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Abstract.

We present the first application of the atmospheric chemistry and transport model ICON-ART in inverse modelling of

greenhouse gas fluxes with an Ensemble Kalman smoother. For this purpose, we extended ICON-ART to efficiently handle

gridded emissions, generate an ensemble of perturbed emissions during runtime, and use nudging on selected variables to keep

the simulations close to analyzed meteorology. We show that the system can optimize total and anthropogenic European CH45

fluxes on a national-scale in an idealized setup using pseudo-observations from a realistic network of measurement stations.

However, we were unable to constrain the sum of the natural emission sources of comparatively low magnitude. Also regions

with low emissions and regions with low observational coverage could not be optimized individually for lack of observational

constraints. Furthermore, we investigated the sensitivities towards different inversion parameters and design choices with 15

sensitivity runs using the same idealized setup, demonstrating the robustness of the approach when regarding some minimal10

requirements of the setup (e.g., number of ensemble members). Subsequently, we applied the system to real in-situ observations

from 28 European stations for three years, 2008, 2013 and 2018. We used a priori anthropogenic fluxes from the EDGARv6

inventory and a priori natural fluxes from peatlands and mineral soils, inland waters, the ocean, biofuels and biomass burning

and geology. Our results for the year 2018 indicate that anthropogenic emissions may be underestimated in EDGARv6 by

ca. 25% in the Benelux countries and, to a smaller degree, in northwestern France and southern England. In the rest of the15

domain, anthropogenic fluxes are corrected downwards by the inversion suggesting an overestimation in the a priori. For most

countries, this means that the a posteriori country-total anthropogenic emissions are closer to the values reported to the United

Nations Framework Convention on Climate Change (UNFCCC) than the a priori emissions from EDGARv6. Aggregating the

a posteriori emissions across the EU27 + UK results in a total of 17.4 Tg yr−1, while the a priori emissions were 19.9 Tg yr−1.

Our a posteriori is close to the total reported to UNFCCC of 17.8 Tg yr−1. Natural emissions are reduced from their a priori20

magnitude almost everywhere, especially over Italy and Romania/Moldova, where a priori geological emissions are high, and

over the United Kingdom and Scandinavia where emissions from peatlands and wetlands were possibly unusually low during

the hot and dry summer 2018. Our a posteriori anthropogenic emissions for the EU27 + UK fall within the range estimated
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by global top-down studies, but are lower than most other regional inversions. However, many of these studies have used

observations from different measurement stations or satellite observations. The spatial pattern of the emission increments in25

our results, especially the increase in the Benelux countries, also agrees well with other regional inversions.

1 Introduction

To achieve the long-term goal of the Paris Agreement to limit global temperature increases to well below 2◦C, global green-

house gas (GHG) emissions will have to be reduced drastically in the coming decades. The implementation of the Paris Agree-

ment requires all parties to commit to mitigation measures (described in National Determined Contributions) and to regularly30

report their anthropogenic GHG emissions, in the form of National Inventory Reports (NIR), to the United Nations Framework

Convention on Climate Change (UNFCCC). NIRs are developed from socioeconomic statistics, activity data and emission

factors following the guidelines of the Intergovernmental Panel for Climate Change (Eggleston et al., 2006). Following these

guidelines, most parties also report uncertainties in emissions, which they calculate based on uncertainties in activity data,

emission factors, or uncertainties in the underlying data.35

Complementary to these bottom-up emission inventories is the ”top-down approach”, where atmospheric inversions are used

for emission estimation from observations (Bergamaschi et al., 2018; Nisbet and Weiss, 2010). Due to the Paris Agreement, the

interest in high-resolution inversions with country-scale emission estimates has grown recently. However, top-down emission

estimation is still subject to large and poorly quantified uncertainties due to insufficient coverage of measurements, errors

in simulated atmospheric transport, representation errors, measurement biases, and other factors. To advance the field, it is40

therefore paramount to reduce these errors as much as possible and to build modeling systems that properly account for the

remaining uncertainties.

Inversions for CH4 have already been made in previous studies. European CH4 emissions have been estimated and compared

to bottom-up values in both regional (Bergamaschi et al., 2018, 2022; Petrescu et al., 2023) and global (Deng et al., 2022;

Petrescu et al., 2023) inversions, using both surface in-situ measurements and satellite observations. Bergamaschi et al. (2018)45

compared a total of 7 inversion models with a regional setup for the period 2006 to 2012, all models using harmonized

observations. The mean of the estimates of the models for the anthropogenic emissions for EU27 + UK was higher than the

reported values for all years, but still within the calculated uncertainty range. Another regional inversion study for Europe was

recently presented by Bergamaschi et al. (2022) using a new, nested high-resolution inversion system Flexpart-COSMO TM5

4DVAR. They also compared the results with the Flexpart extended Kalman filter (FLExKF) (Brunner et al., 2012) and with50

TM5-4DVAR (Meirink et al., 2008) inversions. All three inversion models resulted in higher emissions for 2018 for Germany,

France and Benelux than the sum of UNFCCC reported and natural (estimated by GCP) emissions.

European CH4 emissions were also estimated from global inversions operating at lower resolution and often assimilating

a smaller set of observations available over Europe compared to the regional systems. Deng et al. (2022) and Petrescu et al.

(2023) compared a number of global inversions presented previously by Saunois et al. (2020) with the reported values. While55

Deng et al. (2022) included all Annex 1 countries (with periodic emission reports) and non-Annex 1 countries (with only

2



sporadic reports) worldwide, Petrescu et al. (2023) focused on EU27 + UK and also compared regional inversions with the

reported values. The results showed that anthropogenic CH4 emissions estimated in regional inversions were generally higher

than reported emissions while global inversions were mostly lower. This general tendency was found irrespective of whether

only ground in-situ measurements or satellite observations were assimilated. These results show that there is still little consis-60

tency between different inversion results and further work is needed to identify the causes of the discrepancies. Therefore, a

new model intercomparison experiment was established by the Atmospheric Tracer Transport Model Intercomparison Project

(TransCom), which requires all participating groups to follow a common data protocol ensuring maximum consistency in terms

of the usage of observation data, boundary conditions and a priori fluxes. The results presented here for the real data application

are based on simulations following this protocol.65

In inverse modelling, measured atmospheric dry air mole fractions are linked to emissions using an atmospheric transport

model (ATM). The most likely set of emissions is determined by minimizing a Bayesian cost function with an inversion algo-

rithm given a prior constraint (usually a bottom-up inventory or flux model) and uncertainties. Different inversion techniques

exist (see e.g. Chap. 11 of Brasseur and Jacob, 2017), such as synthesis (Gurney et al., 2002; Baker et al., 2006; Butler et al.,

2010), geostatistical (Michalak et al., 2004; Gourdji et al., 2012), Kalman smoother (Bruhwiler et al., 2005), Ensemble Kalman70

Filter (EnKF), smoother (EnKS) or square root filter (EnSRF) (Peters et al., 2005; Tsuruta et al., 2017), and 4-D variational

inversion (4D-var, Chevallier et al., 2005; Baker et al., 2010; Bergamaschi et al., 2022). They have been developed to ad-

dress different trace gases, observations types and spatial and temporal scales. 4D-var and EnKF methods are computationally

expensive but have become standard methods today to address large inversion problems.

A limiting factor for analytical synthesis and geostatistical inversions is the dimension of the inversion problem (both the75

control and observation space), which needs to be sufficiently small to store the related covariance error matrices in computer

memory and calculate their algebraic inverse. The 4-D variational approach, on the other hand, where the cost function is

minimized by the calculation of its gradient and through an iterative descent, requires an adjoint model, which is often not

available for a given ATM. Ensemble Kalman filter, or smoother data assimilation (Evensen, 1994, 2003; Burgers et al., 1998)

has the advantages that it can deal with large inversion problems, that no adjoint ATM is required (Kalnay, 2010) and that they80

return an approximate error covariance matrix. The disadvantage is that the covariance error matrix and the Kalman Gain are

only approximated based on a finite ensemble.

Peters et al. (2005) developed such an ensemble Kalman smoother, which was further implemented in the CarbonTracker

Data Assimilation Shell (CTDAS) (van der Laan-Luijkx et al., 2017). It was designed to optimize biospheric and oceanic CO2

fluxes from different biomes and ocean regions on a weekly time-scale by assimilating the CO2 observations from a global85

network of stations. CTDAS has been applied in subsequent studies to investigate, for example, the carbon budget over North

America (Peters et al., 2007), Europe (Peters et al., 2010; Smith et al., 2020), South America (van der Laan-Luijkx et al., 2015)

and globally (van der Laan-Luijkx et al., 2017). More recently, CTDAS has been coupled with a Lagrangian particle dispersion

model for studying regional carbon budgets (He et al., 2018) and has also been applied to other species like methane (Bruhwiler

et al., 2014; Tsuruta et al., 2019).90
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A critical requirement for accurate emission estimates by inverse modelling is the quality of the ATM. An attractive new at-

mospheric model is the global ICOsahedral Nonhydrostatic (ICON) atmospheric modeling framework (Wan et al., 2013; Zängl

et al., 2015; Pham et al., 2021), which can be extended with the ”Aerosols and Reactive Trace gases”-model (ART), developed

at the Karlsruhe Institute of Technology (KIT) (Rieger et al., 2015; Weimer et al., 2017; Schröter et al., 2018) to simulate

aerosols and trace gases. ICON-ART can be run from global scale down to cloud resolving scale and has attractive transport95

properties such as mass conversation, positivity of tracers and the use of recent developments in subgrid-scale transport.

Here we present the first application of ICON-ART in inverse modelling of GHG emissions with CTDAS. For this purpose,

we extended ICON-ART with modules for efficient handling of emissions and online (i.e, during runtime) generation of the

ensemble of perturbed fluxes, and with a nudging scheme to keep the simulations close to analyzed meteorology. Using an ide-

alized setup with synthetically generated observations, we analyze how well the new, computationally efficient model is suited100

to constrain European anthropogenic CH4 emissions for individual countries with observations from a European observation

network. The sensitivity of the system to different parameters is analyzed in a set of sensitivity experiments. The system is then

applied to real observations from a harmonized set of CH4 dry air mole fraction observations from 28 European stations to

assess the performance of ICON-ART in terms of atmospheric transport and to demonstrate the capability of the new system

to constrain European emissions using this network. A detailed description of our model setup and the methodology is given105

in Sect. 2. In Sect. 3 we present the results of both applications, with pseudo-observations as well as with real observations.

Sect. 4 provides conclusions.

2 Model description and methodology

2.1 ICON-ART model and simulation setup

2.1.1 Weather and climate model ICON110

ICON is a highly versatile non-hydrostatic atmospheric model for global and regional weather and climate simulations devel-

oped jointly by the German Weather Service (DWD) and the Max Planck Institute of Meteorology (Wan et al., 2013; Zängl

et al., 2015; Pham et al., 2021). It has been used at DWD for operational weather prediction since 2016 and has been coupled

with other models including an ocean and a land surface model for climate simulations (Giorgetta et al., 2018). ICON is based

on an icosahedral triangular grid, where 20 equilateral triangles of an icosahedron are iteratively split into smaller triangles up115

to the desired resolution. With such a grid, the problem of singularity at the poles is avoided. To zoom into a specific region,

refined grids can be nested into the parent grid, with one additional edge bisection. The model equations are fully compressible

and the vertical discretisation is in generalised smooth-level vertical coordinates (SLEVE) (Leuenberger et al., 2010). Tracers

in ICON are transported with perfect mass conservation by solving the continuity equation of mass for each tracer consecu-

tively in the vertical with a finite volume method and in the horizontal direction with a simplified flux-form semi-Lagrangian120

method (Miura, 2007; Lauritzen et al., 2011; Rieger et al., 2015).
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2.1.2 ART extension for trace gases and aerosols

The ART-model was developed as an extension for ICON at the Karlsruhe Institute of Technology (KIT) (Rieger et al., 2015;

Weimer et al., 2017; Schröter et al., 2018) with the aim of simulating aerosols as well as passive and chemically reactive trace

gases. The ART module is coupled online with ICON and allows a flexible definition of tracers and processes to be included125

(Schröter et al., 2018). Since only CH4 was simulated in the present study, all tracers are passive tracers, i.e. they are only

transported without radiative feedback on the meteorology and without degradation by the hydroxyl radical (OH). Depletion

by reaction with OH is assumed to be negligible given the short residence time of the air masses within the domain of no more

than a few days compared to the CH4 lifetimes of about 10 years.

To simplify and accelerate the treatment of emissions during the simulations, we implemented the Online Emissions Module130

(OEM) into ICON-ART, which was originally developed for the regional weather and climate model COSMO (Jähn et al.,

2020). Unlike the standard offline approach, where numerous input files have to be provided at discrete model time steps,

OEM requires only a small number of files at the beginning of a simulation. These files contain annual mean sector-specific

2D emission fields as well as the temporal and vertical profiles for individual emission categories and countries. During the

simulation, these profiles are applied online to update the hourly emissions for each species. OEM has recently become an135

official component of ART (since ART version 2.6.3).

To project the inventory data to the ICON grid, we extended the stand-alone Python package emiproc (also described in

Jähn et al., 2020). Emiproc projects emission data of various inventories to the model grid in a mass-conserving manner by

calculating the overlap of the source and target grid at every grid cell. It also generates the temporal and vertical scaling profiles.

2.1.3 General setup of ICON-ART forward simulations140

The ICON-ART simulations were performed in limited-area-mode (LAM) on a grid covering Europe (see Figs. in Sect. 2 and

3). The horizontal grid was R3B06 (see the established grid notation in Zängl et al., 2015), which corresponds to a mean grid

spacing ∆x between neighboring triangles of about 26 km and yields a total of 21,344 grid cells. Vertically, 60 levels were used

between the surface and about 23 km altitude. The time step was 120 s. We used ICON in the Numerical Weather Prediction

(NWP) configuration with a single-moment microphysics scheme including graupel and the tile approach for soil switched on,145

considering subgrid-scale land-cover variability with 6 tiles (3 land plus 3 water types).

The meteorological fields were initialised at the beginning of every simulation with the reanalysis data of ERA5 (Hersbach

et al., 2020). During the simulation, the meteorological fields were weakly nudged in the entire domain towards the 3-hourly

reanalysis data to keep the simulated meteorology close to the analyzed meteorology. This required a modification of the ICON

code, since ICON in the LAM configuration only allows nudging towards meteorological boundary conditions (density, virtual150

potential temperature, Exner pressure, specific humidity and wind) near the borders of the domain. Additionally, the LAM-grid

was created such that the boundary zone extends over the entire domain. As in the standard scheme, the nudging strength αnudge

was set to decrease with the distance of the cell row r from the lateral boundaries (r0), but the nudging was not restricted to the 8
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cell rows closest to the boundaries. Instead it decreased exponentially with an e-folding width of 2 cell rows towards a minimum

dimensionless nudging strength of 0.001 applied in the main part of the domain: αnudge = 0.069 exp(− r−r0
2 )+ 0.001.155

The modeled CH4 dry air mole fractions were constructed with three different types of tracers representing the CH4 back-

ground, emissions, and ensemble members. The tracer representing CH4 from emissions (CHE
4 ) within the model domain was

initialized with a value of zero (or rather with an offset value which is later subtracted in the post-processing) at the simulation

start and was updated by OEM with the emissions from the inventories (described in Sect. 2.2.4) at every model time step. The

ensemble members used for the optimization scheme in the EnKS are represented as tracers in the model, similar to CHE
4 , but160

with perturbed emissions (see Sect. 2.2). The background CH4 dry air mole fractions (CHBG
4 ) were represented as a separate

tracer, which was initialized and updated at the lateral boundaries with data from the CAMS v19r1 inversion product (available

via https://ads.atmosphere.copernicus.eu/, last access: 4 December 2023).

For every 10 d simulation window of CTDAS (see Sect. 2.2.1), one ICON-ART simulation was performed. The model runs

were initialized 24 h before each 10 d window to allow for model spin-up. At the end of the 24-hour meteorological spin-up165

period, all CH4 tracer mole fractions were overwritten by the initial CH4 conditions produced by the CTDAS system (see

Sect. 2.2.1).

We carried out the simulations on the supercomputer "Piz Daint" of the Swiss National Supercomputing Center (CSCS,

https://www.cscs.ch/, last access: 4 December 2023), namely on the XC40 compute nodes, each with two Intel Xeon E5-

2695 v4 2.10GHz processors (2x18 cores, 64/128 GB RAM). A simulation with the described setup and spread across 16170

nodes required around 10 node hours per 11-day simulation. For the inversion of a whole year, the total costs (including the

comparatively low costs for CTDAS) amounted to around 1300 node hours or 36 x 1300 = 46’800 core hours.

2.1.4 Adaptations of ICON-ART to CTDAS

To couple ICON-ART with CTDAS in a robust and efficient way, we made a few adaptations to ICON-ART and the simulation

setup. CTDAS requires a large ensemble of CH4 tracers to be simulated, each ensemble member corresponding to one specific175

perturbation of the state vector (e.g., fluxes and boundary conditions). This is usually achieved by generating an ensemble of

input fields, typically one set of perturbed hourly emission maps and boundary conditions per member. For a large ensemble

with a few hundred members and hourly emissions, this may results in a very large number or size of input files and corre-

spondingly expensive I/O during the simulation. To overcome this problem, we extended the OEM module with the option

to generate an ensemble of perturbed fluxes and corresponding tracers online during the simulation. With this extension, the180

only input required at the start of the simulation is the ensemble of perturbed scaling factors (λ) provided by CTDAS, which

greatly simplified and accelerated the simulations. Each scaling factor scales the flux of one emission category (one tracer can

experience the emissions of multiple categories) in one region. The regions can be any combination of grid cells (including

individual cells) and are defined by a region mask provided as input for OEM (see Sect. 2.2.2). The setups used in this study,

e.g. the emission categories and regions, are described in Sect. 2.2.185

The generation of the flux ensemble permits negative fluxes, which could result in negative mole fractions of the CH4

tracers. Since none of the available transport schemes in ICON allows for negative tracer mole fractions, we bypassed this
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Figure 1. Schematic of the coupling of CTDAS with ICON-ART.

problem by adding a constant offset mass mole fraction of 1.2e−6 to all CHE
4 tracers and subtracting the same offset afterwards

from the output. Since the transport characteristics within the numerical model ICON-ART exhibit non-linearity, the tracer

concentrations are not identical when transported with or without an offset. However, our tests showed that these differences190

are negligible and we consequently expect no significant impact on the outcome of the simulations.

Our implementation of ICON-ART in CTDAS not only allows for the perturbation of fluxes, the ensemble can at the same

time also hold perturbed background mole fractions. This allows for the optimization of the background mole fractions, which

is described in 2.2.6. Technically, this is achieved by perturbing the CHBG
4 tracer mole fractions in different regions of the

lateral boundary, with scaling factors provided by CTDAS in a separate file. Similar to the generation of the flux ensemble,195

a lateral boundary region can be any combination of grid cells (in this case of the lateral boundary cells) defined by a region

mask.

Figure 1 gives a schematic overview of how CTDAS is coupled to ICON-ART. ICON-ART is driven by initial and boundary

data from ERA5 for meteorology and CAMS for tracer concentrations and adds CH4 emissions via OEM. Using a priori

perturbation scaling factors from CTDAS, an ensemble of CH4 tracers is generated. The simulated concentrations of the200

individual ensemble members (H(x’)) and the ensemble means (H(x)) are sampled at the stations and read into CTDAS.

CTDAS optimizes the emissions based on these values and the observations and uses the optimized scaling factors to generate

the scaling factors for the next cycle.

2.2 CTDAS inversion setup

In this study, we used CTDAS to estimate anthropogenic CH4 emissions either in an idealized setup using synthetically205

generated atmospheric observations, or in a real data application using quasi-continuous in-situ observations and very few

discrete flask samples of CH4 dry air mole fractions. ICON-ART acts as an observation operator, i.e. it connects the surface

fluxes to atmospheric CH4 dry air mole fractions. In the following, we describe the setups for the two applications. The

description of the idealized setup refers to the reference inversion in which we only optimize emissions but otherwise stay as
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Figure 2. Schematic of the ensemble Kalman smoother. The schematic shows the first two assimilation cycles. All remaining cycles are

identical to the second one. Each assimilation window has a length of 10 days. One cycle is composed of two windows.

close to the real setup as possible. In addition to the reference inversion, we performed sensitivity experiments testing different210

aspects of the inversion setup as described in Sect. 2.3. These include experiments where we optimized background mole

fractions in addition to emissions (see Sect. 2.2.6). Background optimization is also applied in the real data application.

2.2.1 Optimization scheme

CTDAS applies an Ensemble Kalman smoother with a fixed-lag assimilation window (Peters et al., 2005). A schematic of

the configuration used here is shown in Fig. 2. Since our model domain is limited to Europe, the fluxes can affect observed215

CH4 mole fractions only over a couple of days. In our simulations, almost all mass of the emission tracer has left the domain

after 20 days. Accordingly, CTDAS has been set up to optimize 10-day mean fluxes with a fixed lag of 2, resulting in a total

assimilation window length of 20 days. Observations in a given 10-day window can thus constrain the fluxes of the previous

and the present 10-day window.

The s scaling factors are optimized using an Ensemble Kalman smoother as described in Peters et al. (2005), which is based220

on the Ensemble Square Root Filter presented by Whitaker and Hamill (2002). In the filter, the error covariance matrix P (both

a priori and a posteriori) of size [s x s] is represented by information in a smaller dimension N , which corresponds to the

number of ensemble members, which is set to 192 in our applications. The ensemble is generated from randomly perturbed

state vectors with the magnitude and correlation structure of the perturbations, as determined by the a priori error covariance

matrix.225

Since we start with a priori scaling factors with a value of one, the initial perturbation of the scaling factors for the first

two windows of the simulation has a mean of λ(t=1,2) = 1. After assimilation of the observations during these two windows,

the first window is simulated again with the optimized scaling factors λa1
1 (superscript a1 indicates analyzed/optimized once)

to provide updated initial CH4 mole fractions for the second cycle. From there, the second cycle uses the optimized scaling

factors λa1
2 from the first cycle and continues with the third window, which inherits the scaling factors from the previous230

window with the following state propagation model: λt+1 = 1/3+2/3 λa1
t . A priori information is thus inserted with a weight

of 1/3 while a posteriori information from the previous assimilation step is propagated with a weight of 2/3. This weighting
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is based on the study of van der Laan-Luijkx et al. (2017), where the average of the optimized scaling factors from the two

previous windows were taken into account with a weight of 2/3. Their choice of 2/3 was a design choice based on the concept

that the timescale to revert a system to the prior state should approximately be 8 weeks in case that no data is available to235

constrain it. Full propagation of a posteriori information is analyzed in a sensitivity inversion. We apply the state propagation

model only to the mean scaling factors and not to the individual ensemble members. Each window starts with a new a priori

covariance again, hence no information on the uncertainty reduction in the previous windows is taken into account. During

the second cycle, observations of the third window are assimilated. The second cycle is completed by simulating the second

window again with the now twice optimized scaling factors λa2
2 , to provide updated initial mole fractions for the third cycle.240

The third and all following cycles follow the same principle as the second cycle (Peters et al., 2005, Fig. 1). The main output is

thus the sequence of twice-optimized scaling factors (and their uncertainties) for each 10-day window of the simulation period.

Error covariances are discussed separately in Section 2.2.5

2.2.2 State vector

In our setup, CTDAS separately optimizes anthropogenic and natural fluxes. For both categories, the emissions are optimized245

for 21,344 individual regions, each region corresponding to one grid cell in the domain. The formalism of CTDAS is described

in detail in Peters et al. (2005). As we use a lag of 2, the state vector x has 85,376 flux elements in our implementation (2

windows x 2 categories x 21,344 grid cells). Only flux elements are optimized in the reference setup of the idealized study.

Simultaneous optimization of fluxes and background mole fraction is analyzed in additional sensitivity inversions and then

applied in the real data application where 8 state vector parameters are used to optimize the background mole fractions (see250

Fig. 4).

2.2.3 Ensemble size

Previous applications of CTDAS used 200, 1500 (Peters et al., 2005), 500 (Tsuruta et al., 2017, 2019) and 150 ensemble

members (van der Laan-Luijkx et al., 2017). In Peters et al. (2005) 100-200 model ensemble members were sufficient to

represent a state vector of 14,400 parameters, however with substantial spatial correlations to reduce the degrees of freedom.255

In our setup we use an ensemble size of 192, wherein every ensemble member is represented by one tracer. The sensitivity to a

smaller and larger size of 50 and 300 members was also analyzed. While the performance was significantly reduced with only

50 members, there was only a marginal improvement with 300 members. Therefore, we chose 192 members for our inversions.

The degrees of freedom (calculated with Eq. 21 in Peters et al., 2005) in our a-priori covariance error matrix is 425.

2.2.4 A priori fluxes260

In the application of our system, we followed the "protocol for the intercomparison of national CH4 emissions estimated by

inverse modelling system for Western Europe", an intercomparison effort of the TransCom modelling community. The protocol

prescribes the prior fluxes to be used, which were pre-processed and provided on a 0.25◦ x 0.25◦grid. The anthropogenic fluxes
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Figure 3. Spatial distribution of CH4 emissions from anthropogenic (a) and natural sources (b) used in the real data application for the period

of 11-21 June 2018. Overlaid are the measurement locations used in the inversion. The numbers for the domain-wide total fluxes are given

for the entire year 2018. The circles show the in-situ measurement locations while the small crosses show the locations of flask sampling.

(agriculture, waste and fossil fuels) are taken from the EDGAR v6.0 (Crippa et al., 2021) inventory. The following natural

fluxes are taken into account: peatlands and mineral soils from JSBACH-HIMMELI (Raivonen et al., 2017; Reick et al., 2013)265

(version 2), inland water (provided by Université Libre de Bruxelles to the GCP-CH4 data set; Saunois et al., 2020), termites

(Saunois et al., 2020), ocean (Weber et al., 2019), biofuels and biomass burning (GFED-4.1s; van der Werf et al., 2017) as

well as geological emissions (Etiope et al., 2019) (scaled to a global total of 15 Tg). The pre-processed fluxes with monthly

resolution are temporally interpolated to the 10 d windows of our inversion system, such that we have a separate emission

file for every 10 d simulation. Since we optimize anthropogenic and natural emissions separately (see Sect. 2.2.2), the various270

natural fluxes were merged to one category. An example of the anthropogenic and natural emissions is shown in Fig. 3 for the

period of 11-21 June 2018.

All CH4 emissions are considered to be constant in time over 10-days and are emitted between 0 and 20 m above the surface.
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2.2.5 A priori error covariance matrix

We apply an uncertainty of 100% for each flux in each grid cell. This takes into account that EDGAR applies its own method-275

ologies uniformly to the whole domain and, in contrast to the European TNO inventory, does not scale the total national

emissions to the officially reported values. The scaling factors corresponding to the same category but belonging to different

regions are correlated depending on the great-circle distance between the centers of the grid cells assuming an exponential

decay of the correlation with a length scale L=200 km (see Gaspari and Cohn, 1999; Peters et al., 2005), regardless of coun-

try borders. Between different categories we assume no correlation. Also, temporal a-priori correlations between consecutive280

cycles is also not applied, however, inheriting a posteriori information from the previous assimilation step with a weighting of

2/3 (see Sect. 2.2.1) has a comparable impact as applying temporal correlations.

2.2.6 Background optimization

In the reference inversion of the pseudo-observation application, only emissions but no background mole fractions are opti-

mized. However, if background mole fractions provided at the lateral boundaries from a global model are biased, an inversion285

system without background-optimization will try to compensate this bias by increasing or decreasing the emissions, which

ultimately leads to biased emission estimates.

To address this problem, we implemented the option to optimize background mole fractions alongside the emissions. For

this purpose, 8 additional state vector parameters were introduced to optimize the background mole fractions from 8 different

inflow regions where CH4 from the global CAMS model enters our model domain (see Fig. 4). We test the capability of this290

approach to correct for different magnitudes and types of biases in three dedicated sensitivity experiments. In these experiments

we introduce different artificial biases with magnitudes of 1%, which we think to be a realistic bias for re-analysis products,

and set the uncertainty correspondingly. Background-optimization is also applied in the real-data application, where we apply

an uncertainty of 0.05%, which is roughly 1 ppb CH4. This uncertainty is smaller than what we assumed in the sensitivity

simulations. We choose a smaller uncertainty in the real data application as the CAMSv19r1 product used here, which is295

the result of a global inversion system, proofed to have almost no biases. We apply a different state propagation model (see

Sect. 2.2.1) for the 8 background parameters than for the emission parameters. We propagate the a posteriori with a weight

of 100% to the next window assuming that biases are changing only slowly with time and are therefore similar in subsequent

assimilation windows. This allows the system to adjust the background concentration by roughly 1 ppb every 10 days.

2.2.7 Localization300

To avoid erroneous state vector updates due to spurious covariances between observations and far distant grid cells, the Kalman

Gain can be modified using a method called localization. As shown by Houtekamer and Mitchell (1998), localization reduces

spurious correlation and reduces the number of required ensemble members. Spatial localization with damping factors decaying

exponentially with distance from, or normally distributed around, each observation is possible. An alternative is to only update

state vector parameters whose correlation passes a two-tailed t-test, but this proved to be computationally too expensive for our305
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Figure 4. Map showing the 8 inflow-regions (labelled 1-8) used for the background optimization.

large problem size. To reduce correlations with far distant grid cells, in all our inversions we apply a damping to the Kalman

Gain with factors normally distributed around the observation location with a 1σ standard deviation of 600 km. The optimal

length scale is dependent on the setup and the number of the ensemble members. Our choice of 600 km was tested in sensitivity

inversions. The effect is illustrated in Fig. 5 for one observation and one emission category. The values of the Kalman Gain

matrix can be interpreted as the sensitivity of the observation to upstream emissions from that category.310

2.2.8 Observations

In our application, a harmonized set of measurements including quasi-continuous in-situ observations and a few discrete flask

samples, is used. The in-situ measurements are from 28 stations while the flask samples are taken at 10 different locations. The

flask samples account for ca. 0.5% of the total number of observations. Another 4 in-situ stations are used for validation. Most

stations are from the atmosphere network of the Integrated Carbon Observation System (ICOS) (Heiskanen et al., 2022). All 32315

in-situ stations and 10 flask sample locations are listed in Table 1, where the assimilated sites are indicated in the column "T"

with "x" and the validation sites with "V". It is important to note that not all time series are complete. We distinguish mountain

sites from sites in flat terrain. For the sites in flat terrain, observations in the afternoon from 11 to 16 UTC were assimilated, as

usually done in atmospheric inverse modelling to avoid the difficulties in simulating the effects of shallow nocturnal boundary

layers. In contrast, only night-time values between 23 and 06 UTC were assimilated for mountain sites. At this time such320

stations are more representative of free tropospheric conditions and are not influenced by pollution from daytime up-slope

valley winds, which would require a very high model resolution in order to be reasonably represented.

Pseudo-observations were synthetically generated for the first two months of the year 2018 (the synthetic inversions are

performed in the period 02.01.2018 - 03.03.2018) by sampling the output of a forward ICON-ART model simulation at a
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Figure 5. The values of the Kalman Gain Matrix for anthropogenic emissions for one single observation at the Torfhaus station in Germany

(29 January 2018 12:00 - 16:00) before (a) and after (b) applying localization.

prescribed set of locations. To make the synthetic experiment comparable to an inversion with real observations, these locations325

correspond to actual CH4 measurements stations that are used for the real data inversion for the year 2018. Furthermore, the

pseudo-observations were generated only for the times when actual observations were available. The 4 stations that are used

for validation purposes in the real application were also not assimilated in the reference inversion but the effect of assimilating

their observations was tested in a separate inversion. We added gaussian noise to the pseudo-observations with σ=2 ppb.

The simulation used to produce the synthetic observations followed the reference setup described in Sect. 2.1.3 with one330

exception. Emissions from the two categories were scaled with a pre-defined field of scaling factors in order to create a "true"

emission field that is systematically different from the a priori. The performance of the inversion can then be assessed in terms

of its ability to reconstruct the true emission field. The field of scaling factors was randomly drawn from a normal distribution

but spatially correlated assuming an exponential decay with a length scale of 200 km. In one sensitivity inversion, a different

field of scaling factors was used to scale the so-called "true" emissions in which 11 European regions were scaled uniformly335

with different scaling factors.
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Table 1. List of observation locations used in this study. The column "M" indicates mountain sites while the column "F" indicates if it is a

flask sampling location. The column "T" indicate if this station is assimilated ("x") or used as a validation site ("V").

ID station name M F latitude longitude elevation inlet height network T

[m] [m]

BIR Birkenes (NO) No No 58.39 8.25 215 3 EBAS x

CIB Centro de Investigación (ES) No Yes 41.81 -4.93 845 5 NOAA x

CMN Mt Cimone (IT) Yes No 44.17 10.68 2165 7 WDCGG x

GAT Gartow (DE) No No 53.07 11.44 69 341 ICOS V

HEI Heidelberg (DE) No No 49.42 8.68 113 30 INGOS x

HPB Hohenpeissenberg (DE) No No 47.8 11.01 934 131 ICOS x

HPB Hohenpeissenberg (DE) No Yes 47.8 11.02 936 5 NOAA x

HTM Hyltemossa (SE) No No 56.1 13.42 115 150 ICOS x

HUN Hegyhatsal (HUN) No No 46.96 16.65 248 96 INGOS + HMS x

HUN Hegyhatsal (HUN) No Yes 46.95 16.63 248 96 NOAA x

IPR Ispra (IT) No No 45.81 8.64 210 16 ICOS x

JFJ Jungfraujoch (CH) Yes No 46.55 7.99 3570 10 WDCGG x

KAS Kasprowy Wierch (SVK) Yes No 49.23 19.98 1987 2 AGH x

KIT Karlsruhe (DE) No No 49.09 8.42 110 200 ICOS V

KRE Kresin u Pacova (CZE) No No 49.57 15.08 534 250 ICOS x

LIN Lindenberg (DE) No No 52.17 14.12 73 98 ICOS x

LMP Lampedusa (IT) No Yes 35.51 12.61 45 5 NOAA x

LUT Lutjewad (NL) No No 53.40 6.35 1 60 ICOS x

MHD Mace Head (IRL) No No 53.33 -9.90 5 10 AGAGE x

MHD Mace Head (IRL) No Yes 53.33 -9.90 5 21 NOAA x

NOR Norunda (SE) No No 60.09 17.48 46 100 ICOS x

OPE Observatoire pérenne (FR) No No 48.56 5.50 390 120 LSCE x

ORL Orleans (FR) No Yes 47.83 2.50 170 1467-1634 LSCE x

OXK Ochsenkopf (DE) Yes Yes 50.03 11.81 1022 163 NOAA x

2.2.9 Model-data mismatch

We use a model-data mismatch of 10 ppb + 30% of the mean (over the entire inversion period) emitted signal (CHE
4 ) in the for-

ward model simulations using the prior emissions for all observations. We assume uncorrelated errors (diagonal observation-

error covariance matrix R). The reasoning for scaling the model-data mismatch with the mean instead of the instantaneous340

emission signal is that the latter approach would generally results in higher uncertainties for measurements with high mole

fractions and, hence, those measurements that contain the largest regional signal would receive the lowest weight in the inver-
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Table 1. continued

ID station name M F latitude longitude elevation inlet height network T

[m] [m]

PAL Pallas (FIN) No No 67.97 24.12 560 7 WDCGG + ICOS x

PAL Pallas (FIN) No Yes 67.97 24.12 565 5 NOAA x

PDM Pic du Midi (FR) Yes No 42.94 0.14 2877 10 LSCE x

PDM Pic du Midi (FR) Yes Yes 42.94 0.14 2877 0 LSCE x

PUY Puy de Dome (FR) Yes No 45.77 2.97 1465 10 ICOS x

PUY Puy de Dome (FR) Yes Yes 45.77 2.97 1465 10 LSCE x

RGL Ridge Hill (UK) No No 52.00 -2.54 204 90 DECC x

SAC Saclay (FR) No No 48.72 2.14 160 100 WDCGG x

SMR Hyytiala (FIN) No No 61.85 24.29 181 125 ICOS x

SNB Sonnblick (AU) Yes No 47.05 12.96 3106 5 WDCGG V

SSL Schauinsland (DE) No No 47.90 7.92 1205 6 WDCGG x

SVB Svartberget (SE) No No 64.26 19.78 235 150 ICOS V

TAC Tacolneston (UK) No No 52.52 1.14 56 185 DECC x

TOH Torfhaus (DE) No No 51.81 10.54 801 147 ICOS x

TRN Trainou (FR) No No 47.96 2.11 131 180 LSCE x

UTO Uto (FIN) No No 59.78 21.37 8 57 ICOS x

WAO Weybourne (UK) No No 52.95 1.12 17 10 UEA x

ZSF Zugspitze (DE) Yes No 47.42 10.98 2667 3 WDCGG x

sion. More importantly, mismatches between real and simulated pollution events could then lead to overestimated uncertainties

where an event occurred in the model but not in the observations and underestimated uncertainties in the opposite situation.

However, we still want to account for the overall higher uncertainty at sites which are more strongly exposed to local emissions.345

The use of a model-data mismatch based on instantaneous tracer signals is tested in one sensitivity experiment.

2.3 Sensitivity experiments

Numerous choices such as the length of the assimilation window, the size of the ensemble or the a priori error correlation

length scale have to be made before starting an inversion. The settings for the reference inversion were motivated by previous

studies but are to some extent still arbitrary. To evaluate the impact of these choices, additional sensitivity experiments were350

conducted by systematically varying individual settings. An overview of these experiments is presented in Table 2. We did not

test a longer assimilation window of 20 instead of 10 days, which would constrain fluxes over 40 instead of 20 days, as tests

showed that after 20 days of simulation usually almost no regional tracer mass is left in the model domain. This means that

after 20 days no more flux signal can be "seen" by the observations. Like the reference inversion, all sensitivity inversions are
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run for the period 02.01.2018 - 03.03.2018. The short period of 2 months is justified as the results of the performance in all355

synthetic inversions equilibrated after 2 assimilation windows and didn’t change significantly afterwards.

– The setup of the reference inversion described in Sect. 2.2 is labeled as case 1.

– In three further inversions we test the sensitivity towards a lower and larger number of ensemble members (cases 2

and 3) as well as towards a smaller model-data mismatch uncertainty (case 4), which only corresponds to the 2 ppb

measurement noise added to the pseudo-observations and which represents the ideal scenario in which no transport error360

has to be accounted for.

– The influence of the Kalman Gain localization is investigated by not applying any localization (case 5) or increasing the

σ from 600 to 1200 km (case 6).

– In case 7, a different field of true scaling factors is applied to produce the pseudo-observations, in which 11 large regions

are uniformly scaled (labelled as "by region" in Table 2) instead of the randomly drawn but spatially correlated true365

scaling factors of the reference inversion (labelled as "spatially correlated" in Table 2).

– A different state propagation model for the mean state is tested in case 8, which propagates the once optimized state

vector of the previous window by 100% instead of 66%.

– Three cases (9-11) are used to test the optimization of the background mole fractions as described in Sect. 2.2.6. We

set the relative standard deviation for the 8 dimensionless state vector parameters to 0.01. In case 9, the 8 background370

tracer mole fractions are uniformly scaled by 0.99. In case 10, instead, 8 different scaling factors (randomly drawn with

a standard deviation of 1%) are applied to the 8 inflow regions. Case 11 is similar to case 10 but the scaling factors

for the 8 regions additionally vary with time. This is probably the most realistic experiment capturing the possibility

that large-scale biases in a global model vary both geographically and with time. For this case, a second set of "true"

background scaling factors is selected. The true scaling factors linearly move with every 10 d window from the first set375

to this second set.

– Case 12 tests the sensitivity to the assimilation of 4 more stations (which are the validation sites in our real data appli-

catoin), 3 in central Europe and 1 in Scandinavia. These stations (Gartow (DE), Karlsruhe (DE), Svartberget (SE) and

Sonnblick (AT)) are indicated in Table 1 with "V" in the column "T".

– In case 13 we use a model-data mismatch which is computed from instantaneous CHemis
4 values instead of the mean380

values over the inversion period (10+0.3 CHemis
4 instead of 10+0.3 CHemis

4 ).

– Case 14 tests the ability of the system to capture temporally varying emissions. For this case, similar to the temporal

varying background scaling factors in case 11, a second set of "true" scaling factors is selected for the emissions in

different categories and regions, again randomly drawn from a normal distribution with the same variances as given in

the a priori uncertainties. These true emissions linearly move with every 10 d window from the first set (shown in Fig.385
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Table 2. Overview of the synthetic simulations. In the column "mdm" the formula used for calculating the model-data mismatch is specified.

The column "variation" indicates if the emissions varied temporarily in the simulation that was used to produce the pseudo-observations. The

column "bg" indicates if the background mole fractions were varied in the simulation producing the pseudo-observations and optimized in

the inversion. Boldface numbers or text signify changes compared to the reference inversion.

Case members mdm [ppb] localization variation bg perturbation remark

1 192 10 + 0.3 CHemis
4 σ=600 km None None spatially correlated reference

2 50 10 + 0.3 CHemis
4 σ=600 km None None spatially correlated

3 300 10 + 0.3 CHemis
4 σ=600 km None None spatially correlated

4 192 2 σ=600 km None None spatially correlated

5 192 10 + 0.3 CHemis
4 None None None spatially correlated

6 192 10 + 0.3 CHemis
4 σ=1200 km None None spatially correlated

7 192 10 + 0.3 CHemis
4 σ=600 km None None by region

8 192 10 + 0.3 CHemis
4 σ=600 km None None spatially correlated full state propagation

9 192 10 + 0.3 CHemis
4 σ=600 km None yes spatially correlated bg uniformly scaled

10 192 10 + 0.3 CHemis
4 σ=600 km None yes spatially correlated 8 λbg

11 192 10 + 0.3 CHemis
4 σ=600 km None yes spatially correlated 8 λbg(t)

12 192 10 + 0.3 CHemis
4 σ=600 km None None spatially correlated 4 additional stations

13 192 10 + 0.3 CHemis
4 σ=600 km None None spatially correlated mdm from instant. values

14 192 10 + 0.3 CHemis
4 σ=600 km yes None spatially correlated

15 192 10 + 0.3 CHemis
4 σ=600 km None None spatially correlated 3 emission categories

6, left column) to this second set such that the second set represents the true emissions at the end of the inversion period

(03.03.2018).

– Finally, case 15 tests the capability of the system to optimize the agricultural emissions separately from the remainder

of the anthropogenic emissions. In this case, the emissions from agriculture represented the category with the largest

domain total flux (15.5 Tg/yr), followed by non-agricultural anthropogenic emissions (14.2 Tg/yr) and natural sources390

(7.9 Tg/yr).
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Figure 6. Map showing the "true" scaling factors (a and b) and the 2-month mean a posteriori scaling factors (c and d) for the two optimized

emission categories for the reference inversion. Overlaid are the measurement locations used in the inversion with the size of the circle

proportional to the number of observations available.

3 Results and discussion

3.1 Idealized Setup

3.1.1 Reference Inversion

Figure 6 shows the "true" (left) and the mean (from 12.01.2018 - 03.03.2018) a posteriori scaling factors (right) for the two395

optimized emission categories. It can be seen that the optimized state is close to the true state for the anthropogenic emissions

in regions with high emissions (see Fig. 3), large deviations of λ from 1 in the true state and/or good coverage with observation

sites, which is the case in central Europe. The a posteriori scaling factors for the natural emissions stay close to 1 and do

not agree well with the true state, which means that the natural fluxes cannot be constrained independently from the larger

anthropogenic fluxes. It is important to note that the performance of the optimization is strongly depending on the choices of400

the true state. Especially for the lower natural emissions, a different set of true scaling factors may yield different results. In

this setup, the inability to reproduce the true state of the natural emissions may come from the fact that the perturbations are

relatively small in areas with large emissions (e.g. in Scandinavia) and that the density of observation stations in Scandinavia

is low.

Figure 7 shows the total emissions (a) as well as the a priori (b) and a posteriori (c) error of the total emissions summed405

over both categories compared to the true state. The improvement (prior - posterior error) in terms of total flux is shown in (d).
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Figure 7. Maps showing the total emissions (a), the a priori (b) and a posteriori (c) deviations of the fluxes and the total improvement (d) for

the reference inversion.

The results were computed from the mean fluxes for 12.01.2018 - 03.03.2018. The first optimization window (02.01.2018 -

12.01.2018) is discarded as this first window is only optimized once by the smoother (see Fig . 2). Almost every grid cell with

deviations from the true state improves clearly in the a posteriori field, especially in the regions with a high station density in

central Europe and on the British Isles. The mean absolute error of the2-month mean total fluxes in this setup is reduced by410

18.8% in the a posteriori compared to the a priori emissions.

The system is thus capable of optimizing the total anthropogenic emissions (and, as shown in case 15, also agricultural

emissions) of Europe. However, the system is not able to optimize the natural CH4 emissions individually, which have com-

paratively small fluxes.

3.1.2 Sensitivity Simulations415

For each of the 15 sensitivity inversions (see Table 2) we quantify the reduction of mean absolute error in the a posteriori

compared to the a priori emissions expressed as a percentage. The results are summarized in Table 3. They show the error re-

duction for the total emissions based on the 10 d windows (1−Ee
a/E

e
b ) as well as for the 2 emission categories (anth,natural)

individually (for case 15 also the agricultural emission error reduction is shown). For the 3 inversions with background opti-

mization, the reduction in the error of the 8 corresponding state vector parameters
(
1−Es,bg

a /Es,bg
b

)
is shown additionally.420

The reduction of the a posteriori mean absolute error of the mean total emissions fluxes for the considered period (i.e, of the

temporally averaged fluxes), is shown in the column (1−Ee,mean
a /Ee,mean

b ). All results are computed for a 2-month period

(12.01.2018 - 03.03.2018).

In the reference inversion (case 1), the error in the total a priori fluxes is reduced by 18.1%, while the error of the 2-month

mean total fluxes is reduced by 18.8%. The anthropogenic emissions show an error reduction of 21.0%, whereas the error for425

the natural emissions increased by 2.7%.
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The performance for the total fluxes as well as for the individual categories decreases as expected when reducing the number

of ensemble members (case 2) or switching off the localization of the Kalman Gain matrix (case 5), highlighting the importance

of using the loacalization techinque. Other sensitivity inversions show similar performance as the reference inversion, such as

inversions with 300 instead of 192 ensemble members (case 3), which justifies the use of 192 ensemble members in our430

setup. Also a longer localization length scale (case 6) or adding 4 additional stations in central Europe, where the observation

network is already dense (case 11), don’t change the performance significantly. The use of a model-data mismatch based on

instantaneous concentration values (case 13) instead of the average concentrations also doesn’t change the performance. As

explained in Sect. 2.2.9, we expect the use of a model-data mismatch based on mean instead of instantaneous concentrations to

have advantages when assimilating real data where we have a real transport error between simulated and real tracer transport.435

This situation is not mimicked in this idealized setup. Propagating the state vector by 100% (case 8) improves the error

reduction significantly. Such an improvement is to be expected for an idealized setup with constant emissions, perfect transport

model and without any measurement noise. The same is true for case 3 with a very small model-data mismatch (2 ppb), as

a lower model-data mismatch gives more weight to the unbiased pseudo-observations and hence pulls the a posteriori scaling

factors closer to the "true" scaling factors. A significantly better performance (especially for the natural fluxes) is reached in440

case 7, where a different type of "true state" (11 scaled European regions) is used. This produces a more distinct flux signal,

which is easier to optimize. Disturbing the background with a constant factor (0.98) and optimizing the background mole

fractions with 8 additional state vector parameters (case 10) influences the optimization of the emissions only minimally. This

is due to the fact that the error in the 8 state vector parameters representing the background mole fractions is reduced by 91.1%.

Similarly, using 8 different (but still temporarily constant) scaling factors for the background mole fractions (case 10) reduces445

the performance of the emission optimization very little. The error in the 8 state vector parameters representing the background

mole fractions is again reduced strongly by 88.2%. As for the emissions, also the performance of the background optimization

is highly dependent on the chosen "true" scaling factors. Due to the dominating westerly winds, the 2 scaling factors at the

western border of the domain can be constrained the best. Using 8 different scaling factors for the background mole fractions

which additionally change in time (case 11), shows performance of the emission optimization similar to cases 9 and 10, but450

shows a worse performance in optimizing the 8 background state vector parameters (which are now time-varying). The reason

for this is one single background parameter (representing the inflow region 1, see Fig. 4). As there is almost no inflow from this

region and the distance from this region to the next observation stations is very large, this region cannot be constrained. When

only looking at the inflow regions 2-7, the error in the scaling factors is reduced by 84.7%, which is a similar perfomance as in

the cases 9 and 10. In case 14, where the scaling factors of the true state are time-dependent, i.e., where they gradually move455

to a second set of scaling factors, the improvement of the total flux is even slightly better than in the reference inversion, which

shows that the system is also capable of capturing slowly varying emission strengths. Case 15 finally shows that agricultural

emissions individually can be optimized well (17.8%) but then the error reduction of the remaining anthropogenic sources

without the agricultural emissions significantly drops from 21.0% to 6.8%.

In all cases, the total error reduction is based on the error reduction of the anthropogenic emissions (or the agriculture460

emissions in case 15) while the error in the natural emissions almost always increase, especially for the cases that perform
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Table 3. Statistical results of the sensitivity simulations for the period 02.01.2018 - 03.03.2018. 1-Ee
a/E

e
b : the a posteriori mean absolute error

of the total emissions fluxes (Ee
a) compared to the a priori situation at the beginning of the inversion (Ee

b), expressed as a percentage reduction

on the prior. The statistics are computed considering every single flux component (every single grid cell and every single assimilation

window). 1-Ee,anth
a /Ee,anth

b and 1-Ee,natural
a Ee,natural

b show the same as 1-Ee
a/E

e
b , but for the 2 categories individually. 1-Es,bg

a /Es,bg
b

denotes the reduction of MAE for the 8 state vector parameters optimizing the background CH4 mole fractions. 1-E,mean
a /Ee,mean

b finally

shows the same as 1-Ee
a/E

e
b , but for the mean fluxes during the period instead of considering the individual assimilation windows. Boldface

numbers signify the reference inversion.

Case Sensitivity 1-E
e
a

Ee
b

1-E
e,anth
a

E
e,anth
b

1-E
e,natural
a

E
e,natural
b

1-E
e,agri
a

E
e,agri
b

1-E
s,bg
a

E
s,bg
b

1-E
e,mean
a

E
e,mean
b

1 reference 18.1% 21.0% -2.7% - - 18.8%

2 50 member 14.1% 16.9% -6.4% - - 14.9%

3 300 members 18.6% 21.3% -1.8% - - 19.2%

4 small mdm 23.4% 25.2% 2.0% - - 28.0%

5 no localization 15.7% 20.0% -10.3% - - 16.4%

6 localization w. L=1200 km 18.8% 22.4% -5.7% - - 19.4%

7 different true state 30.8% 29.8% 16.6% - - 32.6%

8 full state propagation 20.2% 23.4% -2.6% - - 20.8%

9 bg uniformly scaled 17.9% 21.0% -3.6% - 91.1% 18.5%

10 8 λbg 17.6% 20.8% -4.0% - 88.2% 18.3%

11 8 λbg(t) 18.0% 21.3% -3.1% - 49.7% 18.7%

12 4 more stations 18.5% 21.3% -2.6% - - 19.1%

13 mdm from instant. values 17.6% 20.1% -2.0% - - 18.1%

14 temp. varying true state 20.3% 21.1% -1.9% - - 23.4%

15 3 emission categories 16.2% 6.8% 3.0% 17.8% - 16.6%

less well in general (e.g., when only using 50 ensemble members or switching off localization). This suggests that the natural

emissions cannot be estimated independently from the anthropogenic. This is different for case 7 with a different type of true

state, which highlights the impact of the chosen true state on the performance of the inversions.

The sensitivity runs allow to draw conclusions for the application with real observations. They emphasize the significance465

of the localization technique for optimal performance, suggesting that a σ of 600 km is a favorable selection. Additionally, the

findings indicate that 192 ensemble members are sufficient. As a "perfect transport model" without transport error is used in

this idealized setup, these inversions show the upper limit of what we can expect from the application with real observations:

the total fluxes and anthropogenic emissions can be well optimized, this is especially true for central and western Europe

with good observational coverage. However, categories with small fluxes (such as natural emissions in Central Europe) can470

hardly be optimized independently. It is also to be expected that the improvement in regions with few measurements (e.g.,
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Figure 8. Map showing the mean a priori (a, d) and a posteriori (b, e) fluxes for the year 2018 as well as the difference (c, f) for the

anthropogenic (a-c) and natural sources (d-f). The results for 2008 and 2013 are shown in the appendix B.

South-Western and Eastern Europe) will be very small. We further see that the system can correct slowly varying large-scale

background biases of around 1% very well.

3.2 Real Data Application

3.2.1 Posterior Fluxes and Background Mole Fractions.475

Figure 8 shows maps of annual mean CH4 emissions for 2018 for the a priori (left), a posteriori (middle) and the difference

between the two (right) for the anthropogenic (top) and natural (bottom) fluxes. The anthropogenic emissions show a strong

upward correction of up to 25 mgm−2 day−1 in the Benelux countries and a moderate upward correction in northwestern

France and southern England. In the rest of the domain, the anthropogenic emissions are corrected downwards, especially over

Ireland, but also in the Alpine region and in southern Finland. In the annual mean, the natural fluxes are corrected downward480

almost everywhere, especially over Italy (up to -22%), the British Isles (-15%), Romania/Moldova (-10%) and Scandinavia

(-10%).

Over the Iberian Peninsula, North Africa, and Russia, the increments are generally very low in both categories, as those

regions are poorly or not at all constrained by observations. The downward correction of the natural fluxes in Italy and Ro-

mania/Moldova is most likely due to the very high a priori geological emissions in these regions. The downward correction of485
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Figure 9. Maps showing the differences in the a posteriori uncertainties compared to the a priori uncertainties for the total emissions (a),

anthropogenic emissions (b) and natural emissions (c). The fraction of the covariance on the total variance is shown in (d). Optimized fluxes

are based on an inversion with real observations.

the Scandinavian natural fluxes is possibly due to the unusually hot summer 2018, though the study of Thompson et al. (2022)

did not find a clear anomaly of CH4 fluxes in this region in 2018. The a priori wetland and peatland emissions provided by

JSBACH-HIMMELI for the year 2018 are a repetition from the year 2017 and hence do not account for the lower CH4 emis-

sions expected for these sources during a hot and dry summer caused by low water table levels (e.g. Bridgham et al., 2013).

For the years 2008 and 2013, the system corrects the natural fluxes in Northern Europe much less downward than in 2018. This490

can be seen in the appendix A in Fig. A1. It shows the time series of the a priori and a posteriori fluxes for the two categories

and the three years 2008, 2013 and 2018 for the EU28 countries as well as for northern, western, eastern, and southern Europe.

It also shows less downward correction of anthropogenic fluxes in Northern Europe for the years 2008 and 2013 which could

be an effect of cross-sector covariances (see Fig. 9d).

Figure 9 presents maps of yearly mean uncertainty reductions (negative values mean a reduction in uncertainty) for the total495

emissions (a), anthropogenic emissions (b) and natural emissions (c). The fraction of the covariance on the total variance is

shown in (d). The total uncertainty is computed from the variances of the two categories as well as the covariances between

them, for each gridbox. Since the covariances are typically negative, the total uncertainty reduction is larger than the sum of

the uncertainty reduction in the two categories. This is mainly the case in southwestern England, the Alpine region and to a

lesser extent also around the Scandinavian measurement locations. Negative covariances mean that in those regions the system500

cannot distinguish well between the two fluxes, i.e., an improvement match to observed mole fractions could be achieved by

increments of either anthropogenic or natural fluxes in these regions.

As described in Sect. 2.2.6, the system not only optimizes emissions but also background mole fractions in 8 different

boundary regions. The effect of this optimization on the mole fractions of the background field in the domain is shown in

Fig. 10, which displays the mean correction of the background field in the lowest model level for 2018, spatially, and as a time505

series of the domain-wide total. The yearly mean mole fraction difference shows only very small corrections between 0 and
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Figure 10. The difference of the a posteriori to a priori background dry air mole fractions in the lowest model layer shown as a yearly mean

on a map (a) and as a time series of of the domain-wide total (b).

1.6 ppb of the background field, mainly downwards, except for the northeasterly inflow region. The time series shows that the

domain-total corrections were slightly upward in spring, while the corrections were downwards during early summer and at

the end of the year. The minor adjustments of the background mole fractions indicate a very small bias in the used reanalysis

product CAMSv19r1, significantly smaller than what we assumed in the sensitivity simulations (cases 10-12).510

3.2.2 Time Series at Measurement Sites

Figure 11 shows examples of time series for the period 30 March - 13 June 2018 at the stations Lutjewad (NL), Hyytiälä

(FI) and Heidelberg (DE). Simulated dry air mole fractions (from a priori emissions in red and a posteriori emissions in blue)

are compared to observations (in black). Additionally, the assimilated afternoon measurements (black dots) and the simulated

background tracer dry air mole fractions are shown, in dark green for the a posteriori and light green for the a priori. The light515

green line is mostly overlayed by the dark green line. At all three stations, the simulation with the a posteriori emissions is

closer to the observations. Furthermore, the a priori background mole fractions match the lowest measured mole fractions in

this period, indicating that the bias of the background field is very low.

Table 4 summarizes the statistics of the model performance at the in-situ measurement stations assimilated in the inversion

(first part of the table). It shows the root-mean squared error (E) and Pearson correlation (r2) both for dry air mole fractions at520

hours where observations were assimilated (i.e., afternoon values at non-mountain sites and night-time values at mountain sites)
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Figure 11. Time series of the simulated dry air mole fractions with a priori (red) and a posteriori (blue) emissions. Additionally, the back-

ground dry air mole fractions are indicated in dark and light green for the a posteriori and a priori, respectively, as well as the observations

(black) with the reported measurement uncertainty (gray shaded, often too small to see) for the period 30 March - 13 June at the stations

Lutjewad (NL), Hyytiälä (Fi) and Heidelberg (DE). The assimilated afternoon measurements are shown as black dots. The right column

shows the residuals of the assimilated observations in the a posteriori simulation for the same period.

and for all 24 hours per day. For the assimilated stations, the error always decreases and the correlation always increases for the

hours that were assimilated. Also, the error almost always decreases and the correlation mostly increases for the observations

during the entire day. The a posteriori correlation coefficients (r2) for the assimilated observations range from a minimum of

0.59 at the station Ispra (Italy) to 0.93 at the station Ridge Hill (UK). They are above 0.7 at 25 out of 28 stations (89%) and525

above 0.8 at 19 stations (68%). These values are similar to those in the high-resolution inversion study of Bergamaschi et al.

(2022) and suggest an excellent model performance typically explaining 70-90% of the observed variance.

The bottom of Table 4 shows the same statistics for the validation sites, which were not assimilated in the inversion. At

these validation sites, the error always decreases and the correlation always increases or stays the same for the afternoon hours

(night-time hours for the mountain-site Sonnenblick (labelled with SNB)). When considering all 24 hourly averages per day,530

the error mostly decreases and the correlation mostly increases.
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Table 4. Statistical results at measurement stations assimilated in the inversion and used for validation (bottom). The root-mean squared error

(E) and Pearson correlation (r2) are given once for dry air mole fractions only at hours where observations were assimilated (denoted with

’assim.’) and for all 24 hours per day (denoted with ’all obs.’).

Station Eprior Epost r2prior r2post Eprior Epost r2prior r2post

assim. assim. assim. assim. all obs. all obs. all obs. all obs.

[ppb] [ppb] [ppb] [ppb]

BIR 19.2 11.9 0.92 0.95 21.3 13.9 0.89 0.91

CMN 17.1 13.6 0.78 0.80 21.2 17.6 0.69 0.73

HEI 27.4 23.0 0.85 0.87 62.0 49.7 0.66 0.68

HPB 25.3 19.3 0.80 0.89 29.9 25.8 0.75 0.81

HTM 18.5 13.6 0.93 0.93 20.3 15.7 0.91 0.92

HUN 37.2 32.3 0.66 0.73 41.3 38.9 0.59 0.65

IPR 71.2 55.4 0.59 0.75 137.2 134.8 0.48 0.44

JFJ 11.4 10.6 0.85 0.87 13.7 12.7 0.79 0.82

KAS 22.1 17.4 0.65 0.74 26.6 23.3 0.57 0.63

KRE 18.6 14.7 0.87 0.91 22.7 20.2 0.81 0.83

LIN 22.3 16.1 0.89 0.94 25.1 22.2 0.86 0.87

LUT 78.8 56.1 0.75 0.86 106.5 87.5 0.76 0.79

MHD 13.6 8.7 0.82 0.88 16.8 10.4 0.76 0.84

NOR 21.3 11.0 0.90 0.93 23.9 12.2 0.87 0.91

OPE 19.3 16.2 0.88 0.91 22.1 10.5 0.85 0.86

PAL 17.6 9.4 0.79 0.91 19.5 11.7 0.73 0.86

PDM 7.5 7.4 0.95 0.95 8.39 8.37 0.92 0.92

PUY 17.2 16.5 0.78 0.82 18.5 17.9 0.75 0.78

RGL 15.3 14.2 0.93 0.94 20.1 20.9 0.88 0.87

SAC 28.7 21.7 0.86 0.91 35.2 30.3 0.83 0.84

SMR 27.1 13.6 0.86 0.91 30.0 15.1 0.83 0.90

SSL 19.4 15.6 0.78 0.83 19.6 17.9 0.76 0.78

TAC 20.8 19.3 0.90 0.91 25.0 26.7 0.85 0.84

TOH 16.5 14.3 0.82 0.85 18.3 17.8 0.78 0.79

3.2.3 National-Scale Emissions

Figure 12 compares 2018 a priori and a posteriori country total emissions for both anthropogenic (left) and natural sources

(right) together with their uncertainties for the 15 largest countries in Europe and the Benelux countries. Anthropogenic emis-
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Table 4. continued

Station Eprior Epost r2prior r2post Eprior Epost r2prior r2post

assim. assim. assim. assim. all obs. all obs. all obs. all obs.

[ppb] [ppb] [ppb] [ppb]

TRN 20.5 17.2 0.87 0.91 24.6 23.4 0.83 0.85

UTO 27.0 13.8 0.81 0.92 26.7 14.2 0.81 0.91

WAO 28.1 20.1 0.84 0.92 31.3 31.2 0.83 0.83

ZSF 15.3 12.1 0.77 0.82 16.3 13.2 0.75 0.80

GAT 16.59 16.49 0.88 0.88 21.07 20.53 0.82 0.83

KIT 25.40 20.02 0.89 0.90 30.08 27.47 0.84 0.82

SNB 15.09 12.99 0.76 0.80 16.11 13.85 0.75 0.78

SVB 17.16 11.20 0.89 0.92 17.76 11.53 0.88 0.91

sions are additionally compared to the values reported to UNFCCC (including the reported uncertainty range) for 2018 (year535

of report 2021). The a posteriori fluxes in the Benelux countries as well as Germany, France, Norway and Finland are higher

than reported. On the other hand, the a posteriori fluxes are lower in the remaining countries. The strong downward correction

of anthropogenic emissions in Italy is likely an effect of the very high natural (geological) emissions. Although they are cor-

rected downwards strongly in the inversion, the a posteriori natural emissions in Italy still seem unrealistically high, potentially

leading to a misattribution of anthropogenic and natural emissions in the a posteriori.540

For the sum of all EU27 countries + United Kingdom, the inversion reduces the a priori emissions from 19.9 Tg yr−1 to

17.4 tg yr−1 in the a posteriori. The reported value for the EU27 + UK for the year 2018 is 17.8 Tg yr−1. We performed two

additional inversions for the years 2008 and 2013. In these years, the a posteriori fluxes are also lower than the a priori, but

still slightly higher than the reported values (2008: a priori: 21.8 Tg yr−1, a posteriori: 21.3 Tg yr−1, reported: 20.5 Tg yr−1;

2013: a priori: 20.5 Tg yr−1, a posteriori: 18.9 Tg yr−1, reported: 18.6 Tg yr−1).545

4 Conclusions

We developed a new inverse modeling system combining the atmospheric transport model ICON-ART with the ensemble

Kalman smoother data assimilation system CTDAS, and evaluated its performance in idealized and real CH4 inversions over

Europe. For this purpose, we extended ICON-ART with modules for efficient handling of emissions and online generation of

the ensemble of perturbed fluxes and with a nudging scheme to keep the simulations close to analyzed meteorology. We showed550

that with this system, we can optimize total anthropogenic European CH4 fluxes on a national-scale using pseudo-observations

in an idealized setup using a realistic network of measurement stations. However, from the subcategories anthropogenic and

natural, the observations can only successfully constrain the larger source of the anthropogenic emissions (and in one sensitivity
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Figure 12. Country total emissions for the year 2018 in the a priori (red) and a posteriori (blue) for anthropogenic and natural sources

separately as well as the reported anthropogenic emissions to UNFCCC (green, if available). The black bar indicates the total uncertainty,

as derived from the error covariance matrices (for the a priori and a posteriori emissions) or as reported to UNFCCC by the countries. The

results for 2008 and 2013 are shown in the appendix B.

inversion also the agricultural emissions). The natural emissions in turn, cannot be constrained independently. Furthermore, we

have investigated the sensitivities towards different parameters of the inversions setup with 15 sensitivity runs in the idealized555

setup. We then applied the system to real in-situ observations from 28 European stations. We used a priori anthropogenic fluxes

from the EDGARv6 inventory and a priori natural fluxes from various sources (peatlands, mineral soils, inland water, termites,

ocean, biofuels and biomass burning as well as geology).

Our results show that the anthropogenic emissions are significantly underestimated in EDGARv6 for the year 2018 in

the Benelux countries (by ca. 25%) and to a weaker extent in northwestern France and southern England. In the rest of the560

domain, the anthropogenic fluxes are corrected downwards by the inversion. The natural fluxes are corrected downwards almost

everywhere, especially over Italy and Romania/Moldova where both regions have very high a priori geological emissions in

the data set from Etiope et al. (2019) (scaled to a global total of 15 Tg) as well as in England and Scandinavia (during the

hot and dry summer 2018). For most countries, the a posteriori country-total emissions are closer to the values that were

independently determined and reported to UNFCCC than the a priori emissions. The total anthropogenic fluxes for the EU27565

+ UK is corrected downwards from 19.9 Tg yr−1 to 17.4 Tg yr−1. The emissions reported to UNFCCC (inventory year 2021)

are 17.8 Tg yr−1.

The a posteriori anthropogenic emissions in our study are lower than in most other regional inversions (Bergamaschi et al.,

2018, 2022; Petrescu et al., 2023). It is important to emphasize that in the various inversions partially other in-situ observations
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or satellite measurements were assimilated. While the a posteriori anthropogenic emissions in our study are lower, the pattern570

of the emission increments are comparable to Bergamaschi et al. (2022). However, our results for anthropogenic emissions are

comparable to the results for Europe from global inversions (Deng et al., 2022; Petrescu et al., 2023), both when these assim-

ilate in-situ measurements or satellite observations. It is noticeable that the inversion strongly corrects the overall European

emissions downwards such that the independently determined emissions that are reported to the UNFCCC are better matched.

However, the large spread in the various inversions of recent studies shows that there is still substantial uncertainty with inverse575

emission estimation of European emissions and care needs to be taken to assign realistic a posteriori uncertainties. The most

prominent pattern in our results is the increase over the Benelux countries. This increase of emissions is also visible in other

inversion studies, at least in parts of Benelux (e.g. Bergamaschi et al., 2022). This may indicate higher emissions than reported

for 2018 in this region due to agricultural emissions.

This overall downward correction is more pronounced for 2018 than for the other two years where we applied our system580

(2008 and 2013). The reason is most likely the unusually hot and dry summer 2018, which was not taken into account in the a

priori peatland emissions and which influences the a posteriori anthropogenic emissions due to cross-sector covariances.

This study presents the new CTDAS-ICON system and shows its application for CH4 in an idealized setup and with in-

situ measurements. In future applications, the system could be extended to assimilate additionally satellite observations or

estimate N2O or CO2 emissions, the latter requiring an extension of ICON-ART with a biosphere-atmosphere exchange flux585

model. The large uncertainties associated with inverse modelling could be addressed by extending the system with a flow-

dependent model-data mismatch, where the emission flux ensemble is coupled to meteorological ensemble for a more realistic

representation of the model transport error.

Appendix A: Further Results 2018
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Figure A1. Time series for the years 2008, 2013 and 2018 of a priori (red) and a posteriori (blue) CH4 emissions for the EU28 countries

as well as for northern (Norway, Sweden, Finland, Denmark, Estonia, Latvia, Lithuania), western (United Kingdom, Ireland, Netherlands,

Belgium, Luxembourg, France, Georgia, Switzerland, Austria), eastern (Poland, Czech Republic, Slovakia, Hungary), and southern (Portugal,

Spain, Italy, Slovenia, Croatia, Greece, Romania, Bulgaria) Europe.
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Appendix B: Results 2008 and 2013590

Figure B1. As Fig. 8 but for the year 2008.

Figure B2. As Fig. 8 but for the year 2013.
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Figure B3. As Fig. 12 but for the year 2008.

Figure B4. As Fig. 12 but for the year 2013.
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