which used to be thought of as a general intuition of the human116

recognition system. In this system, objects are recognized through the analysis of texture and shape-117

based clues– local and global representations and their relationship in the entire field of view. Recent118

research, however, shows significant differences exist between the visual behavioral system of humans119

and CNN-based models [Geirhos et al., 2018b; Dodge and Karam, 2017; De Cesarei et al., 2021; Geirhos120

et al., 2020, 2018a], and reveal higher sensitivity of the visual systems in humans to global features121

rather than local ones [Zheng et al., 2018]. This fact drew attention to models that focus on the global122

context in their architectures.123

Developed by Dosovitskiy et al. [2020], Vision Transformer (ViT) was the first model that showed124

promising results on a computer vision task (image classification) without using convolution operation125

in its architecture. In fact, ViT adopts “Transformers,” as a self-attention mechanism, to improve126

accuracy. “Transformer” was initially introduced for sequence-to-sequence tasks such as text trans-127

lation [Vaswani et al., 2017]. However, as applying the self-attention mechanism on all image pixels128

is computationally expensive, the Transformer-based models could not compete with the CNN-based129

models until the introduction of ViT architecture which applies self-attention calculations on the low-130

dimension embedding of small patches originating from splitting the input image, to extract global131

contextual information. Successful performance of ViT on image classification inspired several subse-132

quent works on Transformer-based models for different computer vision tasks [Liu et al., 2021].133

In this study, three different DL-based approaches including CNN, hybrid CNN-Transformer, and134

Transformers-Multilayer Perceptron (MLP) were trained and tested for semantic segmentation of wa-135

ter. For these approaches, the selected models were PSPNet [Zhao et al., 2017], TransUNet [Chen136

et al., 2021] and SegFormer [Xie et al., 2021], respectively. The performance of these models is evalu-137

ated and compared using conventional metrics, including class-wise Intersection over Union (IoU) and138

per-pixel accuracy (ACC).139

3 Study Area140

In order to evaluate the performance of the proposed framework for measuring the water levels in rivers141

and channels, a time-lapse camera system has been deployed at Rocky Branch, South Carolina. This142

creek is approximately 6.5 km long and collects stormwater from the University of South Carolina143

campus and the City of Columbia. Rocky Branch is subjected to rapid changes in water flow and144

discharges into the Congaree River [Morsy et al., 2016]. The observation site is located within the145

University of South Carolina campus behind 300 Main Street (see Figure 1a).146

An Apple iPhone 13 Pro LiDAR sensor was used to scan the region of interest. Although there is147

no official information about the technology and hardware specifications, Gollob et al. [2021] reports148
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the LiDAR module operates at the 8XX nm wavelength and consists of an emitter (Vertical Cavity149

Surface-Emitting Laser with Diffraction Optics Element, VCSEL DOE) and a receptor (Single Photon150

Avalanche Diode array-based Near Infrared Complementary Metal Oxide Semiconductor image sensor,151

SPAD NIR CMOS) based on direct-time-of-flight technology. Comparisons between the Apple LiDAR152

sensor and other types of laser scanners including hand-held, industrial, and terrestrial have been153

conducted by several recent studies [Mokroš et al., 2021; Vogt et al., 2021]. Gollob et al. [2021] tested154

and reported the performance of a set of eight different scanning apps, and found three applications155

including 3D Scanner App, Polycam and SiteScape suitable for actual practice tests. The objective of156

this study is not the evaluation of the iPhone LiDAR sensor and app performance. Therefore, the 3D157

Scanner App [LABS, 2022] was used with the following settings: confidence = high, range = 5.0 m,158

masking = None, and resolution = 5 mm, for scanning and 3D reconstruction processing. The scanned159

3D point cloud and its corresponding scalar field are shown in Figure 1b and Figure 1c, respectively.160

As the LiDAR scanner settings were set at the highest level of accuracy and computational demand,161

scanning the whole region of interest at the same time was not possible. So, the experimental region162

was divided into several sub-regions and scanned in multi-step. In order to assemble the sub-region163

LiDAR scans, several GCPs were considered in the study area. These GCPs were measured by a total164

station (Topcon GM Series) and used as landmarks to align distinct 3D point clouds with each other165

and create an integrated point cloud encompassing the entirety of the study area.166

Moreover, several ArUco markers were installed for estimating camera (extrinsic) parameters. In167

each setup deployment, these parameters should be recalculated (additional information can be found168

in section 4.3). Since it was not possible to accurately measure the real-world coordination of ArUco169

markers by the LiDAR scanner, the coordinates of the top-left corner of markers were also measured by170

the surveying total station. To establish a consistent coordinate system, the 3D point cloud scanned for171

each sub-region was transformed into the total station’s coordinate system. The real-world coordinates172

of ArUco markers were then added to the 3D point cloud (see Figure 1b).173

4 Methodology174

This study introduces the Eye of Horus, a vision-based framework for hydrologic monitoring and175

real-time water level measurements in bodies of water. The proposed framework includes three main176

components. The first step is designing two deployable setups for data collection. These setups consist177

of a programmable time-lapse camera run by Raspberry Pi and an ultrasonic sensor run by Arduino.178

After collecting data, the first phase (Module 1) involves configuring and training DL-based models179

for semantic segmentation of water in the captured images. In the second phase (Module 2), CV180

techniques for camera calibration, spatial resection, and calculating projection matrix are discussed.181

Finally, in the third phase (Module 3), an ML-based model uses the information achieved by CV182

models to find the relationships between real-world coordinates of water level in the captured images183

(see Figure 2).184

4.1 Data Acquisition185

Two different single-board computers (SBC) were used in this study, Raspberry Pi (Zero W) for186

capturing time-lapse images of a river scene, and Arduino (Nano 3.x) for measuring water level as the187

ground truth data. These devices were designed to communicate with each other, i.e., to trigger the188

other to start or stop recording. During capturing time-lapse images, the Pi camera device triggers the189

ultrasonic sensor for measuring the corresponding water level. The camera device is equipped with the190

Raspberry Pi Camera Module 2 which has a Sony IMX219 8-megapixel sensor. This sensor is able to191

capture an image size of 4,256 × 2,832 pixels. However, in this study, the image resolution was set to192

1,920 × 1,440 pixels to balance image quality and computational cost in subsequent image processing193

steps. This setup is also equipped with a 1200 mAh UPS lithium battery power module to provide194

uninterrupted power to the Pi SBC (see Figure 3a).195

The Arduino-based device records the water level. The design is based on an unmanned aerial ve-196

hicle (UAV) deployable sensor created by Smith et al. [2022]. The nRF24L01+ single-chip 2.4 GHz197

transceiver allows the Arduino and Raspberry Pi to communicate via radio frequency (RF). The chip198
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(a) (b)

(c)

Figure 1: Study area of the Rocky Branch Creek. (a) View of the region of interest, (b) The scanned
3D point cloud of the region of interest including an indication of the ArUco markers’ locations, and
(c) The scalar field of left and right banks of Rocky Branch in the region of interest (the colorbar and
the frequency distribution of z values for the captured points are shown on the right side).

Image K-Nearest Neighbor

Camera Intrinsic Matrix
Extrinsic Parameters

Spatial Resection

Rotation Vector

Mask

3D ArUco Markers

DL Model

2D Point Cloud

Contour

2D ArUco Markers

Translation Vector

Intrinsic Parameters
Indices of the Nearest 2D

Point Cloud

3D Coordinates of Water on
the Banklines

Perspective Projection

3D Point Cloud
Module 1 Module 2 Module 3

Figure 2: The Eye of Horus workflow includes three main modules starting from processing images
captured by the time-lapse camera to estimating water level by projecting the waterline on river banks
using CV techniques.
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is housed in both packages and the channel, pipe addresses, data rate, and transceiver/receiver con-199

figuration are all set in the software. The HC-SR04 ultrasonic sensor is mounted to the base of the200

Arduino device and provides a contactless water level measurement. Two permanent magnets at the201

top of the housing attach to a ferrous structure and allow the ultrasonic sensor to be suspended up to202

14 feet over the surface of the water. The device also includes a microSD card module and DS3231203

real-time clock, which enable data logging and storage on-device as well as transmission. The device204

is powered by a rechargeable 7.4V 1500 mAh lithium polymer battery (see Figure 3b).205

The Arduino device waits to receive a ping from the Raspberry Pi device to initiate data collection.206

The ultrasonic sensor measures the distance from the sensor transducer to the surface of the water.207

The nRF24L01+ transmits this distance to the Raspberry Pi device and saves the measurement and a208

time stamp from the real-time clock to an onboard microSD card. This acts as backup data storage, in209

case transmission to the Raspberry Pi fails. The nRF24L01+ RF transceivers have an experimentally210

determined range of up to 30 ft which allows flexibility in the relative placement of the camera to the211

measuring site.212

(a) (b)

Figure 3: Data acquisition devices. (a) Beena, run by Raspberry Pi (Zero W) for capturing time-lapse
images of the river scene; and (b) Aava, run by Arduino Nano for measuring water level correspondence.

A dataset for semantic segmentation was created by collecting images from a specific region of interest213

at different times of the day and under various flow regimes. This dataset includes 1,172 images, with214

manual annotations of the streamflow in the creek for all of them. The dataset is further divided into215

812 training images, 124 validation images, and 236 testing images.216

4.2 Deep Learning Model for Water Segmentation217

The water extent can be automatically determined on the 2D image plane with the help of DL-based218

models. The task of semantic segmentation was applied within the framework of this study to delineate219

the water line on the left and right banks of the channel. Three different DL-based models were trained220

and tested in this study. PSPNet, the first model, is a CNN-based semantic segmentation multi-scale221

network which can better learn the global context representation of a scene [Zhao et al., 2017]. ResNet-222

101 [He et al., 2016] was used as the backbone of this model to encode input images into the features.223

ResNet architecture takes the advantage of “Residual blocks” that assist the flow of gradients during224

the training stage allowing effective training of deep models even up to hundreds of layers. These225

extracted features are then fed into a pyramid pooling module in which feature maps produced by226

small to large kernels are concatenated to distinguish patterns of different scales [Minaee et al., 2021].227

TransUNet, the second model, is a U-shaped architecture that employs a hybrid of CNN and Trans-228

formers as the encoder to leverage both the local and global contexts for precise localization and229

pixel-wise classification [Chen et al., 2021]. In the encoder part of the network, CNN is first used as a230

feature extractor to generate a feature map for the input image, which is then fed into Transformers231

to extract long-range dependencies. The resulting features are upsampled in the decoding path and232
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combined with detailed high-resolution spatial information skipped from the CNN to make estimations233

on each pixel of the input image.234

SegFormer, the third model, unifies a novel hierarchical Transformer, which does not require the posi-235

tional encodings used in standard Transformers, and MultiLayer Perceptron (MLP) performs efficient236

segmentation [Xie et al., 2021]. The hierarchical Transformer introduced in the encoder of this architec-237

ture gives the model the attention ability to multiscale features (high-resolution fine and low-resolution238

coarse information) in the spatial input without the need for positional encodings that may adversely239

affect a models performance when testing on a different resolution from training. Moreover, unlike240

other segmentation models that typically use deconvolutions in the decoder path, a lightweight MLP241

is employed as the decoder of this network that inputs the features extracted at different stages of242

the encoder to generate a prediction map faster and more efficiently. Two different variants, including243

SegFormer-B0 and SegFormer-B5, were applied in this study. The configuration of the models imple-244

mented in this study is elaborated in Table 1. The total number of parameters (Params), occupied245

memory size on GPU (Total Size), and input image size (Batch Size) are reported in Million (M),246

Megabyte (MB), and Batch size×Height×Width×Channel (B, H, W, C ) respectively.247

Table 1: The configuration of models trained and tested in this study.

Model Names Params
(M)

Total Size
(MB)

Batch Size
(B, H, W, C ) Loss Function Optimizer LR

PSPNet 66.2 7,178 2×500×500×3 Binary Cross Entropy SGD 2.50E-04
TransUNet 20.1 6,017 2×448×448×3 Cross Entropy + Dice SGD 2.50E-04
SegFormer-B0 3.7 2,217 2×512×512×3 Cross Entropy AdamW 6.00E-05
SegFormer-B5 82.0 27,666 2×1024×1024×3 Cross Entropy AdamW 6.00E-05

The models were implemented using PyTorch. During the training procedure, the loss function, opti-248

mizer, and learning rate were set individually for each model based on the results of preliminary runs249

used to find the optimal hyperparameters. In the case of PSPNet and TransUNet, the base learn-250

ing rate was set to 2.5×10-4 and decayed using the poly policy [Zhao et al., 2017]. These networks251

were optimized using stochastic gradient descent (SGD) with a momentum of 0.9 and weight decay of252

0.0001. For SegFormer (B0 and B5), a constant learning rate of 6.0×10-5 was used, and the networks253

were trained with the AdamW optimizer [Loshchilov and Hutter, 2017]. All networks were trained for254

30 epochs with a batch size of two. The training data for PSPNet and TransUNet were augmented255

with horizontal flipping, random scaling, and random cropping.256

4.3 Projective Geometry257

In this study, CV techniques are used for different purposes. First, CV models were used for camera258

calibration. They include focal length, optical center, radial distortion, camera rotation, and transla-259

tion. These parameters provide the information (parameters or coefficients) about the camera that is260

required to determine the relationship between 3D object points in the real-world coordinate system261

and its corresponding 2D projection (pixel) in the image captured by that calibrated camera. Gener-262

ally, camera calibration models estimate two kinds of parameters. First, the intrinsic parameters of263

the camera (e.g., focal length, optical center, and radial distortion coefficients of the lens). Second,264

extrinsic parameters (refer to the orientation– rotation, and translation– of the camera) with respect265

to the real-world coordinate system.266

To estimate the camera intrinsic parameters, OpenCV built-in was applied for camera calibration using267

a 2D checkerboard [Bradski, 2000]. The focal length (fx, fy), optical centers (cx, cy), and the skew268

coefficient (s) can be used to create a camera intrinsic matrix K:269

K =

fx s cx
0 fy cy
0 0 1

 (1)

The camera extrinsic parameters were determined using the pose computation problem, Perspective-n-270

Point (PnP), which consists of solving for the rotation, and translation that minimizes the reprojection271

7



error from 2D-3D point correspondences [Marchand et al., 2015]. The PnP estimates the extrinsic272

parameters given a set of ‘object points,’ their corresponding ‘image projections,’ as well as the camera273

intrinsic matrix and the distortion coefficients. The camera extrinsic parameters can be represented274

as a combination of a 3×3 rotation matrix R and a 3×1 translation vector t:275

[R | t] =

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz

 (2)

Equation 3 represents the ‘Projection Matrix,’ in a homogeneous coordinate system. The projection276

matrix consists of two parts: the intrinsic matrix (K), containing intrinsic parameters, and the extrinsic277

matrix ([R | t]) which can be represented as follows:278

uv
1

 =

K︷ ︸︸ ︷fx s cx 0
0 fy cy 0
0 0 1 0


[R|t]︷ ︸︸ ︷

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1



Xw

Yw

Zw

1

 (3)

Direct Linear Transformation (DLT) is a mathematical technique commonly used to estimate the279

parameters of the Projection Matrix. The DLT method requires a minimum of six pairs of known280

3D-2D correspondences to establish twelve equations and estimate all parameters of the Projection281

Matrix. Generally, the intrinsic parameters remain constant for a specific camera model, such as the282

Raspberry Pi Camera Module 2, and can be reused for all images captured by that camera. However,283

the extrinsic parameters change whenever the camera’s location is altered. Consequently, for each284

setup deployment, recalculation of the extrinsic parameters is necessary to reconstruct the Projection285

Matrix. To simplify this process, the PnP method was replaced with DLT. It can reduce the required286

number of 3D-2D correspondence pairs to three, by reusing the intrinsic parameters.287

Additionally, ArUco markers were incorporated to represent pairs of known 3D-2D correspondences.288

For this purpose, the pixel coordinates of ArUco markers were determined using the OpenCV ArUco289

marker detection module on the 2D image plane, and the corresponding 3D real-world coordinates290

were measured by the total station. With these 3D-2D point correspondences, the spatial position291

and orientation of the camera can be estimated for each setup deployment. After retrieving all the292

necessary parameters, a full-perspective camera model can be generated. Using this model, the 3D293

point cloud is projected onto the 2D image plane. The projected (2D) point cloud represents the 3D294

real-world coordinates of the nearest 2D pixel correspondence on the image plane295

4.4 Machine Learning for Image Measurements296

Using the projection matrix, the 3D point cloud is projected on the 2D image plane (see Figure 4). The297

projected (2D) point cloud is intersected with the water line pixels, the output of the DL-based model298

(Module 1), to find the nearest point cloud coordinate. To achieve this objective, we utilize the K-299

Nearest Neighbors (KNN) algorithm. Notably, the indices of the selected points remain consistent for300

both the 3D point cloud and the projected (2D) correspondences. As a result, by utilizing the indices301

of the chosen projected (2D) points, the corresponding real-world 3D coordinates can be retrieved.302

4.5 Performance Metrics303

The performance of the proposed framework is evaluated based on four different metrics including304

coefficient of determination (r2), Nash-Sutcliffe Efficiency (NSE), Root Mean Square Error (RMSE),305

and Percent bias (PBIAS). R2 is a widely used metric that quantifies how much of the observed306

dispersion can be explained in a linear relationship by the prediction.307
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Figure 4: KNN is used to find the nearest projected (2D) point cloud (magenta dots) to the water line
(black line) on the image plane.

r2 =

 ∑n
i=1 (Oi − Ō)(Pi − P̄ )√∑n

i=1 (Oi − Ō)2 ·
∑n

i=1 (Pi − P̄ )2

2

(4)

However, if the model systematically over- or under-estimates the results, r2 will still be close to 1.0308

as it only takes dispersion into account [Krause et al., 2005]. NSE, another commonly used metric309

in hydrology, presents the model performance with an interpretable scale and is used to differentiate310

between ‘good’ and ‘bad’ models [Knoben et al., 2019].311

NSE = 1−
∑n

i=1(Oi − Pi)
2∑n

i=1(Oi − Ō)2
(5)

RMSE represents the square root of the average of squares of the errors, the differences between312

predicted values and observed values.313

RMSE =

√√√√ 1

n

n∑
i=1

(Oi − Pi)2 (6)

The PBIAS of estimated water level, compared against the ultrasonic sensor data was also used to314

show where the two estimates are close to each other and where they significantly diverge [Lin et al.,315

2020].316

PBIAS =
100

n

n∑
i=1

(Oi − Pi)∑n
i=1 Oi

(7)

Where n is the number of data points, O and P are observed and predicted values, respectively.317
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5 Results and Discussion318

The results of this study are presented in two sections. First, the performance of DL-based models is319

discussed. Then, in the second section, the performance of the proposed framework is evaluated for320

five different deployments.321

5.1 DL-based Models Results322

The performance of DL-based models for the task of semantic segmentation is evaluated and compared323

in this section. Since the proposed dataset includes just two classes, “river” and “non-river”, “non-river”324

was omitted from the evaluation process, and the performance of models is only reported for the325

“river” class of the test set. The class-wise intersection over union (IoU) and the per-pixel accuracy326

(ACC) were considered the main evaluation metrics in this study. According to Table 2, both variants327

of SegFormer– SegFormer-B0, and SegFormer-B5– outperform other semantic segmentation networks328

on the test set. Considering the models’ configurations detailed in Table 1, SegFormer-B0 can be329

considered the most efficient DL-based network, as it is comprised of only 3.7 M trainable parameters330

and occupies just 2,217 Megabytes of GPU ram during training. In Figure 5, four different visual331

representations of the models’ performance on the validation set of the proposed dataset are presented.332

Since the water level is estimated by intersecting the water line on river banks with the projected (2D)333

point cloud, precise delineation of the water line is of utmost importance to achieve better results in334

the following steps. This means that estimating the correct location of the water line on creek banks in335

each time-lapse image plays a more significant role than performance metrics in this study. Taking the336

quality of water line detection into account and based on the visual representations shown in Figure 5,337

SegFormers’ variants still outperform DL-based approaches. In this regard, a comparison of PSPNet338

and TransUNet showed that PSPNet can delineate the water line more clearly, while the segmented339

area is more integrated for TransUNet outputs.340

Table 2: The performance metrics of different DL-based approaches.

Model Names IoU (River) ACC (River)
PSPNet 94.88% 95.84%
TransUNet 93.54% 96.89%
SegFormer-B0 99.38% 99.77%
SegFormer-B5 99.55% 99.81%

CNNs are typically limited by the nature of their convolution operations, leading to architecture-341

specific issues such as locality [Geirhos et al., 2018a]. Consequently, CNN-based models may achieve342

high accuracy on training data, but their performance can decrease considerably on unseen data.343

Additionally, compared to Transformer-based networks, they perform poorly at detecting semantics344

that requires combining long- and short-range dependencies. Transformers can relax the biases of345

DL-based models inducted by Convolutional operations, achieving higher accuracy in localization of346

target semantics and pixel-level classification with lower fluctuations in varied situations through the347

leverage of both local and global cues [Naseer et al., 2021]. Yet, various transformer-based networks348

may perform differently depending on the targeted task and the network’s architecture. TransUNet349

adopts Transformers as part of its backbone; however, Transformers generate single-scale low-resolution350

features as output [Xie et al., 2021], which may limit the accuracy when multi-scale objects or single351

objects with multi-scale features are segmented. The problem of producing single-scale features in352

standard Transformers is addressed in SegFormer variants through the use of a novel hierarchical353

Transformer encoder [Xie et al., 2021]. This approach has resulted in human-level accuracy being354

achieved by Segformer-B0 and -B5 in the delineation of the water line, as shown in Figure 5. The355

predicted masks are in satisfactory agreement with the manually annotated images.356

5.2 Water Level Estimation357

This section reports the framework performance based on several deployments in the field. The perfor-358

mance results are separately shown for the left and right banks and compared with ultrasonic sensor359

data as the ground truth. The ultrasonic sensor was evaluated previously that documented an average360
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Image GT PSPNet TransUNet SegFormer-B0 SegFormer-B5

Figure 5: Visual representations of different DL-based image segmentation approaches on the validation
dataset.

distance error of 6.9 mm [Smith et al., 2022]. The setup was deployed on several rainy days. The361

results of each deployment are reported in Table 3.362

Table 3: The performance metrics of the framework for five different days of setup deployment.

Deployment Date Position Metrics
r2 NSE RMSE PBIAS

Aug/17/2022 Left Bankline 0.8019 0.5258 0.0409 10.6401
Right Bankline 0.7932 0.7541 0.0294 -0.4848

Aug/19/2022 Left Bankline 0.7701 0.5713 0.0647 16.1015
Right Bankline 0.9678 0.9588 0.0201 -3.4752

Aug/25/2022 Left Bankline 0.7690 0.5700 0.0435 -7.7091
Right Bankline 0.8922 0.8711 0.0238 -1.7738

Nov/10/2022 Left Bankline 0.9461 0.8129 0.0511 -13.1183
Right Bankline 0.9857 0.9790 0.0171 -1.5210

Nov/11/2022 Left Bankline 0.9588 0.8881 0.0397 -10.3656
Right Bankline 0.9855 0.9829 0.0155 -1.7987

In addition to Table 3, the results of each deployment are visually demonstrated in Figure 6. The scatter363

plots show the relationships between the ground truth data (measured by the ultrasonic sensor), and364

the banks of the river. The scatter plots visually present whether the camera readings overestimate or365

underestimate the ground truth data. Moreover, the time-series plot of water level is shown for each366

deployment separately. A hydrograph, showing changes in the water level of a stream over time can367

be a useful tool for demonstrating whether camera readings can satisfactorily capture the response368

of a catchment area to rainfall. The proposed framework can be evaluated in terms of its ability to369

accurately track and identify important characteristics of a flood wave, such as the rising limb, peak,370

and recession limb.371

The first deployment was done on Aug 17, 2022 (see Figure 6a). The initial water level of the base372

flow and parts of the rising limb were not captured in this deployment. Table 3 shows that the373

performance results of the right bank camera readings are better than those of the left bank. R2 for374

both banks was about 0.80 showing a strongly related correlation between the water level estimated by375
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the framework and ground truth data. Figure 6a shows how the left and right bank camera readings376

perform during the rising limb; the right bank camera readings still underestimated the water level377

during this time frame, and during the recession limb, the left bank camera readings overestimated378

the water level. However, the hydrograph plot shows that both left and right bank camera readings379

were able to capture the peak water level.380

The second deployment was done on Aug 19, 2022. In this deployment, all segments of the hydrograph381

were captured. According to Table 3, the performance of the right bank camera readings was better382

than the left bank one; more than 0.95 was reported for R2 and NSE of the right bankline. Figure 6b383

shows during the rising limb and crest segment both banks estimated the water level similar to ground384

truth. During the recession limb, the right bank water level estimation kept coincident with ground385

truth, while the left bank overestimated the water level. The third deployment was on Aug 25, 2022.386

This time water level of the recession limb and the following base flow were captured (see Figure 6c).387

The right bank camera readings with R2 of 0.89 performed better than the left bank. This time, left388

bank camera readings underestimated the water level over the recession limb, but during the following389

base flow, the water level was estimated correctly by cameras on both banks.390

The results indicate that the right bank camera readings performed better than the left bank. Further391

investigation of the field conditions revealed that stream erosion had a more significant impact on the392

concrete surface of the left bank, resulting in patches and holes that were not scanned by the iPhone393

LiDAR. As a result, the KNN algorithm used to find the nearest (2D) point cloud coordinates to the394

water line could not accurately represent the corresponding real-world coordinates of these locations.395

Figure 7 shows a box plot and scatter plot of the estimated water level for a time-lapse image captured396

at 13:29 on Aug 19, 2022. The patches and holes on the left bank surface caused instability in water397

level estimation for the region of interest. The box plot of the left bank (Cam-L-BL) was taller than398

that of the right bank (Cam-R-BL), indicating that the estimated water level was spread over larger399

values in the left bank due to the presence of these irregularities.400

After analyzing the initial results, the deployable setups were modified to enhance the quality of data401

collection. The programming code of the Arduino device, Aava, was modified to measure five different402

records for water level, each time it is triggered by the camera device, Beena, and transmit the average403

distance to the Raspberry Pi device. This modification decreased the number of noise spikes in the404

measured data and allowed a better comparison between camera readings and ground truth data.405

The case of the camera device, Beena, was redesigned to protect the single board against rain without406

requiring an umbrella which makes the camera setup unstable in stormy weather and causes a decrease407

in the precision of measurements. Moreover, an opening is incorporated into the redesigned case to408

connect an external power bank to enhance the run time. Finally, the viewpoint of the camera was409

subtly shifted to the right to adjust the share of the river banks on the camera’s field of view.410

The results of the deployments on Nov 10, 2022, and Nov 11, 2022, demonstrate that modifications411

to the setup have significantly improved the results of the left bank (as shown in Table 3). NSE412

improved from approximately 0.55 for the first three setup deployments to over 0.80 for the modified413

deployments. Figure 8 shows the setup performances during all segments of the flood wave. The peaks414

were captured by the right bankline on both deployment dates, and there was no effect of noisy spikes415

on either camera readings or ground truth data. However, the right bank images still underestimated416

the water level during the rainstorms.417

6 Conclusion418

This study introduced Eye of Horus, a vision-based framework for hydrologic monitoring and measuring419

real-time water-related parameters, e.g., water level, from surveillance images captured during flood420

events. Time-lapse images and real water level correspondences were collected by Raspberry Pi camera421

and Arduino HC-SR05 ultrasonic sensor, respectively. Moreover, Computer Vision and Deep Learning422

techniques were used for semantic segmentation of water surface within the captured images and for423

reprojecting the 3D point cloud constructed with an iPhone LiDAR scanner, on the (2D) image plane.424

Eventually, the K-Nearest Neighbor algorithm was used to intersect the projected (2D) point cloud425

with the water line pixels extracted from the output of the Deep Learning model, to find the real-world426

3D coordinates.427
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(a)

(b)

(c)

Figure 6: Scatter plot and time series plot for estimated water level by the proposed framework and
measured by the ultrasonic sensor for setup deployment on (a) Aug 17, 2022 (b) Aug 19, 2022, and
(c) Aug 25, 2022.

Figure 7: Water level fluctuation along both left and right banks for the flow regime for an image
captured at 13:29 on Aug 19, 2022.

13



(a)

(b)

Figure 8: Scatter plot and time series plot for estimated water level by the proposed framework and
measured by the ultrasonic sensor for setup deployment on (a) Nov 10, 2022, and (b) Nov 11, 2022.

A vision-based framework offers a new alternative to current hydrologic data collection and real-428

time monitoring systems. Hydrological models require geometric information for estimating discharge429

routing parameters, stage, and flood inundation maps. However, determining bankfull characteristics430

is a challenge due to natural or anthropogenic down-cutting of streams. Using visual sensing, stream431

depth, water velocity, and instantaneous streamflow at bankfull stage can be reliably measured.432

7 Data Availability Statement433

The framework and codes developed and used in this study are publicly available online in the GitHub434

repository (https://github.com/smhassanerfani/horus).435
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