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Abstract9

Heavy rains and tropical storms often result in floods, which are expected to increase in fre-10

quency and intensity. Flood prediction models and inundation mapping tools provide decision-11

makers and emergency responders with crucial information to better prepare for these events.12

However, the performance of models relies on the accuracy and timeliness of data received from13

in-situ gaging stations and remote sensing; each of these data sources has its limitations, especially14

when it comes to real-time monitoring of floods. This study presents a vision-based framework15

for measuring water levels and detecting floods using Computer Vision and Deep Learning (DL)16

techniques. The DL models use time-lapse images captured by surveillance cameras during storm17

events for the semantic segmentation of water extent in images. Three different DL-based ap-18

proaches, namely PSPNet, TransUNet, and SegFormer, were applied and evaluated for semantic19

segmentation. The predicted masks are transformed into water level values by intersecting the20

extracted water edges, with the 2D representation of a point cloud generated by an Apple iPhone21

13 Pro LiDAR sensor. The estimated water levels were compared to reference data collected by an22

ultrasonic sensor. The results showed that SegFormer outperformed other DL-based approaches23

by achieving 99.55% and 99.81% for Intersection over Union (IoU) and accuracy, respectively.24

Moreover, the highest correlations between reference data and the vision-based approach reached25

above 0.98 for both the coefficient of determination (r2) and Nash-Sutcliffe Efficiency. This study26

demonstrates the potential of using surveillance cameras and Artificial Intelligence for hydrologic27

monitoring and their integration with existing surveillance infrastructure.28

1 Introduction29

Flood forecasts and Flood Inundation Mapping (FIM) can play an important role in saving human30

lives and reducing damages by providing timely information for evacuation planning, emergency man-31

agement, and relief efforts [Gebrehiwot et al., 2019]. These models and tools are designed to identify32

and predict inundation areas and the severity of damage caused by storm events. Two primary sources33

of data for these models are in-situ gaging networks and remote sensing. For example, in-situ stream34

gages, such as those operated by the United States Geological Survey (USGS) provide useful stream-35

flow information like water height and discharge at monitoring sites [Turnipseed and Sauer, 2010].36

However, they cannot provide an adequate spatial resolution of streamflow characteristics [Lo et al.,37

2015]. The limitation of in-situ stream gages is further exacerbated by the lack of systematic instal-38

lation along the waterways and accessibility issues [Li et al., 2018; King et al., 2018]. Satellite data39

and remote sensing can complement in-situ gage data by providing information at a larger spatial40

scale [Alsdorf et al., 2007]. However, continuous monitoring data for a region of interest remains to41

be a problem due to the limited revisit intervals of satellites, cloud cover, and systematic departures42

or biases [Panteras and Cervone, 2018]. Crowdsourcing methods have gained attention as a potential43

solution but their reliability is questionable [Schnebele et al., 2014; Goodchild, 2007; Howe, 2008]. To44

address these limitations and enhance real-time monitoring capabilities, surveillance cameras are inves-45
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tigated here as a new source of data for hydrologic monitoring and flood data collection. However, this46

requires a significant investment in Computer Vision (CV) and Artificial Intelligence (AI) techniques47

to develop reliable methods for detecting water in surveillance images and translating that information48

into numerical data.49

Recent advances in CV offer new techniques for processing image data for the quantitative measure-50

ments of physical attributes from a site [Forsyth and Ponce, 2002]. However, there is limited knowledge51

of how visual information can be used to estimate physical water parameters using CV techniques.52

Inspired by the principle of the float method, Tsubaki et al. [2011] used different image processing tech-53

niques to analyze images captured by closed-circuit television (CCTV) systems installed for surveillance54

purposes to measure the flow rate during flood events. In another example, Kim et al. [2011] proposed55

a method for measuring water level by detecting the borderline between a staff gauge and the surface56

of water based on image processing of the captured image of the staff gage installed in the middle of57

the river. As the use of images for environmental monitoring becomes more popular, several studies58

have investigated the source and magnitude of errors common in image-based measurement systems,59

such as the effect of image resolution, lighting effects, perspective, lens distortion, water meniscus,60

and temperature changes [Elias et al., 2020; Gilmore et al., 2013]. Furthermore, proposed solutions61

to resolve difficulties originating from poor visibility have been developed to better identify readings62

on staff gages [Zhang et al., 2019]. Recently, Deep Learning (DL) has become prevalent across a wide63

range of disciplines, particularly in applied sciences such as CV and engineering.64

DL-based models have been utilized by the water resources community to determine the extent of65

water and waterbodies visible in images captured by surveillance camera systems. These models can66

estimate the water level [Pally and Samadi, 2022]. In a similar vein, Moy de Vitry et al. [2019];67

Vandaele et al. [2021] employed a DL-based approach to identify floodwater in surveillance footage Added Van-
daele et al.
[2021]

68

and introduced a novel qualitative flood index, SOFI, to determine water level fluctuations. SOFI69

was calculated by taking the aspect ratio of the area of the water surface detected within an image70

to the total area of the image. However, these types of methods, which make prior assumptions71

and estimate water level fluctuation roughly, cannot serve as a vision-based alternative for measuring72

streamflow characteristics. More systematic studies adopted photogrammetry to reconstruct a high-73

quality 3D model of the environment with a high spatial resolution to have a precise estimation of74

real-world coordination while measuring streamflow rate and stage. For example, Eltner et al. [2018,75

2021] introduced a method based on Structure from Motion (SfM), and photogrammetric techniques,76

to automatically measure the water stage using low-cost camera setups.77

Advances in photogrammetry techniques enable 3D surface reconstruction with a high temporal and78

spatial resolution. These techniques are adopted to build 3D surface models from RGB imagery [West-79

oby et al., 2012; Eltner and Schneider, 2015; Eltner et al., 2016]. However, most of the photogrammetric80

methods are still expensive as they rely on differential global navigation satellite systems (DGNSS),81

ground control points (GCPs), commercial software, and data processing on an external computing82

device [Froideval et al., 2019]. A LiDAR scanner, on the other hand, is now easily available since the83

introduction of the iPad Pro and iPhone 12 Pro in 2020 by Apple. This device is the first smartphone84

equipped with a native LiDAR scanner and offers a potential paradigm shift in digital field data acqui-85

sition which puts these devices at the forefront of smartphone-assisted fieldwork [Tavani et al., 2022].86

So far, the iPhone LiDAR sensor has been used in different studies such as forest inventories [Gollob87

et al., 2021] and coastal cliff site [Luetzenburg et al., 2021]. The availability of LiDAR sensors to build88

3D environments, and advancements in DL-based models offer a great potential to produce numerical89

information from ground-based imageries.90

This paper presents a vision-based framework for measuring water levels from time-lapse images. The91

proposed framework introduces a novel approach by utilizing the iPhone LiDAR sensor as a laser scan-92

ner, which is commonly available on consumer-grade devices, for scanning and constructing a 3D point93

cloud of the region of interest. During the data collection phase, time-lapse images and ground truth94

water level values were collected using an embedded camera and ultrasonic sensor. The water extent95

in the captured images was determined automatically using semantic segmentation DL-based models.96

For the first time, the performance of three different state-of-the-art DL-based approaches, including97

Convolutional Neural Networks (CNN), hybrid CNN-Transformer, and Transformers-Multilayer Per-98

ceptron (MLP), was evaluated and compared. CV techniques were applied for camera calibration, pose99
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estimation of the camera setup in each deployment, and 3D-2D reprojection of the point cloud onto100

the image plane. Finally, K-Nearest Neighbors (KNN) was used to find the nearest projected (2D)101

point cloud coordinates to the water line on the river banks, for estimating the water level in each102

time-lapse image.103

2 Deep Learning Architectures104

Since this study tends to cover a wide range of DL approaches, this section solely focuses on reviewing105

different DL-based architectures. So far, different DL networks were applied and evaluated for semantic106

segmentation of the waterbodies within the RGB images captured by cameras [Erfani et al., 2022]. All107

existing semantic segmentation approaches–CNN and Transformer-based– share the same objective of108

classifying each pixel of a given image but differ in the network design.109

CNN-based models were designed to imitate the recognition system of primates [Shamsabadi et al.,110

2022], while possessing different network designs such as low-resolution representations learning [Long111

et al., 2015; Chen et al., 2017], high-resolution representations recovering [Badrinarayanan et al., 2015;112

Noh et al., 2015; Lin et al., 2017], contextual aggregation schemes [Yuan and Wang, 2018; Zhao et al.,113

2017; Yuan et al., 2020], feature fusion and refinement strategy [Lin et al., 2017; Huang et al., 2019;114

Li et al., 2019; Zhu et al., 2019; Fu et al., 2019]. CNN-based models follow local to global features in115

different layers of the forward pass, which used to be thought of as a general intuition of the human116

recognition system. In this system, objects are recognized through the analysis of texture and shape-117

based clues– local and global representations and their relationship in the entire field of view. Recent118

research, however, shows significant differences exist between the visual behavioral system of humans119

and CNN-based models [Geirhos et al., 2018b; Dodge and Karam, 2017; De Cesarei et al., 2021; Geirhos120

et al., 2020, 2018a], and reveal higher sensitivity of the visual systems in humans to global features121

rather than local ones [Zheng et al., 2018]. This fact drew attention to models that focus on the global122

context in their architectures.123

Developed by Dosovitskiy et al. [2020], Vision Transformer (ViT) was the first model that showed124

promising results on a computer vision task (image classification) without using convolution operation125

in its architecture. In fact, ViT adopts “Transformers,” as a self-attention mechanism, to improve126

accuracy. “Transformer” was initially introduced for sequence-to-sequence tasks such as text trans-127

lation [Vaswani et al., 2017]. However, as applying the self-attention mechanism on all image pixels128

is computationally expensive, the Transformer-based models could not compete with the CNN-based129

models until the introduction of ViT architecture which applies self-attention calculations on the low-130

dimension embedding of small patches originating from splitting the input image, to extract global131

contextual information. Successful performance of ViT on image classification inspired several subse-132

quent works on Transformer-based models for different computer vision tasks [Liu et al., 2021].133

In this study, three different DL-based approaches including CNN, hybrid CNN-Transformer, and134

Transformers-Multilayer Perceptron (MLP) were trained and tested for semantic segmentation of wa-135

ter. For these approaches, the selected models were PSPNet [Zhao et al., 2017], TransUNet [Chen136

et al., 2021] and SegFormer [Xie et al., 2021], respectively. The performance of these models is evalu-137

ated and compared using conventional metrics, including class-wise Intersection over Union (IoU) and138

per-pixel accuracy (ACC).139

3 Study Area140

In order to evaluate the performance of the proposed framework for measuring the water levels in rivers141

and channels, a time-lapse camera system has been deployed at Rocky Branch, South Carolina. This142

creek is approximately 6.5 km long and collects stormwater from the University of South Carolina143

campus and the City of Columbia. Rocky Branch is subjected to rapid changes in water flow and144

discharges into the Congaree River [Morsy et al., 2016]. The observation site is located within the145

University of South Carolina campus behind 300 Main Street (see Figure 1a). Added ArUco
markers loca-
tions on 2D
image plane

146

An Apple iPhone 13 Pro LiDAR sensor was used to scan the region of interest (see Figure 1b). Although147

there is no official information about the technology and hardware specifications, Gollob et al. [2021]148
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reports the LiDAR module operates at the 8XX nm wavelength and consists of an emitter (Vertical149

Cavity Surface-Emitting Laser with Diffraction Optics Element, VCSEL DOE) and a receptor (Sin-150

gle Photon Avalanche Diode array-based Near Infrared Complementary Metal Oxide Semiconductor151

image sensor, SPAD NIR CMOS) based on direct-time-of-flight technology. Comparisons between the152

Apple LiDAR sensor and other types of laser scanners including hand-held, industrial, and terrestrial153

have been conducted by several recent studies [Mokroš et al., 2021; Vogt et al., 2021]. Gollob et al.154

[2021] tested and reported the performance of a set of eight different scanning apps, and found three155

applications including 3D Scanner App, Polycam and SiteScape suitable for actual practice tests. The156

objective of this study is not the evaluation of the iPhone LiDAR sensor and app performance. There-157

fore, the 3D Scanner App [LABS, 2022] was used with the following settings: confidence = high, range158

= 5.0 m, masking = None, and resolution = 5 mm, for scanning and 3D reconstruction processing.159

The scanned 3D point cloud and its corresponding scalar field are shown in Figure 1b and Figure 1c,160

respectively.161

As the LiDAR scanner settings were set at the highest level of accuracy and computational demand,162

scanning the whole region of interest at the same time was not possible. So, the experimental region163

was divided into several sub-regions and scanned in multi-step. In order to assemble the sub-region164

LiDAR scans, several GCPs were considered in the study area. These GCPs were measured by a total165

station (Topcon GM Series), and used as landmarks to align distinct 3D point clouds with each other Added ex-
planation for
GCPs

166

and create an integrated point cloud encompassing the entirety of the study area.167

Moreover, several ArUco markers were installed for estimating camera (extrinsic) parameters in each Added the
explanation
for ArUco
markers

168

setup deployment. In each setup deployment, these parameters should be recalculated (additional169

information can be found in section 4.3). Since it was not possible to accurately measure the real-170

world coordination of ArUco markers by the LiDAR scanner, the coordinates of the top-left corner of171

markers were also measured by the surveying total station. To establish a consistent coordinate system,172

the 3D point cloud scanned for each sub-region was transformed into the total station’s coordinate173

system. The real-world coordinates of ArUco markers were then added to the 3D point cloud (see174

Figure 1b).175

4 Methodology176

This study introduces the Eye of Horus, a vision-based framework for hydrologic monitoring and177

real-time water level measurements in bodies of water. The proposed framework includes three main178

components. The first step is designing two deployable setups for data collection. These setups consist179

of a programmable time-lapse camera run by Raspberry Pi and an ultrasonic sensor run by Arduino.180

After collecting data, the first phase (Module 1) involves configuring and training DL-based models181

for semantic segmentation of water in the captured images. In the second phase (Module 2), CV182

techniques for camera calibration, spatial resection, and calculating projection matrix are discussed.183

Finally, in the third phase (Module 3), an ML-based model uses the information achieved by CV184

models to find the relationships between real-world coordinates of water level in the captured images185

(see Figure 2).186

4.1 Data Acquisition187

Two different single-board computers (SBC) were used in this study, Raspberry Pi (Zero W) for188

capturing time-lapse images of a river scene, and Arduino (Nano 3.x) for measuring water level as the189

ground truth data. These devices were designed to communicate with each other, i.e., to trigger the190

other to start or stop recording. During capturing time-lapse images, the Pi camera device triggers the191

ultrasonic sensor for measuring the corresponding water level. The camera device is equipped with the192

Raspberry Pi Camera Module 2 which has a Sony IMX219 8-megapixel sensor. This sensor is able to193

capture an image size of 4,256 × 2,832 pixels. However, in this study, the image resolution was set to194

1,920 × 1,440 pixels to balance image quality and computational cost in subsequent image processing195

steps. This setup is also equipped with a 1200 mAh UPS lithium battery power module to provide196

uninterrupted power to the Pi SBC (see Figure 3a).197

The Arduino-based device records the water level. The design is based on an unmanned aerial ve-198

hicle (UAV) deployable sensor created by Smith et al. [2022]. The nRF24L01+ single-chip 2.4 GHz199
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(a) (b)

(c)

Figure 1: Study area of the Rocky Branch Creek. (a) View of the region of interest, (b) The scanned
3D point cloud of the region of interest including an indication of the ArUco markers’ locations, and
(c) The scalar field of left and right banks of Rocky Branch in the region of interest (the colorbar and
the frequency distribution of z values for the captured points are shown on the right side).

Image K-Nearest Neighbor

Camera Intrinsic Matrix
Extrinsic Parameters

Spatial Resection

Rotation Vector

Mask

3D ArUco Markers

DL Model

2D Point Cloud

Contour

2D ArUco Markers

Translation Vector

Intrinsic Parameters
Indices of the Nearest 2D

Point Cloud

3D Coordinates of Water on
the Banklines

Perspective Projection

3D Point Cloud
Module 1 Module 2 Module 3

Figure 2: The Eye of Horus workflow includes three main modules starting from processing images
captured by the time-lapse camera to estimating water level by projecting the waterline on river banks
using CV techniques.
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transceiver allows the Arduino and Raspberry Pi to communicate via radio frequency (RF). The chip200

is housed in both packages and the channel, pipe addresses, data rate, and transceiver/receiver con-201

figuration are all set in the software. The HC-SR04 ultrasonic sensor is mounted to the base of the202

Arduino device and provides a contactless water level measurement. Two permanent magnets at the203

top of the housing attach to a ferrous structure and allow the ultrasonic sensor to be suspended up to204

14 feet over the surface of the water. The device also includes a microSD card module and DS3231205

real-time clock, which enable data logging and storage on-device as well as transmission. The device206

is powered by a rechargeable 7.4V 1500 mAh lithium polymer battery (see Figure 3b).207

The Arduino device waits to receive a ping from the Raspberry Pi device to initiate data collection.208

The ultrasonic sensor measures the distance from the sensor transducer to the surface of the water.209

The nRF24L01+ transmits this distance to the Raspberry Pi device and saves the measurement and a210

time stamp from the real-time clock to an onboard microSD card. This acts as backup data storage, in211

case transmission to the Raspberry Pi fails. The nRF24L01+ RF transceivers have an experimentally212

determined range of up to 30 ft which allows flexibility in the relative placement of the camera to the213

measuring site.214

(a) (b)

Figure 3: Data acquisition devices. (a) Beena, run by Raspberry Pi (Zero W) for capturing time-lapse
images of the river scene; and (b) Aava, run by Arduino Nano for measuring water level correspondence.

A dataset for semantic segmentation was created by collecting images from a specific region of interest215

at different times of the day and under various flow regimes. This dataset includes 1,172 images, with216

manual annotations of the streamflow in the creek for all of them. The dataset is further divided into217

812 training images, 124 validation images, and 236 testing images.218

4.2 Deep Learning Model for Water Segmentation219

The water extent can be automatically determined on the 2D image plane with the help of DL-based220

models. The task of semantic segmentation was applied within the framework of this study to delineate221

the water line on the left and right banks of the channel. Three different DL-based models were trained222

and tested in this study. PSPNet, the first model, is a CNN-based semantic segmentation multi-scale223

network which can better learn the global context representation of a scene [Zhao et al., 2017]. ResNet-224

101 [He et al., 2016] was used as the backbone of this model to encode input images into the features.225

ResNet architecture takes the advantage of “Residual blocks” that assist the flow of gradients during226

the training stage allowing effective training of deep models even up to hundreds of layers. These227

extracted features are then fed into a pyramid pooling module in which feature maps produced by228

small to large kernels are concatenated to distinguish patterns of different scales [Minaee et al., 2021].229

TransUNet, the second model, is a U-shaped architecture that employs a hybrid of CNN and Trans-230

formers as the encoder to leverage both the local and global contexts for precise localization and231

pixel-wise classification [Chen et al., 2021]. In the encoder part of the network, CNN is first used as a232

feature extractor to generate a feature map for the input image, which is then fed into Transformers233
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to extract long-range dependencies. The resulting features are upsampled in the decoding path and234

combined with detailed high-resolution spatial information skipped from the CNN to make estimations235

on each pixel of the input image.236

SegFormer, the third model, unifies a novel hierarchical Transformer, which does not require the posi-237

tional encodings used in standard Transformers, and MultiLayer Perceptron (MLP) performs efficient238

segmentation [Xie et al., 2021]. The hierarchical Transformer introduced in the encoder of this architec-239

ture gives the model the attention ability to multiscale features (high-resolution fine and low-resolution240

coarse information) in the spatial input without the need for positional encodings that may adversely241

affect a models performance when testing on a different resolution from training. Moreover, unlike242

other segmentation models that typically use deconvolutions in the decoder path, a lightweight MLP243

is employed as the decoder of this network that inputs the features extracted at different stages of244

the encoder to generate a prediction map faster and more efficiently. Two different variants, including245

SegFormer-B0 and SegFormer-B5, were applied in this study. The configuration of the models imple-246

mented in this study is elaborated in Table 1. The total number of parameters (Params), occupied247

memory size on GPU (Total Size), and input image size (Batch Size) are reported in Million (M),248

Megabyte (MB), and Batch size×Height×Width×Channel (B, H, W, C ) respectively.249

Table 1: The configuration of models trained and tested in this study.

Model Names Params
(M)

Total Size
(MB)

Batch Size
(B, H, W, C ) Loss Function Optimizer LR

PSPNet 66.2 7,178 2×500×500×3 Binary Cross Entropy SGD 2.50E-04
TransUNet 20.1 6,017 2×448×448×3 Cross Entropy + Dice SGD 2.50E-04
SegFormer-B0 3.7 2,217 2×512×512×3 Cross Entropy AdamW 6.00E-05
SegFormer-B5 82.0 27,666 2×1024×1024×3 Cross Entropy AdamW 6.00E-05

The models were implemented using PyTorch. During the training procedure, the loss function, opti-250

mizer, and learning rate were set individually for each model based on the results of preliminary runs251

used to find the optimal hyperparameters. In the case of PSPNet and TransUNet, the base learn-252

ing rate was set to 2.5×10-4 and decayed using the poly policy [Zhao et al., 2017]. These networks253

were optimized using stochastic gradient descent (SGD) with a momentum of 0.9 and weight decay of254

0.0001. For SegFormer (B0 and B5), a constant learning rate of 6.0×10-5 was used, and the networks255

were trained with the AdamW optimizer [Loshchilov and Hutter, 2017]. All networks were trained for256

30 epochs with a batch size of two. The training data for PSPNet and TransUNet were augmented257

with horizontal flipping, random scaling, and random cropping.258

4.3 Projective Geometry259

In this study, CV techniques are used for different purposes. First, CV models were used for camera260

calibration. They include focal length, optical center, radial distortion, camera rotation, and trans-261

lation. These parameters provide the information (parameters or coefficients) about the camera that262

is required to determine the relationship between 3D object points in the real-world coordinate sys-263

tem and its corresponding 2D projection (pixel) in the image captured by that calibrated camera.264

Generally, camera calibration models estimate two kinds of parameters. First, the internalintrinsic265

parameters of the camera (e.g., focal length, optical center, and radial distortion coefficients of the266

lens). Second, externalextrinsic parameters (refer to the orientation– rotation and translation– of the267

camera) with respect to the real-world coordinate system.268

To estimate the camera intrinsic parameters, OpenCV built-in was applied for camera calibration269

using a 2D checkerboard [Bradski, 2000].Intrinsic parameters are specific to a camera. The focal length270

(fx, fy), optical centers (cx, cy), and the skew coefficient (s) can be used to create a camera intrinsic271

matrix K:The camera matrix is unique to a specific camera, so once calculated, it can be reused on272

other images taken by the same camera. It is expressed as a 3×3 matrix:273

K =

fx s cx
0 fy cy
0 0 1

 (1)
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The camera extrinsic parameters were determined using the pose computation problem, Perspective-n-274

Point (PnP), which consists of solving for the rotation, and translation that minimizes the reprojection275

error from 2D-3D point correspondences [Marchand et al., 2015]. The PnP estimates the extrinsic276

parameters given a set of ‘object points,’ their corresponding ‘image projections,’ as well as the camera277

intrinsic matrix and the distortion coefficients. For this purpose, the iterative method was applied which278

is based on a Levenberg-Marquardt optimization. In this task the function finds such a pose that mini-279

mizes reprojection error, that is the sum of squared distances between the observed projections “image280

point” and the projected “object points.” The initial solution for non-planar 3D object points needs281

at least six points and uses the Direct Linear Transformation (DLT) algorithm. The camera extrinsic282

parameters can be represented as a combination of a 3×3 rotation matrix R and a 3×1 translation283

vector t:284

[R | t] =

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz

 (2)

Equation 3 represents the ‘Projection Matrix,’ in a homogeneous coordinate system. Projection matrix285

consists of two parts: the intrinsic matrix (K), containing intrinsic parameters, and the extrinsic matrix286

([R | t]) which can be represented as follows:, a combination of a 3×3 rotation matrix R and a 3×1287

translation vector t.288

uv
1

 =

K︷ ︸︸ ︷fx s cx 0
0 fy cy 0
0 0 1 0


[R|t]︷ ︸︸ ︷

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1



Xw

Yw

Zw

1

 (3)

Direct Linear Transformation (DLT) is a mathematical technique commonly used to estimate the289

parameters of the Projection Matrix. The DLT method requires a minimum of six pairs of known290

3D-2D correspondences to establish twelve equations and estimate all parameters of the Projection291

Matrix. Generally, the intrinsic parameters remain constant for a specific camera model, such as the292

Raspberry Pi Camera Module 2, and can be reused for all images captured by that camera. However,293

the extrinsic parameters change whenever the camera’s location is altered. Consequently, for each294

setup deployment, recalculation of the extrinsic parameters is necessary to reconstruct the Projection295

Matrix. To simplify this process, the PnP method was replaced with DLT. It can reduce the required296

number of 3D-2D correspondence pairs to three, by reusing the intrinsic parameters.297

Additionally, ArUco markers were incorporated to represent pairs of known 3D-2D correspondences.298

For this purpose, the pixel coordinates of ArUco markers were determined using the OpenCV ArUco299

marker detection module on the 2D image plane, and the corresponding 3D real-world coordinates Added ex-
planation for
using PnP in-
stead of DLT
method

300

were measured by the total station. With these 3D-2D point correspondences, the spatial position301

and orientation of the camera can be estimated for each setup deployment. After retrieving all the302

necessary parameters, a full-perspective camera model can be generated. Using this model, the 3D303

point cloud is projected onto the 2D image plane. The projected (2D) point cloud represents the 3D304

real-world coordinates of the nearest 2D pixel correspondence on the image plane305

4.4 Machine Learning for Image Measurements306

Using the projection matrix, the 3D point cloud is projected on the 2D image plane (see Figure 4). The307

projected (2D) point cloud is intersected with the water line pixels, the output of the DL-based model308

(Module 1), to find the nearest point cloud coordinate. To achieve this objective, we utilize the K-309

Nearest Neighbors (KNN) algorithm. Notably, the indices of the selected points remain consistent for310

both the 3D point cloud and the projected (2D) correspondences. As a result, by utilizing the indices311

of the chosen projected (2D) points, the corresponding real-world 3D coordinates can be retrieved.312
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Figure 4: KNN is used to find the nearest projected (2D) point cloud (magenta dots) to the water line
(black line) on the image plane.

4.5 Performance Metrics313 The efficiency
criteria used
in the work is
defined with
a formula for
more clarity.

314

The performance of the proposed framework is evaluated based on four different metrics including315

coefficient of determination (r2), Nash-Sutcliffe Efficiency (NSE), Root Mean Square Error (RMSE),316

and Percent bias (PBIAS). R2 is a widely used metric that quantifies how much of the observed317

dispersion can be explained in a linear relationship by the prediction.318

r2 =

 ∑n
i=1 (Oi − Ō)(Pi − P̄ )√∑n

i=1 (Oi − Ō)2 ·
∑n

i=1 (Pi − P̄ )2

2

(4)

However, if the model systematically over- or under-estimates the results, r2 will still be close to 1.0319

as it only takes dispersion into account [Krause et al., 2005]. NSE, another commonly used metric320

in hydrology, presents the model performance with an interpretable scale and is used to differentiate321

between ‘good’ and ‘bad’ models [Knoben et al., 2019].322

NSE = 1−
∑n

i=1(Oi − Pi)
2∑n

i=1(Oi − Ō)2
(5)

RMSE represents the square root of the average of squares of the errors, the differences between323

predicted values and observed values.324

RMSE =

√√√√ 1

n

n∑
i=1

(Oi − Pi)2 (6)

The PBIAS of estimated water level, compared against the ultrasonic sensor data was also used to325

show where the two estimates are close to each other and where they significantly diverge [Lin et al.,326

2020].327

PBIAS =
100

n

n∑
i=1

(Oi − Pi)∑n
i=1 Oi

(7)
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Where n is the number of data points, O and P are observed and predicted values, respectively.328

5 Results and Discussion329

The results of this study are presented in two sections. First, the performance of DL-based models is330

discussed. Then, in the second section, the performance of the proposed framework is evaluated for331

five different deployments.332

5.1 DL-based Models Results333

The performance of DL-based models for the task of semantic segmentation is evaluated and compared334

in this section. Since the proposed dataset includes just two classes, “river” and “non-river”, “non-river”335

was omitted from the evaluation process, and the performance of models is only reported for the336

“river” class of the test set. The class-wise intersection over union (IoU) and the per-pixel accuracy337

(ACC) were considered the main evaluation metrics in this study. According to Table 2, both variants338

of SegFormer– SegFormer-B0, and SegFormer-B5– outperform other semantic segmentation networks339

on the test set. Considering the models’ configurations detailed in Table 1, SegFormer-B0 can be340

considered the most efficient DL-based network, as it is comprised of only 3.7 M trainable parameters341

and occupies just 2,217 Megabytes of GPU ram during training. In Figure 5, four different visual342

representations of the models’ performance on the validation set of the proposed dataset are presented.343

Since the water level is estimated by intersecting the water line on river banks with the projected (2D)344

point cloud, precise delineation of the water line is of utmost importance to achieve better results in345

the following steps. This means that estimating the correct location of the water line on creek banks in346

each time-lapse image plays a more significant role than performance metrics in this study. Taking the347

quality of water line detection into account and based on the visual representations shown in Figure 5,348

SegFormers’ variants still outperform DL-based approaches. In this regard, a comparison of PSPNet349

and TransUNet showed that PSPNet can delineate the water line more clearly, while the segmented350

area is more integrated for TransUNet outputs.351

Table 2: The performance metrics of different DL-based approaches.

Model Names IoU (River) ACC (River)
PSPNet 94.88% 95.84%
TransUNet 93.54% 96.89%
SegFormer-B0 99.38% 99.77%
SegFormer-B5 99.55% 99.81%

CNNs are typically limited by the nature of their convolution operations, leading to architecture-352

specific issues such as locality [Geirhos et al., 2018a]. Consequently, CNN-based models may achieve353

high accuracy on training data, but their performance can decrease considerably on unseen data.354

Additionally, compared to Transformer-based networks, they perform poorly at detecting semantics355

that requires combining long- and short-range dependencies. Transformers can relax the biases of356

DL-based models inducted by Convolutional operations, achieving higher accuracy in localization of357

target semantics and pixel-level classification with lower fluctuations in varied situations through the358

leverage of both local and global cues [Naseer et al., 2021]. Yet, various transformer-based networks359

may perform differently depending on the targeted task and the network’s architecture. TransUNet360

adopts Transformers as part of its backbone; however, Transformers generate single-scale low-resolution361

features as output [Xie et al., 2021], which may limit the accuracy when multi-scale objects or single362

objects with multi-scale features are segmented. The problem of producing single-scale features in363

standard Transformers is addressed in SegFormer variants through the use of a novel hierarchical364

Transformer encoder [Xie et al., 2021]. This approach has resulted in human-level accuracy being365

achieved by Segformer-B0 and -B5 in the delineation of the water line, as shown in Figure 5. The366

predicted masks are in satisfactory agreement with the manually annotated images.367
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Image GT PSPNet TransUNet SegFormer-B0 SegFormer-B5

Figure 5: Visual representations of different DL-based image segmentation approaches on the validation
dataset.

5.2 Water Level Estimation368

This section reports the framework performance based on several deployments in the field. The perfor-369

mance results are separately shown for the left and right banks and compared with ultrasonic sensor370

data as the ground truth. The ultrasonic sensor was evaluated previously that documented an average371

distance error of 6.9 mm [Smith et al., 2022]. Four different efficiency criteria including coefficient of372

determination (r2), Nash-Sutcliffe Efficiency (NSE), Root Mean Square Error (RMSE), and Percent373

bias (PBIAS) are reported in Table 3. R2, as the most representative metric, emphasizes how much of374

the observed dispersion can be explained by the prediction. However, if the model systematically over-375

or under-estimates the results, r2 will still be close to 1.0 as it only takes dispersion into account. NSE,376

a traditional metric used in hydrology is also used to summarize model performance. NSE normalizes377

model performance into an interpretable scale and is commonly used to differentiate between ‘good’378

and ‘bad’ models. RMSE represents the square root of the average of squares of the errors, the differ-379

ences between predicted values and observed values. The PBIAS of estimated water level, compared380

against the ultrasonic sensor data was also used to show where the two estimates are close to each381

other and where they significantly diverge. The setup was deployed on several rainy days. The results Eplanation
for perfor-
mance met-
rics was
moved to
a specific
section in
methodology.

382

of each deployment are reported in Table 3.383

The setup was deployed on several rainy days. In addition to Table 3, the results of each deployment are384

visually demonstrated in Figure 6. The scatter plots show the relationships between the ground truth385

data (measured by the ultrasonic sensor), and the banks of the river. The scatter plots visually present386

whether the camera readings overestimate or underestimate the ground truth data. Moreover, the time-387

series plot of water level is shown for each deployment separately. A hydrograph, showing changes in388

the water level of a stream over time can be a useful tool for demonstrating whether camera readings389

can satisfactorily capture the response of a catchment area to rainfall. The proposed framework can390

be evaluated in terms of its ability to accurately track and identify important characteristics of a flood391

wave, such as the rising limb, peak, and recession limb.392

The first deployment was done on Aug 17, 2022 (see Figure 6a). The initial water level of the base393

flow and parts of the rising limb were not captured in this deployment. Table 3 shows that the394

performance results of the right bank camera readings are better than those of the left bank. R2 for395

both banks was about 0.80 showing a strongly related correlation between the water level estimated by396

the framework and ground truth data. Figure 6a shows how the left and right bank camera readings397
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Table 3: The performance metrics of the framework for five different days of setup deployment.

Deployment Date Position Metrics
r2 NSE RMSE PBIAS

Aug/17/2022 Left Bankline 0.8019 0.5258 0.0409 10.6401
Right Bankline 0.7932 0.7541 0.0294 -0.4848

Aug/19/2022 Left Bankline 0.7701 0.5713 0.0647 16.1015
Right Bankline 0.9678 0.9588 0.0201 -3.4752

Aug/25/2022 Left Bankline 0.7690 0.5700 0.0435 -7.7091
Right Bankline 0.8922 0.8711 0.0238 -1.7738

Nov/10/2022 Left Bankline 0.9461 0.8129 0.0511 -13.1183
Right Bankline 0.9857 0.9790 0.0171 -1.5210

Nov/11/2022 Left Bankline 0.9588 0.8881 0.0397 -10.3656
Right Bankline 0.9855 0.9829 0.0155 -1.7987

perform during the rising limb; the right bank camera readings still underestimated the water level398

during this time frame, and during the recession limb, the left bank camera readings overestimated399

the water level. However, the hydrograph plot shows that both left and right bank camera readings400

were able to capture the peak water level.401

The second deployment was done on Aug 19, 2022. In this deployment, all segments of the hydrograph402

were captured. According to Table 3, the performance of the right bank camera readings was better403

than the left bank one; more than 0.95 was reported for R2 and NSE of the right bankline. Figure 6b404

shows during the rising limb and crest segment both banks estimated the water level similar to ground405

truth. During the recession limb, the right bank water level estimation kept coincident with ground406

truth, while the left bank overestimated the water level. The third deployment was on Aug 25, 2022.407

This time water level of the recession limb and the following base flow were captured (see Figure 6c).408

The right bank camera readings with R2 of 0.89 performed better than the left bank. This time, left409

bank camera readings underestimated the water level over the recession limb, but during the following410

base flow, the water level was estimated correctly by cameras on both banks.411

The results indicate that the right bank camera readings performed better than the left bank. Further412

investigation of the field conditions revealed that stream erosion had a more significant impact on the413

concrete surface of the left bank, resulting in patches and holes that were not scanned by the iPhone414

LiDAR. As a result, the KNN algorithm used to find the nearest (2D) point cloud coordinates to the415

water line could not accurately represent the corresponding real-world coordinates of these locations.416

Figure 7 shows a box plot and scatter plot of the estimated water level for a time-lapse image captured417

at 13:29 on Aug 19, 2022. The patches and holes on the left bank surface caused instability in water418

level estimation for the region of interest. The box plot of the left bank (Cam-L-BL) was taller than419

that of the right bank (Cam-R-BL), indicating that the estimated water level was spread over larger420

values in the left bank due to the presence of these irregularities.421

After analyzing the initial results, the deployable setups were modified to enhance the quality of data422

collection. The programming code of the Arduino device, Aava, was modified to measure five different423

records for water level, each time it is triggered by the camera device, Beena, and transmit the average424

distance to the Raspberry Pi device. This modification decreased the number of noise spikes in the425

measured data and allowed a better comparison between camera readings and ground truth data.426

The case of the camera device, Beena, was redesigned to protect the single board against rain without427

requiring an umbrella which makes the camera setup unstable in stormy weather and causes a decrease428

in the precision of measurements. Moreover, an opening is incorporated into the redesigned case to429

connect an external power bank to enhance the run time. Finally, the viewpoint of the camera was430

subtly shifted to the right to adjust the share of the river banks on the camera’s field of view.431

The results of the deployments on Nov 10, 2022, and Nov 11, 2022, demonstrate that modifications432

to the setup have significantly improved the results of the left bank (as shown in Table 3). NSE433

improved from approximately 0.55 for the first three setup deployments to over 0.80 for the modified434

deployments. Figure 8 shows the setup performances during all segments of the flood wave. The peaks435

12



(a)

(b)

(c)

Figure 6: Scatter plot and time series plot for estimated water level by the proposed framework and
measured by the ultrasonic sensor for setup deployment on (a) Aug 17, 2022 (b) Aug 19, 2022, and
(c) Aug 25, 2022.

Figure 7: Water level fluctuation along both left and right banks for the flow regime for an image
captured at 13:29 on Aug 19, 2022.
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were captured by the right bankline on both deployment dates, and there was no effect of noisy spikes436

on either camera readings or ground truth data. However, the right bank images still underestimated437

the water level during the rainstorms.438

(a)

(b)

Figure 8: Scatter plot and time series plot for estimated water level by the proposed framework and
measured by the ultrasonic sensor for setup deployment on (a) Nov 10, 2022, and (b) Nov 11, 2022.

6 Conclusion439

This study introduced Eye of Horus, a vision-based framework for hydrologic monitoring and measuring440

real-time water-related parameters, e.g., water level, from surveillance images captured during flood441

events. Time-lapse images and real water level correspondences were collected by Raspberry Pi camera442

and Arduino HC-SR05 ultrasonic sensor, respectively. Moreover, Computer Vision and Deep Learning443

techniques were used for semantic segmentation of water surface within the captured images and for444

reprojecting the 3D point cloud constructed with an iPhone LiDAR scanner, on the (2D) image plane.445

Eventually, the K-Nearest Neighbor algorithm was used to intersect the projected (2D) point cloud446

with the water line pixels extracted from the output of the Deep Learning model, to find the real-world447

3D coordinates.448

A vision-based framework offers a new alternative to current hydrologic data collection and real-449

time monitoring systems. Hydrological models require geometric information for estimating discharge450

routing parameters, stage, and flood inundation maps. However, determining bankfull characteristics451

is a challenge due to natural or anthropogenic down-cutting of streams. Using visual sensing, stream452

depth, water velocity, and instantaneous streamflow at bankfull stage can be reliably measured.453

7 Data Availability Statement454

The framework and codes developed and used in this study are publicly available online in the GitHub455

repository (https://github.com/smhassanerfani/horus).456
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