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Abstract: Mobile sources are responsible for a substantial controllable portion of the reactive organic carbon (ROC) 24 
emitted to the atmosphere, especially in urban environments of the United States (U.S.). We update existing methods 25 
for calculating mobile source organic particle and vapor emissions in the U.S. with over a decade of laboratory data 26 
that parameterize the volatility and organic aerosol (OA) potential of emissions from onroad vehicles, nonroad 27 
engines, aircraft, marine vessels, and locomotives. We find that existing emission factor information from teflon filters 28 
combined with quartz filters collapses into simple relationships and can be used to reconstruct the complete volatility 29 
distribution of ROC emissions. This new approach consists of source-specific filter artifact corrections and state-of-30 
the-science speciation including explicit intermediate volatility organic compounds (IVOCs), yielding the first 31 
bottom-up volatility-resolved inventory of U.S. mobile source emissions. Using the Community Multiscale Air 32 
Quality model, we estimate mobile sources account for 20-25% of the IVOC concentrations and 4.4-21.4% of ambient 33 
OA. The updated emissions and air quality model reduce biases in predicting fine-particle organic carbon in winter, 34 
spring, and autumn throughout the U.S. (4.3-11.3% reduction in normalized bias). We identify key uncertain 35 
parameters that align with current state-of-the-art research measurement challenges. 36 

1. Introduction 37 

Ambient particulate matter (PM) and ozone (O3) have detrimental impacts on human health and the environment (U.S. 38 

EPA, 2019, 2020c; Pye et al., 2021) with disparate impacts across societal groups (Tessum et al., 2021). Non-methane 39 

organic gases (NMOG) are precursors to PM and O3, and reducing NMOG could reduce criteria pollutants and their 40 

associated mortality throughout the United States (U.S.) (Pye et al., 2022a). Mobile source emissions continue to be 41 

a major contributor to modern anthropogenic NMOG emissions. In contrast to other NMOG sources such as 42 

vegetation, mobile emissions have been reduced through successful regulatory policy and the introduction of cleaner 43 

engine and control technologies (Lurmann et al., 2015; Gentner et al., 2017; Winkler et al., 2018; Bessagnet et al., 44 
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2022). Yet, effective management of urban and regional air quality still depends on accurate and detailed 45 

characterization of the carbon-containing compounds emitted by mobile sources. 46 

Fossil-fuel combustion emissions comprise thousands of organic compounds with widely varying volatility, 47 

depending on source type (Drozd et al., 2018; Lu et al., 2018). The lowest volatility compounds are emitted principally 48 

in the particle phase and are typically classified as primary organic aerosol (POA). Conventionally this portion of 49 

emissions is sampled using filters which are weighed or processed off-line with thermal-optical techniques, solvent 50 

extraction, and other methodologies (Chow et al., 1993; Birch and Cary, 1996; U.S. EPA, 2022b). The highest 51 

volatility NMOGs are emitted in the gas-phase and enhance O3 formation when oxidized in the atmosphere, a process 52 

that also enhances PM mass via secondary organic aerosol (SOA) formation. U. S. EPA emission tools like the MOtor 53 

Vehicle Emission Simulator (MOVES) (U.S. EPA, 2020b) and the SPECIATE database (U.S. EPA, 2020a) provide 54 

emission estimates and speciation for POA (assumed to be nonvolatile) and NMOGs. The ‘Conventional’ path in Fig. 55 

1 depicts this process. However, laboratory and field measurement campaigns have demonstrated that much of the 56 

mobile source POA is subject to gas-particle partitioning and filter sampling artifacts, semivolatile, which complicates 57 

the interpretation of filter-based measurements (Robinson et al., 2010; Bessagnet et al., 2022). These compounds 58 

principally include (Table 1) semivolatile organic compounds (SVOCs) and intermediate volatility organic 59 

compounds (IVOCs), with IVOCs being key contributors to filter artifacts (May et al., 2013a, b). Accurately 60 

representing SVOCs and IVOCs is important because they are SOA precursors and are underestimated in 61 

contemporary models and emission databases (Gentner et al., 2012; Tkacik et al., 2012; Zhao et al., 2014; Zhao et al., 62 

2015, 2016b). 63 

Some air quality models (AQMs) have incorporated semivolatile organic compounds (SVOCs) and IVOCs by 64 

adapting emissions inputs either with a data pre-processing step or during the AQM runtime (Murphy and Pandis, 65 

2009; Shrivastava et al., 2011; Ahmadov et al., 2012; Bergström et al., 2012; Koo et al., 2014; Woody et al., 2015; 66 

Zhao et al., 2016a; Woody et al., 2016; Jathar et al., 2017b; Murphy et al., 2017). However, these approaches rely on 67 

broad application of assumptions that may not be appropriate for specific source types since sampling artifacts will 68 

bias low-emitting and high-emitting sources differently (Robinson et al., 2010). As emissions from individual 69 

combustion sources are continually reduced in response to tightening regulations, accounting for these potential biases 70 

becomes important. Bottom-up approaches are needed that revise emission factors and speciation profiles for 71 

individual source types. Datasets like this exist for some areas like Europe (Manavi and Pandis, 2022), Japan (Morino 72 

et al., 2022) and China (Chang et al., 2022). 73 

This paper documents the transition of U. S. EPA mobile emission tools from the conventional paradigm that considers 74 

operationally defined particulate organic matter (OM) and NMOG emission factors and speciation to one that 75 

accommodates the full complexity of atmospheric carbon-containing trace pollutants. To accomplish this, we consider 76 

total Reactive Organic Carbon (ROC), defined by Saffediene et al. (2017) and Heald and Kroll (2020) as all reactive 77 

organic compound mass across gas and particle phases excluding methane. We catalogue updates to 51 diverse mobile 78 

source categories across multiple categories and engine, fuel, and control types. Further, we demonstrate procedures 79 

for integrating existing inventory emission factors with state-of-the-art chemical composition measurements, pointing 80 
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out where critical uncertainties could be further resolved in the future. Finally, we document the impact the updates 81 

have on source-specific and sector-wide emissions as well as regional-scale pollutant formation and transport 82 

predicted by an updated version (2020) of the Community Multiscale Air Quality (CMAQ) regional-scale AQM.  83 

2. Materials and Methods 84 

2.1 Mobile Emission Modeling 85 

To develop the new framework and estimate potential impacts from speciation updates, we used existing estimates for 86 

2016 annual mobile emissions for the contiguous U.S. We considered five categories including onroad, nonroad, air, 87 

rail, and marine. The MOVES3 model predicts emissions for onroad and nonroad sources using county-level fleet 88 

properties and activity data. The dominant U.S. onroad vehicle sources are light-duty gasoline cars and trucks and 89 

heavy-duty diesel trucks. Nonroad emission sources include construction, agricultural, and lawn equipment as well as 90 

nonroad recreational vehicles. The Aviation Environmental Design Tool (AEDT), maintained by the Federal Aviation 91 

Administration, predicts landing, taxi, and take-off emissions for aircraft and emissions from ground support 92 

equipment (Faa, 2022). Rail emissions are calculated using confidential line-haul activity data that were summarized 93 

at the county-level, while rail-yard emissions are based on supply fuel use and yard switcher counts provided by 94 

companies (U.S. EPA, 2022a). Marine emissions include both port and underway conditions for large, generally 95 

international ships, vessels, and smaller boats operating near shore (U.S. EPA, 2022a). The MOVES3 model predicts 96 

emissions from recreational boats as part of the nonroad recreational equipment category.  97 

We also collected national total annual fuel usage data for each source from the models to calculate an effective fuel-98 

based OM emission factor (see section S1). These effective emission factors range from 1-20 mg (kg-fuel)-1 for the 99 

newest gasoline, diesel, and compressed natural gas (CNG) vehicles to over 6000 mg (kg-fuel)-1 for nonroad gasoline 100 

two-stroke engines. In the process of reviewing each mobile source OM emission rate, we discovered and corrected 101 

several minor errors and limitations to compressed natural gas sources and uncontrolled nonroad diesel exhaust (see 102 

section S2).  103 

2.2 Reactive Organic Carbon (ROC) 104 

To accurately simulate the behavior of mobile emissions, we must consider total ROC which includes organic carbon 105 

(OC) and non-carbon mass from compounds from the most volatile species like ethane and formaldehyde to 106 

chemically complex, high molecular weight compounds (e.g. oligomers) (Heald and Kroll, 2020). Conventional 107 

metrics for reporting OM and NMOG are operationally defined based on measurement methods and conditions; 108 

therefore, they are difficult to compare across tests and among other ROC sources. Furthermore, uncertainties are 109 

introduced when they are speciated with profiles measured at different conditions. To improve standardization, we 110 

introduce two new metrics: CROC (condensable reactive organic carbon) and GROC (gaseous reactive organic 111 

carbon). CROC is defined as compounds with saturation concentration (C*) less than 320 μg m-3 (Table 1), with this 112 

boundary corresponding to n-alkanes with 20±1 carbon atoms. CROC includes SVOCs (0.32 < C* ≤ 320 μg m-3) and 113 

low volatility organic compounds (LVOCs; C* ≤ 0.32 μg m-3). Whereas, GROC is defined as the sum of compounds 114 

with C* greater than 320 μg m-3 corresponding to IVOCs (320 < C* ≤ 3.2 x 106 μg m-3) and volatile organic compounds 115 

(VOCs; C* > 3.2 x 106 μg m-3) (Donahue et al., 2009; Murphy et al., 2014). CROC and GROC align with well-known 116 
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categories in the volatility basis set (VBS) space, so they may be applied straight-forwardly to speciation profiles in 117 

recent literature containing both explicit compounds and lumped groups. 118 

We apply a two-step methodology to process gas- and particle-phase emissions (‘ROC’ path in Fig. 1). First, we 119 

estimate total GROC and CROC emissions from existing NMOG and OM emission factors, respectively, while 120 

considering measurement uncertainties like sampling setup losses (e.g. tubing) and filter artifacts. We then speciate 121 

GROC and CROC using state-of-the-science profiles. For GROC, these include explicit IVOC compounds where 122 

available and lumped IVOC groups distinguished by their saturation concentration and functionality. The 123 

methodology for processing CROC emissions similarly uses volatility profiles from recent literature. 124 

2.2.1 GROC Emissions and Speciation 125 

Total NMOG emissions are measured from mobile emissions by combining total hydrocarbons (THC) with carbonyl 126 

compounds and subtracting methane (see section S3) (Kishan et al., 2006; May et al., 2014). Lu et al. (2018) compiled 127 

measurements for onroad vehicles, nonroad equipment, and an aircraft turbine engine. That study concluded that 128 

methods using heated sampling and a heated flame-ionization detector (FID) can capture both IVOCs and VOCs, but 129 

that speciation methods like canister or tedlar bag sampling analyzed with gas-chromatography-FID miss essentially 130 

all IVOCs due to wall losses to the sampling materials. Assuming that NMOG emission rates are based on heated FID 131 

sampling, we set GROC emission rates equal to total NMOG emission rates across all sources, and we speciated 132 

GROC emissions using profiles that include VOCs and IVOCs.  133 

Many studies have reported speciated organic gases normalized to total IVOC or VOC (Lu et al., 2018; Jathar et al., 134 

2017a; Zhao et al., 2015, 2016b; Huang et al., 2018; Drozd et al., 2018). A key parameter used to integrate these data 135 

is the IVOC/NMOG ratio (see section S4), which ranges from ~4.6% for gasoline vehicle cold start exhaust to 67% 136 

for marine residual oil. Gasoline fuel evaporation profiles of GROC were assumed to be the same as NMOG since 137 

IVOCs are not expected to contribute substantially to those emissions (Gentner et al., 2012). The profile for whole 138 

diesel fuel evaporation was updated to be consistent with fuel characterization in Gentner et al. (2012) (see Section 139 

S1c). SPECIATEv5.1 contains thousands of explicit species and many mixtures of compounds (e.g. oils, unspeciated 140 

terpenes, etc.) reported by previous studies. Recent studies have constrained the unknown portion of IVOCs and VOCs 141 

with lumped groups resolved by volatility and often by structure/functionality features (e.g. branched, cyclic, 142 

oxygenated, etc.). We leverage the representative compound structures in SPECIATE developed by Pye et al. (2022b) 143 

to classify these emissions by functional groups, and their subsequent atmospheric chemistry. Table S2 summarizes 144 

the new IVOC profiles. Species-based ozone and OA potential were calculated for each emission source using 145 

relationships from Seltzer et al., (2021) which were expanded by Pye et al. (2022b) 146 

2.2.2 CROC Emissions and Speciation 147 

We estimate effective OM emission factors using the MOVES-predicted national total OM emissions normalized to 148 

the total fuel usage for each source (see section S1). The MOVES model relies on conventional measurements of total 149 

PM emissions sampled and weighed on Teflon filters. The SPECIATE database, meanwhile, stores the weight percent 150 

of OC measured by thermal optical techniques from samples collected on quartz filters (U.S. EPA, 2022b) normalized 151 

by coincident bulk PM measurements from the Teflon filter (see section S5). SPECIATE also applies a source-152 
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dependent OM/OC factor to adjust for non-carbon organic mass (i.e. hydrogen, oxygen), which represents OM once 153 

added to OC (Table S1a) (Reff et al., 2009; Simon et al., 2011). Previous studies have demonstrated that OM emission 154 

factors vary with changing temperature and OM loading (Lipsky and Robinson, 2006; Robinson et al., 2010; May et 155 

al., 2013b, a; Jathar et al., 2020). AQMs that take this behavior into account typically distribute OM emissions among 156 

volatility bins using reference distributions. May et al. (2013b, a) constrained parameters for calculating volatility-157 

resolved emissions assuming OC is measured on a quartz filter. Although this approach performs well for average 158 

cases, it is less accurate when applied to sources that are low or high emitting, for which absorptive partitioning biases 159 

are more substantial (Fig. 2). For an exceedingly low-emitting source (low OM loading), SVOC emissions that would 160 

normally partition to the particle phase under ambient conditions could go undetected as they pass through the filter.  161 

Additionally, reported OM emissions are sometimes artifact-corrected using a secondary quartz filter behind the 162 

Teflon filter sample, which allows for adsorbed SVOCs and IVOCs to be neglected. Because these corrections are not 163 

uniformly applied across all studies, May et al. (2013b, a) reported reference volatility profiles assuming OM emission 164 

factors had not been adsorptive-artifact corrected. Yet this is not always applicable for the emission rates informing 165 

MOVES and must be resolved at the source level based on the underlying emission data. To address both adsorptive 166 

and absorptive partitioning biases, we apply CROC/OM parameterizations developed from detailed measurement data 167 

and informed by filter-based OM emission factors (see section S6) (May et al., 2013b, a; Huang et al., 2018; Jathar et 168 

al., 2020). The method accounts for filter artifact corrections by adding missing SVOC emissions for low OM-loading 169 

tests and neglecting IVOCs and higher-volatility SVOCs that would be captured on the front filter during high OM-170 

loading tests. The CROC/OM parameterization for onroad gasoline is based on data from 64 vehicles and so is more 171 

robust than the parameterization for onroad heavy-duty diesel with particulate filters (DPF), which is based on 3 172 

vehicles (Section S7), or the aircraft engine parameterization, which is based on one sample. More work is needed to 173 

better constrain the CROC/OM parameters. 174 

The impact of this new approach for translating inventory OM emissions is shown in Fig. 2. We use the onroad 175 

gasoline light-duty cold start volatility profile in Table S5 to estimate the effective ambient organic aerosol emission 176 

factor at 298 K and COA equal to 10 μg m-3 given a filter-based OM emission factor in mg kg-1 fuel. Also shown are 177 

trends using parameters reported by Robinson et al (2007) and Lu et al. (2020), which have been used in contemporary 178 

air quality models. The filter-based OM emission factor (𝐸𝐹𝑂𝑀) is multiplied by the volatility distribution, and VBS 179 

partitioning theory (Eq. 1) is used to calculate the effective ambient OA emission factor (𝐸𝐹𝑂𝑀,𝐴𝑚𝑏): 180 

𝐸𝐹𝑂𝑀,𝐴𝑚𝑏 = 𝐸𝐹𝑂𝑀 ∑
𝛼𝑖

1+
𝐶𝑖
∗

10
⁄

𝑛𝑡𝑜𝑡
𝑖=1  (1) 181 

where ntot is the number of volatility parameters in the vector α. The ‘Lu et al.’ and ‘Robinson et al.’ lines are directly 182 

proportional to the nonvolatile emission factor because they do not consider nonlinear dependence on the filter-based 183 

OM emission factor. Meanwhile, the ROC approach enhances emissions at low emission factors (to correct for SVOC 184 

breakthrough) and reduces them at high emission factors (to remove IVOCs partitioning to the filter). Also shown on 185 

Fig. 2 are filter-based OM emission factors for PreTier 2, Tier 2 (2001-2004), and Tier 2 (2004+) vehicles, which 186 

exhibit emissions reductions with newer standards. For the older vehicles, the ‘Lu et al.’ and ‘Robinson et al.’ 187 
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approaches give similar estimates for effective ambient OM as the new approach, but as emission factors decrease, 188 

those methods may overpredict evaporation and underpredict the particle emission factors. At the lowest OM emission 189 

factors, even using the nonvolatile approach may underpredict effective ambient OA emission factors because 190 

significant SVOCs could have broken through the filter and should be considered for ambient partitioning. 191 

We did not adjust GROC emissions in response to CROC/OM conversion, but the sum of total ROC emissions for 192 

each source does not change substantially from the sum of NMOG and OM (Fig. S22). We then updated existing 193 

SPECIATE profiles with volatility distributions of LVOCs and SVOCs normalized to CROC (Table S5a). Because 194 

data on the functionality of these low volatility emissions is lacking, we assume they share similar chemical properties 195 

(i.e. reactivity) to linear alkanes as a proxy for more complex mixtures of aliphatics and other compounds. 196 

2.3 Air Quality Model Configuration 197 

We used an updated version of the Community Multiscale Air Quality (CMAQ) model v5.3.2 to quantify the impact 198 

of the new mobile emissions on regional-scale air quality (U.S. EPA, 2021; Appel et al., 2021). Hourly ambient air 199 

concentrations of OA and O3 were simulated for the entire year 2017 at 12 km horizontal resolution with inputs from 200 

EPA’s air QUAlity TimE Series (EQUATES) project (U.S. EPA, 2022c; Foley et al., 2023). Meteorology was 201 

simulated with WRFv4.1.1. The Biogenic Emission Inventory System (BEIS) predicted biogenic gas emissions online 202 

in CMAQv5.3.2. Gas- and aerosol-phase chemistry are modeled with the Carbon Bond 6 mechanism (CB6r3_AE7) 203 

with updates for production of SOA from mobile IVOCs implemented by Lu et al. (2020) Anthropogenic emissions 204 

are described in the US EPA 2017 emission platform technical science document and EQUATES documentation (U.S. 205 

EPA, 2022a, c). Mobile emissions for 2017 were recalculated in order to update speciation and apply both 206 

IVOC/NMOG and CROC/OM adjustments. The ‘CMAQ-ROC’ simulation implements all revisions to mobile 207 

elemental carbon (EC) speciation described in section S2 and the methods described in sections 2.2.1 and 2.2.2. The 208 

EC speciation updates result in substantial changes to nonroad diesel, aircraft, marine and rail source (Table S9). 209 

Because MOVES uses source- and species-specific emission rates for HAPs rather than relying on generic speciation 210 

of NMOG, ROC updates for HAPs are not propagated to the air quality model simulations, although we show potential 211 

changes to national-scale HAP emissions from updates to VOC speciation. Volatile chemical product (VCP) emissions 212 

are simulated for 2017 with the VCPy tool (Seltzer et al., 2021). Nonoxygenated and oxygenated IVOC emissions 213 

from VCPs are represented with the IVOC chemistry from Lu et al. (2020), which results in an average SOA yield of 214 

approximately 30% at ambient conditions across all IVOCs. However, Pennington et al. (2021) found the oxygenated 215 

IVOC SOA yield to be 6.28%, though this yield warrants re-evaluation with better speciation and yield data given the 216 

diverse mix of oxygenated IVOCs with varying molecule functionalities that can influence SOA production (Humes 217 

et al., 2022). Based on available information, we reduce the CMAQ-predicted VCP SOA concentrations by 33.8% to 218 

account for the overrepresentation of SOA from VCP oxygenated IVOCs (see section S7).  219 

We assess model performance for O3 and OC during the 2017 model year with aily-averaged measurements at routine 220 

monitoring sites. We also perform a separate CMAQ simulation for comparison that is consistent with the EQUATES 221 

project, which assumes the speciation of OM emissions from all sources are consistent with the volatility distribution 222 

of a small diesel generator (Robinson et al., 2007). This ‘EQUATES’ simulation also utilizes the simplified potential-223 
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combustion SOA (pcSOA) approach used in publicly available versions of CMAQ (Murphy et al., 2017). The CMAQ-224 

ROC simulation neglects pcSOA since the role of mobile and VCP IVOC SOA formation are explicitly accounted 225 

for. Finally, we also analyzed two simulations with mobile and VCP SOA precursors each set to zero to quantify direct 226 

sector contributions to total OA. This approach does not account for the contributions these sectors make to the 227 

atmospheric oxidant capacity through emissions of low molecular weight VOCs and nitrogen oxides. 228 

3. Results and Discussion 229 

3.1 Volatility-Resolved Mobile Source ROC Emissions 230 

Using the 2016 annual predictions from MOVES and the other mobile emission models processed and speciated with 231 

the ‘ROC’ approach, we explore for the first time a complete bottom-up inventory of organic carbon emissions from 232 

mobile sources in the U.S. Figure 1 shows the results of the ROC and Conventional approaches for one example 233 

source, onroad heavy-duty diesel equipped with particulate filters. Non-organic particulate matter species such as ions 234 

and other PM are equivalent in both approaches. Nonvolatile OM emissions in the Conventional approach are 235 

distributed in the ROC approach to a range of SVOCs and IVOCs, which are predominantly alkanes and branched 236 

compounds for diesel sources. The magnitude of emission factors for compounds in the VOC volatility range from 237 

onroad diesel sources are reduced by 47.8% due to the introduction of IVOCs (IVOC/GROC = 52.2%), and the 238 

distribution of VOC functionality is changed substantially due to adoption of VOC speciation profiles from Lu et al. 239 

(2018). Unknown ROC mass is also reduced from 7% of total emissions to 0.7% after introducing IVOCs. Emission 240 

factors vary by orders of magnitude across mobile sources, motivating careful accounting of sampling biases (Figs. 241 

S18-S21), which requires the ROC approach in the emission modeling workflow to be complex and involve multiple 242 

tools and intermediate steps (Fig. S1). 243 

Figure 3 shows the predicted contributions of source types and functional groups across the volatility spectrum for 244 

2016 ROC inventory. The VOC emissions are roughly evenly distributed between onroad and nonroad sources (1130 245 

and 1045 kt yr-1, respectively), IVOCs are weighted towards onroad (62%), and CROC (i.e. SVOCs and larger 246 

compounds) is roughly split among onroad, nonroad, and others. Tailpipe (i.e. exhaust) emissions while running 247 

represent the majority across all volatility categories (56% of total ROC), although evaporative sources are important 248 

in the VOC range (38%), and similar to prior estimates (Gentner et al., 2009). It could be counter-intuitive, given 249 

laboratory data on start and idle emission factors, that the start/idle operating mode does not contribute more to total 250 

ROC emissions. This result could be due in part to substantially more time spent by sources in the running mode 251 

during normal operation, but it could also be partly due to MOVES neglecting start modes for nonroad sources. Drozd 252 

et al. (2018) found that cold start IVOC fuel-based emission factors are about 6 times larger than those from hot-253 

running-start emissions for newer vehicles, which is consistent with the post Tier 2 gasoline vehicles in this work. For 254 

older vehicles though, the ROC inventory predicts greater IVOC emissions factors for hot-running modes than cold-255 

start for older vehicles (Table S1a and Table 2). Further research is needed to constrain NMOG emission factors and 256 

IVOC/NMOG ratios for older (pre-2004) vehicles that are expected to have contributed approximately 72% of onroad 257 

gasoline ROC emissions during 2017 (see Fig. S24 and Table S1a).  258 
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Emissions from gasoline-fueled sources dominate the VOC range in Fig. 3, but diesel-fueled sources, of which there 259 

are far fewer in the U.S. dominate the IVOC range. Whereas, sources using both fuels are important for CROC 260 

emissions. Mobile source VOCs comprise many functionalities, and aromatics make a substantial contribution. The 261 

higher volatility IVOCs have mass associated with aromatics from gasoline sources, but cyclic hydrocarbon 262 

compounds contribute to IVOCs across all volatilities, a feature reported by Zhao et al. (2015) We currently lack data 263 

to specify CROC functionality across all mobile categories, so we have labeled them alkane-like based on observations 264 

of motor vehicle POA emissions (Worton et al., 2014). Improved CROC speciation is needed, especially given the 265 

importance of functionality to SOA formation (Lim and Ziemann, 2009; Yee et al., 2013). 266 

3.2 Impact of Filter Artifacts 267 

Transitioning from the Conventional approach to the ROC approach has implications for near-source particle 268 

concentrations and prompt SOA production. Figure 4 shows the contributions of mobile categories with results using 269 

approaches from previous work (Murphy et al., 2017; Lu et al., 2020). The Conventional approach assumes all OM 270 

stays in the particle phase, which has been shown to lead to poor AQM performance (Murphy et al., 2017). The 271 

‘Robinson et al.’ case, which is consistent with CMAQv5.3.2, applies the volatility distribution for a small nonroad 272 

diesel engine, where half the OM mass is assumed to be IVOCs adsorbed to filters and is thus volatilized. As seen in 273 

Fig. 4, only 25% of the OM persists in the particle after evaporation in the ‘Robinson et al.’ approach. Lu et al. (2020) 274 

applied gasoline and diesel-specific volatility profiles parameterized for emissions from in-use vehicles to the entire 275 

mobile category, leading to less evaporation of OM than the ‘Robinson et al.’ approach. Lu et al. (2020) also applied 276 

a conversion factor of 1.4 to all mobile gasoline-fueled sources to account for missing SVOCs.  277 

In the ROC approach here, we apply source-specific adjustment factors (Table S5) and volatility profiles (Table S6) 278 

and find similar results for onroad gasoline and nonroad diesel compared to Lu et al. (2020). However, onroad diesel 279 

CROC emissions are increased by 60% relative to the CROC emissions from the ‘Lu et al.’ approach, driven by the 280 

inclusion of missing SVOCs from clean test conditions for diesel engines with DPFs. Conventional OM emissions 281 

from nonroad sources are greater than those from onroad for both gasoline- and diesel-fueled sources. Nonroad 282 

gasoline emissions reduced by 36% relative to ‘Lu et al.’ where emission factors are large, and CROC/OM is much 283 

less than 1.0 (Table S5), indicating the presence of IVOCs on the filter. Predicted conventional OM emissions from 284 

air, rail, and marine sources are also important, and CROC emissions are slightly larger than OM. Across the mobile 285 

sector, total CROC emissions increased by 12% relative to OM, and 42% of the CROC emissions are predicted to be 286 

in the particle phase at 298 K and 10 μg m-3 organic aerosol (OA) loading. 287 

3.3 National-Scale Impact on PM, O3 and HAPs 288 

When aggregated across all mobile sources, total ROC emissions are nearly identical between the Conventional 289 

approach and ROC approach (Fig. 5). Total IVOC emissions are represent only 10.2% of total GROC due to the 290 

substantial role of VOCs from gasoline sources to ROC emissions in the U.S. The spatial distribution of IVOC and 291 

CROC emissions highlight the key role of cities, highways, and shipping lanes (Fig. S26). We calculate the OA 292 

potential as the sum of particle-phase mass (calculated at 298 K and 10 μg m-3) for each species and the SOA yield of 293 

the vapor-phase component of each species. Mobile source OA potential has contributions from all ROC volatility 294 
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classes with 6.8% from LVOCs, 25.4% from SVOCs, 19.1% from IVOCs, and 48.7% from VOCs (Fig. 5). The 295 

estimated VOC OA potential is mainly driven by adjusted yields of aromatic VOCs, which are enhanced over previous 296 

work due to corrections for vapor wall-losses of single-ring aromatic yields (Zhang et al., 2014). These metrics 297 

possibly reflect an upper bound on VOC and IVOC contribution as they apply SOA yields to the precursor emission 298 

without consideration of reaction rates, timescales, or competitive losses of precursors and intermediates to deposition. 299 

Potential OA relative contributions from air, marine, and rail (12%) and onroad diesel (16%) sources play a larger 300 

role in OA potential when emissions are estimated with the ROC approach, while nonroad gasoline and diesel (38%) 301 

and onroad gasoline potential OA (34%) decrease (Fig. 6). While aromatic species dominate OA potential in the VOC 302 

precursor range, in the IVOC range OA potential has larger contributions from cyclic alkane compounds from onroad 303 

diesel sources (Fig. S23). In the LVOC range and below, the ROC approach assumes only alkane-like species; 304 

improvements to the SPECIATE database and emissions modeling tools will support increased detail on compound 305 

functionality when provided by future studies. 306 

VOCs account for 97% of the ozone potential approximated by maximum incremental reactivity (MIR), and the total 307 

ozone potential decreases by 8.9% due to the shift in mass from VOC to IVOC. The national-scale source distribution 308 

of O3 potential changes little between the Conventional and ROC approaches (Fig. 6). Ozone potential is dominated 309 

by onroad and nonroad gasoline sources in the highest ROC volatility bins, driven by alkane, aromatic, and oxygenated 310 

species, as expected (Fig. S23). Among onroad light duty gasoline vehicles, 72% of ROC emissions, 68% of O3 311 

potential, and 79% of OA potential are predicted to come from pre-Tier 2 vehicles, while these vehicles account for 312 

19% of the fuel used in 2017 (Fig. S25). Heavy-duty diesel vehicles without particulate filters or selective catalytic 313 

reduction systems contribute 87% of ROC emissions, 85% of O3 potential, and 91% of OA potential while using 31% 314 

of the fuel for the heavy-duty diesel onroad category. 315 

National-scale HAP emissions changed substantially with updates in VOC speciation and introduction of IVOCs with 316 

many species decreasing by nearly 20% or more including toluene (-19%), hexane (-22%), 1,3-butadiene (-34%), and 317 

ethyl benzene (-29%) and others increasing substantially including formaldehyde (+22%), acrolein (+20%), and 318 

acetaldehyde (+19%) (Fig. S25). These results emphasize the need for more research on HAP emission factors, but 319 

we keep them constant for the CMAQ simulations to focus on OA and O3 changes. 320 

3.4 Air quality model results 321 

Mobile ROC emissions were generated for the year 2017 to be comparable with the EQUATES 2017 emission inputs. 322 

Differences between the EQUATES mobile inputs and those for the CMAQ-ROC simulation (Table S9) are consistent 323 

with the changes in the 2016 emissions results depicted in Fig. 4. The CMAQ-ROC simulation predicts lower OC 324 

concentrations throughout the domain due to elimination of pcSOA. CMAQ-ROC predictions compared well against 325 

both O3 and OC measurements at Air Quality System (AQS) sites in 2017 (Figs. S28, S29 and Table S10). Normalized 326 

mean biases for OC improved (in absolute terms and on average) by 11.3% in spring, 4.3% in autumn, and 7.6% in 327 

winter. In summer, the OC underprediction increased by 12%. Overprediction in the northeast, Ohio Valley, Upper 328 

Midwest, and northwest in winter is consistent with timing and geography of residential wood combustion emissions, 329 

which may be overrepresented in both simulations. Root mean square error and correlation coefficient differences 330 
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between the EQUATES and CMAQ-ROC simulations are small. CMAQ predicts both the annual mean and variability 331 

of OC concentrations well at selected U.S. cities (Fig. S34, S35), with the exception of New York City where the 332 

model overpredicted OC by more than a factor of 2. 333 

The predicted annual population-weighted average OA attributable to mobile sources is 0.26 μg m-3, or 9% of the OA 334 

from all anthropogenic and biogenic sources. Mobile source contributions to POA and SOA are similar on average, 335 

with apparent spatial differences (Fig. 7). Average total mobile source OA appears stable between winter and summer 336 

seasons (Fig. S30), and this is a result of trade-offs between higher POA concentrations in winter and higher SOA in 337 

summer (Figs. S31, S32). In rural areas, model-predicted mobile OA contributions asymptote at 4.5% of total OA, 338 

and in some urban areas they can exceed 23% (annual averages; Fig. S33). The ratio of SOA to OA is equal to 70% 339 

in rural areas and decreases with increasing population to 20-40%. Diurnal profiles at select cities indicate SOA 340 

formation peaks at noon in Los Angeles, Denver, Chicago and New York, but that feature is not reproduced on average 341 

at Houston and Raleigh (Figs S34, S35).  342 

CMAQ-ROC mobile and VCP IVOC concentrations are enhanced in urban areas with minimal seasonal differences 343 

predicted (Figs. S36, S37). Mobile sources are predicted to contribute 20-25% to total IVOCs depending on location 344 

and time of year, while VCP sources contribute 59-66% (Fig. S36), although IVOCs from other sources are 345 

underrepresented. The composition of ambient IVOCs predicted by CMAQ-ROC and the speciation of IVOC 346 

emissions from mobile and VCP emissions are consistent with results from Zhao et al.  (Fig. S38). Since ambient 347 

IVOC concentration measurements for 2017 are lacking, we extrapolated concentrations to the CalNex campaign in 348 

2010 and find acceptable agreement with campaign-average hydrocarbon and oxygenated IVOC observations (section 349 

S8, Fig. S39a,b). Extrapolation of CMAQ-ROC SOA to 2010 underpredicts mean CalNex SOA observations by 46% 350 

(Fig. S41c,d). Potential explanations include underestimated emissions from other sources (e.g. cooking), 351 

mischaracterized chemical processing (e.g. SOA yields), or errors in modeling regional pollution in Southern 352 

California (Lu et al., 2020). 353 

The U.S. annual GROC emission rate for mobile (2.49 Tg yr-1) is 20% less than that of VCPs (3.09 Tg yr-1), but the 354 

mobile IVOC emissions (0.25 Tg yr-1) are only one third those of VCPs (0.77 Tg yr-1). Gas-phase oxidation is 355 

responsible for less than half (42% and 44%) of the loss of mobile and VCP SOA-froming GROC, but 88-90% of the 356 

IVOC loss (Fig. 8). The annual production and loss of total OA from mobile and VCPs is similar, and loss is distributed 357 

evenly across deposition processes and transport out of the model domain. The annual rate of OA production (emission 358 

plus chemical production) estimated by CMAQ and normalized to total ROC emissions (i.e. the sum of NMOG plus 359 

conventional OM) is 0.16 g OA (g ROC)-1, which is approximately equal to that estimated from the data in Fig. 5. This 360 

agreement is surprising considering that the latter calculation does not account for variations in OA partitioning, NOx 361 

effects on SOA yields, or competitive losses from wet scavenging and dry deposition. Seasonal trends for OA, SOA 362 

and POA production rates and ambient concentrations normalized to OM and NMOG emissions are tabulated in Table 363 

S11 and discussed in section S9. These data may inform simple (e.g. screening) models of the impact of anthropogenic 364 

emissions on human exposure. 365 
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4. Conclusions 366 

This study implements a detailed source- and species-level procedure for converting conventional OM and NMOG 367 

mobile emissions to metrics compatible with the most recent science and speciation developed for atmospheric ROC. 368 

Although many AQMs have implemented online or pre-processing emission adjustments to account for these 369 

phenomena, (Koo et al., 2014; Murphy et al., 2017) the procedure should be embedded within emission models and 370 

databases for several reasons. Most importantly, this detailed approach considers a more diverse population of sources 371 

of different ages, fuels, and control technologies that are typically averaged together before they are passed to the 372 

AQM. Additionally, the new procedure enables near-explicit speciation of each emission source before mapping to 373 

model species used in a particular chemical mechanism. Having a detailed speciation of major emission sources is 374 

critical for assessing and revising chemical mechanisms (Pye et al., 2022b). Finally, operationalizing conversions from 375 

OM to CROC and NMOG to GROC alleviates AQM users from the burden of interrogating their emissions files to 376 

determine whether complex scaling operations are needed. From the broader perspective of facilitating transfer of 377 

knowledge between the scientific and regulatory communities, the SPECIATE database is now capable of ingesting 378 

speciation profiles with factors aligned with the most recent research studies and has enhanced flexibility to 379 

accommodate future updates. Nonetheless, for model applications seeking to scale legacy emission inputs, we provide 380 

updated factors normalized to several levels of source aggregation in Table S12 and discuss the uncertainty introduced 381 

with this approach in section S10. 382 

The 2016 ROC emissions suggest slight decreases to total O3 formation due to reapportionment of VOC to IVOC in 383 

this approach, but 2017 CMAQ-ROC predictions do not meaningfully change when evaluated at AQS sites. 384 

Meanwhile, mobile IVOC emissions enhance OA formation by an additional 79 kt yr-1 compared to estimates from 385 

the EQUATES configuration (319 kt yr-1). Gaps between total OA measurements and CMAQ-ROC predictions will 386 

be addressed through improved modeling of other sources of ROC (e.g. VCPs, wildfires, residential wood combustion, 387 

and cooking). Within the mobile sector, results indicate substantial contributions from onroad (46%) and nonroad 388 

(41%) gasoline and somewhat less from onroad (5%) and nonroad (3%) diesel air, marine, and rail sources (4.7%; 389 

Fig. 6). The vast majority of ROC emissions and impacts are attributable to older (pre-Tier 2 light duty gasoline and 390 

non-DPF heavy duty diesel) vehicles and nonroad gasoline engines. Onroad pollution will continue to decrease as 391 

these vehicles are phased out, increasing the importance of other mobile source categories and other sources. 392 

This study suggests several specific uncertainties pertaining to mobile source emissions need further laboratory and 393 

field investigation. Developing complete ROC volatility distributions for specific source classes and control types is 394 

critical, especially within the nonroad category where fewer experimental data were available for this study. The 395 

CROC/OM factors are uncertain across all mobile sources. Ideally, IVOC and CROC emissions should be sampled 396 

by a filter and a broad-spectrum adsorbent tube in series to avoid filter artifacts (Khare et al., 2019). If filter-based 397 

methods alone are used to inform organic aerosol emission inventories, then reducing the uncertainty in the 398 

relationship between particle emission factor and total CROC will strengthen our confidence in estimating organic 399 

aerosol emissions, particularly for lower-emitting technologies. Some CROC/OM ratios derived for this work are 400 

between 0.85 and 1.15, indicating a limited role for partitioning bias during source testing in those cases, but many 401 
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are greater than 1.30, especially the lower-emitting sources. Lastly, more research is needed to determine the extent 402 

to which NMOG measurements capture IVOCs (quantified by the IVOC/NMOG or IVOC/GROC ratios). These 403 

parameters are especially important to understand for older vehicles and equipment which drive historical and 404 

contemporary emissions. We recommend that emissions tests specifically measure and report CROC and GROC to 405 

facilitate comparison among datasets and implementation in emission models. Currently, these measurements are 406 

beyond the scope of typical regulatory requirements, and future progress requires research beyond regulatory methods. 407 
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Table 1. Definitions of key terms. 632 
Acronym Definition 

OM Organic matter component of primary 

particle emissions as measured on a filter. 

NMOG Non-methane organic gas emissions 

POA Primary organic aerosol. Particle-phase 

emissions after equilibrium is reached with 

ambient conditions. 

OA Particle-phase organic material at ambient 

conditions. 

LVOC Low-volatility organic compounds  

(C* ≤ 0.32 μg m-3). 

SVOC Semivolatile organic compounds  

(0.32 < C* ≤ 320 μg m-3). 

IVOC Intermediate volatility organic compounds  

(320 < C* ≤ 3.2 x 106 μg m-3). 

VOC Volatile organic compounds  

(3.2 x 106 μg m-3< C*). 

CROC Condensable reactive organic carbon: 

particle- and gas-phase LVOC + SVOC. 

Carbon and noncarbon mass are included. 

GROC Gaseous reactive organic carbon: particle- 

and gas-phase IVOC + VOC. Carbon and 

noncarbon mass are included. 

ROC Reactive organic carbon – all particle and 

gas organic compounds mass except 

methane. Carbon and noncarbon mass are 

included. 

 633 
  634 
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 635 

Figure 1. Depiction of calculation steps for the Conventional and ROC approaches to speciation of PM and NMOG 636 

emissions. Panel (a) shows the reported fuel-based emission factors based on MOVES predictions for 2016. Panel 637 

(b) shows the inorganic ions, metals and other nonorganic matter (IPM) separated from organic matter (OM). The 638 

beige area inside the dashed box in panel (c) indicates emissions that are added in the conversion of OM to CROC to 639 

account for underrepresented SVOCs from the filter measurement. Panels (d) and (e) show the comprehensive 640 

emission factors for the Conventional and ROC approaches, respectively, with data arranged by volatility while 641 

indicating non-organic PM emissions as well. In panels (d) and (e), bars to the left and right of the vertical line at 642 

Log10(C*) = 6.5 are quantified by the left and right y axes, respectively. The number within panels (d) and (e) 643 

indicates the total ROC emission factor excluding EC and Other PM for onroad heavy-duty diesel sources. ‘Alkane’ 644 

refers to only linear alkanes, while ‘cyclic’ and ‘branched’ are cyclic alkanes and branched alkanes. ‘Multi’ 645 
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indicates multifunctional organics. The bars in the gray shaded regions are not included in the organic volatility 646 

distribution but are included in the CROC-compatible SPECIATE profiles (e.g. 104CROC). 647 

 648 

 649 

 650 

 651 

Figure 2. Effective ambient primary organic aerosol emission factor estimated at 298 K and 10 μg m-3 as a function 652 

of the OM emission factor for onroad gasoline-fueled vehicles. 653 

 654 

 655 
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 656 

Figure 3. Volatility-resolved mobile source ROC emissions for the contiguous U.S. during 2016 stratified along 657 
several dimensions including category (top-left), operating mode (top-right), fuel (bottom-left), and chemical 658 
functionality (bottom-right). The ‘multi’ functionality series corresponds to compounds that are both oxygenated and 659 
have double carbon bonds. Bins to the left of the solid black line are quantified by the left y axis and those to the right 660 
by the right y axis. The unknown emissions (UN) are not assigned to a volatility bin and do not contribute to OA or 661 
O3 formation. 662 

  663 
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 664 

Figure 4. Bottom-up predictions of 2016 annual mobile CROC (i.e. SVOC, LVOC, and lower volatility compound) 665 
emissions classified by category, model approach, and equilibrium phase distribution. The full height of each bar 666 
corresponds to total CROC emissions. Gas-particle partitioning is calculated for atmospherically relevant conditions 667 
at 298 K and organic aerosol loading of 10 μg m-3.  668 

 669 

 670 

 671 

 672 

Figure 5. Total U. S. mobile source emissions for 2016 with aggregate O3 and OA potential calculated at the species 673 
level.  674 

675 
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 676 
Figure 6. Mobile sector contributions to ROC classes and derived quantities like O3 and OA potential. Values are 677 
presented for the Conventional and ROC-based approaches.  678 
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 679 

Figure 7. Annual average concentration (top row) of total OA (left), POA (center), and SOA (right) from mobile 680 
sources predicted by CMAQ for 2017 with the ROC mobile emission inventory. The fractional contribution of mobile 681 
sources to the total of each pollutant category from all sources are on the bottom row. In all panel subtitles, ‘Max’ 682 
refers to the spatial maximum of the annual average spatial field, while ‘Avg’ refers to the population-weighted 683 
average of the annual average spatial field. 684 
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 685 
 686 

Figure 8. Domain-wide predicted budget of (left) mobile and volatile chemical product (VCP) gas-phase emissions 687 
and loss due to chemistry, deposition, or transport and (right) OA production and losses for 2017. In the left plot, 688 
loss terms are only depicted for categories of compounds that lead to organic particle formation. 689 
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