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Abstract

Heavy rains and tropical storms often result in floods, which are expected to increase in fre-
quency and intensity. Flood prediction models and inundation mapping tools provide decision-
makers and emergency responders with crucial information to better prepare for these events.
However, the performance of models relies on the accuracy and timeliness of data received from
in-situ gaging stations and remote sensing; each of these data sources has its limitations, especially
when it comes to real-time monitoring of floods. This study presents a vision-based framework
for measuring water levels and detecting floods using Computer Vision and Deep Learning (DL)
techniques. The DL models use time-lapse images captured by surveillance cameras during storm
events for the semantic segmentation of water extent in images. Three different DL-based ap-
proaches, namely PSPNet, TransUNet, and SegFormer, were applied and evaluated for semantic
segmentation. The predicted masks are transformed into water level values by intersecting the
extracted water edges, with the 2D representation of a point cloud generated by an Apple iPhone
13 Pro LiDAR sensor. The estimated water levels were compared to reference data collected by an
ultrasonic sensor. The results showed that SegFormer outperformed other DL-based approaches
by achieving 99.55% and 99.81% for Intersection over Union (IoU) and accuracy, respectively.
Moreover, the highest correlations between reference data and the vision-based approach reached
above 0.98 for both the coefficient of determination (r*) and Nash-Sutcliffe Efficiency. This study
demonstrates the potential of using surveillance cameras and Artificial Intelligence for hydrologic
monitoring and their integration with existing surveillance infrastructure.

1 Introduction

Flood forecasts and Flood Inundation Mapping (FIM) can play an important role in saving human
lives and reducing damages by providing timely information for evacuation planning, emergency man-
agement, and relief efforts [Gebrehiwot et al., 2019]. These models and tools are designed to identify
and predict inundation areas and the severity of damage caused by storm events. Two primary sources
of data for these models are in-situ gaging networks and remote sensing. For example, in-situ stream
gages, such as those operated by the United States Geological Survey (USGS) provide useful stream-
flow information like water height and discharge at monitoring sites [Turnipseed and Sauer, 2010].
However, they cannot provide an adequate spatial resolution of streamflow characteristics [Lo et al.,
2015]. The limitation of in-situ stream gages is further exacerbated by the lack of systematic instal-
lation along the waterways and accessibility issues [Li et al., 2018; King et al., 2018|. Satellite data
and remote sensing can complement in-situ gage data by providing information at a larger spatial
scale [Alsdorf et al., 2007]. However, continuous monitoring data for a region of interest remains to
be a problem due to the limited revisit intervals of satellites, cloud cover, and systematic departures
or biases [Panteras and Cervone, 2018]. Crowdsourcing methods have gained attention as a potential
solution but their reliability is questionable [Schnebele et al., 2014; Goodchild, 2007; Howe, 2008]. To
address these limitations and enhance real-time monitoring capabilities, surveillance cameras are inves-
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tigated here as a new source of data for hydrologic monitoring and flood data collection. However, this
requires a significant investment in Computer Vision (CV) and Artificial Intelligence (AI) techniques
to develop reliable methods for detecting water in surveillance images and translating that information
into numerical data.

Recent advances in CV offer new techniques for processing image data for the quantitative measure-
ments of physical attributes from a site [Forsyth and Ponce, 2002]. However, there is limited knowledge
of how visual information can be used to estimate physical water parameters using CV techniques.
Inspired by the principle of the float method, Tsubaki et al. [2011] used different image processing tech-
niques to analyze images captured by closed-circuit television (CCTV) systems installed for surveillance
purposes to measure the flow rate during flood events. In another example, Kim et al. [2011] proposed
a method for measuring water level by detecting the borderline between a staff gauge and the surface
of water based on image processing of the captured image of the staff gage installed in the middle of
the river. As the use of images for environmental monitoring becomes more popular, several studies
have investigated the source and magnitude of errors common in image-based measurement systems,
such as the effect of image resolution, lighting effects, perspective, lens distortion, water meniscus,
and temperature changes [Elias et al., 2020; Gilmore et al., 2013|. Furthermore, proposed solutions
to resolve difficulties originating from poor visibility have been developed to better identify readings
on staff gages [Zhang et al., 2019]. Recently, Deep Learning (DL) has become prevalent across a wide
range of disciplines, particularly in applied sciences such as CV and engineering.

DL-based models have been utilized by the water resources community to determine the extent of
water and waterbodies visible in images captured by surveillance camera systems. These models can
estimate the water level [Pally and Samadi, 2022|. In a similar vein, Moy de Vitry et al. [2019];
Vandaele et al. [2021] employed a DL-based approach to identify floodwater in surveillance footage
and introduced a novel qualitative flood index, SOFI, to determine water level fluctuations. SOFI
was calculated by taking the aspect ratio of the area of the water surface detected within an image
to the total area of the image. However, these types of methods, which make prior assumptions
and estimate water level fluctuation roughly, cannot serve as a vision-based alternative for measuring
streamflow characteristics. More systematic studies adopted photogrammetry to reconstruct a high-
quality 3D model of the environment with a high spatial resolution to have a precise estimation of
real-world coordination while measuring streamflow rate and stage. For example, Eltner et al. [2018,
2021] introduced a method based on Structure from Motion (SfM), and photogrammetric techniques,
to automatically measure the water stage using low-cost camera setups.

Advances in photogrammetry techniques enable 3D surface reconstruction with a high temporal and
spatial resolution. These techniques are adopted to build 3D surface models from RGB imagery [West-
oby et al., 2012; Eltner and Schneider, 2015; Eltner et al., 2016]. However, most of the photogrammetric
methods are still expensive as they rely on differential global navigation satellite systems (DGNSS),
ground control points (GCPs), commercial software, and data processing on an external computing
device [Froideval et al., 2019]. A LiDAR scanner, on the other hand, is now easily available since the
introduction of the iPad Pro and iPhone 12 Pro in 2020 by Apple. This device is the first smartphone
equipped with a native LiDAR scanner and offers a potential paradigm shift in digital field data acqui-
sition which puts these devices at the forefront of smartphone-assisted fieldwork [Tavani et al., 2022].
So far, the iPhone LiDAR sensor has been used in different studies such as forest inventories [Gollob
et al., 2021] and coastal cliff site [Luetzenburg et al., 2021]. The availability of LIDAR sensors to build
3D environments, and advancements in DL-based models offer a great potential to produce numerical
information from ground-based imageries.

This paper presents a vision-based framework for measuring water levels from time-lapse images. The
proposed framework introduces a novel approach by utilizing the iPhone LiDAR sensor as a laser scan-
ner, which is commonly available on consumer-grade devices, for scanning and constructing a 3D point
cloud of the region of interest. During the data collection phase, time-lapse images and ground truth
water level values were collected using an embedded camera and ultrasonic sensor. The water extent
in the captured images was determined automatically using semantic segmentation DL-based models.
For the first time, the performance of three different state-of-the-art DL-based approaches, including
Convolutional Neural Networks (CNN), hybrid CNN-Transformer, and Transformers-Multilayer Per-
ceptron (MLP), was evaluated and compared. CV techniques were applied for camera calibration, pose



101

102

104

estimation of the camera setup in each deployment, and 3D-2D reprojection of the point cloud onto
the image plane. Finally, K-Nearest Neighbors (KNN) was used to find the nearest projected (2D)
point cloud coordinates to the water line on the river banks, for estimating the water level in each
time-lapse image.

2 Deep Learning Architectures

Since this study tends to cover a wide range of DL approaches, this section solely focuses on reviewing
different DL-based architectures. So far, different DL networks were applied and evaluated for semantic
segmentation of the waterbodies within the RGB images captured by cameras [Erfani et al., 2022]. All
existing semantic segmentation approaches—CNN and Transformer-based— share the same objective of
classifying each pixel of a given image but differ in the network design.

CNN-based models were designed to imitate the recognition system of primates [Shamsabadi et al.,
2022], while possessing different network designs such as low-resolution representations learning [Long
et al., 2015; Chen et al., 2017], high-resolution representations recovering [Badrinarayanan et al., 2015;
Noh et al., 2015; Lin et al., 2017], contextual aggregation schemes [Yuan and Wang, 2018; Zhao et al.,
2017; Yuan et al., 2020], feature fusion and refinement strategy [Lin et al., 2017; Huang et al., 2019;
Li et al., 2019; Zhu et al., 2019; Fu et al., 2019]. CNN-based models follow local to global features in
different layers of the forward pass, which used to be thought of as a general intuition of the human
recognition system. In this system, objects are recognized through the analysis of texture and shape-
based clues— local and global representations and their relationship in the entire field of view. Recent
research, however, shows significant differences exist between the visual behavioral system of humans
and CNN-based models [Geirhos et al., 2018b; Dodge and Karam, 2017; De Cesarei et al., 2021; Geirhos
et al., 2020, 2018a], and reveal higher sensitivity of the visual systems in humans to global features
rather than local ones [Zheng et al., 2018]. This fact drew attention to models that focus on the global
context in their architectures.

Developed by Dosovitskiy et al. [2020], Vision Transformer (ViT) was the first model that showed
promising results on a computer vision task (image classification) without using convolution operation
in its architecture. In fact, ViT adopts “Transformers,” as a self-attention mechanism, to improve
accuracy. “Transformer” was initially introduced for sequence-to-sequence tasks such as text trans-
lation [Vaswani et al., 2017]. However, as applying the self-attention mechanism on all image pixels
is computationally expensive, the Transformer-based models could not compete with the CNN-based
models until the introduction of ViT architecture which applies self-attention calculations on the low-
dimension embedding of small patches originating from splitting the input image, to extract global
contextual information. Successful performance of ViT on image classification inspired several subse-
quent works on Transformer-based models for different computer vision tasks [Liu et al., 2021].

In this study, three different DL-based approaches including CNN, hybrid CNN-Transformer, and
Transformers-Multilayer Perceptron (MLP) were trained and tested for semantic segmentation of wa-
ter. For these approaches, the selected models were PSPNet [Zhao et al., 2017], TransUNet [Chen
et al., 2021] and SegFormer [Xie et al., 2021], respectively. The performance of these models is evalu-
ated and compared using conventional metrics, including class-wise Intersection over Union (IoU) and
per-pixel accuracy (ACC).

3 Study Area

In order to evaluate the performance of the proposed framework for measuring the water levels in rivers
and channels, a time-lapse camera system has been deployed at Rocky Branch, South Carolina. This
creek is approximately 6.5 km long and collects stormwater from the University of South Carolina
campus and the City of Columbia. Rocky Branch is subjected to rapid changes in water flow and
discharges into the Congaree River [Morsy et al., 2016]. The observation site is located within the
University of South Carolina campus behind 300 Main Street (see Figure 1a).

An Apple iPhone 13 Pro LiDAR sensor was used to scan the region of interest. Although there is
no official information about the technology and hardware specifications, Gollob et al. [2021] reports



the LiDAR module operates at the 8XX nm wavelength and consists of an emitter (Vertical Cavity
Surface-Emitting Laser with Diffraction Optics Element, VCSEL DOE) and a receptor (Single Photon
Avalanche Diode array-based Near Infrared Complementary Metal Oxide Semiconductor image sensor,
SPAD NIR CMOS) based on direct-time-of-flight technology. Comparisons between the Apple LIiDAR
sensor and other types of laser scanners including hand-held, industrial, and terrestrial have been
conducted by several recent studies [Mokros et al., 2021; Vogt et al., 2021]. Gollob et al. [2021] tested
and reported the performance of a set of eight different scanning apps, and found three applications
including 3D Scanner App, Polycam and SiteScape suitable for actual practice tests. The objective of
this study is not the evaluation of the iPhone LiDAR sensor and app performance. Therefore, the 3D
Scanner App [LABS, 2022] was used with the following settings: confidence = high, range = 5.0 m,
masking = None, and resolution = 5 mm, for scanning and 3D reconstruction processing. The scanned
3D point cloud and its corresponding scalar field are shown in Figure 1b and Figure 1c, respectively.

As the LiDAR scanner settings were set at the highest level of accuracy and computational demand,
scanning the whole region of interest at the same time was not possible. So, the experimental region
was divided into several sub-regions and scanned in multi-step. In order to assemble the sub-region
LiDAR scans, several GCPs were considered in the study area. These GCPs were measured by a total
station (Topcon GM Series) and used as landmarks to align distinct 3D point clouds with each other
and create an integrated point cloud encompassing the entirety of the study area.

Moreover, several ArUco markers were installed for estimating camera (extrinsic) parameters. In
each setup deployment, these parameters should be recalculated (additional information can be found
in section 4.3). Since it was not possible to accurately measure the real-world coordination of ArUco
markers by the LIDAR scanner, the coordinates of the top-left corner of markers were also measured by
the surveying total station. To establish a consistent coordinate system, the 3D point cloud scanned for
each sub-region was transformed into the total station’s coordinate system. The real-world coordinates
of ArUco markers were then added to the 3D point cloud (see Figure 1b).

4 Methodology

This study introduces the Eye of Horus, a vision-based framework for hydrologic monitoring and
real-time water level measurements in bodies of water. The proposed framework includes three main
components. The first step is designing two deployable setups for data collection. These setups consist
of a programmable time-lapse camera run by Raspberry Pi and an ultrasonic sensor run by Arduino.
After collecting data, the first phase (Module 1) involves configuring and training DL-based models
for semantic segmentation of water in the captured images. In the second phase (Module 2), CV
techniques for camera calibration, spatial resection, and calculating projection matrix are discussed.
Finally, in the third phase (Module 3), an ML-based model uses the information achieved by CV
models to find the relationships between real-world coordinates of water level in the captured images
(see Figure 2).

4.1 Data Acquisition

Two different single-board computers (SBC) were used in this study, Raspberry Pi (Zero W) for
capturing time-lapse images of a river scene, and Arduino (Nano 3.x) for measuring water level as the
ground truth data. These devices were designed to communicate with each other, i.e., to trigger the
other to start or stop recording. During capturing time-lapse images, the Pi camera device triggers the
ultrasonic sensor for measuring the corresponding water level. The camera device is equipped with the
Raspberry Pi Camera Module 2 which has a Sony IMX219 8-megapixel sensor. This sensor is able to
capture an image size of 4,256 x 2,832 pixels. However, in this study, the image resolution was set to
1,920 x 1,440 pixels to balance image quality and computational cost in subsequent image processing
steps. This setup is also equipped with a 1200 mAh UPS lithium battery power module to provide
uninterrupted power to the Pi SBC (see Figure 3a).

The Arduino-based device records the water level. The design is based on an unmanned aerial ve-
hicle (UAV) deployable sensor created by Smith et al. [2022]. The nRF24L01+ single-chip 2.4 GHz
transceiver allows the Arduino and Raspberry Pi to communicate via radio frequency (RF). The chip
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Figure 1: Study area of the Rocky Branch Creek. (a) View of the region of interest, (b) The scanned
3D point cloud of the region of interest including an indication of the ArUco markers’ locations, and
(c) The scalar field of left and right banks of Rocky Branch in the region of interest (the colorbar and
the frequency distribution of z values for the captured points are shown on the right side).

Module 2

i 3D Point Cloud

Indices of the Nearest 2D
Point Cloud

Figure 2: The Eye of Horus workflow includes three main modules starting from processing images
captured by the time-lapse camera to estimating water level by projecting the waterline on river banks
using CV techniques.



is housed in both packages and the channel, pipe addresses, data rate, and transceiver/receiver con-
figuration are all set in the software. The HC-SR04 ultrasonic sensor is mounted to the base of the
Arduino device and provides a contactless water level measurement. Two permanent magnets at the
top of the housing attach to a ferrous structure and allow the ultrasonic sensor to be suspended up to
14 feet over the surface of the water. The device also includes a microSD card module and DS3231
real-time clock, which enable data logging and storage on-device as well as transmission. The device
is powered by a rechargeable 7.4V 1500 mAh lithium polymer battery (see Figure 3b).

The Arduino device waits to receive a ping from the Raspberry Pi device to initiate data collection.
The ultrasonic sensor measures the distance from the sensor transducer to the surface of the water.
The nRF24L01+ transmits this distance to the Raspberry Pi device and saves the measurement and a
time stamp from the real-time clock to an onboard microSD card. This acts as backup data storage, in
case transmission to the Raspberry Pi fails. The nRF24L01+ RF transceivers have an experimentally
determined range of up to 30 ft which allows flexibility in the relative placement of the camera to the
measuring site.

(D Setup Case  (3) Raspberry Pi () nRF24101+ (D Arduino Nano (®DS3231 RTC ~ DPower Switch
. (@nRF24L01+ (DHC-SR04 ®Magnet
@ UPS HAT @PCB ©® RPi Camera M2 (3)MicroSD Card ®LiPo Battery @pvC Pipe

(a) (b)

Figure 3: Data acquisition devices. (a) Beena, run by Raspberry Pi (Zero W) for capturing time-lapse
images of the river scene; and (b) Aava, run by Arduino Nano for measuring water level correspondence.

A dataset for semantic segmentation was created by collecting images from a specific region of interest
at different times of the day and under various flow regimes. This dataset includes 1,172 images, with
manual annotations of the streamflow in the creek for all of them. The dataset is further divided into
812 training images, 124 validation images, and 236 testing images.

4.2 Deep Learning Model for Water Segmentation

The water extent can be automatically determined on the 2D image plane with the help of DL-based
models. The task of semantic segmentation was applied within the framework of this study to delineate
the water line on the left and right banks of the channel. Three different DL-based models were trained
and tested in this study. PSPNet, the first model, is a CNN-based semantic segmentation multi-scale
network which can better learn the global context representation of a scene [Zhao et al., 2017]|. ResNet-
101 [He et al., 2016] was used as the backbone of this model to encode input images into the features.
ResNet architecture takes the advantage of “Residual blocks” that assist the flow of gradients during
the training stage allowing effective training of deep models even up to hundreds of layers. These
extracted features are then fed into a pyramid pooling module in which feature maps produced by
small to large kernels are concatenated to distinguish patterns of different scales [Minaee et al., 2021].

TransUNet, the second model, is a U-shaped architecture that employs a hybrid of CNN and Trans-
formers as the encoder to leverage both the local and global contexts for precise localization and
pixel-wise classification [Chen et al., 2021]. In the encoder part of the network, CNN is first used as a
feature extractor to generate a feature map for the input image, which is then fed into Transformers
to extract long-range dependencies. The resulting features are upsampled in the decoding path and
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combined with detailed high-resolution spatial information skipped from the CNN to make estimations
on each pixel of the input image.

SegFormer, the third model, unifies a novel hierarchical Transformer, which does not require the posi-
tional encodings used in standard Transformers, and MultiLayer Perceptron (MLP) performs efficient
segmentation [Xie et al., 2021]. The hierarchical Transformer introduced in the encoder of this architec-
ture gives the model the attention ability to multiscale features (high-resolution fine and low-resolution
coarse information) in the spatial input without the need for positional encodings that may adversely
affect a models performance when testing on a different resolution from training. Moreover, unlike
other segmentation models that typically use deconvolutions in the decoder path, a lightweight MLP
is employed as the decoder of this network that inputs the features extracted at different stages of
the encoder to generate a prediction map faster and more efficiently. Two different variants, including
SegFormer-B0 and SegFormer-B5, were applied in this study. The configuration of the models imple-
mented in this study is elaborated in Table 1. The total number of parameters (Params), occupied
memory size on GPU (Total Size), and input image size (Batch Size) are reported in Million (M),
Megabyte (MB), and Batch sizexHeight x Widthx Channel (B, H, W, C) respectively.

Table 1: The configuration of models trained and tested in this study.

Params Total Size Batch Size

Model Names Loss Function Optimizer LR

(M) (MB) (B, H, W, C)
PSPNet 66.2 7,178 2x500x500% 3 Binary Cross Entropy SGD 2.50E-04
TransUNet 20.1 6,017 2x448x448x 3 Cross Entropy + Dice SGD 2.50E-04
SegFormer-B0O 3.7 2,217 2x512x512x3  Cross Entropy AdamW  6.00E-05
SegFormer-B5 82.0 27,666 2x1024x1024x3 Cross Entropy AdamW  6.00E-05

The models were implemented using PyTorch. During the training procedure, the loss function, opti-
mizer, and learning rate were set individually for each model based on the results of preliminary runs
used to find the optimal hyperparameters. In the case of PSPNet and TransUNet, the base learn-
ing rate was set to 2.5x10"* and decayed using the poly policy [Zhao et al., 2017]. These networks
were optimized using stochastic gradient descent (SGD) with a momentum of 0.9 and weight decay of
0.0001. For SegFormer (B0 and B5), a constant learning rate of 6.0x10™® was used, and the networks
were trained with the AdamW optimizer [Loshchilov and Hutter, 2017]. All networks were trained for
30 epochs with a batch size of two. The training data for PSPNet and TransUNet were augmented
with horizontal flipping, random scaling, and random cropping.

4.3 Projective Geometry

In this study, CV techniques are used for different purposes. First, CV models were used for camera
calibration. They include focal length, optical center, radial distortion, camera rotation, and transla-
tion. These parameters provide the information (parameters or coefficients) about the camera that is
required to determine the relationship between 3D object points in the real-world coordinate system
and its corresponding 2D projection (pixel) in the image captured by that calibrated camera. Gener-
ally, camera calibration models estimate two kinds of parameters. First, the intrinsic parameters of
the camera (e.g., focal length, optical center, and radial distortion coefficients of the lens). Second,
extrinsic parameters (refer to the orientation— rotation, and translation— of the camera) with respect
to the real-world coordinate system.

To estimate the camera intrinsic parameters, OpenCV built-in was applied for camera calibration using
a 2D checkerboard [Bradski, 2000]. The focal length (f,, fy,), optical centers (cs, ¢,), and the skew
coefficient (s) can be used to create a camera intrinsic matrix K:

fm S  Cy
K=10 f, ¢ (1)
0 0 1

The camera extrinsic parameters were determined using the pose computation problem, Perspective-n-
Point (PuP), which consists of solving for the rotation, and translation that minimizes the reprojection
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error from 2D-3D point correspondences [Marchand et al., 2015]. The PnP estimates the extrinsic
parameters given a set of ‘object points,’ their corresponding ‘image projections,” as well as the camera
intrinsic matrix and the distortion coefficients. The camera extrinsic parameters can be represented
as a combination of a 3x3 rotation matrix R and a 3x1 translation vector t:

ri1 Tz T3ty
R|t]= |71 122 723 1y (2)
r31 r3z2 T3z U

Equation 3 represents the ‘Projection Matrix,” in a homogeneous coordinate system. The projection
matrix consists of two parts: the intrinsic matrix (K), containing intrinsic parameters, and the extrinsic
matrix ([R | t]) which can be represented as follows:

(R[]
K
u £ s e O rir T2 T3 te| | Xw
B ro1 T2 T2z ly| | Y
v =10 fy o 0 r r r t Z (3)
1 0 0 1 0 31 32 33 z w

0 0 0 1 1

Direct Linear Transformation (DLT) is a mathematical technique commonly used to estimate the
parameters of the Projection Matrix. The DLT method requires a minimum of six pairs of known
3D-2D correspondences to establish twelve equations and estimate all parameters of the Projection
Matrix. Generally, the intrinsic parameters remain constant for a specific camera model, such as the
Raspberry Pi Camera Module 2, and can be reused for all images captured by that camera. However,
the extrinsic parameters change whenever the camera’s location is altered. Consequently, for each
setup deployment, recalculation of the extrinsic parameters is necessary to reconstruct the Projection
Matrix. To simplify this process, the PnP method was replaced with DLT. It can reduce the required
number of 3D-2D correspondence pairs to three, by reusing the intrinsic parameters.

Additionally, ArUco markers were incorporated to represent pairs of known 3D-2D correspondences.
For this purpose, the pixel coordinates of ArUco markers were determined using the OpenCV ArUco
marker detection module on the 2D image plane, and the corresponding 3D real-world coordinates
were measured by the total station. With these 3D-2D point correspondences, the spatial position
and orientation of the camera can be estimated for each setup deployment. After retrieving all the
necessary parameters, a full-perspective camera model can be generated. Using this model, the 3D
point cloud is projected onto the 2D image plane. The projected (2D) point cloud represents the 3D
real-world coordinates of the nearest 2D pixel correspondence on the image plane

4.4 Machine Learning for Image Measurements

Using the projection matrix, the 3D point cloud is projected on the 2D image plane (see Figure 4). The
projected (2D) point cloud is intersected with the water line pixels, the output of the DL-based model
(Module 1), to find the nearest point cloud coordinate. To achieve this objective, we utilize the K-
Nearest Neighbors (KNN) algorithm. Notably, the indices of the selected points remain consistent for
both the 3D point cloud and the projected (2D) correspondences. As a result, by utilizing the indices
of the chosen projected (2D) points, the corresponding real-world 3D coordinates can be retrieved.

4.5 Performance Metrics

The performance of the proposed framework is evaluated based on four different metrics including
coefficient of determination (r?), Nash-Sutcliffe Efficiency (NSE), Root Mean Square Error (RMSE),
and Percent bias (PBIAS). R? is a widely used metric that quantifies how much of the observed
dispersion can be explained in a linear relationship by the prediction.
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Figure 4: KNN is used to find the nearest projected (2D) point cloud (magenta dots) to the water line
(black line) on the image plane.

2 iy (0 — O)(Pi = P)

- _ (4)
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r

However, if the model systematically over- or under-estimates the results, r? will still be close to 1.0
as it only takes dispersion into account [Krause et al., 2005]. NSE, another commonly used metric
in hydrology, presents the model performance with an interpretable scale and is used to differentiate
between ‘good’ and ‘bad’ models [Knoben et al., 2019].

_ Z?:l(Oi - Pi)2
NSE =1 S 5 (5)

RMSE represents the square root of the average of squares of the errors, the differences between
predicted values and observed values.

RMSE = % i(oi — P,)? (6)

i=1
The PBIAS of estimated water level, compared against the ultrasonic sensor data was also used to

show where the two estimates are close to each other and where they significantly diverge [Lin et al.,
2020.

100 <~ (0 — P)
PBIAS = — ) = —2 7
n ; 2ie1 Oi @

Where n is the number of data points, O and P are observed and predicted values, respectively.
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5 Results and Discussion

The results of this study are presented in two sections. First, the performance of DL-based models is
discussed. Then, in the second section, the performance of the proposed framework is evaluated for
five different deployments.

5.1 DL-based Models Results

The performance of DL-based models for the task of semantic segmentation is evaluated and compared
in this section. Since the proposed dataset includes just two classes, “river” and “non-river”, “non-river”
was omitted from the evaluation process, and the performance of models is only reported for the
“river” class of the test set. The class-wise intersection over union (IoU) and the per-pixel accuracy
(ACC) were considered the main evaluation metrics in this study. According to Table 2, both variants
of SegFormer— SegFormer-B0, and SegFormer-B5— outperform other semantic segmentation networks
on the test set. Considering the models’ configurations detailed in Table 1, SegFormer-B0O can be
considered the most efficient DL-based network, as it is comprised of only 3.7 M trainable parameters
and occupies just 2,217 Megabytes of GPU ram during training. In Figure 5, four different visual
representations of the models’ performance on the validation set of the proposed dataset are presented.
Since the water level is estimated by intersecting the water line on river banks with the projected (2D)
point cloud, precise delineation of the water line is of utmost importance to achieve better results in
the following steps. This means that estimating the correct location of the water line on creek banks in
each time-lapse image plays a more significant role than performance metrics in this study. Taking the
quality of water line detection into account and based on the visual representations shown in Figure 5,
SegFormers’ variants still outperform DL-based approaches. In this regard, a comparison of PSPNet
and TransUNet showed that PSPNet can delineate the water line more clearly, while the segmented
area is more integrated for TransUNet outputs.

Table 2: The performance metrics of different DL-based approaches.

Model Names IoU (River) ACC (River)

PSPNet 94.88% 95.84%
TransUNet 93.54% 96.89%
SegFormer-BO  99.38% 99.77%
SegFormer-B5  99.55% 99.81%

CNNs are typically limited by the nature of their convolution operations, leading to architecture-
specific issues such as locality [Geirhos et al., 2018a]. Consequently, CNN-based models may achieve
high accuracy on training data, but their performance can decrease considerably on unseen data.
Additionally, compared to Transformer-based networks, they perform poorly at detecting semantics
that requires combining long- and short-range dependencies. Transformers can relax the biases of
DL-based models inducted by Convolutional operations, achieving higher accuracy in localization of
target semantics and pixel-level classification with lower fluctuations in varied situations through the
leverage of both local and global cues [Naseer et al., 2021]. Yet, various transformer-based networks
may perform differently depending on the targeted task and the network’s architecture. TransUNet
adopts Transformers as part of its backbone; however, Transformers generate single-scale low-resolution
features as output [Xie et al., 2021], which may limit the accuracy when multi-scale objects or single
objects with multi-scale features are segmented. The problem of producing single-scale features in
standard Transformers is addressed in SegFormer variants through the use of a novel hierarchical
Transformer encoder [Xie et al., 2021]. This approach has resulted in human-level accuracy being
achieved by Segformer-B0 and -B5 in the delineation of the water line, as shown in Figure 5. The
predicted masks are in satisfactory agreement with the manually annotated images.

5.2 Water Level Estimation

This section reports the framework performance based on several deployments in the field. The perfor-
mance results are separately shown for the left and right banks and compared with ultrasonic sensor
data as the ground truth. The ultrasonic sensor was evaluated previously that documented an average
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Figure 5: Visual representations of different DL-based image segmentation approaches on the validation
dataset.

distance error of 6.9 mm [Smith et al., 2022]. The setup was deployed on several rainy days. The
results of each deployment are reported in Table 3.

Table 3: The performance metrics of the framework for five different days of setup deployment.

Deployment Date Position 2 NSE Metricfs{MSE PBIAS
o GAi 0N ome oo
M2 Be 0o ogws ool aam
M/B22 R B om0 oo s
Nov/A0/202 B oos7 050 oo sl
Nov /N2 Buakine o5 oowo ool drosr

In addition to Table 3, the results of each deployment are visually demonstrated in Figure 6. The scatter
plots show the relationships between the ground truth data (measured by the ultrasonic sensor), and
the banks of the river. The scatter plots visually present whether the camera readings overestimate or
underestimate the ground truth data. Moreover, the time-series plot of water level is shown for each
deployment separately. A hydrograph, showing changes in the water level of a stream over time can
be a useful tool for demonstrating whether camera readings can satisfactorily capture the response
of a catchment area to rainfall. The proposed framework can be evaluated in terms of its ability to
accurately track and identify important characteristics of a flood wave, such as the rising limb, peak,
and recession limb.

The first deployment was done on Aug 17, 2022 (see Figure 6a). The initial water level of the base
flow and parts of the rising limb were not captured in this deployment. Table 3 shows that the
performance results of the right bank camera readings are better than those of the left bank. R? for
both banks was about 0.80 showing a strongly related correlation between the water level estimated by
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the framework and ground truth data. Figure 6a shows how the left and right bank camera readings
perform during the rising limb; the right bank camera readings still underestimated the water level
during this time frame, and during the recession limb, the left bank camera readings overestimated
the water level. However, the hydrograph plot shows that both left and right bank camera readings
were able to capture the peak water level.

The second deployment was done on Aug 19, 2022. In this deployment, all segments of the hydrograph
were captured. According to Table 3, the performance of the right bank camera readings was better
than the left bank one; more than 0.95 was reported for R? and NSE of the right bankline. Figure 6b
shows during the rising limb and crest segment both banks estimated the water level similar to ground
truth. During the recession limb, the right bank water level estimation kept coincident with ground
truth, while the left bank overestimated the water level. The third deployment was on Aug 25, 2022.
This time water level of the recession limb and the following base flow were captured (see Figure 6c).
The right bank camera readings with R? of 0.89 performed better than the left bank. This time, left
bank camera readings underestimated the water level over the recession limb, but during the following
base flow, the water level was estimated correctly by cameras on both banks.

The results indicate that the right bank camera readings performed better than the left bank. Further
investigation of the field conditions revealed that stream erosion had a more significant impact on the
concrete surface of the left bank, resulting in patches and holes that were not scanned by the iPhone
LiDAR. As a result, the KNN algorithm used to find the nearest (2D) point cloud coordinates to the
water line could not accurately represent the corresponding real-world coordinates of these locations.
Figure 7 shows a box plot and scatter plot of the estimated water level for a time-lapse image captured
at 13:29 on Aug 19, 2022. The patches and holes on the left bank surface caused instability in water
level estimation for the region of interest. The box plot of the left bank (Cam-L-BL) was taller than
that of the right bank (Cam-R-BL), indicating that the estimated water level was spread over larger
values in the left bank due to the presence of these irregularities.

After analyzing the initial results, the deployable setups were modified to enhance the quality of data
collection. The programming code of the Arduino device, Aava, was modified to measure five different
records for water level, each time it is triggered by the camera device, Beena, and transmit the average
distance to the Raspberry Pi device. This modification decreased the number of noise spikes in the
measured data and allowed a better comparison between camera readings and ground truth data.
The case of the camera device, Beena, was redesigned to protect the single board against rain without
requiring an umbrella which makes the camera setup unstable in stormy weather and causes a decrease
in the precision of measurements. Moreover, an opening is incorporated into the redesigned case to
connect an external power bank to enhance the run time. Finally, the viewpoint of the camera was
subtly shifted to the right to adjust the share of the river banks on the camera’s field of view.

The results of the deployments on Nov 10, 2022, and Nov 11, 2022, demonstrate that modifications
to the setup have significantly improved the results of the left bank (as shown in Table 3). NSE
improved from approximately 0.55 for the first three setup deployments to over 0.80 for the modified
deployments. Figure 8 shows the setup performances during all segments of the flood wave. The peaks
were captured by the right bankline on both deployment dates, and there was no effect of noisy spikes
on either camera readings or ground truth data. However, the right bank images still underestimated
the water level during the rainstorms.

6 Conclusion

This study introduced Eye of Horus, a vision-based framework for hydrologic monitoring and measuring
real-time water-related parameters, e.g., water level, from surveillance images captured during flood
events. Time-lapse images and real water level correspondences were collected by Raspberry Pi camera
and Arduino HC-SRO05 ultrasonic sensor, respectively. Moreover, Computer Vision and Deep Learning
techniques were used for semantic segmentation of water surface within the captured images and for
reprojecting the 3D point cloud constructed with an iPhone LiDAR scanner, on the (2D) image plane.
Eventually, the K-Nearest Neighbor algorithm was used to intersect the projected (2D) point cloud
with the water line pixels extracted from the output of the Deep Learning model, to find the real-world
3D coordinates.
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Figure 6: Scatter plot and time series plot for estimated water level by the proposed framework and
measured by the ultrasonic sensor for setup deployment on (a) Aug 17, 2022 (b) Aug 19, 2022, and

(c) Aug 25, 2022.
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Figure 8: Scatter plot and time series plot for estimated water level by the proposed framework and
measured by the ultrasonic sensor for setup deployment on (a) Nov 10, 2022, and (b) Nov 11, 2022.

A vision-based framework offers a new alternative to current hydrologic data collection and real-
time monitoring systems. Hydrological models require geometric information for estimating discharge
routing parameters, stage, and flood inundation maps. However, determining bankfull characteristics
is a challenge due to natural or anthropogenic down-cutting of streams. Using visual sensing, stream
depth, water velocity, and instantaneous streamflow at bankfull stage can be reliably measured.

7 Data Availability Statement

The framework and codes developed and used in this study are publicly available online in the GitHub
repository (https://github.com/smhassanerfani/horus).
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