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Abstract: Aerosol mixing state plays an important role in heterogeneous reactions and CCN activity. Organic surfactants could 11 

affect aerosol mixing state through bulk−surface partitioning. However, the mixing state of surfactant containing particles 12 

remains unclear due to the lack of direct measurements. Here, direct characterizations of mixing state for 20 kinds of submicron 13 

particles containing inorganic salts (NaCl and (NH4)2SO4) and atmospheric organic surfactants (organosulfates, 14 

organosulfonates, and dicarboxylic acids) were conducted upon relative humidity (RH) cycling by Environmental Scanning 15 

Electron Microscopy (ESEM). As RH increased, surfactant shells inhibited water diffusion exposing to inorganic core, leading 16 

to notably increased inorganic deliquescence RH (88.3−99.5%) compared with pure inorganic aerosol. Meanwhile, we directly 17 

observed obvious Ostwald ripening process, that is, the growth of larger crystals at the expense of smaller ones, in 6 among 18 

10 NaCl−organic surfactants systems. As a result of water inhibition by organic surfactant shell, Ostwald ripening in all systems 19 

occurred at RH above 90%, which were higher than reported RH range for pure NaCl measured at 27℃ (75−77%). As RH 20 

decreased, 8 systems underwent liquid−liquid phase separation (LLPS) before efflorescence, showing a strong dependence on 21 

organic molecular oxygen−to−carbon ratio (O:C). Quantitatively, LLPS was always observed when O:C  0.43 and was never 22 

observed when O:C > ~0.57. Separation RH (SRH) of inorganic salt−organic surfactant mixtures generally followed the trend 23 

of (NH4)2SO4 < NaCl, which is consistent with their salting out efficiencies reported in previous studies. Solid phase 24 

separations were observed after efflorescence for systems without LLPS. Our results provide a unique insight into the 25 

consecutive mixing processes of the inorganic salt−organic surfactant particles, which would help improve our fundamental 26 

knowledge of model development on radiative effect. 27 

 28 
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1 Introduction 29 

Atmospheric particles are complex mixtures of multiple inorganic and organic matters (Pöschl, 2005). When relative 30 

humidity (RH) varies, particles can undergo phase transitions such as deliquescence (Peng et al., 2001), efflorescence 31 

(Takahama et al., 2007), and liquid−liquid phase separation (LLPS) (Martin, 2000), hence altering mixing state. The transition 32 

of aerosol mixing state can influence gas uptake, hygroscopicity, cloud condensation nuclei (CCN) activity, and radiative 33 

absorption (Riemer et al., 2019). 34 

Upon hydration, previous studies suggested that different mixing state between inorganic and organic matters influence 35 

aerosol hygroscopic behaviours (e.g., deliquescence) and solar radiation (Peng et al., 2016; Li et al., 2021). For instance, Peng 36 

et al. (2016) observed internal mixed NaCl−oxalic acid deliquesced at 73% RH, being slightly lower than that of pure NaCl 37 

(75%) because of the interactions between inorganic and organic matters. However, Li et al. (2021) found a different 38 

deliquescence process if ammonium sulfate (AS) was coated by secondary organic aerosol, the organic shell firstly dissolved 39 

at ~50% RH but water uptake of the AS core was inhibited, leading to a higher deliquescence RH of AS (~83−90%). By 40 

cryogenic transmission electron microscopy (cryo−TEM), Zhang et al. (2022) directly observed collected particles from a rural 41 

site remained LLPS (inner inorganic p 0has e and outer organic phase) between organic matter and inorganic salts when RH 42 

raised to 75 ± 2% and 86 ± 2%, but LLPS disappeared when RH increased to 95 ± 2%. They later suggested that LLPS with 43 

higher ratio of organic coating thickness to black carbon size can drive black carbon from inorganic core to organic particle 44 

coatings, which could result in 18% radiative absorption overestimation of black carbon aerosols in climate models by 45 

assuming a core-shell particle structure. 46 

Upon dehydration, phase separation has been frequently observed in ambient particles (You et al., 2012; Ting et al., 2018; 47 

Zhang et al., 2020; Zhang et al., 2022). For example, LLPS occurred at > 90% RH for particles containing water extraction of 48 

collected atmospheric particles in Atlanta and simulations indicated that LLPS can decrease particle uptake of N2O5 thus 49 

increase concentrations of gas−phase NO3 and N2O5 (You et al., 2012). Factors contributing to LLPS, e.g. oxidation levels 50 

(Bertram et al., 2011; Song et al., 2017; Song et al., 2019), organic fraction (Ciobanu et al., 2009; Song et al., 2012a), inorganic 51 

species (You et al., 2013), and temperature (You and Bertram, 2015; Roy et al., 2020) have been discussed for some specific 52 

inorganic−organic or organic−organic systems in literature. Song et al. (2012b) and You et al. (2013) found LLPS always 53 

occurred for O:C < ~0.5, never occurred for O:C > 0.8, and when O:C was between 0.5 and 0.8, LLPS was depended on 54 

inorganic species. Organic fraction showed controversial effects on LLPS (Bertram et al., 2011; Song et al., 2012a) since 55 

Bertram et al. (2011) found a weak effect of organic fraction on LLPS for 8 out of 11 AS−organic systems but the rest systems 56 

exhibited a quantifiable dependence of separation RH (SRH) on organic fraction. You et al. (2013) reported SRH among out 57 

of 20 organics generally followed the trend of (NH4)2SO4 ≥ NH4HSO4 ≥ NaCl ≥ NH4NO3, which is consistent with 58 

inorganic salting out efficiencies. Temperature did not strongly affect SRH between 253−290 K for AS−organics (O'brien et 59 

al., 2015; You and Bertram, 2015) and NaCl−organics systems (Roy et al., 2020). Recently, dry rate (Altaf and Freedman, 60 
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2017; Altaf et al., 2018) and size effect (Freedman, 2020; Ott and Freedman, 2021; Ohno et al., 2023) on LLPS were found 61 

for submicron particles. Undergoing drying by fast rate (~ 27% per minute), phase separation of AS-pimelic acid system 62 

occurred in larger particles (75 ~ 322 nm diameter), but smaller particles (below 25~135 nm diameter) were homogeneous. In 63 

slow drying rates (0.04 to 0.08% RH per second), particles with diameter below 43 nm were homogeneous but larger particles 64 

(28 ~ 629 nm) were mainly phase-separated (Altaf and Freedman, 2017). Freedman (2020) further explained that LLPS is 65 

scarcely occurred in smaller particles as smaller particles cannot overcome the energy barrier needed to form a new phase. 66 

Dicarboxylic acids (Ruehl and Wilson, 2014), organosulfates (Bruggemann et al., 2020; Reed et al., 2022), and 67 

organosulfonates (Bruggemann et al., 2020; Guo et al., 2020) are important organic constituents in secondary organic aerosol. 68 

Primary emission and secondary transition were major sources of dicarboxylic acids and their mass contribution of 69 

dicarboxylic acids to total particulate carbon exceeds 10% (Römpp et al., 2006; Ho et al., 2010; Hyder et al., 2012). 70 

Organosulfates and organosulfonates, as significant reservoirs of sulfur, comprise an estimated 5%–30% of the total organic 71 

aerosol mass (Tolocka and Turpin, 2012; Reed et al., 2022). Above mentioned organics contain both hydrophilic (e.g., sulpho 72 

group) and hydrophobic groups (e.g., alkyl group), showing surface activity and causing bulk−surface partitioning (Noziere, 73 

2016; Ruehl et al., 2016), hence affecting individual aerosol morphology (Kwamena et al., 2010). However, mixing state of 74 

submicron inorganic salt−organic surfactant particles remain unclear due to the lack of direct measurements. Here, we directly 75 

observed mixing states of submicron particles containing inorganic salt and organic surfactant with varying organic volume 76 

fraction (OVF) upon humidity cycling by Environmental Scanning Electron Microscopy (ESEM). Our results could provide 77 

unique insights into the dynamic evolution of inorganic salt−organic surfactant particles under fluctuating atmospheric 78 

conditions. 79 

2 Materials and Methods 80 

2.1 Chemicals 81 

NaCl and AS were purchased from Sinopharm chemical reagent (purity  99.8%) and Sigma Aldrich (purity  99 %), 82 

respectively. The studied organic substances include 10 surface active organics (five organosulfonates, three organiosulfates 83 

and two dicarboxylic acids). The five organic sulfonates were sodium propane sulfonate (C3H7SO3Na), sodium butane 84 

sulfonate (C4H9SO3Na), sodium pentane sulfonate (C5H11SO3Na), sodium heptane sulfonate (C7H15SO3Na), sodium octane 85 

sulfonate (C8H17SO3Na). The three organic sulfates were sodium methyl sulfate (CH3SO4Na), sodium ethyl sulfate 86 

(C2H5SO4Na) and sodium octyl sulfate (C8H17SO4Na). Two dicarboxylic acids were pimelic acid (PA) and phenylmalonic acid 87 

(PhMA). Relevant properties of used chemicals were summarized in Table 1. These organic surfactants were of various 88 

solubilities, from sparingly soluble (e.g., 0.07 mol L-1 for C8H17SO4Na) to highly soluble (e.g., 2.6 mol L-1 for CH3SO4Na ). 89 

O:C ratios were from 0.38 to 4, covering most of the molar ratios in the atmosphere (0.1−1.0) (You et al., 2013). The studied 90 
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organic substances contain functional groups such as sulfonates, sulfates, carboxylic acids and aromatics, which were 91 

universally detected in atmospheric aerosol samples (Takahama et al., 2007). 92 

 93 

Table 1 Organic surfactants and their relevant properties investigated in this study. 94 

Species Compounds Formula 

*Solubility 

(mol L-1) 
O:C Purity Supplier 

Organic sulfonate 

 

Sodium propane sulfonate C3H7SO3Na 2.5 1.00 >98% Aladdin 

Sodium butane sulfonate C4H9SO3Na 2.4 0.75 99% Aladdin 

Sodium pentane sulfonate C5H11SO3Na 0.8 0.60 98% Aladdin 

Sodium heptane sulfonate C7H15SO3Na 0.6 0.43 98% Macklin 

Sodium octane sulfonate C8H17SO3Na 0.07 0.38 99% Macklin 

Organic sulfate 

 

Sodium methyl sulfate CH3SO4Na 2.6 4.00 98% 
Energy 

Chemical 

Sodium ethyl sulfate C2H5SO4Na 1.5 2.00 98% Meryer 

Sodium octyl sulfate C8H17SO4Na 0.2 0.50 99% Rhawn 

Dicarboxylic acid 

 

Pimelic acid (PA) C7H12O4 0.3 0.57 99% Macklin 

Phenylmalonic acid (PhMA) C9H8O4 0.2 0.44 98% Aladdin 

 95 

* https://comptox.epa.gov/ (last access: 19 Jun, 2023) 96 

2.2 Aerosol generation and collection 97 

The process of aerosol generation and collection was detailly described by Xiong et al. (2022). In brief, particles were 98 

nebulized from solutions of organic and inorganic matters (~5 g L-1) mixed with deionized water (Millipore, resistivity = 18.2 99 

M). After drying (RH < 15%) by a silica-gel diffusion dryer, particles were deposited with an eight stage non−viable particle 100 

sizing sampler (Models BGI20800 Series, BGI Incorporation) onto 400 mesh copper grids coated with carbon films 101 

(Zhongjingkeyi Films Technology Co. Ltd.). Copper grids were mounted on the 7th stage, selecting particles with aerodynamic 102 

size of 0.7−1 μm. Collected samples were stored under dry condition (RH < 10%) and were immediately characterized within 103 
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24 hours to avoid possible sample aging. 104 

2.3 Mixing state observation 105 

Optical microscopy (Ciobanu et al., 2009; Bertram et al., 2011; Song et al., 2012a, b; You et al., 2013), microfluidic device 106 

(Roy et al., 2020), Cryo-TEM (Veghte et al., 2014; Freedman, 2020; Ott and Freedman, 2021; Ott et al., 2021; Zhang et al., 107 

2022), ESEM (O'brien et al., 2015), optical tweezer (Stewart et al., 2015; Tong et al., 2022)and F-AFT (Fluorescence aerosol 108 

flow tube) (Ohno et al., 2021; Ohno et al., 2023) were reported methods for detecting aerosol mixing state in the literature. 109 

Optical microscopy and microfluidic device were commonly used direct method for substrate-supported droplets but was 110 

limited by size range (at least dozens of micrometers). Optical tweezer and F-AFT could investigated LLPS in a levitated 111 

micrometer and sub-micrometer droplet, respectively, but are indirect ways, although no distinct differences when comparing 112 

to substrate-supported droplets (Ohno et al., 2023). Cryo-TEM and ESEM could detect mixing state in sub-micrometer scale 113 

but damage caused by electron beam may exist (depend on chemistry and beam parameters settings). Ott et al. (2021) give 114 

some useful suggestions in minimize the damage, e.g., decreasing exposure dose and time to particles. 115 

Mixing state was observed by Environmental Scanning Electron Microscopy (ESEM, Thermo Quattro S) with a 116 

temperature−controlled stage. The RH in chamber was varied between 0.1 to ~ 25 ℃, and controlled by adjusting the 117 

temperature (± 0.1 ℃) at a predefined pressure (610 Pa). In each experiment, particles with lateral dimensions of ~ 1 μm were 118 

selected first (based on the deposition, volume-equivalent size was smaller than 1 μm). Then the RH raised from low (~ 30%) 119 

to high condition (~100%) at the change rate of 2−3% RH min-1. High RH lasted for at least 5 minutes for equilibrium, 120 

promising complete dissolution (O'brien et al., 2015). With increased RH, most selected particles grew larger to several 121 

micrometers before subsequent LLPS experiment. Then, RH decreased to dry condition at similar change rate. Negligible 122 

influence on the LLPS of AS−organic (O'brien et al., 2015; You and Bertram, 2015) and NaCl−organic systems (Roy et al., 123 

2020) in micrometre scale (from several micrometers to dozens of micrometers). Cloud parcel modelling suggests that 124 

atmospheric RH fluctuations typically occur from 0 to 3.6% min-1 (Pöhlker et al., 2014). Therefore, we assume that the water 125 

uptake in our experiments approximates atmospheric conditions (Shiraiwa et al., 2013). Images of mixing states during the 126 

whole RH period were acquired at an electron acceleration voltage of 30 kV. The detector used for the ESEM imaging was a 127 

scanning transmission electron detector. The images were recorded with line scanning rates of 3−5 µs to minimize the possible 128 

beam damage (Supporting information, O'brien et al., 2015). The varying range of RH value between two consecutive pictures 129 

were mostly 0.2−0.4% RH (very narrow), in order to capture the possible quick transitions of mixing states. Each image in our 130 

study contained at least 5 particles (or droplets) to ensure the ESEM reproducibility and decrease the uncertainty. In addition, 131 

we have repeated some of the experiment (e.g., in the RH decreasing period) for reproducibility validation, and the results 132 

showed good consistence (Fig. S1). 133 
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3 Results and Discussion 134 

3.1 Mixing states upon hydration 135 

Deliquescence RH (DRH) and Efflorescence RH (ERH) of pure NaCl (Fig. 1a−d and Fig. S2a−b) and AS particles (Fig. 136 

2a−d and Fig. S2c−d) were firstly tested via the experimental setup. DRH of NaCl and AS were observed at 80.9 ± 0.1% 137 

(literature: 77 ± 1% (Pöhlker et al., 2014)) and 82.1± 0.6% (literature: 82.0% (Onasch et al., 1999)). ERH of NaCl and AS 138 

were 48.3 ± 0.4% (literature: 48 ± 2% (Zeng et al., 2014)) and 30.7 ± 0.9% (literature: 31 ± 1% (Cheng and Kuwata, 2023)). 139 

Generally, the experimental DRH and ERH values correspond well with those in literature, confirming the reliability of the 140 

experimental setup. DRH of NaCl showed slight deviation by about nearly 4%, which could be explained by kinetic effects 141 

when the system had not reached full equilibrium (Pöhlker et al., 2014). Before deliquescence, the substrate-supported NaCl 142 

and AS particles both showed substantial water uptake, forming an aqueous halo around a solid core. Similar observational 143 

results of NaCl and AS have been reported, and could be explained by interactions at the sample/substrate interface, which 144 

plays an important role in such gradual phase transition as additional energy term (Wise et al., 2008; Pöhlker et al., 2014). 145 

Figure 1e and Fig. 2e illustrate the two separated phases with dark core (blue arrow) and bright shell (green arrow) of 146 

dry deposited NaCl−C2H5SO4Na and AS−C2H5SO4Na particles. The dark cores are indicated to be inorganics, because darker 147 

regions are characteristic of areas with higher atomic number elements (e.g., Cl) and/or a thicker sample region (Laskin et al., 148 

2006; O'brien et al., 2015). Phase separations with core−shell structure were observed for all studied inorganic salt−organic 149 

surfactant systems. This may be attributed to the size range of particles we investigated (~ 1 μm with dry lateral dimension), 150 

since inorganic salt−organic surfactant particles with such size range might overcome the energy barrier needed to form a new 151 

phase (Altaf and Freedman, 2017; Altaf et al., 2018; Freedman, 2020; Ott and Freedman, 2021). According to results in 152 

Freedman (2020), morphology of most systems were found size-dependent, where large particles were phase-separated and 153 

small particles were homogeneous. Furthermore, all systems (e.g, AS–PA and AS–succinic acid systems) with dry diameters 154 

larger than 0.7 μm were observed phase-separated no matter the occurrence of size dependence (Altaf and Freedman, 2017). 155 

Freedman (2020) expected that phase-separation could be attributed by nucleation and growth, therefore larger particles tended 156 

to be phase-separated morphology. In another study, Ohno et al. (2021) also found that LLPS occurred at lower RH in smaller 157 

droplet (70 – 190 nm) than in larger droplet (260 – 370 nm). 158 

When RH increased from dry, as organic phase slowly absorbed water, NaCl and AS cores were not fully dissolved at 159 

RH of 90.1% and 91.7% (Fig. 1g and Fig. 2g), respectively, being notably higher than their DRH. The phenomenon was found 160 

for all NaCl−organic surfactant and AS−organic surfactant systems and the DRH of the inorganic salts were ranged in 161 

88.3−99.5% (Fig. 1i and Fig. 2i). Laskina et al. (2015) measured the DRH of pure AS and NaCl at submicrometer (100 nm) 162 

and supermicrometer (3−10 μm) size ranges by hygroscopic tandem differential mobility analyzers (HTDMA) and 163 

MicroRaman Spectroscopy, respectively, and the deviations between them were both within 3%, indicating that DRH of pure 164 

AS and NaCl showed weak size dependence (> 100 nm). In addition, Cheng and Kuwata (2023) used low-temperature 165 
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hygroscopicity tandem differential mobility analyzer (Low−T HTDMA) and observed consistent DRH of NaCl and AS within 166 

experimental error under temperature ranged in −10 ℃ to 22.5 ℃, suggesting that the DRH of NaCl and AS experience a 167 

neglect temperature dependence. According to the above-mentioned studies, DRH of pure AS and NaCl displayed weak 168 

dependence on size (> 100 nm) and temperature, and we therefore concluded that surfactant shell inhibits water diffusion 169 

exposing to inorganic cores, resulting in delays of deliquescence of inorganic cores.The inhibition of surfactant shell could be 170 

triggered by increased viscosity with raised RH, since reported studies have reported that organic shells can transform form 171 

solid to semisolid with high viscosity at wet condition (Zhang et al., 2018). In a RH-constrained lab study at constant room 172 

temperature, Li et al. (2021) also observed organic coating of secondary organic aerosol (oxidizing α-pinene) started to 173 

deliquesce first, but the phase changes of AS cores from solid to liquid took place at 83−90% RH, lower than those in the 174 

current study. This was possibly caused by the water diffusion coefficient through organic phase, which could be affected by 175 

organic species and environment parameters such as temperature. Given by Nguyen et al. (2017), the diffusion coefficient of 176 

a water molecule through an organic shell could be decreased by lower temperature. In the current study, higher RH in the 177 

ESEM chamber was achieved by decreasing temperature, thus might decrease diffusion coefficient of water in organic 178 

surfactant and lead to higher DRH than those in Li et al. (2021). Previous study and the current work indicated the phenomenon 179 

(water inhabitation by organic coating) to be a common and important procedure in affecting ambient aerosol hygroscopicity, 180 

because inorganic−organic core−shell structures were ubiquitous observed in field (Li et al., 2016; Unga et al., 2018; Xu et al., 181 

2020; Li et al., 2021; Wang et al., 2021; Zhang et al., 2022). Though the water inhabitation of organic shell in the current study 182 

was observed at temperature much lower than room temperature, it is meaningful and may affect aerosol properties in some 183 

special area such as polar regions (Lambert et al., 2013; Kirpes et al., 2022; Zavacka et al., 2022) or winter time period (Xu et 184 

al., 2021; Zhang et al., 2021) where are characteristic with low-temperature environment. 185 

As previous study believed that deliquescence on hydration for inorganics independent of circumstances, Fig. 3 illustrates 186 

an unexpected phase transition of NaCl cores coated with C2H5SO4Na. As shown in Fig. 3a, a droplet with several NaCl cores 187 

was observed at 97.0% RH since discussed above that organic shell inhibits water diffusion. NaCl cores in droplet were a 188 

bigger one (marked by white square) and the rest were smaller. When RH gradually raised (Fig. 3b−c), as smaller NaCl cores 189 

serially deliquesced and dissolved, the size of the bigger NaCl core surprisingly increased, indicating a simultaneous NaCl 190 

recrystallization at the expense of smaller ones (i.e., Ostwald ripening) (Boistelle and Astier, 1988). After other small particles 191 

totally dissolve, the bigger NaCl core deliquesced and fully dissolved at 99.5% RH (Fig. 3d). A previous study reported 192 

“efflorescence upon hydration” for 1:1 mixed NaCl-gluconic acid and AS-gluconic acid by optical tweezer (Zhu et al., 2022). 193 

Based on IR spectrum, they found the coexistence of partial efflorescence mixed state, ultraviscous state and liquid state during 194 

“efflorescence upon hydration” period, indicating an unstable crystal and concentrated liquid state of NaCl. In this 195 

circumstance, Ostwald ripening can take place. Ostwald ripening was triggered by the decrease of total system free energy, 196 

since dissolved small and effloresced big crystals reduce the total system free energy (Voorhees, 1985). We directly and 197 

observed obvious Ostwald ripening processes in 6 among 10 NaCl−organic surfactants systems. As a results of water inhibition 198 
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by surfactant shell discussed above, Ostwald ripening here all occurred at RH above 90%, which were notably higher than 199 

reported 75%−77% for pure NaCl measured by X-ray microspectroscopy at 27℃ (Pöhlker et al., 2014). 200 

 201 

 202 
Figure 1. ESEM images of (a−d) pure NaCl and (e−h) NaCl−C2H5SO4Na (70% OVF) with different RH. Blue and green 203 

arrows indicate the inorganic phase and organic phase, respectively. The RH value that NaCl core fully dissolved (DRH) for 204 

NaCl−organic surfactant systems with different OVF (i). Grey area in (i) covers DRH range of NaCl in the literature obtained 205 

from Peng et al. (2022). Red line indicates the measured average DRH of pure NaCl (80.9 ± 0.1%). Scale bars in (a-h) were 1 206 

μm. 207 

  208 
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 209 

 210 
 211 

Figure 2. ESEM images of (a−d) pure AS and (e−h) AS−C2H5SO4Na (50% OVF) with different RH. Blue and green arrows 212 

indicate the inorganic phase and organic phase, respectively. The RH value that AS core fully dissolved (DRH) for AS−organic 213 

surfactant systems with different OVF (i). Grey area in (i) covers DRH range of AS in the literature obtained from Peng et al. 214 

(2022). Red line indicates the measured average DRH of pure AS (82.1 ± 0.6%). Scale bars in (a-h) were 1 μm. 215 

  216 
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 217 

 218 

Figure 3. ESEM images of Ostwald ripening for NaCl−C8H17SO4Na (50% OVF) particle. White square indicates the biggest 219 

NaCl core (assumed square) in droplet. The biggest NaCl grew larger (recrystallization) while the small NaCl cores dissolved. 220 

  221 
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3.2 Mixing states upon dehydration 222 

LLPS 223 

In Fig. 4a, AS−C8H17SO4Na was homogeneous under RH of 99.5%. When RH decreased to 99.1%, the particles showed 224 

two separated liquid phases (i.e., LLPS) with a dark inner phase and a light outer phase (Fig. 4b), which were highlighted by 225 

the blue and green arrows. In addition, the AS−C8H17SO4Na remained LLPS when RH continue to decline until efflorescence 226 

of inner inorganic phase occurred (Fig. 4c). In our study, 8 among 20 chemical systems underwent LLPS, including 4 227 

AS−organic surfactant systems and 4 NaCl−organic surfactant systems. Fig. 5 illustrates the relationship between LLPS 228 

occurrence and molar ratios (O:C and H:C) of the surface−active organics, as well as reported results of other binary inorganic 229 

salt−organic systems in literature (Bertram et al., 2011; You et al., 2013; You and Bertram, 2015). In our study, LLPS always 230 

occurs when the O:C ratio is below 0.43 (yellow dashed line in Fig. 5) for NaCl–organic surfactant and AS–organic surfactant 231 

droplets. This value was close to the reported values in You et al. (2013) (~ 0.5). However, in their results, LLPS was never 232 

observed when O:C was above ~ 0.8 (grey dashed line in Fig. 5) (Bertram et al., 2011; Song et al., 2012b; You et al., 233 

2013),which was higher than that in our experiment (0.57). We ascribe this to the insufficient chemical systems in our 234 

experiment (10 systems), which was notably smaller than in previous studies (over 30). As a result, the bounds of O:C 235 

determining LLPS were not changed if our results were added in previous studies such as You et al. (2013) and Song et al. 236 

(2012b). 237 

In order to analyze the effect of inorganic salts in LLPS, we compared SRH of systems which contained same organic 238 

matters but different inorganic salts. Results showed that SRH of AS−C8H17SO4Na (70% OVF), AS−C8H17SO3Na (90% OVF), 239 

AS−PhMA (90% OVF) and AS−PA (90% OVF) were 98.7 ± 0.5%, 81.3 ± 1.2%, 97.9 ± 1.0% and 98.5 ± 0.8%, and were all 240 

notably higher than SRH of corresponding NaCl−containing systems (92.5 ± 3.9%, 56.4 ± 1.2%, 85.6 ± 3.6% and 66.7 ± 0.8%), 241 

respectively. This was attributed to different salting out efficiency of inorganic salts, since You et al. (2013) found the SRH of 242 

inorganic−organic mixtures followed the trend of (NH4)2SO4 ≥ NH4HSO4 ≥ NaCl ≥ NH4NO3, which were generally consistent 243 

with their salting out efficiency. 244 

The measured SRH values as a function of OVF are plotted in Fig. 6. AS−C8H17SO4Na showed SRH of 98.7 ± 0.5% 245 

when OVF was 70%, higher than those of 50% OVF (82.1 ± 1.6%) and 90% OVF (80.0 ± 0.9%). However, the phenomenon 246 

was totally different from that of AS−C8H17SO3Na, which showed lower SRH with 70% OVF (62.2 ± 2.6%) than those of 50% 247 

OVF (69.6 ± 1.0%) and 90% OVF (81.3 ± 1.2%). Therefore, the above results indicated controversial effect of OVF on SRH 248 

(Bertram et al., 2011; Song et al., 2012a). 249 

 250 
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 251 

 252 

Figure 4. ESEM images of (a) homogeneous AS−C8H17SO4Na particles (70% OVF) underwent (b) LLPS and (c) efflorescence. 253 

 254 
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  255 

Figure 5. Van Krevelen Diagram for the mixed inorganic−surfactants particles in the current study (symbols in red, orange 256 

and cyan): (a) NaCl−organic surfactant and (b) AS−organic surfactant systems. Solid symbols indicate that LLPS was observed 257 

for particles with at least one OVF, while hollow symbols indicate that LLPS was not observed for particles with all OVFs. 258 

Symbols in grey in (a) and (b) were results obtained from Bertram et al. (2011), You et al. (2013) and You and Bertram (2015). 259 

Yellow-hatched region (O:C < 0.43) means that LLPS observed in all investigated systems, while grey-hatched region (O:C > 260 

0.8) means no LLPS detected in any of the investigated systems. 261 
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 262 
Figure 6. Summary of SRH results as a function of OVF for inorganic-surfactant particles. 263 

  264 
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Solid phase separation  265 

For mixed systems without undergoing LLPS, we found they were separated with distinct core−shell phases from 266 

homogeneous morphology at low RH. However, this phase transition was different from LLPS, since the inner phase was with 267 

irregular shape (LLPS occurred with rounded inner liquid phase), which was attributed to the efflorescence progress of 268 

inorganic salt (Fig. 7). Therefore, we termed it solid phase separation. The efflorescence RH (ERH) of inner inorganic salt, 269 

therefore, was the solid phase separation RH.  270 

In Fig. 8a, ERH of NaCl−organic surfactant particles with 50%, 70% and 90% OVF were ranged in 47.0−61.8%, which 271 

was higher than the measured ERH (48.3 ± 0.4%) and reported ERH range of pure NaCl (41−51%) (Peng et al., 2022). This 272 

could be explained by the interaction between organic and inorganic matters. For example, Ghorai et al. (2014) found an acid 273 

displacement reaction in NaCl−glutaric acid systems, which was driven by gaseous HCl liberation and causing chloride 274 

depletion. Such interactions of chloride depletion may facilitate efflorescence transitions, resulting in efflorescence at ~ 68% 275 

RH and ~ 60% RH, respectively, for internally mixed NaCl−glutaric acid particles with molar ratios of 1:3 and 1:1. Higher 276 

ERH could also be attributed to heterogeneous nucleation initiated by chemical purities (Choi and Chan, 2002). Choi and Chan 277 

(2002) observed 54.4% ERH for a 1:1mixed NaCl−glutaric acid, and they explained that insoluble additives crystallized and 278 

formed nuclei for the heterogeneous efflorescence of inorganic salts, leading to their higher ERH values. 279 

As for AS−organic surfactant systems (Fig. 8b), efflorescence was observed for 27 among 30 aerosol samples. We did 280 

not observe distinct occurrence of efflorescence for the rest 3 samples, and 2 samples among 3 were with 90% OVF, which 281 

could be explained by the possible loss of AS when it was persistently exposed to electronic beam (Posfai et al., 2013; O'brien 282 

et al., 2015), especially for particles in which inorganic fractions were small (i.e., high OVF). ERH values of AS−organic 283 

surfactant particles with 50%, 70%, and 90% OVF ranged in 31.2−46.6%, showing a close result to the reported ERH of pure 284 

AS (30−48%) (Peng et al., 2022), but higher than the measured ERH (30.7 ± 0.9%). The potential cause may be the 285 

heterogeneous crystallization of AS on organic salts (Wang et al., 2019; Yang et al., 2019; Ma et al., 2021). For example, Wang 286 

et al. (2019) investigated the efflorescence of AS in AS−sodium oxalate and found SRH values were 48.9% and 55.3% with 287 

organic-inorganic mole ratios of 1:1 and 3:1, respectively, which were higher than that of pure AS (47.5%). Likely, Yang et al. 288 

(2019) also observed that the initial ERH of AS rose to 47.7% and 62% for inorganic mole ratios 1:3 and 1:1 AS−sodium 289 

pyruvate mixtures, respectively. 290 

 291 
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 292 

Figure 7. ESEM images of solid phase separation for (a−b) NaCl−PhMA and (c−d) AS−CH3SO4Na systems. The scale bars 293 

in (a-d) were 500 nm. 294 

  295 
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 296 

 297 

Figure 8. Measurements of efflorescence relative humidity (ERH) of (a) NaCl−organic surfactant and (b) AS−organic 298 

surfactant particles. The grey areas in (a) and (b) indicate the efflorescence RH range of NaCl (41−51%) and AS (30−48%) 299 

obtained from Peng et al. (2022). Red lines in (a) and (b) represent the measured average ERH of pure NaCl (48.3 ± 0.4%) 300 

and AS (30.7 ± 0.9%). 301 

3.3 Atmospheric implication 302 

Dicarboxylic acids, organosulfates, and organosulfonates are important surface−active organic constituents in secondary 303 

organic aerosol. Few studies comprehensively studied their mixing state upon fluctuating RH cycling, which is a simulate of 304 

real atmospheric condition. In this work, we concluded that mixing state affected interactions of inorganic salt with water. 305 

Since common assumptions in chemical transport models (including ISORROPIA-II (Fountoukis and Nenes, 2007), EQSAM 306 

(Metzger et al., 2002a; Metzger et al., 2002b), and MOSAIC (Zaveri et al., 2008)) are that water uptake is determined separately 307 

by the inorganic compounds and organics (i.e., the effect of mixing state was ignored) (Myhre et al., 2007; Nandy et al., 2021), 308 

thereby our results implied further effect of mixing states on estimations of aerosol hygroscopicity (e.g., growth factor), optical 309 

properties, and radiative forcing.  310 

During dehydration, we investigated phase−separated before and after efflorescence for inorganic salts−organic surfactant 311 
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particles. Compared with homogeneous particles, phase−separated particles could decrease trace gas uptake (You et al., 2012), 312 

resulting in reduction of the formation of secondary organic aerosols (SOAs) (Zhang et al., 2018). In addition, organic phase 313 

was enriched in “outer shell”, which can potentially alter aerosol water activity and lower aerosol surface tension, hence 314 

affecting aerosol−cloud interactions because water uptake of organic matter in current models (e.g. MPMPO (Griffin et al., 315 

2003) and SOA treat-ment in CMAQ v5.2 (Pye et al., 2017)) is estimated by highly parameterized relationships assuming ideal 316 

solutions, e.g., using the kappa hygroscopicity parameter with water surface tension (Petters and Kreidenweis, 2007; Nandy 317 

et al., 2021). 318 

Our results provide comprehensive information of mixing states between inorganic salts and organic surfactant in 319 

nanoscale perspective, which could help the establish of incorporation atmospheric modeling, to improve predictions on 320 

indirect effects of aerosol−climate interactions. We should note that in the atmosphere most particles are smaller (e.g., 0.1 to 321 

0.3 μm) than sample particles and the chemical characteristics of ambient aerosol are not as simple as binary chemical systems 322 

in the current study. Therefore. the water kinetic inhibition should be further investigated for smaller particles containing more 323 

complex systems in the future. 324 

4 Conclusions  325 

Atmospheric surfactants have potential to distribute to surface, altering mixing state hence influencing aerosol 326 

hygroscopicity and CCN activity. But currently direct observation of RH−depended mixing state of aerosol containing 327 

atmospheric surfactants is scarce. In this study, dynamic mixing state and phase transitions of 20 types of submicron particles 328 

containing inorganic and surface−active organic constituents were directly investigated upon relative humidity (RH) cycling 329 

by Environmental Scanning Electron Microscopy (ESEM).  330 

Inorganic-organic core-shell morphology was found for dry deposited mixed inorganic salt-organic surfactant particles. 331 

During hydration, organic shell inhibited water diffusion exposing to inorganic cores, resulting in higher deliquescence RH 332 

(88.3−99.5%) of inner inorganic phase compared with pure inorganic aerosol. This was because higher RH may facilitate phase 333 

transition of organic shell from solid to semisolid, raising organic viscosity thus decreasing water diffusion exposing to 334 

inorganic core. Meanwhile, we directly observed obvious Ostwald ripening of NaCl, that is, the growth of larger NaCl crystal 335 

at the expense of smaller ones, in 6 among 10 NaCl−organic surfactant systems. As a result of water inhibition by surfactant 336 

shell, Ostwald ripening in all systems occurred at RH above 90%, which were higher than reported RH range of pure NaCl 337 

measured at 27℃ (75−77%). 338 

During dehydration, 8 among 20 chemical systems underwent LLPS, including 4 AS−organic surfactant systems and 4 339 

NaCl−organic surfactant systems. LLPS was always observed when O:C  0.4 and never been observed when O:C > ~0.57. 340 

SRH values of AS−organic surfactant particles were generally higher than SRH of corresponding NaCl−organic surfactant 341 

systems, which was consistent with reported salting out efficiency of inorganic salts. OVF showed a controversial effect on 342 

SRH of inorganic salt−organic surfactant systems. Additionally, inorganic salt−organic surfactant systems without LLPS 343 
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underwent solid phase separation after efflorescence and also showed distinct separated phases. Our results provide a 344 

comprehensive and unique insights into the dynamic evolution of inorganic salt−organic surfactant particles under fluctuating 345 

atmospheric conditions, which could help improve our fundamental knowledge and decrease uncertainty of model estimation 346 

on global radiative effect. 347 
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