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Abstract: Mobile sources are responsible for a substantial controllable portion of the reactive organic carbon (ROC) 24 
emitted to the atmosphere, especially in urban environments of the United States (U.S.). We update existing methods 25 
for calculating mobile source organic particle and vapor emissions in the U.S. with over a decade of laboratory data 26 
that parameterize the volatility and organic aerosol (OA) potential of emissions from onroad vehicles, nonroad 27 
engines, aircraft, marine vessels, and locomotives. We find that existing emission factor information from teflon filters 28 
combined with quartz filters collapses into simple relationships and can be used to reconstruct the complete volatility 29 
distribution of ROC emissions. This new approach consists of source-specific filter artifact corrections and state-of-30 
the-science speciation including explicit intermediate volatility organic compounds (IVOCs), yielding the first 31 
bottom-up volatility-resolved inventory of U.S. mobile source emissions. Using the Community Multiscale Air 32 
Quality model, we estimate mobile sources account for 20-25% of the IVOC concentrations and 4.4-21.4% of ambient 33 
OA. The updated emissions and air quality model reduce biases in predicting fine-particle organic carbon in winter, 34 
spring, and autumn throughout the U.S. (4.3-11.3% reduction in normalized bias). We identify key uncertain 35 
parameters that align with current state-of-the-art research measurement challenges. 36 

1. Introduction 37 

Ambient particulate matter (PM) and ozone (O3) have detrimental impacts on human health and the environment (U.S. 38 

Epa, 2019, 2020c; Pye et al., 2021) with disparate impacts across societal groups (Tessum et al., 2021). Non-methane 39 

organic gases (NMOG) are precursors to PM and O3, and reducing NMOG could reduce criteria pollutants and their 40 

associated mortality throughout the United States (U.S.) (Pye et al., 2022a). Mobile source emissions continue to be 41 

a major contributor to modern anthropogenic NMOG emissions. In contrast to other NMOG sources such as 42 

vegetation, mobile emissions have been reduced through successful regulatory policy and the introduction of cleaner 43 

engine and control technologies (Lurmann et al., 2015; Gentner et al., 2017; Winkler et al., 2018; Bessagnet et al., 44 
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2022). Yet, effective management of urban and regional air quality still depends on accurate and detailed 45 

characterization of the carbon-containing compounds emitted by mobile sources. 46 

Fossil-fuel combustion emissions comprise thousands of organic compounds with widely varying volatility, 47 

depending on source type (Drozd et al., 2018; Lu et al., 2018). The lowest volatility compounds are emitted principally 48 

in the particle phase and are typically classified as primary organic aerosol (POA). Conventionally this portion of 49 

emissions is sampled using filters which are weighed or processed off-line with thermal-optical techniques, solvent 50 

extraction, and other methodologies (Chow et al., 1993; Birch and Cary, 1996; U.S. Epa, 2022c). The highest volatility 51 

NMOGs are emitted in the gas-phase and enhance O3 formation when oxidized in the atmosphere, a process that also 52 

enhances PM mass via secondary organic aerosol (SOA) formation. U. S. EPA emission tools like the MOtor Vehicle 53 

Emission Simulator (MOVES) (U.S. Epa, 2020b) and the SPECIATE database (U.S. Epa, 2020a) provide emission 54 

estimates and speciation for POA (assumed to be nonvolatile) and NMOGs. The ‘Conventional’ path in Fig. 1 depicts 55 

this process.  56 

However, laboratory and field measurement campaigns have demonstrated that much of the mobile source POA is 57 

subject to gas-particle partitioning and filter sampling artifacts. These artifacts may bias the interpretation of filter-58 

based measurements by yielding higher POA emission factors due to the presence of these adsorbed vapors (Turpin 59 

et al., 1994; Robinson et al., 2010; Bessagnet et al., 2022). These compounds principally include (Table 1) semivolatile 60 

organic compounds (SVOCs) and intermediate volatility organic compounds (IVOCs)(May et al., 2013b, a). 61 

Accurately representing SVOCs and IVOCs is important because they are SOA precursors and are underestimated in 62 

contemporary models and emission databases (Gentner et al., 2012; Tkacik et al., 2012; Zhao et al., 2014; Zhao et al., 63 

2015, 2016b). 64 

Some air quality models (AQMs) have incorporated SVOCs and IVOCs by scaling these emissions to sector-wide 65 

POA or NMOG inputs during a data pre-processing step or the AQM runtime (Murphy and Pandis, 2009; Shrivastava 66 

et al., 2011; Ahmadov et al., 2012; Bergström et al., 2012; Koo et al., 2014; Woody et al., 2015; Zhao et al., 2016a; 67 

Woody et al., 2016; Jathar et al., 2017b; Murphy et al., 2017). However, these approaches rely on broad application 68 

of assumptions that may not be appropriate for specific source types since sampling artifacts will bias low-emitting 69 

and high-emitting sources differently (Robinson et al., 2010). As emissions from individual combustion sources are 70 

continually reduced in response to tightening regulations, accounting for these potential biases becomes important. 71 

Manavi and Pandis (2022) and Sarica et al. (2023) implemented emission factors and speciation of SVOCs and IVOCs 72 

specific for mobile sources in Europe, while Morino et al. (2022) explored revisions to stationary source organic 73 

emissions in Japan. Chang et al. (2022) implemented a more detailed bottom-up inventory of organic emissions across 74 

all sectors in China with emission factors specified at the volatility bin level rather than for bulk PM and NMOG. 75 

Additional bottom-up approaches are needed that revise emission factors and speciation profiles for all relevant 76 

individual source types and regions. 77 

This paper documents the transition of U. S. EPA mobile emission tools from the conventional paradigm that considers 78 

operationally defined particulate organic matter (OM) and NMOG emission factors and speciation to one that 79 

accommodates the full complexity of atmospheric carbon-containing trace pollutants. To accomplish this, we consider 80 
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total Reactive Organic Carbon (ROC), defined by Saffediene et al. (2017) and Heald and Kroll (2020) as all reactive 81 

organic compound mass across gas and particle phases excluding methane. We catalogue updates to 51 diverse mobile 82 

source categories across multiple categories and engine, fuel, and control types. Further, we demonstrate procedures 83 

for integrating existing inventory emission factors with state-of-the-art chemical composition measurements, pointing 84 

out where critical uncertainties could be further resolved in the future. Finally, we document the impact the updates 85 

have on source-specific and sector-wide emissions as well as regional-scale pollutant formation and transport 86 

predicted by an updated version (2020) of the Community Multiscale Air Quality (CMAQ) regional-scale AQM.  87 

2. Materials and Methods 88 

2.1 Mobile Emission Modeling 89 

To develop the new framework and estimate potential impacts from speciation updates, we used existing estimates for 90 

2016 annual mobile emissions for the contiguous U.S. We considered five categories including onroad, nonroad, air, 91 

rail, and marine. The MOVES3 model predicted emissions for onroad and nonroad sources using county-level fleet 92 

properties and activity data. The dominant U.S. onroad vehicle sources were light-duty gasoline cars and trucks and 93 

heavy-duty diesel trucks. Nonroad emission sources included construction, agricultural, and lawn equipment as well 94 

as nonroad recreational vehicles. The Aviation Environmental Design Tool (AEDT), maintained by the Federal 95 

Aviation Administration, predicted landing, taxi, and take-off emissions for aircraft and emissions from ground 96 

support equipment (FAA, 2022). Rail emissions were calculated using confidential line-haul activity data that were 97 

summarized at the county-level, while rail-yard emissions were based on supply fuel use and yard switcher counts 98 

provided by companies (U.S. Epa, 2022b). Marine emissions included both port and underway conditions for large, 99 

generally international ships, vessels, and smaller boats operating near shore (U.S. Epa, 2022b). The MOVES3 model 100 

predicted emissions from recreational boats as part of the nonroad recreational equipment category.  101 

We also collected national total annual fuel usage data for each source from the models to calculate an effective fuel-102 

based OM emission factor (see section S1). These effective emission factors ranged from 1-20 mg (kg-fuel)-1 for the 103 

newest gasoline, diesel, and compressed natural gas (CNG) vehicles to over 6000 mg (kg-fuel)-1 for nonroad gasoline 104 

two-stroke engines. In the process of reviewing each mobile source OM emission rate, we discovered and corrected 105 

several minor errors and limitations to compressed natural gas sources and uncontrolled nonroad diesel exhaust (see 106 

section S2).  107 

2.2 Reactive Organic Carbon (ROC) 108 

To accurately simulate the behavior of mobile emissions, we considered total ROC, which includes organic carbon 109 

(OC) and non-carbon mass from the most volatile compounds like ethane and formaldehyde to chemically complex, 110 

high molecular weight, low-volatility compounds (e.g. oligomers) (Heald and Kroll, 2020). Conventional metrics for 111 

reporting OM and NMOG are operationally defined based on measurement methods and conditions; therefore, they 112 

are difficult to compare across tests and among other ROC sources. Furthermore, uncertainties are introduced when 113 

they are speciated with profiles measured at different conditions. To improve standardization, we introduced two new 114 

metrics: CROC (condensable reactive organic carbon) and GROC (gaseous reactive organic carbon). CROC was 115 

defined as compounds with saturation concentration (C*) less than 320 μg m-3 (Table 1), with this boundary 116 
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corresponding to n-alkanes with 20±1 carbon atoms. CROC included SVOCs (0.32 < C* ≤ 320 μg m-3) and low 117 

volatility organic compounds (LVOCs; C* ≤ 0.32 μg m-3). Whereas, GROC was defined as the sum of compounds 118 

with C* greater than 320 μg m-3 corresponding to IVOCs (320 < C* ≤ 3.2 x 106 μg m-3) and volatile organic compounds 119 

(VOCs; C* > 3.2 x 106 μg m-3) (Donahue et al., 2009; Murphy et al., 2014). CROC and GROC aligned with well-120 

known categories in the volatility basis set (VBS) space, so they could be applied straight-forwardly to speciation 121 

profiles in recent literature containing both explicit compounds and lumped groups. 122 

We applied a two-step methodology to process gas- and particle-phase emissions (‘ROC’ path in Fig. 1). First, we 123 

estimated total GROC and CROC emissions from existing NMOG and OM emission factors, respectively, while 124 

considering measurement uncertainties like sampling setup losses (e.g., tubing) and filter artifacts. We then speciated 125 

GROC and CROC using state-of-the-science profiles. For GROC, these included explicit IVOC compounds, where 126 

available, and lumped IVOC groups distinguished by their saturation concentration and functionality. The 127 

methodology for processing CROC emissions similarly used volatility profiles from recent literature. 128 

2.2.1 GROC Emissions and Speciation 129 

Total NMOG emissions are measured from mobile emissions by combining total hydrocarbons (THC) with carbonyl 130 

compounds and subtracting methane (see section S3) (Kishan et al., 2006; May et al., 2014). Lu et al. (2018) compiled 131 

measurements for onroad vehicles, nonroad equipment, and an aircraft turbine engine. That study concluded that 132 

methods using heated sampling and a heated flame-ionization detector (FID) captured both IVOCs and VOCs, but 133 

that speciation methods like canister or tedlar bag sampling analyzed with gas-chromatography-FID missed essentially 134 

all IVOCs due to wall losses to the sampling materials. Assuming that NMOG emission rates are based on heated FID 135 

sampling, we set GROC emission rates equal to total NMOG emission rates across all sources, and we speciated 136 

GROC emissions using profiles that include VOCs and IVOCs.  137 

Many studies have reported speciated organic gases normalized to total IVOC or VOC (Lu et al., 2018; Jathar et al., 138 

2017a; Zhao et al., 2015, 2016b; Huang et al., 2018; Drozd et al., 2018). A key parameter used to integrate these data 139 

is the IVOC/NMOG ratio (see section S4), which ranges from ~4.6% for gasoline vehicle cold start exhaust to 67% 140 

for marine residual oil. Gasoline fuel evaporation profiles of GROC were assumed to be the same as NMOG since 141 

IVOCs are not expected to contribute substantially to those emissions (Gentner et al., 2012). The profile for whole 142 

diesel fuel evaporation was updated to be consistent with fuel characterization in Gentner et al. (2012) (see Section 143 

S1c). SPECIATEv5.1 contains thousands of explicit species and many mixtures of compounds (e.g., oils, unspeciated 144 

terpenes, etc.) reported by previous studies. Recent studies have constrained the unknown portion of IVOCs and VOCs 145 

with lumped groups resolved by volatility and often by structure/functionality features (e.g., branched, cyclic, 146 

oxygenated, etc.). We leveraged the representative compound structures in SPECIATE developed by Pye et al. (2022b) 147 

to classify these emissions by functional groups, and their subsequent atmospheric chemistry. Table S2 summarizes 148 

the new IVOC profiles. Species-based ozone and OA potential were calculated for each emission source using 149 

relationships from Seltzer et al., (2021) which were expanded by Pye et al. (2022b) 150 
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2.2.2 CROC Emissions and Speciation 151 

We estimated effective OM emission factors using the MOVES-predicted national total OM emissions normalized to 152 

the total fuel usage for each source (see section S1). The MOVES model relied on conventional measurements of total 153 

PM emissions sampled and weighed on Teflon filters. The profiles available in the SPECIATE database, meanwhile, 154 

provide the weight percent of OC measured by thermal optical techniques from samples collected on quartz filters 155 

(U.S. Epa, 2022c) normalized by coincident bulk PM measurements from the Teflon filter (see section S5). 156 

SPECIATE profiles also include a source-dependent OM/OC factor to adjust for non-carbon organic mass (i.e. 157 

hydrogen, oxygen), which represents OM once added to OC (Table S1a) (Reff et al., 2009; Simon et al., 2011). 158 

Previous studies have demonstrated that OM emission factors vary with changing temperature and OM loading 159 

(Lipsky and Robinson, 2006; Robinson et al., 2010; May et al., 2013a, b; Jathar et al., 2020). AQMs that have taken 160 

this behavior into account typically distributed OM emissions among volatility bins using reference distributions. May 161 

et al. (2013a, b) constrained parameters for calculating volatility-resolved emissions assuming OC is measured on a 162 

quartz filter. Although this approach performs well for average cases, it is less accurate when applied to sources that 163 

are low or high emitting, for which absorptive partitioning biases are more substantial (Fig. 2). For an exceedingly 164 

low-emitting source (low OM loading), SVOC emissions that would normally partition to the particle phase under 165 

ambient conditions could go undetected as they pass through the filter.  166 

Additionally, reported OM emissions are sometimes artifact-corrected using a secondary quartz filter behind the 167 

Teflon filter sample, which allows for adsorbed SVOCs and IVOCs to be neglected. Because these corrections are not 168 

uniformly applied across all studies, May et al. (2013a, b) reported reference volatility profiles assuming OM emission 169 

factors had not been adsorptive-artifact corrected. Yet this is not always applicable for the emission rates informing 170 

MOVES and must be resolved at the source level based on the underlying emission data. To address both adsorptive 171 

and absorptive partitioning biases, we applied CROC/OM parameterizations developed from detailed measurement 172 

data and informed by filter-based OM emission factors (see section S6) (May et al., 2013a, b; Huang et al., 2018; 173 

Jathar et al., 2020). The method accounted for filter artifact corrections by adding missing SVOC emissions for low 174 

OM-loading tests and neglecting IVOCs and higher-volatility SVOCs that would be captured on the front filter during 175 

high OM-loading tests. The CROC/OM parameterization for onroad gasoline was based on data from 64 vehicles and 176 

so was more robust than the parameterization for onroad heavy-duty diesel with particulate filters (DPF), which was 177 

based on 3 vehicles (Section S7), or the aircraft engine parameterization, which was based on one sample. These 178 

datasets showed that it was possible to represent the relationship between OM emission factor and CROC emission 179 

factor without explicitly considering variations in temperature and OM concentration. This simplified approach was 180 

limited to mobile sources because temperature was tightly controlled by test method requirements (i.e., 47 °C). We 181 

used temperature to calculate c* of partitioning components and then calculate total CROC (e.g., Fig. S4). Because the 182 

resulting CROC emission factor was highly correlated with OM emission factor, the simplified functions associating 183 

them accounted for variations due to the underlying volatility distribution and increases in concentration with emission 184 

factor. More work is needed to better constrain the CROC/OM parameters. 185 

The impact of this new approach for translating inventory OM emissions is shown in Fig. 2. We used the onroad 186 

gasoline light-duty cold start volatility profile in Table S5 to estimate the effective ambient organic aerosol emission 187 
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factor at 298 K and COA equal to 10 μg m-3 given a filter-based OM emission factor in mg kg-1 fuel. Also shown are 188 

trends using parameters reported by Robinson et al (2007) and Lu et al. (2020), which have been used in contemporary 189 

air quality models. The filter-based OM emission factor (𝐸𝐹𝑂𝑀) was multiplied by the volatility distribution, and VBS 190 

partitioning theory (Eq. 1) was used to calculate the effective ambient OA emission factor (𝐸𝐹𝑂𝑀,𝐴𝑚𝑏): 191 

𝐸𝐹𝑂𝑀,𝐴𝑚𝑏 = 𝐸𝐹𝑂𝑀 ∑
𝛼𝑖

1+
𝐶𝑖
∗

10
⁄

𝑛𝑡𝑜𝑡
𝑖=1  (1) 192 

Where ntot was the number of volatility parameters in the vector α and ambient conditions were defined to be 298 K 193 

and 10 µg m-3. The ‘Lu et al.’ and ‘Robinson et al.’ trends are directly proportional to the nonvolatile emission factor 194 

because they do not consider nonlinear dependence on the filter-based OM emission factor. Meanwhile, the ROC 195 

approach enhances emissions at low emission factors (to correct for SVOC breakthrough) and reduces them at high 196 

emission factors (to remove IVOCs partitioning to the filter). Also shown in Fig. 2 are representative filter-based OM 197 

emission factors for PreTier 2, Tier 2 (2001-2004), and Tier 2 (2004+) vehicles, which together exhibit emissions 198 

reductions with newer standards. For the older vehicles, the ‘Lu et al.’ and ‘Robinson et al.’ approaches give similar 199 

estimates for effective ambient OM as the new approach, but as emission factors decrease, those methods may 200 

overpredict evaporation and underpredict the particle emission factors. At the lowest OM emission factors, even using 201 

the nonvolatile approach may underpredict effective ambient OA emission factors because significant SVOCs could 202 

have broken through the filter and should be considered for ambient partitioning. 203 

We did not adjust GROC emissions in response to CROC/OM conversion, but the sum of total ROC emissions for 204 

each source did not change substantially from the sum of NMOG and OM (Fig. S22). We updated existing SPECIATE 205 

profiles with volatility distributions of LVOCs and SVOCs normalized to CROC (Table S5a). Because data on the 206 

functionality of these low volatility emissions is lacking, we assumed they share similar chemical properties (i.e. 207 

reactivity) to linear alkanes as a proxy for more complex mixtures of aliphatics and other compounds. 208 

2.3 Air Quality Model Configuration 209 

We used an updated version of the Community Multiscale Air Quality (CMAQ) model v5.3.2 to quantify the impact 210 

of the new mobile emissions on regional-scale air quality (U.S. Epa, 2021; Appel et al., 2021). Hourly ambient air 211 

concentrations of OA and O3 were simulated for the entire year 2017 at 12 km horizontal resolution with inputs from 212 

EPA’s air QUAlity TimE Series (EQUATES) project (U.S. Epa, 2022a; Foley et al., 2023). Meteorology was 213 

simulated with WRFv4.1.1. The Biogenic Emission Inventory System (BEIS) predicted biogenic gas emissions online 214 

in CMAQv5.3.2. Gas- and aerosol-phase chemistry were modeled with the Carbon Bond 6 mechanism (CB6r3_AE7) 215 

with updates for production of SOA from mobile IVOCs implemented by Lu et al. (2020) Anthropogenic emissions 216 

are described in the US EPA 2017 emission platform technical science document and EQUATES documentation (U.S. 217 

Epa, 2022b, a). Mobile emissions for 2017 were recalculated in order to update speciation and apply both 218 

IVOC/NMOG and CROC/OM adjustments. The ‘CMAQ-ROC’ simulation implemented all revisions to mobile 219 

elemental carbon (EC) speciation described in section S2 and the methods described in sections 2.2.1 and 2.2.2. The 220 

EC speciation updates resulted in substantial changes to nonroad diesel, aircraft, marine and rail source (Table S9). 221 

Because MOVES used source- and species-specific emission rates for HAPs rather than relying on generic speciation 222 
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of NMOG, ROC updates for HAPs were not propagated to the air quality model simulations, although Fig. S25 shows 223 

potential changes to national-scale HAP emissions from updates to VOC speciation. Volatile chemical product (VCP) 224 

emissions were simulated for 2017 with the VCPy tool (Seltzer et al., 2021). Nonoxygenated and oxygenated IVOC 225 

emissions from VCPs were represented with the IVOC chemistry from Lu et al. (2020), which resulted in an average 226 

SOA yield of approximately 30% at ambient conditions across all IVOCs. However, Pennington et al. (2021) found 227 

the oxygenated IVOC SOA yield to be 6.28%, though this yield warrants re-evaluation with better speciation and yield 228 

data given the diverse mix of oxygenated IVOCs with varying molecule functionalities that can influence SOA 229 

production (Humes et al., 2022). Based on available information, we reduced the CMAQ-predicted VCP SOA 230 

concentrations by 33.8% to account for the overrepresentation of SOA from VCP oxygenated IVOCs (see section S7).  231 

We assessed model performance for O3 and OC during the 2017 model year with daily-averaged measurements at 232 

routine monitoring sites. We also performed a separate CMAQ simulation for comparison that is consistent with the 233 

EQUATES project, which assumed the speciation of OM emissions from all sources were consistent with the volatility 234 

distribution of a small diesel generator (Robinson et al., 2007). This ‘EQUATES’ simulation also utilized the 235 

simplified potential-combustion SOA (pcSOA) approach used in publicly available versions of CMAQ (Murphy et 236 

al., 2017). The CMAQ-ROC simulation neglected pcSOA since the role of mobile and VCP IVOC SOA formation 237 

were explicitly accounted for. Finally, we analyzed two sensitivity simulations with mobile and VCP SOA precursors 238 

each set to zero to quantify direct sector contributions to total OA. This approach did not account for the contributions 239 

these sectors make to the atmospheric oxidant capacity through emissions of low molecular weight VOCs and nitrogen 240 

oxides. 241 

3. Results and Discussion 242 

3.1 Volatility-Resolved Mobile Source ROC Emissions 243 

Using the 2016 annual predictions from MOVES and the other mobile emission models processed and speciated with 244 

the ‘ROC’ approach, we explore for the first time a complete bottom-up inventory of organic carbon emissions from 245 

mobile sources in the U.S. Figure 1 shows the results of the ROC and Conventional approaches for one example 246 

source, onroad heavy-duty diesel equipped with particulate filters. Non-organic particulate matter species such as ions 247 

and other PM are equivalent in both approaches. Nonvolatile OM emissions in the Conventional approach are 248 

distributed in the ROC approach to a range of SVOCs and IVOCs, which are predominantly alkanes and branched 249 

compounds for diesel sources. The magnitude of emission factors for compounds in the VOC volatility range from 250 

onroad diesel sources are reduced by 47.8% due to the introduction of IVOCs (IVOC/GROC = 52.2%), and the 251 

distribution of VOC functionality is changed substantially due to adoption of VOC speciation profiles from Lu et al. 252 

(2018). Unknown ROC mass is also reduced from 7% of total emissions to 0.7% after introducing IVOCs. Emission 253 

factors vary by orders of magnitude across mobile sources, motivating careful accounting of sampling biases (Figs. 254 

S18-S21), which requires the ROC approach in the emission modeling workflow to be complex and involve multiple 255 

tools and intermediate steps (Fig. S1). 256 

Figure 3 shows the predicted contributions of source types and functional groups across the volatility spectrum for 257 

2016 ROC inventory. The VOC emissions are roughly evenly distributed between onroad and nonroad sources (1130 258 
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and 1045 kt yr-1, respectively), IVOCs are weighted towards onroad (62%), and CROC (i.e. SVOCs and larger 259 

compounds) is roughly split among onroad, nonroad, and others. Tailpipe (i.e. exhaust) emissions while running 260 

represent the majority across all volatility categories (56% of total ROC), although evaporative sources are important 261 

in the VOC range (38%), and similar to prior estimates (Gentner et al., 2009). It could be counter-intuitive, given 262 

laboratory data on start and idle emission factors, that the start/idle operating mode does not contribute more to total 263 

ROC emissions. This result could be due in part to substantially more time spent by sources in the running mode 264 

during normal operation, but it could also be partly due to MOVES neglecting start modes for nonroad sources. Drozd 265 

et al. (2018) found that cold start IVOC fuel-based emission factors are about 6 times larger than those from hot-266 

running-start emissions for newer vehicles, which is consistent with the post Tier 2 gasoline vehicles in this work. For 267 

older vehicles though, the ROC inventory predicts greater IVOC emissions factors for hot-running modes than cold-268 

start for older vehicles (Table S1a and Table 2). Further research is needed to constrain NMOG emission factors and 269 

IVOC/NMOG ratios for older (pre-2004) vehicles that are expected to have contributed approximately 72% of onroad 270 

gasoline ROC emissions during 2017 (see Fig. S24 and Table S1a).  271 

Emissions from gasoline-fueled sources dominate the VOC range in Fig. 3, but diesel-fueled sources, of which there 272 

are far fewer in the U.S. dominate the IVOC range. Whereas, sources using both fuels are important for CROC 273 

emissions. Mobile source VOCs comprise many functionalities, and aromatics make a substantial contribution. The 274 

higher volatility IVOCs have mass associated with aromatics from gasoline sources, but cyclic hydrocarbon 275 

compounds contribute to IVOCs across all volatilities, a feature reported by Zhao et al. (2015) We currently lack data 276 

to specify CROC functionality across all mobile categories, so we have labeled them alkane-like based on observations 277 

of motor vehicle POA emissions (Worton et al., 2014). Improved CROC speciation is needed, especially given the 278 

importance of functionality to SOA formation (Lim and Ziemann, 2009; Yee et al., 2013). 279 

3.2 Impact of Filter Artifacts 280 

Transitioning from the Conventional approach to the ROC approach has implications for near-source particle 281 

concentrations and prompt SOA production. Figure 4 shows the contributions of mobile categories with results using 282 

approaches from previous work (Murphy et al., 2017; Lu et al., 2020). The Conventional approach assumes all OM 283 

stays in the particle phase, which has been shown to lead to poor AQM performance (Murphy et al., 2017). The 284 

‘Robinson et al.’ case, which is consistent with CMAQv5.3.2, applies the volatility distribution for a small nonroad 285 

diesel engine, where half the OM mass is assumed to be IVOCs adsorbed to filters and is thus volatilized. As seen in 286 

Fig. 4, only 25% of the OM persists in the particle after evaporation in the ‘Robinson et al.’ approach. Lu et al. (2020) 287 

applied gasoline and diesel-specific volatility profiles parameterized for emissions from in-use vehicles to the entire 288 

mobile category, leading to less evaporation of OM than the ‘Robinson et al.’ approach. Lu et al. (2020) also applied 289 

a conversion factor of 1.4 to all mobile gasoline-fueled sources to account for missing SVOCs.  290 

In the ROC approach here, we apply source-specific adjustment factors (Table S6) and volatility profiles (Table S5) 291 

and find similar results for onroad gasoline and nonroad diesel compared to Lu et al. (2020). However, onroad diesel 292 

CROC emissions are increased by 60% relative to the CROC emissions from the ‘Lu et al.’ approach, driven by the 293 

inclusion of missing SVOCs from clean test conditions for diesel engines with DPFs. Conventional OM emissions 294 
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from nonroad sources are greater than those from onroad for both gasoline- and diesel-fueled sources. Nonroad 295 

gasoline emissions reduced by 36% relative to ‘Lu et al.’ where emission factors are large, and CROC/OM is much 296 

less than 1.0 (Table S6), indicating the presence of IVOCs on the filter. Predicted conventional OM emissions from 297 

air, rail, and marine sources are also important, and CROC emissions are slightly larger than OM. Across the mobile 298 

sector, total CROC emissions increased by 12% relative to OM, and 42% of the CROC emissions are predicted to be 299 

in the particle phase at 298 K and 10 μg m-3 organic aerosol (OA) loading. 300 

3.3 National-Scale Impact on PM, O3 and HAPs 301 

When aggregated across all mobile sources, total ROC emissions are nearly identical between the Conventional 302 

approach and ROC approach (Fig. 5). Total IVOC emissions represent only 10.2% of total GROC due to the 303 

substantial role of VOCs from gasoline sources to ROC emissions in the U.S. The spatial distribution of IVOC and 304 

CROC emissions highlight the key role of cities, highways, and shipping lanes (Fig. S26). We calculate the OA 305 

potential as the sum of particle-phase mass (calculated at 298 K and 10 μg m-3) for each species and the SOA yield of 306 

the vapor-phase component of each species. Mobile source OA potential has contributions from all ROC volatility 307 

classes with 6.8% from LVOCs, 25.4% from SVOCs, 19.1% from IVOCs, and 48.7% from VOCs (Fig. 5). The 308 

estimated VOC OA potential is mainly driven by adjusted yields of aromatic VOCs, which are enhanced over previous 309 

work due to corrections for vapor wall-losses of single-ring aromatic yields (Zhang et al., 2014). These metrics 310 

possibly reflect an upper bound on VOC and IVOC contribution as they apply SOA yields to the precursor emission 311 

without consideration of reaction rates, timescales, or competitive losses of precursors and intermediates to deposition. 312 

Potential OA relative contributions from air, marine, and rail (12%) and onroad diesel (16%) sources play a larger 313 

role in OA potential when emissions are estimated with the ROC approach, while nonroad gasoline and diesel (38%) 314 

and onroad gasoline potential OA (34%) decrease (Fig. 6). While aromatic species dominate OA potential in the VOC 315 

precursor range, in the IVOC range OA potential has larger contributions from cyclic alkane compounds from onroad 316 

diesel sources (Fig. S23). In the LVOC range and below, the ROC approach assumes only alkane-like species; 317 

improvements to the SPECIATE database and emissions modeling tools will support increased detail on compound 318 

functionality when provided by future studies. 319 

VOCs account for 97% of the ozone potential approximated by maximum incremental reactivity (MIR), and the total 320 

ozone potential decreases by 8.9% due to the shift in mass from VOC to IVOC. The national-scale source distribution 321 

of O3 potential changes little between the Conventional and ROC approaches (Fig. 6). Ozone potential is dominated 322 

by onroad and nonroad gasoline sources in the highest ROC volatility bins, driven by alkane, aromatic, and oxygenated 323 

species, as expected (Fig. S23). Among onroad light duty gasoline vehicles, 72% of ROC emissions, 68% of O3 324 

potential, and 79% of OA potential are predicted to come from pre-Tier 2 vehicles, while these vehicles account for 325 

19% of the fuel used in 2017 (Fig. S25). Heavy-duty diesel vehicles without particulate filters or selective catalytic 326 

reduction systems contribute 87% of ROC emissions, 85% of O3 potential, and 91% of OA potential while using 31% 327 

of the fuel for the heavy-duty diesel onroad category. 328 

National-scale HAP emissions changed substantially with updates in VOC speciation and introduction of IVOCs with 329 

many species decreasing by nearly 20% or more including toluene (-19%), hexane (-22%), 1,3-butadiene (-34%), and 330 
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ethyl benzene (-29%) and others increasing substantially including formaldehyde (+22%), acrolein (+20%), and 331 

acetaldehyde (+19%) (Fig. S25). These results emphasize the need for more research on HAP emission factors, but 332 

we keep them constant for the CMAQ simulations to focus on OA and O3 changes. 333 

3.4 Air quality model results 334 

Mobile ROC emissions were generated for the year 2017 to be comparable with the EQUATES 2017 emission inputs. 335 

Differences between the EQUATES mobile inputs and those for the CMAQ-ROC simulation (Table S9) are consistent 336 

with the changes in the 2016 emissions results depicted in Fig. 4. The CMAQ-ROC simulation predicts lower OC 337 

concentrations throughout the domain due to elimination of pcSOA. CMAQ-ROC predictions compared well against 338 

both O3 and OC measurements at Air Quality System (AQS) sites in 2017 (Figs. S28, S29 and Table S10). Normalized 339 

mean biases for OC improved (in absolute terms and on average) by 11.3% in spring, 4.3% in autumn, and 7.6% in 340 

winter. In summer, the OC underprediction increased by 12%. Overprediction in the northeast, Ohio Valley, Upper 341 

Midwest, and northwest in winter is consistent with timing and geography of residential wood combustion emissions, 342 

which may be overrepresented in both simulations. Root mean square error and correlation coefficient differences 343 

between the EQUATES and CMAQ-ROC simulations are small. CMAQ predicts both the annual mean and variability 344 

of OC concentrations well at selected U.S. cities (Fig. S34, S35), with the exception of New York City where the 345 

model overpredicted OC by more than a factor of 2. 346 

The predicted annual population-weighted average OA attributable to mobile sources is 0.26 μg m-3, or 9% of the OA 347 

from all anthropogenic and biogenic sources. Mobile source contributions to POA and SOA are similar on average, 348 

with apparent spatial differences (Fig. 7). Average total mobile source OA appears stable between winter and summer 349 

seasons (Fig. S30), and this is a result of trade-offs between higher POA concentrations in winter and higher SOA in 350 

summer (Figs. S31, S32). In rural areas, model-predicted mobile OA contributions asymptote at 4.5% of total OA, 351 

and in some urban areas they can exceed 23% (annual averages; Fig. S33). The ratio of SOA to OA is equal to 70% 352 

in rural areas and decreases with increasing population to 20-40%. Diurnal profiles at select cities indicate SOA 353 

formation peaks at noon in Los Angeles, Denver, Chicago and New York, but that feature is not reproduced on average 354 

at Houston and Raleigh (Figs S34, S35).  355 

CMAQ-ROC mobile and VCP IVOC concentrations are enhanced in urban areas with minimal seasonal differences 356 

predicted (Figs. S36, S37). Mobile sources are predicted to contribute 20-25% to total IVOCs depending on location 357 

and time of year, while VCP sources contribute 59-66% (Fig. S36), although IVOCs from other sources are 358 

underrepresented. The composition of ambient IVOCs predicted by CMAQ-ROC and the speciation of IVOC 359 

emissions from mobile and VCP emissions are consistent with results from Zhao et al.  (Fig. S38). Since ambient 360 

IVOC concentration measurements for 2017 are lacking, we extrapolated concentrations to the CalNex campaign in 361 

2010 and find acceptable agreement with campaign-average hydrocarbon and oxygenated IVOC observations (section 362 

S8, Fig. S39a,b). Extrapolation of CMAQ-ROC SOA to 2010 underpredicts mean CalNex SOA observations by 46% 363 

(Fig. S39c,d). Potential explanations include underestimated emissions from other sources (e.g. cooking), 364 

mischaracterized chemical processing (e.g. SOA yields), or errors in modeling regional pollution in Southern 365 

California (Lu et al., 2020). 366 
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The U.S. annual GROC emission rate for mobile (2.49 Tg yr-1) is 20% less than that of VCPs (3.09 Tg yr-1), but the 367 

mobile IVOC emissions (0.25 Tg yr-1) are only one third those of VCPs (0.77 Tg yr-1). Gas-phase oxidation is 368 

responsible for less than half (42% and 44%) of the loss of mobile and VCP SOA-froming GROC, but 88-90% of the 369 

IVOC loss (Fig. 8). The annual production and loss of total OA from mobile and VCPs is similar, and loss is distributed 370 

evenly across deposition processes and transport out of the model domain. The annual rate of OA production (emission 371 

plus chemical production) estimated by CMAQ and normalized to total ROC emissions (i.e. the sum of NMOG plus 372 

conventional OM) is 0.16 g OA (g ROC)-1, which is approximately equal to that estimated from the data in Fig. 5. This 373 

agreement is surprising considering that the latter calculation does not account for variations in OA partitioning, NOx 374 

effects on SOA yields, or competitive losses from wet scavenging and dry deposition. Seasonal trends for OA, SOA 375 

and POA production rates and ambient concentrations normalized to OM and NMOG emissions are tabulated in Table 376 

S11 and discussed in section S9. These data may inform simple (e.g. screening) models of the impact of anthropogenic 377 

emissions on human exposure. 378 

4. Conclusions 379 

This study implements a detailed source- and species-level procedure for converting conventional OM and NMOG 380 

mobile emissions to metrics compatible with the most recent science and speciation developed for atmospheric ROC. 381 

Although many AQMs have implemented online or pre-processing emission adjustments to account for these 382 

phenomena, (Koo et al., 2014; Murphy et al., 2017) the procedure should be embedded within emission models and 383 

databases for several reasons. Most importantly, this detailed approach considers a more diverse population of sources 384 

of different ages, fuels, and control technologies that are typically averaged together before they are passed to the 385 

AQM. Additionally, the new procedure enables near-explicit speciation of each emission source before mapping to 386 

model species used in a particular chemical mechanism. Having a detailed speciation of major emission sources is 387 

critical for assessing and revising chemical mechanisms (Pye et al., 2022b). Finally, operationalizing conversions from 388 

OM to CROC and NMOG to GROC alleviates AQM users from the burden of interrogating their emissions files to 389 

determine whether complex scaling operations are needed. From the broader perspective of facilitating transfer of 390 

knowledge between the scientific and regulatory communities, the SPECIATE database is now capable of ingesting 391 

speciation profiles with factors aligned with the most recent research studies and has enhanced flexibility to 392 

accommodate future updates. Nonetheless, for model applications seeking to scale legacy emission inputs, we provide 393 

updated factors normalized to several levels of source aggregation in Table S12 and discuss the uncertainty introduced 394 

with this approach in section S10. 395 

The 2016 ROC emissions suggest slight decreases to total O3 formation due to reapportionment of VOC to IVOC in 396 

this approach, but 2017 CMAQ-ROC predictions do not meaningfully change when evaluated at AQS sites. 397 

Meanwhile, mobile SVOC and IVOC emissions enhance OA formation by an additional 79 kt yr-1 compared to 398 

estimates from the EQUATES configuration (319 kt yr-1). Gaps between total OA measurements and CMAQ-ROC 399 

predictions will be addressed through improved modeling of other sources of ROC (e.g., VCPs, wildfires, residential 400 

wood combustion, and cooking). Within the mobile sector, results indicate substantial contributions from onroad 401 

(46%) and nonroad (41%) gasoline and somewhat less from onroad (5%) and nonroad (3%) diesel air, marine, and 402 
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rail sources (4.7%; Fig. 6). The vast majority of ROC emissions and impacts are attributable to older (pre-Tier 2 light 403 

duty gasoline and non-DPF heavy duty diesel) vehicles and nonroad gasoline engines. Onroad pollution will continue 404 

to decrease as these vehicles are phased out, increasing the importance of other mobile source categories and other 405 

sources. 406 

This study suggests several specific uncertainties pertaining to mobile source emissions need further laboratory and 407 

field investigation. Developing complete ROC volatility distributions for specific source classes and control types is 408 

critical, especially within the nonroad category where fewer experimental data were available for this study. The 409 

CROC/OM factors are uncertain across all mobile sources. Ideally, IVOC and CROC emissions should be sampled 410 

by a filter and a broad-spectrum adsorbent tube in series to avoid filter artifacts (Khare et al., 2019). If filter-based 411 

methods alone are used to inform organic aerosol emission inventories, then reducing the uncertainty in the 412 

relationship between particle emission factor and total CROC will strengthen our confidence in estimating organic 413 

aerosol emissions, particularly for lower-emitting technologies. Some CROC/OM ratios derived for this work are 414 

between 0.85 and 1.15, indicating a limited role for partitioning bias during source testing in those cases, but many 415 

are greater than 1.30, especially the lower-emitting sources. Lastly, more research is needed to determine the extent 416 

to which NMOG measurements capture IVOCs (quantified by the IVOC/NMOG or IVOC/GROC ratios). These 417 

parameters are especially important to understand for older vehicles and equipment which drive historical and 418 

contemporary emissions. We recommend that emissions tests specifically measure and report CROC and GROC to 419 

facilitate comparison among datasets and implementation in emission models. Currently, these measurements are 420 

beyond the scope of typical regulatory requirements, and future progress requires research beyond regulatory methods. 421 
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Table 1. Definitions of key terms. 653 
Acronym Definition 

OM Organic matter component of primary 

particle emissions as measured on a filter. 

NMOG Non-methane organic gas emissions 

POA Primary organic aerosol. Particle-phase 

emissions after equilibrium is reached with 

ambient conditions. 

OA Particle-phase organic material at ambient 

conditions. 

LVOC Low-volatility organic compounds  

(C* ≤ 0.32 μg m-3). 

SVOC Semivolatile organic compounds  

(0.32 < C* ≤ 320 μg m-3). 

IVOC Intermediate volatility organic compounds  

(320 < C* ≤ 3.2 x 106 μg m-3). 

VOC Volatile organic compounds  

(3.2 x 106 μg m-3< C*). 

CROC Condensable reactive organic carbon: 

particle- and gas-phase LVOC + SVOC. 

Carbon and noncarbon mass are included. 

GROC Gaseous reactive organic carbon: particle- 

and gas-phase IVOC + VOC. Carbon and 

noncarbon mass are included. 

ROC Reactive organic carbon – all particle and 

gas organic compounds mass except 

methane. Carbon and noncarbon mass are 

included. 

 654 
  655 
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 656 

Figure 1. Depiction of calculation steps for the Conventional and ROC approaches to speciation of PM and NMOG 657 

emissions. Panel (a) shows the reported fuel-based emission factors based on MOVES predictions for 2016. Panel 658 

(b) shows the inorganic ions, metals and other nonorganic matter (IPM) separated from organic matter (OM). The 659 

beige area inside the dashed box in panel (c) indicates emissions that are added in the conversion of OM to CROC to 660 

account for underrepresented SVOCs from the filter measurement. Panels (d) and (e) show the comprehensive 661 

emission factors for the Conventional and ROC approaches, respectively, with data arranged by volatility while 662 

indicating non-organic PM emissions as well. In panels (d) and (e), bars to the left and right of the vertical line at 663 

Log10(C*) = 6.5 are quantified by the left and right y axes, respectively. The number within panels (d) and (e) 664 

indicates the total ROC emission factor excluding EC and Other PM for onroad heavy-duty diesel sources. ‘Alkane’ 665 

refers to only linear alkanes, while ‘cyclic’ and ‘branched’ are cyclic alkanes and branched alkanes. ‘Multi’ 666 
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indicates multifunctional organics. The bars in the gray shaded regions are not included in the organic volatility 667 

distribution but are included in the CROC-compatible SPECIATE profiles (e.g. 104CROC). 668 

 669 

 670 

 671 

 672 

Figure 2. Effective ambient primary organic aerosol emission factor estimated at 298 K and 10 μg m-3 as a function 673 

of the OM emission factor for onroad gasoline-fueled vehicles. 674 

 675 

 676 
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 677 

Figure 3. Volatility-resolved mobile source ROC emissions for the contiguous U.S. during 2016 stratified along 678 
several dimensions including category (top-left), operating mode (top-right), fuel (bottom-left), and chemical 679 
functionality (bottom-right). The ‘multi’ functionality series corresponds to compounds that are both oxygenated and 680 
have double carbon bonds. Bins to the left of the solid black line are quantified by the left y axis and those to the right 681 
by the right y axis. The unknown emissions (UN) are not assigned to a volatility bin and do not contribute to OA or 682 
O3 formation. 683 

  684 



 22 

 685 

Figure 4. Bottom-up predictions of 2016 annual mobile CROC (i.e. SVOC, LVOC, and lower volatility compound) 686 
emissions classified by category, model approach, and equilibrium phase distribution. The full height of each bar 687 
corresponds to total CROC emissions. Gas-particle partitioning is calculated for atmospherically relevant conditions 688 
at 298 K and organic aerosol loading of 10 μg m-3.  689 

 690 

 691 

 692 

 693 

Figure 5. Total U. S. mobile source emissions for 2016 with aggregate O3 and OA potential calculated at the species 694 
level.  695 

696 
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 697 
Figure 6. Mobile sector contributions to ROC classes and derived quantities like O3 and OA potential. Values are 698 
presented for the Conventional and ROC-based approaches.  699 
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 700 

Figure 7. Annual average concentration (top row) of total OA (left), POA (center), and SOA (right) from mobile 701 
sources predicted by CMAQ for 2017 with the ROC mobile emission inventory. The fractional contribution of mobile 702 
sources to the total of each pollutant category from all sources are on the bottom row. In all panel subtitles, ‘Max’ 703 
refers to the spatial maximum of the annual average spatial field, while ‘Avg’ refers to the population-weighted 704 
average of the annual average spatial field. 705 
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 706 
 707 

Figure 8. Domain-wide predicted budget of (left) mobile and volatile chemical product (VCP) gas-phase emissions 708 
and loss due to chemistry, deposition, or transport and (right) OA production and losses for 2017. In the left plot, 709 
loss terms are only depicted for categories of compounds that lead to organic particle formation. 710 
 711 
 712 
 713 


