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Abstract.

Global Navigation Satellite System – Radio Occultation (GNSS-RO) and Microwave Radiometry (MWR) are two of the

most impactful spaceborne remote sensing techniques for numerical weather prediction (NWP). These two techniques provide

complementary information about atmospheric temperature and water vapor structure. GNSS-RO provides high vertical reso-

lution measurements with cloud penetration capability, but the temperature and moisture are coupled in the GNSS-RO retrieval5

process and their separation requires the use of a-priori information or auxiliary observations. On the other hand, the MWR

measures brightness temperature (Tb) in numerous frequency bands related to the temperature and water vapor structure, but is

limited by poor vertical resolution (>2km) and precipitation.

In this study we combine these two technologies in an optimal estimation approach, 1D Variation method (1DVar), to better

characterize the complex thermodynamic structures in the lower troposphere. This study employs both simulated and opera-10

tional observations. GNSS-RO bending angle and MWR Tb observations are used as inputs to the joint retrieval, where bending

can be modeled by an Abel integral and Tb can be modeled by a Radiative Transfer Model (RTM) that takes into account at-

mospheric absorption, and surface reflection and emission. By incorporating the forward operators into the 1DVar method,

the strength of both techniques can be combined to bridge individual weaknesses. Applying 1DVar to the data simulated from

Large Eddy Simulation (LES) is shown to reduce GNSS-RO temperature and water vapor retrieval biases at lower troposphere,15

while simultaneously capturing the fine-scale variability that MWR cannot resolve. A sensitivity analysis is also conducted

to quantify the impact of the a-priori information and error covariance used in different retrieval scenarios. The applicability

of 1DVar joint retrieval to the actual GNSS-RO and MWR observations is also demonstrated through combining collocated

COSMIC-2 and Suomi-NPP measurements.

Copyright statement. © 2022. California Institute of Technology. Government sponsorship acknowledged20

1

https://doi.org/10.5194/egusphere-2023-85
Preprint. Discussion started: 12 April 2023
c© Author(s) 2023. CC BY 4.0 License.



1 Introduction

Atmospheric profiles of temperature and water vapor are critical geophysical variables to various weather and climate pro-

cesses. Humidity in the lower troposphere (LT), especially the planetary boundary layer (PBL), determines the strength and

depth of convection and influences circulations and cloudiness, and indirectly affects atmospheric circulations through non-

local influence on infrared irradiances (Stevens et al , 2017). The thermodynamic effect of atmospheric moisture plays an25

important role in strong positive feedback on global warming and increased subtropical dryness (Sherwood et al, 2010), and

negative feedback through low cloud formation (Mülmenstädt et al, 2021; Zhou et al, 2016). Also, surface air temperature and

atmospheric water vapor content are found in Fujita and Sato (2017) to be connected to extreme precipitation under a warming

climate. In particular, Holloway and Neelin (2009) shows that the vertical structure of the specific humidity, especially in the

free troposphere, is highly correlated to moist convections and rainfalls. To provide accurate measurements of temperature and30

water vapor, the Global Navigation Satellite System – Radio Occultation (GNSS-RO), passive Microwave Radiometer (MWR),

and hyperspectral Infrared Sounders (IR) are the key spaceborne sounding techniques for numerical weather prediction and at-

mospheric science research. In this study we focus on the combination of GNSS-RO with MWR over IR because of simplicity

(lower number of channels) and applicability (better penetration below the thick cloud).

GNSS-RO is a remote sensing technique used to observe the vertical thermodynamic structure from the bending of the35

occulted GNSS signal ray paths that propagate through the stratified atmosphere (Kursinski et al , 1997). By measuring the

time-varying phase of the received signals, the bending angle of each ray path can be computed and inverted to retrieve the

vertical profiles of refractivity, which can be used to retrieve temperature and moisture with a-priori information. With its limb

sounding geometry, GNSS-RO is capable of providing global coverage with high vertical resolution (∼200m) observations. In

addition, the L-band navigation signals used in GNSS-RO can penetrate heavy cloud cover and precipitation and is independent40

of surface emissivity. Numerous GNSS-RO missions have been launched since 1995 and the number of RO observations has

now reached more than 10,000 per day, including the ones from COSMIC-2 (July 2019), METOP-C (November 2018), GRACE

Follow-on (May 2018), Sentinel-6 Michael Freilich (November 2020), and commercial CubeSats that have been deployed in

recent years.

In addition to GNSS-RO, MWR is also commonly used to profile the atmosphere. MWR utilizes multiple frequency bands,45

providing information that can be related to the vertical structure of temperature and water vapor in the atmospheric column

(Rodgers, 2000). The temperature profile is mostly linked to the oxygen absorption frequency bands located between 50− 60

GHz while the water vapor profile can be retrieved from the brightness temperature measurements of 23.8 GHz and 183 GHz

water vapor absorption lines (Liu et al , 2021). Typically, the atmospheric temperature and water vapor profiles are retrieved

along with the surface temperature and emissivity simultaneously through an optimal estimation approach (Boukabara et al ,50

2011). This technology has been extensively utilized in both ground-based and airborne platforms, and numerous MWR instru-

ments have been launched to low earth orbit (LEO) including the Advanced Microwave Sounding Unit (AMSU)/ Microwave

Humidity Sensor(MHS) on NOAA-18, NOAA-19, Metop-A, Advanced Microwave Scanning Radiometer for Earth Observing

System (EOS) (AMSR-E) on Aqua, and Advanced Technology Microwave Sounder (ATMS) on Suomi-NPP. Assimilation of
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observation from AMSU/MHS (Bao et al , 2015), AMSR-E (Kazumori et al , 2008), ATMS (Bormann et al , 2013) in numerical55

weather prediction (NWP) models has shown significant positive impacts.

While both techniques provide high quality observations, each has its own limitations. For example, MWR sounding suffers

from poor vertical resolution (>2km) due to limited number of frequency channels and broad range of weighting functions.

MWR measurements from different bands could also be affected by clouds, precipitation, aerosol, absorption by ozone and

carbon-dioxide, and surface properties, which introduce notable uncertainties in the MWR retrievals. Meanwhile, even though60

GNSS-RO refractivity and bending angle profiles are closely related to the vertical temperature and moisture structures, they

cannot be used to retrieve temperature and water vapor independently without the use of auxiliary information, as explained

in Sec. 2 below. In general, atmospheric profiles from a global weather analysis, such as NCEP or ECMWF, are utilized as

a-priori states, which could be biased or erroneous and significantly impact the final temperature and moisture products derived

from the RO refractivity. In addition, the RO refractivity retrieval itself could be negatively biased due to ducting (Xie et al ,65

2006; Ao , 2007), which will be translated into considerable positive bias in the temperature and negative bias in the moisture

at the top of boundary layer. While several bias-correction methods for RO within PBL have been proposed (Xie et al , 2006;

Wang et al , 2020), they remain challenging to apply in practice.

In this study, an 1-dimension variational (1DVar) estimation approach is implemented to combine GNSS-RO and MWR

measurements and simultaneously retrieve temperature and water vapor profiles that preserve the high vertical resolution70

from GNSS-RO. The idea of combining RO and MWR/IR soundings is not new: several methods have been proposed to

take advantage of these complementary measurements. For example, von Engeln et al (2001) applied an optimal estimation

method to determine the temperature profile from RO bending angle measurements and oxygen line radiance from the passive

microwave limb sounder (MLS). In Borbas et al (2003) the multivariable regression method is used to estimate the atmospheric

states based on the coefficients trained by a set of RO refractivity and MWR/IR brightness temperature observations. The75

simulation results around the the tropopause altitude shows that the RO - IR combination can improve the temperature and

moisture retrievals by 0.5K and 2.5%, respectively, compared to retrievals from IR alone. Ho et al (2007) took a similar

regression approach and expanded the application to the lower troposphere to reduce the impacts of RO refractivity retrieval

bias by introducing AIRS observations. For both studies, the the regression coefficients are calculated from specific training

datasets, which could be biased based on its spatial and temporal distribution. The non-linear behavior between the profile80

variables (temperature and water vapor) and the observables (brightness temperature and refractivity) could also induce errors

in the simple linear regression expressions.

The simulation study conducted in Collard and Healy (2003) shows that by combining RO and nadir sounding (MWR/IR)

measurements using a sequential 1DVar algorithm, two complementary observations can be fused together and "contribute the

greatest impacts to different parts of atmospheric temperature and humidity fields." Collard and Healy (2003) performs 1DVar85

twice to include the background temperature and moisture information with RO refractivity and IR brightness temperature

observations separately. While this approach works well for unbiased measurements, it is known that in the lower troposphere

GNSS-RO refractivity observation could be negatively biased due to ducting which occurs at the top of PBL (Ao , 2007),

phase unwrapping error caused by low SNR conditions (Wang et al , 2016), and possibly small-scaled refractivity fluctua-
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tions(Gorbunov et al , 2015). To reduce the refractivity bias due to ducting, Wang et al (2017) developed an optimal estimation90

algorithm to choose the unbiased profile from a family of solutions with collocated AMSR-E total precipitable water (TPW)

retrievals. However, the Wang et al (2017) study focuses on correcting the bias due to ducting with TPW retrieval, but does

not utilize the full information provided by MWR observations.

In this study, we correct the RO bias and improve the retrieval for both RO and MWR with a more optimized approach by: (1)

using RO bending angle and MWR brightness temperature measurements instead of RO refractivity and MWR TPW retrieval;95

and (2) overcoming the non-linearity of sequential 1DVar by using the RO and MWR observations simultaneously. The GNSS-

RO bending angle obervations are simulated by the Abel integral, while the MWR brightness temperature observations are

simulated by the Radiative Transfer Model (RTM) that considers atmospheric absorption, and oceanic surface reflection and

emission. Our results show that this approach can simultaneously remove the GNSS-RO temperature and water vapor retrieval

bias, reduce the errors in the a-priori profiles used in the retrievals, and capture the small-scale vertical structure that MWR100

cannot resolve. In Sec.2 the joint 1DVar retrieval algorithm using both GNSS-RO/MWR observations will be described in

detail. Simulations, sensitivity tests, and actual data from collocated COSMIC-2 GNSS-RO and ATMS measurement onboard

Suomi-NPP will be discussed in Sec. 3. A conclusion will be given in Sec. 4.

2 Joint Retrieval Algorithm: Observations, Forward model and 1D Variational method

2.1 GNSS-RO105

In this study, the retrieved 1D bending angle α(a), where a is the impact parameter, is used as the GNSS-RO observation. It

can be related to the atmospheric refractivity through the forward Abel equation (Fjeldbo et al (1971)):

α(a) =−2a

∞∫

a

1
n

dn

dx

dx√
x2− a2

(1)

where n is the refractive index, x = rn(r), r is the distance from the center of curvature to a point along the ray path, and a is

defined as the x at the location of tangent points. The 1D bending angle is chosen as the observation in this approach for two110

reasons. First, it is a more “raw" data product than refractivity, reducing the likelihood of additional processing errors. Bending

angles are less vertically correlated and less susceptible to errors arising from the lack of spherical symmetry than refractivity.

Second, Abel inversion can only be applied to non-ducting atmospheric profiles, where dN/dr >−157 N-units/km. Refrac-

tivity retrievals of profiles with refractivity gradient less than this critical value will be biased below the ducting layer (Xie et al

, 2006); using the bending angle retrieval instead of refractivity can avoid the negative observational bias. However, it is worth115

stressing that under ducting conditions, the refractivity inversion is ill-posed and infinite solutions can correspond to the same

bending angle measurements. Therefore, with the bending angle alone, the thermodynamic states of the atmosphere cannot be

determined, and the MWR observation is utilized in our method to anchor the solution.
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The refractive index n as a function of height can be calculated from the atmospheric temperature and water vapor profiles

(Smith and Weintraub , 1953):120

N = 77.6
p

T
+ 3.73× 105 e

T 2
(2)

where N = (n− 1)× 106 is the refractivity in N -units, p is the pressure in mbar, and T is the temperature in Kelvin. In

practice, Eq. 1 can be implemented by numerical integration with changing variables. However this is a time-consuming

process especially in 1DVar, where the Jacobian at multiple samples must be calculated over numerous iterations. To reduce

the 1DVar Jacobian calculation complexity, Eq. 1 is implemented using the approach taken by Radio Occultation Processing125

Package (ROPP) (Culverwell et al. , 2015) (Burrows et al , 2014) where an exponential refractivity is assumed at each layer:

dln(n)
dx

=∼ 10−6 dN

dx
(3)

Under this assumption the bending angle integration showed in Eq. 1 can be simplified. When the refractivity decreases with

height as in most situations, the bending angle for each interval is given by:

∆α = 10−6
√

2πakiNi exp(ki(xi− a))
[
erf

(√
ki(x− a)

)]∣∣∣∣∣

xi+1

xi

(4)130

where erf is the error function and

ki =
ln(Ni/Ni+1)

xi+1−xi
(5)

When refractivity increases with height, we assume a constant refractivity gradient within the layer and Eq. 4 is modified to:

∆α =−2
√

2a10−6 (Ni+1−Ni)
(xi+1−xi)

[√
(x− a)

]∣∣∣∣∣

xi+1

xi

(6)135

Currently, ROPP processing removes the portion of the profiles below the ducting layer when its refractivity gradient reaches

the critical value. Here we generalize the application of Eq. 6 to the ducting cases. When ducting occurs, x = rn(r) is decreas-

ing within the ducting layer even when its corresponding refractivity decrease sharply. In this case, ki would remain negative

and the slope of N(r) can be approximated as constant, which is assumed in the derivation of Eq. 6. Therefore, Eq. 6 is still

applicable to calculate the bending angle profile within the ducting layer. In general, this would result in a sharp peak in the140

bending angle profile that can be observed in occultation profiles.

2.2 MWR

The MWR forward operator we use in this research is based on a radiative transfer model developed at JPL for simulation,

testing, validation, and calibration of microwave radiometer measurements–from instrument design through on-orbit operation.

The forward model is valid for frequencies between 6-183 GHz and can simulate both imager and sounder configurations.145
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Oceanic surface emission is based on Meissner and Wentz (2012). For atmosphere absorption, a number of functions can

be employed. Oxygen absorption is modeled based on the work of Liebe et al (1993), Rosenkranz (1998), and Tretyakov

et al (2005). Water (vapor and liquid) absorption is modeled with Liebe et al (1993). Nitrogen absorption is modeled with

Rosenkranz (1998). Given inputs of instrument and environmental parameters, the forward model produces the simulated Tb.

In this article the Tb measurements of all 22 channels from the ATMS instrument are simulated using the forward operator150

described above. However, the number of channels can be reduced by using the channels that are most sensitive to the tropo-

spheric temperature and water vapor structure and discarding the rest. For ATMS, we can focus on channels 4 to 9 (51.76 GHz

- 55.5 GHz) that are most sensitive to the tropospheric temperature, and channels 17 to 22 (165.5 GHz to 183.31 GHz) that

are most sensitive to water vapor (Shao et al, 2021). By reducing the number of channels from 22 to 12, the computational

complexity and surface property dependence can be significantly decreased, but the thermodynamic information close to the155

surface will also be reduced. The trade-off between the number of channels used and the corresponding retrieval accuracy

needs to be further investigated.

2.3 1DVar

Here we generalize the RO 1DVar inversion method described in von Engeln et al (2003) to the RO/MWR joint retrieval

algorithm. As in most current RO processing systems, the temperature, pressure, and the water vapor pressure at each level160

forms the state vector x that is being estimated:

x =




T

p

e


 (7)

where T is the temperature, p is the pressure, and e is the vapor pressure in 200 m sampling. The vertical range of the state

vector spanned from 0 to 10 km altitude due to most of the vapor is distributed in the bottom 10 km of the atmosphere. Each

state variable in Eq. 7 is sampled every 200 m over this range to approximately match the vertical resolution of GNSS-RO. The165

state variables can be connected to the bending angle observation yro and brightness temperature observation ymwr with the

forward operators Hro and Hmwr as explained in Sec.2.1 and Sec.2.2:

yro = [α] = Hro (x) (8)

ymwr = [Tb] = Hmwr (x) (9)

where α and Tb are the RO bending angle and MWR brightness temperature observations over the range of impact parameter170

and 22-channel frequency band respectively. As an optimal estimation approach, 1DVar will look for the best solution x by

minimizing the cost function:

J =
1
2
(x−xb)T B−1(x−xb) +

1
2
(y−H[x])T O−1(y−H[x]) (10)
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where y = (yro,ymwr) are the RO and MWR observations, H[x] = (Hro[x],Hmwr[x]) is the forward operator, and xb are the

background state variables, or a-priori, which can be obtained from a global weather analysis such as NCEP, MERRA-2, or175

ECMWF. B is the error covariance matrix of the a-priori xb. O is the error covariance matrix of y which includes observational

and model representation errors. In this research, O is given in a diagonal form with estimated uncertainties of bending angle

of σα = 8×10−4 rad, and brightness temperature of σTb
= 0.25 K. The chosen bending angle uncertainty is comparable to the

one of COSMIC-2 at∼5km impact height (Todling et al , 2022), which represents the average RO observation uncertainty over

lower troposphere. Actual RO bending uncertainty can be much smaller in free troposphere (>4km) and provide better quality180

observations (Todling et al , 2022). Therefore the simplified constant uncertainty setting over impact parameters shows the

worst case of combination above PBL. For simplicity, the state covariance matrix B also has a diagonal form that incorporates

the uncertainty of the background state variables (T : 2.5K, p : 1%, e : 40%). The background uncertainty of T , p, e are chosen

according to the ECMWF model used in von Engeln et al (2003), and a similar amount of uncertainties are also assumed for

other weather models. The use of a diagonal form for both covariance matrices implies the independence of measurements185

errors with respect to height. In reality this is not entirely true, and a more general form of covariance matrices can be found in

Healy (2001). The uncertainty defined in B and O will affect the optimal solution of temperature and vapor retrievals. More

discussions on this will be provided in Sec. 3.1.

The estimated state variable x can be determined by iteratively solving the following formula:

xn+1 = xb + Gn [(y−H[xn])−Kn(xb−xn)] (11)190

where xn is the state variable at the n-th iteration and xb is the state a-priori. Kn is the state Jacobian matrix which can be

calculated by perturbing each individual variable in x:

Kn =
∂H(x)

∂x

∣∣∣∣∣
x=xn

(12)

In this work we perturb T and p by 0.1K and 0.1hPa respectively, and water vapor by 0.02hPa. The gain matrix Gn can then

be calculated from:195

Gn =
(
B−1 + KT

nO−1Kn

)−1

KT
nO−1 (13)

Here we set the conditions Tn−Tn−1 < 0.1K and en− en−1 < 0.2hPa as the convergence criteria.

3 Results and Analysis of the Joint Retrieval Algorithm

3.1 Large Eddy Simulation

An important goal of this study is to investigate the effectiveness of the joint retrieval on the planetary boundary layer (PBL).200

To this end, profiles obtained from the large eddy simulation (LES) (Kurowski et al, 2022) are used to validate the 1DVar

algorithm. Temperature, pressure, and water vapor from LES in 3 different physical regimes are extracted to simulate the RO

bending angle and MWR Tb observations and regarded as the truth:
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1. Shallow to deep convective cloud transition in Amazonia region: Large-Scale Biosphere-Atmosphere (LBA) experiment

(Gustavo et al, 2013).205

2. Shallow cumulus cloud in west Atlantic Ocean: Rain In shallow Cumulus over the Ocean (RICO) campaign (Rauber et

al, 2007).

3. Marine stratucumulus region in Northeast Pacific: Dynamics and chemistry of marine stratocumulus (DYCOMS) cam-

paign (Stevens et al, 2003).

For each case, the RO bending angle and MWR Tb observations are simulated using the forward model described in Sec.210

2.1 and Sec. 2.2. Here we simulate the bending angle over 0-30km range of impact height with 50m sampling to match the

RO bending resolution at lower troposphere. In this paper, no thermal noise is added to either simulated observation, although

the 1DVar processing takes their uncertainty into account with the observation error covariance matrix O (Sec. 2.3). The

temperature a-priori is derived by smoothing the true temperature profile from LES with 1km moving window. In addition, we

added a constant−2 K bias to the a-priori temperature at every altitude to simulate a potential bias in the background profile and215

test if the 1DVar algorithm can remove it. The total pressure and water vapor pressure a-priori are also defined by smoothing

the true profile with 3km and 1km boxcar filters, respectively. This would remove most of the small-scaled structures in the

lower troposphere that typically don’t show in the background profiles. For each case the implemented 1DVar algorithm is used

in three different scenarios: RO only, MWR only, and a joint retrieval using RO and MWR.

The 1DVar results between the surface and 5km are shown in Figs. 1 to 3 corresponding to the three campaigns listed above,220

respectively. Each figure includes the temperature profiles (a), temperature difference from truth (b), water vapor pressure (c),

and water vapor difference from truth (d). In the case of LBA (Fig. 1), the true T and e are relatively smooth with little fine-

scale vertical structures, the background profiles are close to the true profiles except for the −2 K added to the a-priori T .

Fig. 1(b) shows that the temperature solution of the RO-only scenario mostly follows the a-priori profile with the −2 K error

because the 1DVar is heavily weighted w.r.t. the T a-priori compared to the water vapor a-priori. The resulting RO-only water225

vapor retrieval shown in Fig. 1(d) is also slightly biased (−1 hPa) near the surface to compensate for the negative T bias and

yield the same refractivity. These biases are representative of the sensitivity of the derived T and e to the T a-priori errors in a

RO 1DVar-retrieval in the lower troposphere. On the other hand, the MWR-only solutions (purple dotted-dashed) appear to be

less sensitive to the a-priori T error with < 1 K difference to the truth. The results imply that, unlike RO, the MWR is capable

of independently solving for T and e, except for the small-scale structure within 500m altitude from the surface. Combining230

RO bending and MWR Tb in the 1DVar framework discussed above, we observe that the retrieved T (red solid line) is close to

truth despite the −2 K bias that was added to the a-priori and generate detailed water vapor retrieval in Fig. 1(c) and (d) that is

more accurate than either MWR or RO alone.

In the RICO case, the water vapor retrieval from the MWR-only scenario (purple dotted-dashed) shows a large error of 2

hPa at two kilometers. This is due to the low vertical resolution of the MWR measurements which miss the fine-scale structure235

below 2km. As a result, the 1DVar solution for MWR-only tends to follow the shape of the given a-priori (orange dotted)

which was heavily smoothed with small structure removed, and correct only the bias from the T measurements. By contrast,
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(a) Temperature (b) Temp deviation (c) Vapor pressure (d) Vapor deviation

Figure 1. 1DVar results for LES temperature (a and b) and water vapor (c and d) profiles in LBA scheme.

the RO-only solution (green dashed) is able to reduce the water vapor retrieval error relative to the a-priori (to within 1 hPa)

and better resolve the fine vertical structure. However, as shown in the LBA case the negative e bias ( 0.5 hPa at the surface)

persists in the lower troposphere due to −2 K bias in the temperature a-priori. By combining both RO and MWR with the240

proposed 1DVar approach, the T and e biases are corrected for and the small scale structures in water vapor are captured.

Fig. 3 shows the T and e profiles in the DYCOM case, which is located at the stratocumulus region in northeast Pacific. The

lower troposphere in this region is known to have a sharp transition at the top of the boundary layer as can be seen from the

temperature and moisture profiles in Fig. 3(a) and (c) at the ∼1 km height. The sharp transition of temperature and moisture

create a ducting layer (Xie et al , 2006; Ao , 2007) where the RO tangent point cannot be located and the thermodynamic245

information in the ducting layer is lost. This results in an ill-posed inversion problem where multiple refractivity solutions

would correspond to the same bending angle profile, and the standard Abel inversion would resort to a solution without ducting

and cause a negative bias of up to 15% in refractivity inside the layer. This is the reason why bending angle is used in the

1DVar instead of refractivity and could, potentially avoid this refractivity bias. Nonetheless, without additional information,

the solution may not converge to the correct refractivity profile in the family of solutions. As shown in Fig. 3(c) and (d), the250

water vapor retrieval in RO-only scenario still contain a large negative bias (-2.5 hPa close to the surface) compared to the true

profile. This can be due to the -2K bias introduced in the a-priroi T .
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(a) Temperature (b) Temp deviation (c) Vapor pressure (d) Vapor deviation

Figure 2. Same as Fig.1 but with RICO case

To overcome the negative N -bias due to ducting, Wang et al (2017) and Wang et al (2020) used the information of collocated

MWR TPW retrievals and RO grazing reflected bending angles as constraints to choose the unbiased refractivity profile. Here,

however, we show that combining MWR Tb with the RO bending angles results in a reduced negative bias due to ducting.255

As shown in Fig. 3(c) and (d) the MWR only and RO/MWR scenarios are no longer limited by the ducting condition and

are able to correct the moisture bias within the boundary layer. Low resolution of the MWR measurement misses the sharp

transition at the PBL top, but the combination of RO and MWR preserve the advantages of both measurements. For temperature

retrieval(Fig. 3(a) and (b)), While the MWR and RO/MWR solutions are able to correct the −2 K bias, all three solutions fail

to resolve the sharp change at the transition due to strong smoothing of the background profile. With a smaller covariance of260

T a-priori, the 1DVar temperature solution will depend more on the low resolution a-priori and MWR observations rather than

the RO measurements; therefore, the large error at the transition layer should not come as a surprise.

3.2 Sensitivity Study

To investigate the sensitivity of the 1DVar solution to the a-priori and the measurement covariances, we perform a number of

simulations using a radiosonde profile from the MAGIC campaign (magsondewnpnM1.b1.20121104.120900) (Lewis , 2016).265

In this study we chose a profile that does not contain any ducting conditions to avoid errors due to superrefraction. The
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(a) Temperature (b) Temp deviation (c) Vapor pressure (d) Vapor deviation

Figure 3. Same as Fig.1 but with DYCOMS case

temperature, water vapor, and the corresponding refractivity and bending angle profiles are shown in Fig. 4. The temperature

and water vapor priors are obtained by a 1km boxcar filter to the RAOB T and e profiles. In addition to smoothing, constant

biases in T of −2 K, −1 K, 0 K, 1 K or 2 K were added to the a-priori T profile. Alternative, constant biases in e of -40%,

-20%, 0%, 20%, 40% were added to the a-priori e profile. For each of these cases, three different scenarios corresponding to270

RO only, MWR only, and combined RO/MWR, were run. The resulting T and e solutions are then compared to the truth by

computing the RMS error (RMSE) over the 0-5 km range. The results are shown in Fig. 5. It is clear that the RMSE for the

RO-only solution (green dashed) largely follows the a-priori RMSE (orange dotted). This is expected since no independent T

information is provided and the 1DVar has to rely on the a-priori to estimate the T profile. By contrast, the MWR-only RMSE

(purple dotted dashed) is considerably lower (∼0.5K compared to the∼1.8K) and is less sensitive to the T bias. The combined275

RO/MWR scenario (red solid) reduces the T RMSE even further to 0.4K and is nearly independent of the T bias. On the other

hand, the e RMSE of the MWR-only shown in Fig. 5(b) mainly follows the a-priori due to its low resolution. While RO-only

e solution has lower RMSE, it is sensitive to the T bias because temperature and water vapor are coupled. The combination

of RO and MWR is able to uncouple the T and e and make the RMSE almost always below 0.3 hPa independent of the T

bias. By contrast, the water vapor bias has a smaller impact on retrieved temperature (Fig. 5(c)) or water vapor (Fig. 5(d)).280

This is mainly due to the fact that the water vapor standard deviation (set to 40%) is much larger than the temperature standard
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Figure 4. (a)Temperature, water vapor, and the refractivity profiles calculated using the Eq. 2. (b) The bending angle from the forward Abel

described in Sec. 2.1

deviation (2.5K) causing the 1DVar solutions to match better with the temperature a-priori rather than the moisture a-priori.

Hence the MWR-only moisture solution is not strongly biased although its structure mainly follows the water vapor a-priori.

Overall, The RO/MWR combined solutions show the lowest sensitivity to the temperature and water vapor a-priori errors.

Now we turn our attention to the sensitivity of the retrievals to the MWR and RO measurement error covariances. The results285

are shown in Fig. 6 for 5 different levels of uncertainty in Tb (0.25 K, 0.50 K, 1.00 K, 1.50 K, 2.00 K) and bending angle (0.0008

rad, 0.0012 rad, 0.0016 rad, 0.002 rad, 0.0024 rad). In all cases, the added observation have a positive impact on the solution

causing the RMSE to reduce. As expected, a larger covariance reduces the value of measurements leading to larger retrieval

RMSE values. This positive, near-linear trend can be seen in both MWR Tb (Fig. 6(a)(b)) and RO bending angle measurements

(Fig. 6(c)(d)). In this test, no noise is added to the measurements, so that the relationship is only driven by the covariance values.290

Note that Tb covariance should have no effects on estimates for the RO-only scenario. Similarly error covariance in bending

should have no effects on estimates for the MWR-only, as confirmed in Fig. 6(c)(d). The MWR/RO combined solution has
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the lowest temperature RMSE value in both scenarios (Fig. 6(a)(c)), while its moisture RMSE are almost the same as the one

of RO-only solutions (Fig. 6(b)(d)). As expected, the results show that when the a-priori is not biased the MWR observation

provides little information contents to the estimation process.295

The third sensitivity test shown in Fig. 7 quantifies the retrieval RMSE w.r.t a change of temperature (1.5 K, 2.5 K, 3.5 K,

4.5 K, 5.5 K) and moisture (20%, 40%, 60%, 80%, 100%) in the a-priori covariance. A higher a-priori covariance implies a

greater reliance on observations in the 1DVar estimation process, and reflects different behaviors for different measurements.

For the RO-only case (green curve in Fig. 7(a)) the temperature RMSE decreases under larger temperature a-priori covariance.

This may be due to a better resolved temperature profile, especially at the top of the PBL, where the strong constraint from the300

a-priori is relaxed. On the other hand, the MWR-only case (purple curve in Fig. 7(a)) shows the opposite trend, indicating that

most of the vertical information of MWR-only retrieval is derived from the temperature a-priori. In fact, when the temperature

a-priori covariance is larger than 4.5K, its corresponding RMSE exceeds the one from the a-priori itself (orange). However,

the large variance observed in the temperature RMSE does not propagate to the water vapor RMSE (Fig. 7(b)) and shows a

relatively stable curve when temperature a-priori covariance changes.305

It is worth noting that the perturbation of water vapor a-priori covariance does not cause dramatic change in water vapor

results (Fig. 7(d)). At the same time, higher water vapor a-priori covariance would push the RO-only temperature solution

closer to the a-priori profile, leading to increasing temperature RMSE as shown in Fig. 7(c). By contrast, the MWR-only

temperature solutions shows negative trend which implies the independence of MWR temperature and water vapor retrieval

based on the Tb measurements. As the results shown in Fig. 5 and Fig. 6, the RO/MWR joint retrieval solutions remain the310

lowest RMSE among all scenarios in this sensitivity test, with errors at ∼0.4K (temperature) and ∼0.3hPa (vapor pressure) in

all levels. These results show that 1DVAR retrievals from combining RO and MWR combination can better reduce the error

propagated from a-priori, and its solutions maintain low sensitivity to observation and a-priori covariance.

3.3 Real ATMS and COSMIC-2 data

We applied our joint RO/MWR 1DVar algorithm to Suomi-NPP and COSMIC-2 measurements to assess the applicability of this315

method to real measurements. Fig. 8 shows the collocated cases between Suomi-NPP and COSMIC-2 in a 6-hour period starting

on April 1, 2019, 00:00-06:00 UTC. The Suomi-NPP data we used is the L1B calibrated/bias-corrected brightness temperature

product (Lambrigtsen, 2018) provided by Goddard Earth Sciences Data and Information Services Center (GESDISC). Due

to the lower inclination of COSMIC-2 orbits, all of the collocated cases are located between -45 to 45 degrees in latitude. To

illustrate the 1DVar algorithm we chose one case (2020-04-01-03:10c2f4_gps58) in the Atlantic Ocean (17.91N, 36.75W). This320

case is chosen because it is located on the ocean, where surface emissivity can be robustly modeled for the MWR observation.

In addition, the collocated MERRA-2 reanalysis shows low ice and liquid water contents, which suggests that the MWR

observation is less likely to be impacted by clouds and precipitation. Furthermore, the RO retrieval penetrated sufficiently deep

in this case so that the 1DVar can estimate the thermodynamic structure within the PBL. The estimation results using different

instrument scenarios are shown in Fig. 9.325
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Since there is no ground truth this comparison, we cannot conclude definitely which method provides the best solution. How-

ever, by comparing the vertical structures between the different estimates we can find several clues regarding their information

content.

The orange dotted lines shown in Fig. 9 (a)(b) are the profiles from the NCEP analysis, used as priors in the 1DVar processing.

The green, red, and purple lines are the 1DVar solutions in the RO-only, RO/MWR, and MWR-only scenarios, respectively. The330

yellow line is the Community Long-Term Infrared Microwave Combined Atmospheric Product System (CLIMCAPS) retrieval

(i.e., not 1DVAR) using the ATMS MWR and Cross-track infrared sounder (CrIS) data (Smith and Barnet, 2019) provided by

GESDISC (Smith, 2019). Here MWR provides additional temperature information as shown in Fig. 9(a) so that the MWR-

only solution (purple) deviates from the a-priori (orange) and RO-only (green) temperature retrievals by∼3K below 2 km. The

joint RO/MWR retrieval lies in between the RO-only and MWR-only solutions, and has approximately the same temperature335

solution as the CLIMCAPS solution. On the other hand, the water vapor profiles shown in Fig. 9(b) demonstrates that the

joint RO/MWR solution is able to resolve the small-scale moisture structure throughout the profile. The deviation between the

RO-only and the RO/MWR moisture solutions is caused by the temperature information that MWR provides, which in fact

matches better with the ATMS moisture profile below 1km. While the improvements cannot be quantified without ground truth,

the results show that the 1DVar joint retrieval combines the information and strengths of both techniques and is able to provide340

the high-resolution and low-bias thermodynamic profiles that a single technique cannot retrieve.

The effectiveness of combining RO and MWR observations within the framework of the proposed 1DVar approach is limited

by several factors. First, the existence of cloud and precipitation can significantly increase the forward model error in Tb

calculation (Errico et al , 2007). Second, the MWR input and forward modeling error could still exist even in clear-sky events

due to other factors that affect the surface emissivity, such as surface type, surface temperature, and surface wind speed. In this345

study, we limited the application of joint retrieval to an RO over the ocean. In addition, a quality control (QC) test based on

the difference between the observed Tb and MERRA-2 calculated Tb for each channel was applied to ensure that the MWR

measurements are not biased due to the reasons stated above. Statistically, 73 out of 132 colocations found within a 6-hour

period passed the QC test when a RMS threshold of 10K is applied on all 22 ATMS channels.

4 Conclusions and Discussions350

In this article, we described a 1DVar approach combining two complementary techniques to obtain high vertical resolution

and solve for temperature and moisture simultaneously. Simulations were performed where LES profiles from three different

campaigns were used as truth and three different scenarios corresponding to RO-only, MWR-only, and RO/MWR combination

were tested. The results show that potential biases in the a-priori information used in the 1DVar can be significantly reduced

after adding Tb observations from MWR. At the same time, the high-resolution RO bending angle observation provides the355

needed vertical moisture information. The complicated thermodynamic structure in the lower troposphere, including the ones

with ducting, can therefore be better resolved with much smaller biases compared to the ones using RO or MWR alone. We

also analyzed the sensitivity of the temperature and vapor retrieval in each scenario to the a-priori error covariance matrix and
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showed that the RO/MWR combination is the most stable among the three scenarios. Finally, the 1DVar approach is applied to

real data from COSMIC-2 and Suomi-NPP observations, and the results show the promise of the 1Dvar technique.360

The joint retrieval approach is similar to the optimal estimation currently used in data assimilation. Both techniques minimize

the cost function, require covariance matrices to define the background and observations uncertainties, and use the forward

operator to map the state vector to the observables. Typically, data assimilation for numerical weather prediction (NWP)

purposes utilizes a 3D- or 4DVar approach to account for horizontal and temporal coverage. Here we only estimate the state

variable on a single spatial dimension (altitude) assuming a spherically symmetric atmosphere, which reduces the number of365

the state variables and allows us to better quantify the relative strengths and weaknesses of the information used in the retrieval

process. This also allows us to introduce as many vertical levels as needed to capture the highest vertical resolution possible

with RO measurements. The proposed 1DVar joint retrieval is independent of any operational NWP model and is not limited

by observation QC criteria, a-priori contribution, or the vertical grid resolution applied in operational NWP models. Therefore

the joint retrieved temperature and water vapor profiles can be good candidates for validating NWP models or for providing370

the essential background data for potential future improvements to NWP data assimilation processes.

Two future improvements are envisioned to make the proposed 1DVar approach more practical and accurate. First, all the

observation error covariance matrices we used in this study are diagonal. This implies that errors of Tb of different channels

and RO bending angle measurements at different heights are assumed to be independent, an assumption that is not perfectly

valid. The vertical smoothing in the RO bending angle profile could lead to a high correlation of two or more neighboring375

samples, especially in lower altitudes. One possible way to address this issue is to use the Desrosiers diagnosis (Desroziers

and Ivanov , 2001) to examine if the error covariance matrices used are reasonable, a topic that will be investigated in future

studies. Second, the 1DVar approach combines RO measurements with a single set of MWR Tb measurements that are nearest

to the RO location. The RO location is defined as the latitude and longitude of the tangent point of the lowest link in the RO.

However, in reality, RO has an extended footprint of several hundred kilometers in the occultation plan and a potential drift of380

the tangent point out of the occultation plane by as much as tens of kilometers. Taking horizontal variability into account could

better represent the MWR Tb observation at the tangent point location for each corresponding altitude. This requires a better

understanding of the Jacobian function as a function of height for each channel and the location of the tangent point prior to

the joint retrieval process.
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Figure 5. Sensitivity test of the (a, c) temperature and (b, d) vapor retrieval with respect to the temperature (a, b) and vapor pressure (c, d)

a-priori
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Figure 6. Sensitivity test of the (a, c) temperature and (b, d) vapor retrieval with respect to the Tb covariance(a, b) and the bending angle

covariance (c, d)
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Figure 7. Sensitivity test of the (a, c) temperature and (b, d) vapor retrieval with respect to the temperature (a, b) and vapor pressure (c, d)

covariance 23
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Figure 8. Collocated cases between Suomi-NPP and COSMIC-2 on April 1, 2019, 00:00-06:00 UTC. The red dots are the tangent point

location of each COSMIC-2 RO at its lowest penetration height, while the background color is the 31.4 GHz brightness temperature mea-

surement from the onboard ATMS instrument
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Figure 9. An example (2020-04-01-03:10c2f4_gps58) of the actual collocated RO-MWR combination retrieval
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