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S1. MOVES, SPECIATE, and other emission model details 

MOVES3 is used to estimate emissions and fuel use from onroad vehicle and nonroad equipment. 

MOVES3 includes nonroad mobile equipment within twelve sectors: recreational, construction, 

industrial, lawn/garden, agriculture, commercial, logging, airport support, underground mining, 

oil fields, pleasure craft, and railroads (railroad support equipment). MOVES3 does not include 

emissions from aircraft, railroad locomotives, and commercial marine vessels which are handled 

by the models discussed below. We used MOVES3 to estimate emissions for all nonroad sectors, 

except airport ground support, which are estimated using AEDT discussed below. Airport ground 

support only consist of 0.024% of the total NMOG emissions estimated by nonroad equipment 

from MOVES3 in calendar year 2016. 

Within MOVES3, the estimation of emission rates and speciation is more detailed for onroad 

vehicles than for nonroad equipment. For onroad vehicles, MOVES stores emission rates and 

energy rates by detailed operating modes and emission processes. For example, MOVES classifies 

tailpipe exhaust emission rates into start and hot-running processes, which are further defined into 

operating modes. Start operating modes account for varying durations of time from when the 

vehicle was last started, and running operating modes are defined by acceleration, vehicle speed, 

and power (U.S. EPA, 2021b). To calculate emissions, MOVES requires detailed activity 

information (either default or user supplied), to calculate the total time corresponding to each 

emission process and operating mode. In addition, many of the emission rates (but not energy 

rates) are also stored by vehicle age to account for enhanced emission rates due to vehicle 

deterioration. MOVES also applies adjustment factors to emissions to account for differences in 
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fuel properties, inspection & maintenance programs, temperature, humidity, and air conditioning 

usage (U.S. EPA, 2021b). 

The nonroad module of MOVES estimates emission and fuel rates using more simplified 

methodology and data than the onroad module. For example, exhaust emissions and fuel rates for 

different equipment types are stored in the MOVES database as work-specific rates and are not 

differentiated between start and hot-running processes or individual operating modes. The 

MOVES nonroad module estimates exhaust emissions by multiplying the work-based emission 

rates by horsepower of the equipment, the number of equipment, the average hours spent in 

operation, and the average load of the nonroad equipment. Nonroad evaporative emissions are 

estimated but using simpler methodology than that used for onroad vehicles. Nonroad construction 

emission rates do not vary by age, and fuel-effect and temperature adjustments are limited 

compared to those in the onroad vehicle module (U.S. EPA, 2021b). 

MOVES3 also estimates speciation with more detail for onroad vehicles than nonroad vehicles. 

For example, the fraction of six gaseous species from the total volatile organic compound (VOC) 

emissions (acetaldehyde, formaldehyde, acrolein, ethanol, benzene and 1,3-butadiene) are not 

estimated from SPECIATE profiles but are calculated as a function of local fuel properties (U.S. 

EPA, 2020a). MOVES estimates AE6 PM2.5 species such as elemental carbon, organic carbon 

(OC), non-carbon organic matter (NCOM), sulfate, nitrate, ammonium and metal species, by 

applying SPECIATE profile fractions. The OC and NCOM fractions added to yield total OM 

emissions. MOVES adjusts the PM2.5 speciation in some instances. For crankcase emissions, 

MOVES adjust the PM2.5 speciation from the tailpipe exhaust speciation. Additionally, the sulfate 

fraction of PM2.5 in MOVES varies with the local sulfur level of the fuel (U.S. EPA, 2020b). Thus, 

the fraction of PM2.5 species, including OM shown in Table S1a, can be different than the OM 

fraction for the accompanying SPECIATE profile assigned to the source.  

The speciation of nonroad gaseous species is calculated using SPECIATE profile fractions within 

MOVES3. There are no fuel property adjustments that change the speciation like for onroad 

vehicles. MOVES3 does not produce speciated PM2.5 emissions for nonroad equipment. The 

calculation of AE6 PM2.5 species for nonroad is conducted outside of MOVES3 by applying 

SPECIATE PM2.5 speciation profiles to the corresponding PM2.5 nonroad emissions (U.S. EPA, 

2018). Some of the speciation profiles for both gaseous and particulate matter species are derived 

from onroad vehicles due to more limited nonroad emissions measurements (U.S. EPA, 2018). 

For MOVES-onroad, we aggregated the emissions to 22 different sources (see Table S-2; 1 to 15 

are tailpipe exhaust sources, and 40 through 45 are evaporative process sources). The sources are 

classified as groups of vehicles that have the same VOC and PM SPECIATE Profile, which are 

classified by fuel type, model year, emission process, and regulatory class (vehicle technology). 

Different sources within the same speciation profile are divided when they have significantly 

different emission rates, and they constitute an important contribution of emissions when 

separated. For example, Source 2 (Tier 2 E10 Exhaust; Gasoline 2001-2003; Cold Start) and 

Source 3 (Tier 2 E10 Exhaust; Gasoline 2004+; Cold Start) use the same speciation profiles, 

however we identified them as different sources, because source 3 has NMOG and OM emission 

rates that are lower than Source 2 by approximately 50% and 30%, respectively. In addition, in 

2016, Source 2 still consists of an important contribution to NMOG and OM emissions.  
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We similarly aggregated the emissions from nonroad to 19 sources (Table S-2) identified with 

unique speciation profile assignments and distinct emission rates and emission contributions. 

Nonroad assigns VOC SPECIATE profiles by fuel type, engine technology (2-stroke or 4-stroke), 

emission process, engine standard (Tier level), and aftertreatment (diesel particulate filter). In total 

we chose thirteen different nonroad exhaust (16 through 28), and 6 different evaporative sources 

(46 through 51).     

The 2017 NEI marine emissions depend on vessel power, emission factors assigned to each engine 

and activity based on signals from Automated Identification System (AIS) transmitters. The 

calculation of power and the specific emission factors used are described in detail elsewhere (U.S. 

EPA, 2021a). AIS is a tracking system used by vessels to enhance navigation and avoid collision 

with other AIS transmitting vessels.  The USEPA Office of Transportation and Air Quality 

received AIS data from the U.S. Coast Guard (USCG) to quantify all ship activity which occurred 

between January 1 and December 31, 2017. The provided AIS data extends beyond 200 nautical 

miles from the U.S. coast (Fig. S26). This boundary is roughly equivalent to the border of the U.S 

Exclusive Economic Zone and the North American ECA, although some non-ECA activity are 

captured as well. The AIS data were coupled with ship registry data that contained engine 

parameters, vessel power parameters, and other factors such as tonnage and year of manufacture 

which helped to separate the C3 vessels from the C1C2 vessels. We classified the CMV into two 

sources classified by the fuel-used (diesel or residual marine). We have different PM speciation 

profiles for diesel and residual marine, but only one profile for VOC. We recommend that future 

work develop specific VOC profiles for diesel and residual marine. In addition, residual marine 

fuel is in transition with lower sulfur content and should be updated with more recent data.  

The 2017 rail inventory was developed for the 2017 NEI by the Lake Michigan Air Directors 

Consortium (LADCO) and the State of Illinois with support from various other states.  Class I 

railroad emissions are based on confidential link-level line-haul activity GIS data layer maintained 

by the Federal Railroad Administration (FRA).  In addition, the Association of American Railroads 

(AAR) provided national emission tier fleet mix information. Class II and III railroad emissions 

are based on a comprehensive nationwide GIS database of locations where short line and regional 

railroads operate.  Passenger rail (Amtrak) emissions follow a similar procedure as Class II and 

III, except using a database of Amtrak rail lines. Yard locomotive emissions are based on a 

combination of yard data provided by individual rail companies, and by using Google Earth and 

other tools to identify rail yard locations for rail companies which did not provide yard 

data.  Information on specific yards were combined with fuel use data and emission factors to 

create an emissions inventory for rail yards. We divided the locomotives into five sources, each of 

which use the same VOC and PM SPECIATE profiles.    

Aircraft and aircraft ground support emissions are based primarily on the Federal Aviation 

Administration’s (FAA) Aviation Environmental Design Tool (AEDT) (National Emissions 

Inventory Collaborative, 2019). The sources are divided into two sources for airport ground 

support (gasoline and diesel), and two for aircraft (aviation gasoline and jet fuel). Aviation gasoline 

is a leaded fuel that is used in piston engine aircraft. Due to limited speciation aircraft, we use the 

VOC and PM speciation profiles estimated from jet-fueled aircraft to the av gas fueled- aircraft. 

We recommend work be conducted to develop and incorporate speciation profiles from aviation 

gas-fueled aircraft. 
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SPECIATE is the U.S. EPA’s repository of total organic gas and particulate matter speciation 

profiles of air pollution sources. Profiles within SPECIATE are paired with process-level sources 

in the National Emissions Inventory and other inventories developed by the Agency to speciate 

and/or modulate inventoried pollutants (i.e., VOC and PM25-PRI) into compound-specific species 

or aerosols (e.g., ethanol, acetone, elemental carbon, organic carbon). As speciation profiles 

generally include more species than a photochemical modeling chemical mechanism, additional 

post-processing on SPECIATE profiles is needed. Post-processing within the Speciation Tool 

translates the compound-specific species within a SPECIATE profile into the species utilized 

within a chemical mechanism (e.g., for Carbon Bond 6, ethanol is mapped to 1 ETOH and n-

decane is mapped to 10 PAR). The output from the Speciation Tool (i.e., a GSPRO file), process-

level emissions from an emissions model (e.g., MOVES), and the process-level mapping to 

SPECIATE profiles (i.e., a GSREF file) is then utilized by the SMOKE-MOVES emissions 

processing tool to generate model ready emissions for a photochemical model, such as CMAQ. 

S1a. Calculation of Start-mode Emission Rates 

MOVES3 start emissions are defined as “the instantaneous exhaust emissions occuring at the 

engine start (e.g., due to the fuel rich conditions in the cylinder to initiate combustion) as well as 

the additional running exhaust emissions that occur because the engine and emission control 

systems have not yet stabilized at the running operating temperature. Operationally, start emissions 

are defined as the difference in emissions between an exhaust emissions test with an ambient 

temperature start and the same test with the engine and emission control systems already at 

operating temperature.” (U.S. EPA, 2021b) The annual emissions and fuel use for the start 

processes shown in Table S1a are consistent with this MOVES start definition 

As discussed in Section S6, we use the organic matter (OM) fuel-based emission factor (mg/kg-

fuel) to calculate the CROC/OM adjustment factors. In this approach, we are interested in the OM 

concentration in the exhaust, rather than the incremental increase in exhaust emissions due to the 

start. To estimate the average tailpipe emission rates when start emissions are emitted, we 

estimated start exhaust emission rates for Phase 1 of the LA-92 driving cycle (also referred to as 

the Unified Cycle), which include both MOVES start and running emissions.  

The LA-92 was used in the light-duty tests conducted by May et al. (2014), used by Lu et al. (2018) 

to derive volatility-resolved speciation profiles. In addition, the LA-92 drive cycle, is one of the 

primary driving cycles used to estimate particulate matter start emissions in MOVES from light-

duty vehicles (Fulper et al., 2010; U.S. EPA, 2020c). 

We calculated the Phase 1 start from the MOVES inventory output by first calculating the average 

start emission rates, the average running emission rate per mile, the average start fuel rate, and 

average running fuel rate. Crankcase start and crankcase running emissions are included in these 

values. Then we calculated the fuel-based Phase 1 start emissions using Equation S0, which 

multiplies the running emission rates by 1.2 miles (which is the length of Phase 1 of the LA-92):  

𝑃ℎ𝑎𝑠𝑒 1 𝑆𝑡𝑎𝑟𝑡 
𝑔

𝑘𝑔⁄ =
(𝑀𝑂𝑉𝐸𝑆 𝑠𝑡𝑎𝑟𝑡 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (

𝑔

𝑠𝑡𝑎𝑟𝑡
)+𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒(

𝑔

𝑚𝑖𝑙𝑒
)×1.2 𝑚𝑖𝑙𝑒𝑠 )

(𝑀𝑂𝑉𝐸𝑆 𝑠𝑡𝑎𝑟𝑡 𝑓𝑢𝑒𝑙 𝑟𝑎𝑡𝑒 (
𝑘𝑔

𝑠𝑡𝑎𝑟𝑡
)+𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝑓𝑢𝑒𝑙 𝑟𝑎𝑡𝑒(

𝑘𝑔

𝑚𝑖𝑙𝑒
)×1.2 𝑚𝑖𝑙𝑒𝑠)

 (S0) 

The Start Phase 1 emission rates are displayed in Table S1b for the five start processes NMOG, 

VOC, PM2.5, and OC for the five sources that include start emissions.  
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The Phase 1 start emission rate is also reported in Table S1a, although it is inconsistent with the 

start emissions and fuel emissions in Table S1a, which only include the MOVES-defined start 

emission and fuel usage. The Phase 1 start OM g/kg-fuel emission rates are used to determine the 

CROC/OM factors as discussed in Section S6. For heavy-duty diesel 2007-2009, and 2010+, the 

start and running emissions are already combined, so we did not calculate Phase 1 start emission 

rates. 

S1b. Calculation of Air, Marine, and Rail Emission Rates 

Representative VOC and PM2.5 fuel-based emission factors for several sources were derived using 

recent literature and model runs.  

No fuel estimates from airport ground-support equipment were available in the 2016v1 platform 

data, from which we could estimate fuel-based emission factors. We estimated fuel-based emission 

factors for the airport ground support using the nonroad model in MOVES3. We assigned 

speciation profiles to the airport ground support equipment by fuel type, emission standard level , 

engine technology (2-stroke or 4-stroke), emission process (e.g. exhaust or evaporative), and 

aftertreatment technology (DPF) as shown in Table S1c. We then calculated an average emission 

rate for gasoline and diesel airport support equipment. MOVES3 estimates emissions from LPG-

fueled airport ground support vehicles, that are not included in the AEDT ground support 

inventory. This is not a critical component of aircraft support equipment. As shown in Table S1c, 

LPG only consist 1.2% of the NMOG emissions from all airport ground support equipment 

estimated from MOVES3 in 2016. The emission rate for airport ground support equipment 

estimated in MOVES is based on a composite of multiple SPECIATE profiles. However, in the 

final results, we apply only one VOC and one PM profile to the emissions from the gasoline and 

diesel sources of airport ground support as shown in Table 1. Aircraft emissions were informed by 

Presto et al.(Presto et al., 2011) which documented measurements of a gas-turbine engine at four 

different engine loads. The OM emission factor was adopted directly from the average of the 

results of the four tests for artifact-corrected POA. Elemental carbon was also adopted from these 

results. The PM2.5 emission factor was then calculated using the speciation profile applicable to 

aircraft (8873). Presto et al.(Presto et al., 2011) do not report as much unspeciated ‘other’ PM2.5 

as is present in the profile. The VOC emission factor was estimated from the 4% and 85% engine 

load tests. 

Various locomotive emissions were summarized by Harrell and Janssen (2017) who developed an 

inventory for the U.S. coordinated by the Eastern Regional Technical Advisory Committee 

(ERTAC). The inventory report estimated annual emissions and fuel use for Class I, II, and III 

line-haul units and switchers. Commuter and passenger rail emissions were reported in an EPA 

Technical Highlight (U.S. EPA, 2009) along with future projections of emission factors in g/gal. 

We use the value predicted for 2016 along with an assumed rail diesel fuel density of 3.22 kg/gal. 

An existing PM speciation profile (SPECIATE profile number 8994) (EC/PM = 46%, was 

assigned to the PM emissions from the locomotives because it had similar PM composition 

(EC/PM ~ 50%) on two locomotives sampled over a locomotive cycle study (Mcdonald et al., 

2009). 

Marine representative emissions for residual fuel oil are gathered from Huang et al. (2018) who 

reported larger PM2.5 emission factors than those for total hydrocarbon after sampling a vessel at 

sea under a wide range of engine loads and operating conditions. The low-sulfur fuel speciated 
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emission factors from Huang et al. (2018) were most consistent with the existing speciation profile 

applied for marine residual fuel oil emissions. OM emission factors were 75.5% of the total PM2.5 

emissions. Elemental carbon emissions were 470 mg kg-1, only 13% of the total emissions. Corbin 

et al. (2018) tested diesel and marine fuel oil in a variety of engine loads and found PM2.5 emission 

factors to be about 900 mg kg-1 with 850 mg kg-1 attributed to OM. 

Total annual fuel use for air, marine, and rail emissions were calculated as the quotient of total 

emissions estimated by MOVES3 and the other emission models and inventories discussed in 

Section S1. 

S1c. Updates to VOC speciation 

The liquid diesel VOC speciation profile (SPECIATE profile number 95120) estimated from 

Gentner et al. (2012) is applied to emissions of liquid diesel spilled during refueling.  SPECIATE 

profile number 95120 includes a small fraction of explicit species with the remaining 83% of the 

mass classified as unknown. Gentner et al. (2012) characterized over 90% of the liquid diesel using 

lumped species characterized by functional class (Aromatics, Straight Alkanes, Branched Alkanes, 

Cycloalkanes, and PAHs) and by volatility bins (log10 of the saturation concentration, C*). We 

created a new liquid diesel speciation profile from Gentner et al. (2012) (SPECIATE profile 

number 95120a) that utilizes the lumped ROC species (e.g. ROCP4ARO, Single-Ring Aromatics, 

C* = 104 ug m-3) and the explicit species previously included in profile 95120. We assigned each 

explicit species to five functional groups and volatility bins. We subtracted the explicit species 

from the corresponding lumped species to avoid double counting the mass from the explicit 

species, as illustrated in Fig. S17. The updated profile 95120a only has 5.6% mass classified as 

unknown.  

S2. Minor corrections to mobile PM speciation 

In a few cases, minor inconsistencies were discovered between the particulate matter profiles used 

in SPECIATE database and the data referenced by the mobile models. Profile 95219, used for 

onroad compressed natural gas vehicles without oxidation catalysts, was found to have incorrect 

fractional contributions for elemental and organic carbon in SPECIATE, but was correct in the 

MOVES3 input data table.  

Although a minor emissions source, the OM emission rate for CNG – no aftertreatment (Source 

12) calculated from MOVES3 output was unreasonably large (201 mg/kg). In contrast, the OM 

emission rate from the non-aftertreatment CNG transit bus from Ayala et al. (2003), used to 

develop SPECIATE Profile 95219, CNG – no aftertreatment was derived, was only 17 mg/kg. We 

updated the OM emission rate in Table S1a using 17 mg/kg. We also reduced the total PM2.5 

emissions for the other species by multiplying each PM2.5 component by a factor of 0.084, 

calculated by dividing the updated rates by the old rate 17/201). We recommend that MOVES3 

consider re-revaluating the PM2.5 emissions rate for pre-aftertreatment CNG vehicles in future 

versions.  

MOVES3 reported the EC/PM fraction for pre-2007 heavy-duty diesel idle (Source 7) as 21%, 

which is significantly lower than the EC/PM fraction in the PM profile 8995 (46%). Some of the 

lower EC/PM fraction is due to the inclusion of idle crankcase emissions into Source 7, which has 
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a lower EC/PM fraction. However, the major reason for the lower EC/PM is that MOVES3 

extended idle rates were unchanged from MOVES2014, although they were intended to be updated 

to be consistent with the Profile 8995 in MOVES3 (U.S. EPA, 2020d). We have maintained the 

current MOVES3 PM2.5 extended idle emissions (including PM speciation) in this analysis and 

recommend that the next version of MOVES be updated to be made consistent with technical 

documentation and SPECIATE Profile 8995.  

Due to limited speciation data from nonroad sources, in the previous emission platforms, nonroad 

diesel emissions without diesel particulate filter aftertreatment (CI Tier 0, CI Tier 1, CI Tier 2, CI 

Tier 3, CI Tier 4 – No DPF, and Locomotive sources) were speciated using Profile 91106 HDDV 

Exhaust – Composite which is an onroad heavy-duty diesel PM2.5 profile heavily dominated by 

elemental carbon (EC) emissions (77%). Two studies that sampled elemental carbon fraction from 

nonroad engines reported significantly lower PM2.5 fraction of EC emissions. Gordon et al. (2013) 

reported EC/PM fraction of ~ 25% from a nonroad diesel engine used in a refrigeration unit. Jathar 

et al. (2017) reported black carbon (BC)/PM fractions of ~50% at idle and ~ 60% at 50% load for 

a nonroad John Deere engine without aftertreatment. Based on the lower elemental carbon fraction 

observed in these nonroad sources, the PM2.5 profiles assigned to these nonroad sources were 

updated to use onroad Profile 8994 – Conventional Heavy-Duty Diesel Exhaust – Idle, pre-2007, 

which has an elemental carbon fraction of 46% which is more comparable with the reviewed non-

road studies.  

Profile 8873 for aircraft turbine engines was missing non-carbon organic matter and other PM2.5. 

This has been updated in both SPECIATE and the speciation methods applied to output from the 

aircraft emissions model. 

S3. NMOG sampling and characterization 

Bulk total hydrocarbon (THC) emissions are typically measured with Flame-Ionization Detection 

(FID) (U.S. EPA, 2022) as shown in Fig. S2. In parallel, emissions are collected in Tedlar bags 

or canisters and analyzed with standard approaches including gas chromatography coupled with 

FID (GC-FID) or mass spectrometry (GC-MS). Methane is characterized with this approach and 

subtracted from THC to yield non-methane hydrocarbons (NMHC). Because FID methods are 

imprecise for characterizing carbonyls, these oxygenated compounds (e.g. formaldehyde, 

acetaldehyde, acrolein, etc.) are typically estimated by collecting emissions on 2,4-

dinitrophenylhydrazine (DNPH) cartridges and analyzing with high-performance liquid 

chromatography (US EPA, 2006). Adding NMHC and carbonyl emissions yields non-methane 

organic gas (NMOG). While THC and methane can be measured continuously online with these 

methods, speciating carbonyls is performed offline over the entire emissions cycle, or major 

portions of it. Thus, total NMOG measurements are likewise typically provided as batch values, 

which limits their utility. More recently, US EPA promulgated a method for FTIR (Fourier-

Transform Infrared Spectroscopy) analysis of organic gases, which could be performed online 

and provide continuous NMOG data. Gierczak et al. (2017) showed that FTIR methods can 

estimate NMOG within 5% of standard bulk methods while providing highly valuable time-

resolved data with speciation of major compounds.  

NMOG speciation is based on the results of the aforementioned GC-FID and GC-MS analyses. 

The mobile-relevant profiles stored in the SPECIATE database include between 50 and 200 

compounds, depending on the source type and fuel. Often, unspeciated mass is also provided, 
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and is reflective of the unresolved complex mixture of compounds which are either too complex 

to be adequately identified, or do not elute effectively from the GC column. This mass might also 

account, to some unknown degree, for IVOC and SVOC mass that was sorbed to the walls of the 

sampling bag or canister or lost to the transfer tubes, leading to a discrepancy with the bulk FID 

measurement. When applying speciation profiles, it is important to know what quantity the 

reported compound-level contributions were normalized to (e.g. NMOG, total speciated NMOG, 

THC, etc.). Profiles in the SPECIATE database are assumed to be normalized to total organic gas 

(TOG), and provide a TOG-to-regulatory-VOC factor to translate NEI VOC (National Emission 

Inventory Volatile Organic Carbon) emissions to a total that includes exempted species like 

methane and ethane. This study utilizes VOC profiles provided by Lu et al. (2018) which 

normalize compound contributions to the total measured emissions of compounds with vapor 

pressures fitting the volatility basis set definition of VOC (i.e. saturation concentration, C*, 

greater than 3.2 x 106 μg m-3). When considering the disparate sources across the mobile sector, 

it is unclear to what extent IVOCs may contribute to NMOG or TOG, although fuel properties 

and operating modes have critical impacts. Gasoline-fueled sources appear to have minor 

contributions from IVOCs (5-19%) depending on the phase of the engine test (Zhao et al., 2016), 

whereas diesel vehicles emit more than half of NMOG carbon as IVOCs (Zhao et al., 2015). By 

transitioning to a convention where vapor emissions are normalized to total Gaseous Reactive 

Organic Carbon (GROC), which includes both IVOCs and VOCs excluding methane, we provide 

a definitive and reproducible standard that will ensure consistency across source tests and 

experimental laboratories. 

S4. GROC profiles 

This section documents the algorithm and assumptions applied to create new speciation profiles 

for Gaseous Reactive Organic Carbon (GROC). There are several critical assumptions that must 

be documented. First, the GROC/NMOG ratio must be set so that NEI gaseous carbon can be 

translated to the GROC standard. Second, we must set the IVOC/GROC ratio. Third, we must 

determine a speciation profile to begin with, which will be dominated by VOC species. Fourth, 

we must define the IVOC speciation. 

By definition, GROC includes all organic compounds in either phase with C* greater than 320 μg 

m-3. This excludes semivolatile organic compounds (SVOCs) and low volatility organic 

compounds (LVOCs), etc. According to Lu et al. (2018), the FID approach for measuring bulk 

NMOG yields estimates that are generally consistent with those from more comprehensive 

methods involving sorbent tube sampling and GC-MS analysis. One important exception was 

found for newer heavy-duty diesel vehicles, where the sum of carbon using the comprehensive 

approach exceeded the standard approach by roughly an order of magnitude. For simplicity and 

consistency with existing methods, we assume for now that GROC/NMOG equals unity for all 

sources. However, we stress that this parameter should be better constrained in the future, either 

with coincident bulk NMOG and GROC measurements, or with newer FTIR methods. 

The IVOC/GROC ratio varies substantially depending on source type, fuel, and operating mode. 

Selected ratios for each exhaust source and references for each data point are given in Table S2. 

As future speciation profiles are published that contain quantification of explicit and lumped 

IVOCs as fractions of NMOG or GROC, the needs for this parameter will diminish. However, in 

cases where VOC and IVOC speciation are provided separately, IVOC/GROC is a powerful metric 

for stitching together profiles and assessing impacts of profile updates. 
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In all cases, we assume the methane fraction of the original profile is correct. Therefore, we 

renormalize all TOG species by (1.0 – CH4/TOG) to convert to NMOG. For many of the mobile 

sector sources (e.g. nonroad, evaporative, and others), we begin with this NMOG speciation, 

remove the IVOCs and SVOCs, and renormalize the remaining species to total GROC by dividing 

by (1.0 - IVOC/GROC). We add IVOC speciation as discussed in the following paragraph and 

convert the NMOG speciation back to TOG by normalizing to the original methane fraction (1.0 

+ CH4/TOG). Additionally, Lu et al. (2018) provided updated VOC profiles for onroad light duty 

gasoline, heavy duty diesel, and aircraft turbine engines. These profiles do not include methane, 

IVOCs, or SVOCs. For sources for which we use these new VOC profiles, we renormalize to total 

GROC using (1.0 – IVOC/GROC), add IVOC species consistent with the following paragraph, 

and add methane assuming the methane fraction from the original (i.e. renormalize to 1.0 + 

CH4/TOG).  

Finally, IVOC speciation of explicit compounds and lumped groups is provided by several studies 

(Table S3 and Fig. S3) of onroad and nonroad sources. The studies vary in the number of explicit 

compounds reported, so we have selected 9 compounds that were common among all studies. For 

most sources, the balance of the IVOC emissions fall in the alkane-like lumped groups according 

to volatility reported by the study. Lu et al. (2020) parameterized aromatic IVOCs for onroad 

gasoline sources, which are important SOA precursors. Zhao et al. (2015) reported speciation for 

onroad and nonroad diesel branched and cyclic compounds, which we have incorporated. One 

evaporative profile for diesel fuel has been updated as well using data from Gentner et al. (2012) 

The ROC species have been added to the newest release of SPECIATE. They represent lumped 

mixtures of similar hydrocarbons and oxygenates, so they do not have explicit CAS numbers, but 

SPECIATE IDs have been assigned to them, and they may be used for reporting results of future 

speciation studies. 

The new GROC-compatible VOC profiles appear in Table S4. These profiles include methane and 

other exempt VOCs. Care must be taken to ensure that these profiles are applied to the proper 

inventory pollutant. 

S5. Particulate Organic Matter sampling and characterization 

Current mobile emission models rely on particle emissions data that are typically measured by 

sampling on filter media and weighing total captured mass offline (Fig. S2) (Fulper et al., 2010; 

Sonntag et al., 2012). Teflon filters are used for sampling total PM2.5 and are often subjected to 

some level of dilution in a Constant-Volume Sampler to control the temperature and relative 

humidity of the sample. Inorganic ions and elements are characterized from these filters using 

solvent extraction and (e.g.) x-ray fluorescence techniques. Elemental and organic carbon are 

quantified via thermal-optical reflectance of mass collected in parallel on quartz fiber filters. 

Finally, non-carbon organic matter is either assumed from published ratios of organic matter to 

organic carbon (Simon et al., 2011) or is assumed to equal the difference between the total PM2.5 

Teflon filter measurement and the sum of inorganic ions, elements, elemental carbon, and organic 

carbon (Sonntag et al., 2012). Speciation profiles are integrated into the SPECIATE database and 

may be referenced using the codes provided in Table S1a. Equation S1 shows how inventory fine 

PM (EFPM2.5; measured on the Teflon filter) is translated to primary organic aerosol emissions 

(EFOM):  

𝐸𝐹𝑂𝑀 =  𝐸𝐹𝑃𝑀2.5 ∗ 𝑂𝐶𝑤𝑡% ∗ 𝑂𝑀: 𝑂𝐶𝑖 (S1) 
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where OCwt% is the fraction of OC in the SPECIATE profile and OM:OCi is assumed for each 

source based on reference literature. For mobile sources it is in the range of 1.2-1.3. Emission 

models and inventories are constrained by total PM measurements across a variety of source 

attributes and operating conditions because Teflon filter measurements and continuous online PM 

measurement optical techniques are relatively cheap. Characterizing speciation, on the other hand, 

is relatively expensive and thus far fewer datasets exists. Frequently, it is challenging to assess the 

uncertainty introduced when applying a speciation profile to a large fleet of vehicles, for example, 

or to the same type of vehicle in various operating modes. Where data exist, observed differences 

can be captured, such as the difference in EC fractional contributions between start and transient 

modes for heavy duty diesel trucks (46% and 79%, respectively). However, these detailed data are 

relatively sparse, and more are needed.  

Sorptive partitioning artifacts are an additional uncertainty that have been noted for some time 

(Turpin et al., 1994). It is well-established that SVOCs and IVOCs can adsorb to quartz filters 

when absorptive partitioning parameterizations would predict them to be mostly or wholly in the 

gas phase. Research studies recommend using a backup quartz filter behind a Teflon filter to 

estimate the extent of positive bias from this artifact so that it can be subtracted from the quartz 

filter OC analysis. Some datasets used in regulatory emission models have accounted for this bias, 

while others have not, and it is not well-documented. Sonntag et al. (2012) performed this 

correction on a subset of 10 samples but found that correcting for the artifact led to negative PM2.5 

emissions because of the low magnitude of particle emissions and potential contamination from 

silicone tubing.  

Dilution artifacts are potentially much more problematic than sorptive artifacts and have been the 

focus of several research studies across most major mobile source categories (Lu et al., 2018). 

Because organic compounds are in dynamic equilibrium between the particle and gas phases, their 

particle-phase emission factors are a function of their total abundance, their vapor pressure, and 

the dilution rate (i.e. the total organic loading) of the test. The following form of Raoult’s Law 

describes this relationship: 

𝐶𝑖,𝑣𝑎𝑝 =
𝐶𝑖,𝑝𝑡𝑐𝑙

𝐶𝑂𝐴
𝐶𝑖

∗ (S2) 

where Ci,vap and Ci,ptcl are the vapor and particle-phase concentrations of species i, COA is the total 

concentration of organic particle mass, and 𝐶𝑖
∗ is the saturation concentration of species i, which 

is related to the species vapor pressure via the Ideal Gas Law (Donahue et al., 2006). Dozens of 

studies have measured and parameterized mobile source emissions using this Volatility Basis Set 

(VBS) framework (e.g. May et al. (2013a, b); Huang et al.(2018); Jathar et al.(2020)). Typically, 

the approach involves parameterizing the fraction of total organic particle mass across a series of 

lumped species with increasing saturation concentration. With this information, a partitioning 

curve can be constructed to assess the degree to which temperature and dilution may impact filter-

based test measurements (Robinson et al., 2010). Studies repeatedly find modest variability in the 

VBS parameters optimized across mobile sources. However, it remains a challenge to understand 

how to link these new detailed data with existing filter-based particle emission inventory rates. 

Specifically, it is unclear what COA is relevant for each OM emission factor presented in Table 

S1a.  
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S6. CROC parameterization 

We document here the steps taken to translate organic PM emissions output by current mobile 

models to speciated Condensable Reactive Organic Carbon (CROC), defined as compounds with 

C* less than 320 μg m-3. These are SVOCs, LVOCs, ELVOCs, and less volatile compounds. Our 

approach considers the methods and sources of uncertainty described in section S5 and refines 

previous approaches that apply VBS parameterizations across all anthropogenic emissions (e.g. 

Murphy et al. (2009)) or all gasoline and diesel sources (e.g. Koo et al. (2014); Lu et al. (2020)). 

First, we demonstrate an approach for converting OM emission factors to CROC based on test 

results from detailed research studies. Second, we document the volatility profiles used to 

parameterize the resulting CROC emissions. 

May et al. (2013b) sampled emissions from a large fleet of 64 onroad gasoline vehicles and 

quantified simultaneously the organic aerosol concentration (bare quartz and sorptive-artifact-

corrected) and the particle-phase emission factor. Lu et al. (2018) combined this data with sorbent 

tube measurements of total gas plus particle concentration of compounds SVOC and IVOC to yield 

speciation profiles of total emissions across a comprehensive range of volatility. With the Lu et al. 

(2018) profiles we can estimate total CROC emissions from the organic aerosol emission factors 

reported by May et al. (2013b) Figure S4 shows the relationship between organic aerosol emission 

factor and the estimated CROC emission factors for each test measurement. The CROC emission 

factors are corrected for temperature dependence using enthalpies of vaporization published by 

May et al. (2013b) These data are highly correlated in log-log space and are well-described with a 

power-law function. This function may now be used to estimate total CROC emission factors of 

onroad gasoline cold start tests. Qualitatively, we see behavior that we would expect in Fig. S5. 

As the OM filter emission factor decreases, more semivolatile compound mass breaks through the 

filter. Thus, the correction factor to translate OM emissions to CROC goes up. This is a critical 

feature of filter-based emission tests. As combustion technologies are made cleaner, there is a 

perceived accelerating decrease in particle-phase mass because of absorptive partitioning. 

However, vapor-phase emissions can readily partition back to the particle phase if ambient 

concentrations are high, temperature are low, or the compounds are oxidized to form SOA. It is 

crucial to account for this emitted mass. At high OM emission factors, CROC/OM values go below 

1.0, indicating IVOCs are contributing significantly to the filter measurement and should be 

subtracted out, so that only CROC mass is considered. As discussed in section S3, IVOC mass 

will be considered in the GROC speciation. 

We can also derive a relationship for data without artifact corrections (i.e. bare quartz). Figure S6 

shows that CROC emission factors can be approximated from uncorrected OM filter emission 

factors using a piece-wise function segregated at OM emission factor equal to 10 mg kg-1 fuel. 

Below this value, as filter mass decreases, the estimated CROC increases but not as strongly, 

because adsorbed SVOCs and IVOCs are biasing the OM filter measurement high. At higher OM 

emission factors, the artifact-corrected and uncorrected data look similar. The coefficients of 

determination (R2) in Figs. S6 and S7 reinforce the recommendation that if filters are used to 

measure OM (or OC) emission factors, artifact-correction using a quartz behind Teflon approach 

should be prioritized. 

We have developed analogous relationships for other key mobile sector sources and operating 

modes. Lu et al. (2018) reported total volatility profiles for onroad light-duty gasoline hot running 

conditions, 6 nonroad gasoline engines, 5 heavy duty diesel trucks without particulate filters, 3 
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heavy duty diesel trucks with particulate filters, and 1 aircraft turbine engine. For these gasoline 

and diesel sources, we combine the profiles and raw concentration and emission factor data as 

discussed for onroad gasoline cold starts (Table S6; Figs. S8-S16). Onroad heavy duty diesel with 

particulate filters are a special case. For bare quartz filter measurements, we use the same approach 

as for onroad gasoline sources (Fig. S8). For artifact-corrected emission factors, we find that fitting 

CROC emission factors to OM emission factors with a power law underestimates CROC/OM 

values at very high OM emission factors. To mitigate this, we instead parameterize the organic 

aerosol concentration (COA) as a linear function of OM emission factor and then use VBS 

partitioning theory to calculate CROC/OM at the sample temperature (see Table S6).  

Nonroad gasoline data were retrieved from Lu et al. (2018) (Fig. S11) and paired with adsorbent 

tube results for onroad gasoline cold starts from Lu et al. (2018) We derive a similar function as 

that recommended by Lu et al. (2018) (EFCROC = 1.1 * EFOM). However, by using a power law fit, 

we reduce unbounded, large enhancements at high OM emission factors, which are characteristic 

of nonroad gasoline emissions tests (May et al., 2014). Nonroad diesel organic particulate 

emissions were characterized by Jathar et al. (2020) using both filter measurements as well as tube 

samples (Figs. S12 and S13). Huang et al. (2018) measured marine emissions using both filter and 

tubes as well for high sulfur and low sulfur fuels under a variety of cruising and other real-world 

operating modes (Fig. S14). We have averaged the volatility distributions for the low and high 

sulfur fuel cases. The organic aerosol concentrations measured in these tests were very high; thus, 

the relationship of CROC to OM emission factor is essentially linear. More tests need to be 

conducted at lower concentrations to better constrain cleaner marine engines burning residual oil. 

For aircraft turbine engines, there are a limited number of OM emission factor measurements (Fig. 

S15) (Presto et al., 2011). The bare quartz trend is highly nonlinear and will yield unreasonable 

results at low and high OM emission factor magnitudes. The artifact-corrected trend is more robust 

but still uncertain, so we opt for a uniform CROC/OM correction of 1.2 (Table S6).  

In Table S7, we show the source-specific CROC/OM correction factors resulting from combing 

the functions derived in Table S6 with the OM emission factors estimated in Table S1a. It is 

uncertain whether each OM emission factor is artifact-corrected, so we provide both estimates to 

show the potential impact of that uncertainty. Future work should reexamine these corrections as 

OM emission factors are updated to reflect newer sources or persisting super emitting sources. For 

this first application, we make our best judgement about which sources are artifact corrected. We 

rely on both the magnitude of the emission factor and features of the speciation profile, like the 

ratio of EC to OC. We assume that the existing OM emission factors for heavy duty diesel engines 

with particulate filters are most consistent with artifact-corrected measurements due to their low 

magnitude and low OM fractional contribution to the total fine PM emission factor (18.7%). We 

also assume that nonroad diesel sources are artifact-corrected because the CROC/OM function 

derived from Jathar et al. (2020) would reduce total CROC emissions across this group of sources 

by approximately a factor of 2. This adjustment might very well be necessary, but more careful 

consideration of nonroad diesel PM emission factors is needed. 

Volatility distributions for C* ranging from 10-2 μg m-3 to 103 μg m-3 are provided in Table S5a to 

speciate the CROC emission factors to alkane-like lumped species. Figure S16 (top) shows that 

most of the distributions describe relatively similar behavior, although differences are important 

to capture. The obvious outlier is marine residual oil emissions; Huang et al. (2018) found that 

about half of the CROC emissions were in the C* = 10-2 μg m-3 bin. Table S5b and Fig. S16 
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(bottom) depict the volatility distributions of the same sources but expanded to the IVOC range 

(C* < 3.2 x 105 μg m-3). It is interesting to compare the parameters prescribed for onroad diesel in 

May et al. (2013a) to those published for onroad diesel in Lu et al. (2018) Notably, the fraction of 

mass attributed to IVOCs in the former is much smaller than that from the latter. This apparent 

inconsistency is a result of May et al. (2013a) parameters defined to explain mass captured on the 

filter, and thus neglecting most of the IVOC mass. Lu et al. (2018) parameters, meanwhile, 

consider both particle and gas-phase mass for the entire volatility spectrum. Figure S16 

demonstrates that the range of volatility bins considered impacts the shape of the partitioning 

curve. Future studies reporting VBS parameters and partitioning curves need to be clear about the 

context of the underlying data or risk misapplication in inventories and models.  

The new CROC-compatible PM speciation profiles appear in Table S8. These profiles sum to 

100%, but in practice, the reactive organic carbon species (species #3394-3398) are multiplied by 

the CROC/OM ratio from Table S7 when applied in the emission inventory speciation step. Thus, 

depending on the contribution of organic species to the PM profile and the value of the CROC/OM 

ratio, the new profile total may be above or below 100%. This deviation is intended to address 

biases in partitioning and filter artifacts. 

S7. Adjustment to SOA from VCPs 

The VCP emissions provided by the VCPy tool (Seltzer et al., 2021) include speciated and lumped 

VOCs and lumped IVOCs. Pennington et al. (2021) analyzed SOA formation from nonoxygenated 

alkane IVOCs, aromatic IVOCs, oxygenated IVOCs, and siloxanes. CMAQ simulations predicted 

that nonoxygenated (alkane plus aromatic) IVOCs contributed the most to total SOA in southern 

California, with a 29% effective SOA yield, followed by VOC species. Oxygenated IVOCs 

contributed a small portion, with a 6.28% effective SOA yield. Siloxanes contributed minimally 

to total SOA. The CMAQ-ROC simulations did not distinguish between oxygenated and 

nonoxygenated IVOC emissions, so we reduced the predicted VCP SOA to account for the impact 

of representing the oxygenated IVOCs with a 29% effective SOA yield. Equations S4 and S5 

describe the correction we applied. 

𝑋𝐼𝑉𝑂𝐶
𝑆𝑂𝐴 =

𝑦𝑂𝑥𝑦𝑓𝑂𝑥𝑦+𝑦𝑁𝑜𝑛𝑂𝑥𝑦𝑓𝑁𝑜𝑛𝑂𝑥𝑦

𝑦𝑁𝑜𝑛𝑂𝑥𝑦
=

0.0628∗0.52+0.29∗0.48

0.29
= 0.586 (S4) 

𝑋𝑉𝐶𝑃
𝑆𝑂𝐴 =

𝑋𝐼𝑉𝑂𝐶
𝑆𝑂𝐴 ∙𝑃𝐼𝑉𝑂𝐶

𝑆𝑂𝐴 +𝑃𝑉𝑂𝐶
𝑆𝑂𝐴

𝑃𝐼𝑉𝑂𝐶
𝑆𝑂𝐴 +𝑃𝑉𝑂𝐶

𝑆𝑂𝐴 =
0.586∗490+110

490+110
= 66.2% (S5) 

where 𝑋𝐼𝑉𝑂𝐶
𝑆𝑂𝐴  is the correction applied to SOA produced by VCP IVOCs, 𝑋𝑉𝐶𝑃

𝑆𝑂𝐴 is the correction 

applied to total SOA from VCPs, 𝑦𝑂𝑥𝑦 is the oxygenated IVOC effective SOA yield, 𝑦𝑁𝑜𝑛𝑂𝑥𝑦 is 

the nonoxygenated IVOC effective yield, 𝑓𝑂𝑥𝑦 is the fraction of VCP IVOC emissions that are 

oxygenated, 𝑓𝑁𝑜𝑛𝑂𝑥𝑦 is the fraction of nonoxygenated IVOCs from VCPs, CMAQ-predicted 

(domain-wide annual average) 𝑃𝐼𝑉𝑂𝐶
𝑆𝑂𝐴  is the production rate of SOA from IVOCs assuming all VCP 

IVOCs are nonoxygenated, and 𝑃𝑉𝑂𝐶
𝑆𝑂𝐴 is the CMAQ-predicted production rate of SOA from VCP 

VOCs. Using this representative calculation, we subtracted 33.8% of the mass concentration from 

VCP SOA. 
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S8. Evaluation within the South Coast Air Basin 

Because of the importance of mobile source emissions for O3 and PM exceedances, more detailed 

historical measurements for ROC components exist at sites within the South Coast Air Basin 

(SOCAB) in southern California. Zhao et al. (2022) compiled measurement and modeling data for 

2008-2019 for total organic aerosol and estimated the contribution of POA and SOA using an 

OC/EC source apportionment approach. In 2017, that study estimated an average SOA 

concentration of 3.6 μg m-3 and a POA concentration of 1.43 μg m-3 at the Los Angeles Air Quality 

System (AQS) site, yielding an SOA fraction of 72%. The CMAQ mobile ROC simulation predicts 

annual SOA and POA concentrations equal to 2.23 and 2.26 μg m-3, resulting in an SOA fraction 

of 49.6%. This comparison is based on hourly CMAQ data for the entire year 2017, not paired in 

time with the AQS observations. Figure S36 confirms that when organic carbon (OC) predictions 

are paired in time with the AQS data, they reproduce measurements well. 

Ambient IVOC measurements in the South Coast Air Basin do not exist in 2017 to our knowledge. 

CMAQ predicts annual and summertime ambient IVOC concentrations of 11.3 and 10.9 μg m-3 at 

Pasadena. A CMAQ simulation with mobile source emissions set to zero suggests that 0.98 and 

1.21 μg m-3 of IVOCs are attributable to mobile sources annually and during the summer, 

respectively. Zhao et al. (2022) report that mobile source NMOG declines by about 38% from 

2010 to 2017. Volatile chemical product (VCP) NMOG emissions are expected to have been much 

more stable during that time period (4% decrease). Assuming, for the purposes of comparison, that 

mobile and non-mobile IVOC concentrations scale linearly with NMOG emissions backward in 

time, the approximate total IVOC concentrations in summer 2010 would be 11.3 μg m-3. This is 

similar to the IVOC measured (10.5 μg m-3) at Pasadena during May and June 2010 (Zhao et al., 

2014).  

The sum of mobile IVOC emissions throughout the SOCAB domain is 12 tons day-1, while it is 

84 tons day-1 for VCP sources. Extrapolating these values back to 2010 yields a mobile IVOC 

emission total of 19.7 tons day-1 and VCP emission equal to 87.5 tons day-1. The CMAQ-ROC 

mobile IVOC emission rate is 71% of that estimated previously by Lu et al. (2020) using CMAQ 

for the CalNex period (27.6 tons day-1). That study reported that a nonmobile IVOC emission rate 

of 68.5 tons day-1. The total IVOC emissions rate in SOCAB from Lu et al. (2020) (96.1 tons day-

1) led to an average IVOC concentration of ~14 μg m-3 at Pasadena.  

S9. Production 

Organic aerosol production occurs via direct primary particle emissions and secondary aerosol 

formation. The updated mobile ROC emissions and CMAQ photochemical results allow us to 

separately estimate the POA emission (after partitioning) and SOA production normalized to 

nonvolatile OM and NMOG emissions respectively. Table S11a quantifies the corrected emission 

of ambient POA as a function of conventional OM emissions averaged across the model domain. 

This quantity varies seasonally from 0.515 to 0.710 g POA (g OM)-1. SOA production varies more 

strongly, from a low of 0.09 g SOA (g NMOG)-1 in winter to 0.132 g SOA (g NMOG)-1 in summer. 

The total OA production varies from 0.114 to 0.146 throughout the year.  

Likewise, CMAQ model results can quantify the average concentration of POA and SOA expected 

as a function conventional OM and NMOG emissions, respectively. This relationship for POA is 

relatively flat throughout the year, varying from 30.2 to 34.8 μg m-3
 POA (kg hr-1 OM)-1. SOA 
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concentrations vary from 4.8 to 8.2 μg m-3
 POA (kg hr-1 NMOG)-1. These simplified production 

rates and concentration response factors are not intended for rigorous photochemical modeling 

applications but may be used for estimating the impact of specific sources in simplified 

frameworks like the EPA COBRA model (https://www.epa.gov/cobra). 

S10. Support for legacy emission input datasets 

Future air quality modeling studies should rely on mobile emission inputs with the bottom-up 

considerations we have discussed in this work. However, in some cases, practical needs require 

that existing emissions datasets be projected to be compatible with contemporary chemical 

mechanisms. For example, model studies in the near future may need to scale total NMOG for 

mobile sources to populate emissions for alkane and aromatic IVOCs. To support these needs, we 

provide scale factors in Table S12 that prescribe the mapping of the key model species added to 

the Carbon Bond chemical mechanism for several levels of aggregation in including all mobile 

sources, mobile sources excluding marine vessels, onroad sources, nonroad sources, etc. For each 

example, the mean scale factor and standard deviation across the spatial domain are provided to 

illustrate the relative uncertainty in each parameter. 

Although we provide these data, we urge caution when applying them to large domains and across 

multiple years. These factors are applicable to the 2017 calendar year and extrapolation more than 

10 years into the past is not recommended. New scale factors should be calculated for historical 

applications. As shown in Fig. S42, the variability in IVOC/NMOG and CROC/OM is substantial 

when all mobile sources are considered together, and this relaxes considerably when marine 

vessels are excluded. If existing emission inputs are available for gasoline and diesel sources 

separately, less uncertainty is introduced from using suggested scale factors, especially if marine 

sources can be treated separately from the rest of the diesel-fueled fleet. 
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Table S6. Functions for determining CROC/OM given OM emission factors in mg kg-1 fuel, assuming particle 

emissions were characterized on quartz fiber filters. 

Source Filter 

Method 

CROC/OM Formulation References 

Gasoline_Cold_Start Artifact-

Corrected 
4.4378 ∗  𝐸𝐹𝑂𝑀

0.7598 May et al.(2013a) 

Lu et al. (2018) 

 Bare 

Quartz 

0.2667 ∗  𝐸𝐹𝑂𝑀
1.8044:  𝐸𝐹𝑂𝑀 < 10 𝑚𝑔 𝑘𝑔−1 

1.8879 ∗  𝐸𝐹𝑂𝑀
0.9139:  𝐸𝐹𝑂𝑀 ≥ 10 𝑚𝑔 𝑘𝑔−1 

Gasoline_Hot_Running Artifact-

Corrected 
3.316 ∗  𝐸𝐹𝑂𝑀

0.7947 May et al.(2013a) 

Lu et al. (2018) 

 Bare 

Quartz 
0.1886 ∗  𝐸𝐹𝑂𝑀

1.8504:  𝐸𝐹𝑂𝑀 < 10 𝑚𝑔 𝑘𝑔−1 

1.2731 ∗  𝐸𝐹𝑂𝑀
0.9745:  𝐸𝐹𝑂𝑀 ≥ 10 𝑚𝑔 𝑘𝑔−1 

Diesel_NonDPF Artifact-

Corrected 
1.0363 ∗  𝐸𝐹𝑂𝑀

1.0453 May et al.(2013b) 

Lu et al. (2018) 

 Bare 

Quartz 
1.0331 ∗  𝐸𝐹𝑂𝑀

0.9706 

Diesel_DPF Artifact-

Corrected 

*𝑓(𝐶𝑂𝐴, 𝑇, 𝜶𝐷𝑖𝑒𝑠𝑒𝑙𝐷𝑃𝐹
) 

𝐶𝑂𝐴 = 7.37 ∗ 𝐸𝐹𝑂𝑀 

May et al.(2013b) 

Lu et al. (2018) 

 Bare 

Quartz 
8.005 ∗  𝐸𝐹𝑂𝑀

0.3593 

Gasoline_Nonroad Bare 

Quartz 
1.9231 ∗  𝐸𝐹𝑂𝑀

0.9042 Lu et al. (2018) 

Diesel_Nonroad_NonDPF Artifact-

Corrected 
2.456 ∗  𝐸𝐹𝑂𝑀

0.8506 Jathar et al. (2020) 

 Bare 

Quartz 
0.1529 ∗  𝐸𝐹𝑂𝑀

1.1849  

Diesel_Nonroad_DPF Artifact-

Corrected 
1.544 ∗  𝐸𝐹𝑂𝑀

0.9305 Jathar et al. (2020) 

 Bare 

Quartz 

0.4664 ∗  𝐸𝐹𝑂𝑀  

ResidualOil_Marine Bare 

Quartz 

0.749 ∗  𝐸𝐹𝑂𝑀 Huang et al. (2018) 

Gas_Turbine_Aircraft Artifact-

Corrected 

1.2 ∗  𝐸𝐹𝑂𝑀 Presto et al. (2011) 

 

* 𝑓(𝐶𝑂𝐴 , 𝑇, 𝜶𝐷𝑖𝑒𝑠𝑒𝑙𝐷𝑃𝐹
) =  (∑

𝛼𝑖

1+
𝐶𝑖

∗

𝐶𝑂𝐴
⁄

𝑛𝑡𝑜𝑡
𝑖=1 )

−1
∑ 𝛼𝑖

𝑛𝐶𝑅𝑂𝐶
𝑖=1

∑ 𝛼𝑖
𝑛𝑡𝑜𝑡
𝑖=1

  

where 𝜶𝐷𝑖𝑒𝑠𝑒𝑙𝐷𝑃𝐹
 is the vector of volatility parameters for onroad diesel DPF relevant for CROC plus IVOCs (e.g. 

10-2 – 106 μg m-3), ntot is the number of parameters in 𝜶𝐷𝑖𝑒𝑠𝑒𝑙𝐷𝑃𝐹
, nCROC is the number of parameters relevant in 

𝜶𝐷𝑖𝑒𝑠𝑒𝑙𝐷𝑃𝐹
 for CROC, and T is the filter temperature.  
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Table S7. Source-dependent CROC/OM factors calculated for this study based on published partitioning curves for 

bare quartz and sorptive artifact corrected data. Selected CROC/OM parameters are bolded. 

 

Source Source_Name CROC/OM Function 
EF_OM 
(mg/kg) 

Artifact 
Corrected 
CROC/OM 

Bare Quartz 
CROC/OM 

Filter Method 

1 
Pre-Tier 2 E10 Exhaust; 
Gasoline pre2004; Cold 

Start 
Gas_Cold_Start 149.2 1.33 1.23 

Artifact 
Corrected 

2 
Tier 2 E10 Exhaust; Gasoline 

2001-2004; Cold Start 
Gas_Cold_Start 54.1 1.70 1.34 

Artifact 
Corrected 

3 
Tier 2 E10 Exhaust; Gasoline 

2004+; Cold Start 
Gas_Cold_Start 17.9 2.22 1.47 

Artifact 
Corrected 

4 
Pre-Tier 2 E10 Exhaust; 
Gasoline pre2004; Hot 

Stabilized Running 
Gas_Hot_Running 74.4 1.37 1.14 

Artifact 
Corrected 

5 
Tier 2 E10 Exhaust; Gasoline 

2001-2004; Hot Stabilized 
Running 

Gas_Hot_Running 24.6 1.72 1.17 
Artifact 

Corrected 

6 
Tier 2 E10 Exhaust; Gasoline 

2004+; Hot Stabilized 
Running 

Gas_Hot_Running 5.6 2.33 0.82 
Artifact 

Corrected 

7 
Conventional Heavy Duty 
Diesel Exhaust - Idle, pre-

2007; Non-DPF 
Diesel_NonDPF 1398.4 1.44 0.84 

Artifact 
Corrected 

8 
Conventional Heavy Duty 
Diesel Exhaust - pre-2007; 

pre-DPF; start 
Diesel_NonDPF 387.9 1.36 0.87 

Artifact 
Corrected 

9 
Conventional Heavy Duty 
Diesel Exhaust - pre-2007; 

pre-DPF; running 
Diesel_NonDPF 391.1 1.36 0.87 

Artifact 
Corrected 

10 
Heavy Duty Diesel Exhaust, 

2007-2009; DPF 
Diesel_DPF 11.4 2.21 1.68 Bare Quartz 

11 
Heavy Duty Diesel Exhaust, 

2010+; DPF+SCR 
Diesel_DPF 3.0 4.53 3.96 Bare Quartz 

12 CNG - no aftertreatment Gas_Hot_Running 17.0 1.85 1.18 Bare Quartz 

13 CNG – oxidation catalyst Gas_Hot_Running 4.4 2.45 0.67 Bare Quartz 

14 
Tier 2 E85 Exhaust; Cold 

Start 
Gas_Cold_Start 7.2 2.76 1.30 Bare Quartz 

15 
Tier 2 E85 Exhaust; Hot 

Running 
Gas_Hot_Running 3.6 2.56 0.55 Bare Quartz 

16 SI 2-stroke E0 Gas_Nonroad 6093.9 0.83 0.83 Bare Quartz 

17 SI 2-stroke E10 Gas_Nonroad 6093.9 0.83 0.83 Bare Quartz 

18 SI 4-stroke E0 Gas_Nonroad 233.0 1.14 1.14 Bare Quartz 

19 SI 4-stroke E10 Gas_Nonroad 233.0 1.14 1.14 Bare Quartz 

20 CI Tier 0 Diesel_Nonroad_NonDPF 2348.2 0.77 0.64 
Artifact 

Corrected 

21 CI Tier 1 Diesel_Nonroad_NonDPF 1065.9 0.87 0.56 
Artifact 

Corrected 



 21 

Source Source_Name CROC/OM Function 
EF_OM 
(mg/kg) 

Artifact 
Corrected 
CROC/OM 

Bare Quartz 
CROC/OM 

Filter Method 

22 CI Tier 2 Diesel_Nonroad_NonDPF 538.7 0.96 0.49 
Artifact 

Corrected 

23 CI Tier 3 Diesel_Nonroad_NonDPF 643.2 0.94 0.51 
Artifact 

Corrected 

24 CI Tier 4; No DPF Diesel_Nonroad_NonDPF 149.8 1.16 0.39 
Artifact 

Corrected 

25 CI Tier 4 DPF; no SCR Diesel_Nonroad_DPF 3.8 1.41 0.47 Bare Quartz 

26 CI Tier 4 DPF + SCR Diesel_Nonroad_DPF 2.6 1.45 0.47 Bare Quartz 

27 CNG - Oxidation Catalyst Gas_Hot_Running 141.9 1.20 1.12 Bare Quartz 

28 LPG Exhaust Gas_Hot_Running 137.1 1.21 1.12 Bare Quartz 

29 Airports: AGS gas Gas_Hot_Running 154.0 1.18 1.12 Bare Quartz 

30 Airports: AGS diesel Diesel_NonDPF 121.9 1.29 0.90 
Artifact 

Corrected 

31 
Airports: Aircraft Aviation 

Gasoline 
Gas_Turbine 15.0 1.20 1.20 

Artifact 
Corrected 

32 Airports: Aircraft Jetfuel Gas_Turbine 15.0 1.20 1.20 
Artifact 

Corrected 

33 Class I Line Haul Diesel_NonDPF 730.6 1.40 0.85 
Artifact 

Corrected 

34 Class II/III Line Haul Diesel_NonDPF 793.2 1.40 0.85 
Artifact 

Corrected 

35 Commuter Diesel_NonDPF 389.6 1.36 0.87 
Artifact 

Corrected 

36 Passenger Diesel_NonDPF 389.6 1.36 0.87 
Artifact 

Corrected 

37 Yard Locomotives Diesel_NonDPF 797.2 1.40 0.85 
Artifact 

Corrected 

38 CMV diesel Diesel_NonDPF 375.1 1.36 0.87 
Artifact 

Corrected 

39 CMV residual Diesel_NonDPF 2695.0 1.48 0.82 Bare Quartz 
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Table S9. Annual total gas and particle mobile emissions (in kt yr-1) for 2017 inventory in the EQUATES and updated 

(ROC) cases. 

 

  NMOG EC OA 

Sub-Sector 
EQUATES CMAQ_ROC EQUATES CMAQ_ROC 

EQUATES 
(OM)1 

CMAQ_ROC 
(CROC)2 

Onroad Gas 1,144 1,144 6.71 5.34 15.96 23.02 

Onroad Diesel 139 139 37.85 37.49 18.55 25.65 

Nonroad Gas 1,001 1,001 4.91 4.57 21.61 20.16 

Nonroad Diesel 74 74 45.07 27.20 12.86 21.78 

Air 54 54 2.93 0.62 2.02 4.34 

Marine 49 49 11.26 7.52 16.74 18.39 

Rail 26 26 11.97 7.20 3.41 9.02 
       

Total 2,485 2,485 120.70 89.94 91.13 122.37 

%Change   0%   -25%   +34% 

 
1The conventional POA emissions are the sum of particulate organic carbon and non-carbon organic matter. 
2CROC emissions are total particulate and vapor emissions corresponding to the sum of ELVOC, LVOC, and SVOC 

compounds as defined in the main text. 
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Figure S1. Conceptual diagram of mobile emission models with key inputs and outputs. 

 

 

 

 

 

 

 
Figure S2. Example schematic of typical configuration for mobile emissions sampling (Fulper et al., 2010). 
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Figure S3. Fractional contribution to total GROC of IVOC chemical classes for the profile types appearing in 

Tables S2 and S3. The data in this plot is reproduced in greater detail in Table S3 multiplied by the IVOC/GROC 

fractions in Table S2. Chemical classes include linear alkanes (ALK), non-aromatic cyclic alkanes (CYC), branched 

alkanes (BRN), and aromatics (ARO). 
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Figure S4. Relationship between artifact-corrected organic particle emission factor (OC*1.2) and CROC emission 

factor in mg kg-1 fuel for onroad light-duty gasoline vehicles during cold-start. 

 

 

 
Figure S5. Ratio of CROC emission factor to OM emission factor as a function of OM emission factor (artifact-

corrected) for onroad light-duty gasoline vehicles during cold starts. 
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Figure S6. Relationship between bare quartz organic particle emission factor (OC*1.2) and CROC emission factor 

in mg kg-1 fuel for onroad light-duty gasoline vehicles during cold-start. 

 

 

 
Figure S7. Ratio of CROC emission factor to filter-based particle OM emission factor (OC*1.2) as a function of the 

latter for onroad light-duty gasoline vehicles during cold starts. 
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Figure S8. CROC Emission Factor as a function of OM filter emission factors for bare quartz and artifact-corrected 

data from onroad light duty gasoline hot running conditions. 

 

 

 
Figure S9. CROC emissions factors as a function of filter-based OM emission factors for onroad heavy duty diesel 

engines without particulate filters (non-DPF). 
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Figure S10. CROC emissions factors as a function of filter-based OM emission factors for onroad heavy duty diesel 

engines equipped with diesel particulate filters (DPFs). 

 

 

 
Figure S11. CROC emission factor as a function of filter-based OM emission factor for nonroad gasoline sources. 
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Figure S12. CROC emission factor as a function of filter-based OM emission factor for nonroad diesel non-DPF 

sources. 

 

 
Figure S13. CROC emission factor as a function of filter-based OM emission factor for nonroad diesel DPF 

sources. 
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Figure S14. CROC emission factor as a function of filter-based OM emission factor for marine residual oil sources. 

 

 

 

 

 
Figure S15. CROC emission factor as a function of filter-based OM emission factor for aircraft gas turbine sources. 
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Figure S16. Partitioning behavior for mobile sector combustion sources at 298 K. (Top) Compounds span the range 

of CROC volatility, with C* < 320 μg m-3. (Bottom) Compounds include some IVOCs with volatility up to C* < 3.2 

x 105 μg m-3. Volatility parameters are provided in Table S6. 
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Figure S17. Volatility resolved liquid diesel – California Composite VOC speciation profile (profile number 

95120a) created from Gentner et al.(Gentner et al., 2012) This profile contains the mass of the explicit species 

(speciated) and lumped species which are classified by functional group and saturation concentration, C*.  
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Figure S18. Emission factors for organic and non-organic components of PM and gases for Tier 2 onroad gasoline 

cold starts for the Conventional and ROC approaches. The gray shaded regions correspond to PM components not 

included in ROC emissions. ROC updates to this source are characterized by increases in the SVOC and IVOC 

range with little change to the total in the VOC range. 

 

 

 

 

 
 

Figure S19. Emission factors for organic and non-organic components of PM and gases for onroad heavy duty 

diesel with particulate filters for the Conventional and ROC approaches. The gray shaded regions correspond to PM 

components not included in ROC emissions. These data are also plotted in Fig. 1. ROC updates to this source are 

characterized by increases in the SVOC and IVOC range and decreases to the log10C* = 10-2 species and decreases 

in the total across the VOC range. 
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Figure S20. Emission factors for organic and non-organic components of PM and gases for nonroad 2-stroke 

gasoline engines for the Conventional and ROC approaches. The gray shaded regions correspond to PM components 

not included in ROC emissions. ROC updates to this source include increases in SVOC and IVOC, decrease to total 

CROC, and little change in the VOC range. 

 

 

 
 

Figure S21. Emission factors for organic and non-organic components of PM and gases for marine residual oil-

fueled sources for the Conventional and ROC approaches. The gray shaded regions correspond to PM components 

not included in ROC emissions. ROC updates to this source include increases to SVOCs and IVOCs, large 

remaining LVOC (log10C* = 10-2), and substantially reduced total VOC. 
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Figure S22. Correlation of annual OM filter plus NMOG emissions from conventional approach compared to 

annual ROC emissions using new GROC and CROC translation methods. Each point represents one source from 

Table S1a. 

 

 

 

 
Figure S23. Mobile-source volatility-resolved ROC emissions, O3 potential and OA potential, segregated by source 

sector (top row) and chemical functionality (bottom row). 
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Figure S24. Onroad vehicle ROC emissions, O3 potential, and OA potential distributed by volatility and emission 

control tier. The top row is presents light duty gasoline vehicle emissions for pre-Tier 2, the transition to Tier 2 from 

2001-2004, and Tier 2 and newer from 2004 onward. The bottom row presents heavy duty diesel emissions for 

vehicles without diesel particulate filters (non-DPF), vehicles equipped with a DPF, and vehicles equipped with a 

DPF and a Selective Catalytic Reduction (SCR) system. 

 

 

 

 

. 

Figure S25. Changes to annual total MOVES emissions using the ROC approach (this study) for integrated species, 

a subset of the U. S. EPA hazardous air pollutant (HAP) list. 
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Figure S26. Spatial distribution of annual total IVOC and CROC emissions (in tons yr-1). The average emission rate 

shown in the subtitles of each panel are population-weighted. 
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Figure S27. Map of the NOAA U.S. climate regions. Image source: https://www.ncdc.noaa.gov/monitoring-

references/maps/us-climate-regions.php 

 
Figure S28. Statistical evaluation of CMAQ O3 predictions with data from the Air Quality System network during 

2017. Data are selected for the seasons with significant ozone formation. Results are shown for the CMAQ_ROC 

simulation. Each row corresponds to a U.S. geographical region identified by the abbreviation to the left and defined 

in Fig. S27.   
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a.  

b.  
 

Figure S29. Statistical evaluation of CMAQ organic carbon (OC) predictions with data from the Air Quality System 

network during 2017 for the EQUATES (a) and CMAQ_ROC (b) simulations. Each row corresponds to a U.S. 

geographical region identified by the abbreviation to the left and defined in Fig. S27.  
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Figure S30. Spatial distribution of total organic aerosol concentrations (top row) attributable to mobile sources and 

fraction of mobile source OA to the total concentration from all sources (bottom row) in the winter (left) and 

summer (right) of 2017. The ‘Avg’ metric is the population-weighted average. 
 

 

 
Figure S31. Spatial distribution of total primary organic aerosol (POA) concentrations (top row) attributable to 

mobile sources and fraction of mobile source POA to the total concentration from all sources (bottom row) in the 

winter (left) and summer (right) of 2017. The ‘Avg’ metric is the population-weighted average. 
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Figure S32. Spatial distribution of total secondary organic aerosol (SOA) concentrations (top row) attributable to 

mobile sources and fraction of mobile source SOA to the total concentration from all sources (bottom row) in the 

winter (left) and summer (right) of 2017. The ‘Avg’ metric is the population-weighted average. 
 

 
Figure S33. Histogram of annual-average OA fractional contributions (stacked trends, left axis) from mobile POA, 

mobile SOA, VCP SOA, and other SOA (including biogenic and anthropogenic sources) as a function of the human 

population of the corresponding CMAQ grid cell. Also shown is the total OA concentration in the gray line (right 

axis). 
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Figure S34. (left) Annual average organic carbon (OC) concentration measured at Air Quality System sites and 

predicted by CMAQ with updated mobile ROC emissions for select cities in the west and central U.S. during 2017. 

(center) Annual diurnal average concentrations of total POA and SOA, mobile source POA and SOA, and VCP 

SOA at the corresponding city predicted by CMAQ. (right) Model-predicted fractional contributions from mobile 

and VCP sources to total OA for the morning (6 – 9 am local time), at noon, and averaged for the day. 
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Figure S35. As in Fig. S34 for three select cities in the Eastern U.S. 
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Figure S36. Spatial distribution of IVOC concentrations (top row) attributable to mobile sources and fraction of 

mobile source IVOC to the total concentration from all sources (bottom row) in the winter (left) and summer (right) 

of 2017. The ‘Avg’ metric is the population-weighted average. 
 

 
Figure S37. Spatial distribution of IVOC concentrations (top row) attributable to VCP sources and fraction of VCP 

source IVOC to the total concentration from all sources (bottom row) in the winter (left) and summer (right) of 

2017. The ‘Avg’ metric is the population-weighted average. 
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Figure S38. Single-ring aromatic and IVOC contributions to CMAQ-predicted IVOCs (Atmosphere) and emissions 

inputs used for Pasadena, CA during 2017. IVOC components 1, 2, and 3 are comprised of IVOCs with the 

following C* values (in μg m-3): Component 1 includes 106; Component 2 includes 105 and 104, Component 3 

includes 103. The ‘Atmosphere’ predictions are back-projected to 2010 for comparison to CalNex observations.  
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Figure S39. Average diurnally averaged IVOC concentration predictions for Pasadena, California in June 2017 

(left) and back-projected to the CalNex measurement campaign in June 2010. The left panel includes IVOCs 

attributable to Mobile (green) and VCP (orange) sources. The right panel includes hydrocarbon (red) and 

oxygenated (blue) contributions to IVOCs. The dotted, dashed, and dotted-dashed lines in panel b correspond to the 

CalNex campaign average concentrations of total IVOC, hydrocarbon IVOC, and oxygenated IVOC, respectively, 

with the model averages shown in solid lines.(Zhao et al., 2014) The dashed line in panel d corresponds to total 

oxygenated OA concentrations observed during CalNex. 
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Figure S40. Spatial distribution and histograms of IVOC/NMOG (left) and CROC/POA (right) for select levels of 

aggregations of mobile sources for the 2017 simulation year. The first row corresponds to all mobile sources, the 

second row to mobile sources excluding marine vessels, the third row to gasoline sources, and the fourth row to 

diesel sources including marine vessels. 

 

 

 

 


